Linux-2.6.12-rc2
[linux-flexiantxendom0-natty.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(snd_pcm_substream_t *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         snd_pcm_runtime_t *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled == runtime->buffer_size)
60                         return;
61                 snd_assert(runtime->silence_filled <= runtime->buffer_size, return);
62                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64                         return;
65                 frames = runtime->silence_threshold - noise_dist;
66                 if (frames > runtime->silence_size)
67                         frames = runtime->silence_size;
68         } else {
69                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
70                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71                         runtime->silence_filled = avail > 0 ? avail : 0;
72                         runtime->silence_start = (runtime->status->hw_ptr +
73                                                   runtime->silence_filled) %
74                                                  runtime->boundary;
75                 } else {
76                         ofs = runtime->status->hw_ptr;
77                         frames = new_hw_ptr - ofs;
78                         if ((snd_pcm_sframes_t)frames < 0)
79                                 frames += runtime->boundary;
80                         runtime->silence_filled -= frames;
81                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
82                                 runtime->silence_filled = 0;
83                                 runtime->silence_start = (ofs + frames) - runtime->buffer_size;
84                         } else {
85                                 runtime->silence_start = ofs - runtime->silence_filled;
86                         }
87                         if ((snd_pcm_sframes_t)runtime->silence_start < 0)
88                                 runtime->silence_start += runtime->boundary;
89                 }
90                 frames = runtime->buffer_size - runtime->silence_filled;
91         }
92         snd_assert(frames <= runtime->buffer_size, return);
93         if (frames == 0)
94                 return;
95         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
96         while (frames > 0) {
97                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100                         if (substream->ops->silence) {
101                                 int err;
102                                 err = substream->ops->silence(substream, -1, ofs, transfer);
103                                 snd_assert(err >= 0, );
104                         } else {
105                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107                         }
108                 } else {
109                         unsigned int c;
110                         unsigned int channels = runtime->channels;
111                         if (substream->ops->silence) {
112                                 for (c = 0; c < channels; ++c) {
113                                         int err;
114                                         err = substream->ops->silence(substream, c, ofs, transfer);
115                                         snd_assert(err >= 0, );
116                                 }
117                         } else {
118                                 size_t dma_csize = runtime->dma_bytes / channels;
119                                 for (c = 0; c < channels; ++c) {
120                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122                                 }
123                         }
124                 }
125                 runtime->silence_filled += transfer;
126                 frames -= transfer;
127                 ofs = 0;
128         }
129 }
130
131 static void xrun(snd_pcm_substream_t *substream)
132 {
133         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
134 #ifdef CONFIG_SND_DEBUG
135         if (substream->pstr->xrun_debug) {
136                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
137                            substream->pcm->card->number,
138                            substream->pcm->device,
139                            substream->stream ? 'c' : 'p');
140                 if (substream->pstr->xrun_debug > 1)
141                         dump_stack();
142         }
143 #endif
144 }
145
146 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(snd_pcm_substream_t *substream,
147                                                           snd_pcm_runtime_t *runtime)
148 {
149         snd_pcm_uframes_t pos;
150
151         pos = substream->ops->pointer(substream);
152         if (pos == SNDRV_PCM_POS_XRUN)
153                 return pos; /* XRUN */
154         if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
155                 snd_timestamp_now((snd_timestamp_t*)&runtime->status->tstamp, runtime->tstamp_timespec);
156 #ifdef CONFIG_SND_DEBUG
157         if (pos >= runtime->buffer_size) {
158                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
159         } else
160 #endif
161         snd_runtime_check(pos < runtime->buffer_size, return 0);
162         pos -= pos % runtime->min_align;
163         return pos;
164 }
165
166 static inline int snd_pcm_update_hw_ptr_post(snd_pcm_substream_t *substream,
167                                              snd_pcm_runtime_t *runtime)
168 {
169         snd_pcm_uframes_t avail;
170
171         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
172                 avail = snd_pcm_playback_avail(runtime);
173         else
174                 avail = snd_pcm_capture_avail(runtime);
175         if (avail > runtime->avail_max)
176                 runtime->avail_max = avail;
177         if (avail >= runtime->stop_threshold) {
178                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
179                         snd_pcm_drain_done(substream);
180                 else
181                         xrun(substream);
182                 return -EPIPE;
183         }
184         if (avail >= runtime->control->avail_min)
185                 wake_up(&runtime->sleep);
186         return 0;
187 }
188
189 static inline int snd_pcm_update_hw_ptr_interrupt(snd_pcm_substream_t *substream)
190 {
191         snd_pcm_runtime_t *runtime = substream->runtime;
192         snd_pcm_uframes_t pos;
193         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
194         snd_pcm_sframes_t delta;
195
196         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
197         if (pos == SNDRV_PCM_POS_XRUN) {
198                 xrun(substream);
199                 return -EPIPE;
200         }
201         if (runtime->period_size == runtime->buffer_size)
202                 goto __next_buf;
203         new_hw_ptr = runtime->hw_ptr_base + pos;
204         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
205
206         delta = hw_ptr_interrupt - new_hw_ptr;
207         if (delta > 0) {
208                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
209 #ifdef CONFIG_SND_DEBUG
210                         if (runtime->periods > 1 && substream->pstr->xrun_debug) {
211                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
212                                 if (substream->pstr->xrun_debug > 1)
213                                         dump_stack();
214                         }
215 #endif
216                         return 0;
217                 }
218               __next_buf:
219                 runtime->hw_ptr_base += runtime->buffer_size;
220                 if (runtime->hw_ptr_base == runtime->boundary)
221                         runtime->hw_ptr_base = 0;
222                 new_hw_ptr = runtime->hw_ptr_base + pos;
223         }
224
225         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
226             runtime->silence_size > 0)
227                 snd_pcm_playback_silence(substream, new_hw_ptr);
228
229         runtime->status->hw_ptr = new_hw_ptr;
230         runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
231
232         return snd_pcm_update_hw_ptr_post(substream, runtime);
233 }
234
235 /* CAUTION: call it with irq disabled */
236 int snd_pcm_update_hw_ptr(snd_pcm_substream_t *substream)
237 {
238         snd_pcm_runtime_t *runtime = substream->runtime;
239         snd_pcm_uframes_t pos;
240         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
241         snd_pcm_sframes_t delta;
242
243         old_hw_ptr = runtime->status->hw_ptr;
244         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
245         if (pos == SNDRV_PCM_POS_XRUN) {
246                 xrun(substream);
247                 return -EPIPE;
248         }
249         new_hw_ptr = runtime->hw_ptr_base + pos;
250
251         delta = old_hw_ptr - new_hw_ptr;
252         if (delta > 0) {
253                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
254 #ifdef CONFIG_SND_DEBUG
255                         if (runtime->periods > 2 && substream->pstr->xrun_debug) {
256                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
257                                 if (substream->pstr->xrun_debug > 1)
258                                         dump_stack();
259                         }
260 #endif
261                         return 0;
262                 }
263                 runtime->hw_ptr_base += runtime->buffer_size;
264                 if (runtime->hw_ptr_base == runtime->boundary)
265                         runtime->hw_ptr_base = 0;
266                 new_hw_ptr = runtime->hw_ptr_base + pos;
267         }
268         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
269             runtime->silence_size > 0)
270                 snd_pcm_playback_silence(substream, new_hw_ptr);
271
272         runtime->status->hw_ptr = new_hw_ptr;
273
274         return snd_pcm_update_hw_ptr_post(substream, runtime);
275 }
276
277 /**
278  * snd_pcm_set_ops - set the PCM operators
279  * @pcm: the pcm instance
280  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
281  * @ops: the operator table
282  *
283  * Sets the given PCM operators to the pcm instance.
284  */
285 void snd_pcm_set_ops(snd_pcm_t *pcm, int direction, snd_pcm_ops_t *ops)
286 {
287         snd_pcm_str_t *stream = &pcm->streams[direction];
288         snd_pcm_substream_t *substream;
289         
290         for (substream = stream->substream; substream != NULL; substream = substream->next)
291                 substream->ops = ops;
292 }
293
294
295 /**
296  * snd_pcm_sync - set the PCM sync id
297  * @substream: the pcm substream
298  *
299  * Sets the PCM sync identifier for the card.
300  */
301 void snd_pcm_set_sync(snd_pcm_substream_t * substream)
302 {
303         snd_pcm_runtime_t *runtime = substream->runtime;
304         
305         runtime->sync.id32[0] = substream->pcm->card->number;
306         runtime->sync.id32[1] = -1;
307         runtime->sync.id32[2] = -1;
308         runtime->sync.id32[3] = -1;
309 }
310
311 /*
312  *  Standard ioctl routine
313  */
314
315 /* Code taken from alsa-lib */
316 #define assert(a) snd_assert((a), return -EINVAL)
317
318 static inline unsigned int div32(unsigned int a, unsigned int b, 
319                                  unsigned int *r)
320 {
321         if (b == 0) {
322                 *r = 0;
323                 return UINT_MAX;
324         }
325         *r = a % b;
326         return a / b;
327 }
328
329 static inline unsigned int div_down(unsigned int a, unsigned int b)
330 {
331         if (b == 0)
332                 return UINT_MAX;
333         return a / b;
334 }
335
336 static inline unsigned int div_up(unsigned int a, unsigned int b)
337 {
338         unsigned int r;
339         unsigned int q;
340         if (b == 0)
341                 return UINT_MAX;
342         q = div32(a, b, &r);
343         if (r)
344                 ++q;
345         return q;
346 }
347
348 static inline unsigned int mul(unsigned int a, unsigned int b)
349 {
350         if (a == 0)
351                 return 0;
352         if (div_down(UINT_MAX, a) < b)
353                 return UINT_MAX;
354         return a * b;
355 }
356
357 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
358                                     unsigned int c, unsigned int *r)
359 {
360         u_int64_t n = (u_int64_t) a * b;
361         if (c == 0) {
362                 snd_assert(n > 0, );
363                 *r = 0;
364                 return UINT_MAX;
365         }
366         div64_32(&n, c, r);
367         if (n >= UINT_MAX) {
368                 *r = 0;
369                 return UINT_MAX;
370         }
371         return n;
372 }
373
374 static int snd_interval_refine_min(snd_interval_t *i, unsigned int min, int openmin)
375 {
376         int changed = 0;
377         assert(!snd_interval_empty(i));
378         if (i->min < min) {
379                 i->min = min;
380                 i->openmin = openmin;
381                 changed = 1;
382         } else if (i->min == min && !i->openmin && openmin) {
383                 i->openmin = 1;
384                 changed = 1;
385         }
386         if (i->integer) {
387                 if (i->openmin) {
388                         i->min++;
389                         i->openmin = 0;
390                 }
391         }
392         if (snd_interval_checkempty(i)) {
393                 snd_interval_none(i);
394                 return -EINVAL;
395         }
396         return changed;
397 }
398
399 static int snd_interval_refine_max(snd_interval_t *i, unsigned int max, int openmax)
400 {
401         int changed = 0;
402         assert(!snd_interval_empty(i));
403         if (i->max > max) {
404                 i->max = max;
405                 i->openmax = openmax;
406                 changed = 1;
407         } else if (i->max == max && !i->openmax && openmax) {
408                 i->openmax = 1;
409                 changed = 1;
410         }
411         if (i->integer) {
412                 if (i->openmax) {
413                         i->max--;
414                         i->openmax = 0;
415                 }
416         }
417         if (snd_interval_checkempty(i)) {
418                 snd_interval_none(i);
419                 return -EINVAL;
420         }
421         return changed;
422 }
423
424 /**
425  * snd_interval_refine - refine the interval value of configurator
426  * @i: the interval value to refine
427  * @v: the interval value to refer to
428  *
429  * Refines the interval value with the reference value.
430  * The interval is changed to the range satisfying both intervals.
431  * The interval status (min, max, integer, etc.) are evaluated.
432  *
433  * Returns non-zero if the value is changed, zero if not changed.
434  */
435 int snd_interval_refine(snd_interval_t *i, const snd_interval_t *v)
436 {
437         int changed = 0;
438         assert(!snd_interval_empty(i));
439         if (i->min < v->min) {
440                 i->min = v->min;
441                 i->openmin = v->openmin;
442                 changed = 1;
443         } else if (i->min == v->min && !i->openmin && v->openmin) {
444                 i->openmin = 1;
445                 changed = 1;
446         }
447         if (i->max > v->max) {
448                 i->max = v->max;
449                 i->openmax = v->openmax;
450                 changed = 1;
451         } else if (i->max == v->max && !i->openmax && v->openmax) {
452                 i->openmax = 1;
453                 changed = 1;
454         }
455         if (!i->integer && v->integer) {
456                 i->integer = 1;
457                 changed = 1;
458         }
459         if (i->integer) {
460                 if (i->openmin) {
461                         i->min++;
462                         i->openmin = 0;
463                 }
464                 if (i->openmax) {
465                         i->max--;
466                         i->openmax = 0;
467                 }
468         } else if (!i->openmin && !i->openmax && i->min == i->max)
469                 i->integer = 1;
470         if (snd_interval_checkempty(i)) {
471                 snd_interval_none(i);
472                 return -EINVAL;
473         }
474         return changed;
475 }
476
477 static int snd_interval_refine_first(snd_interval_t *i)
478 {
479         assert(!snd_interval_empty(i));
480         if (snd_interval_single(i))
481                 return 0;
482         i->max = i->min;
483         i->openmax = i->openmin;
484         if (i->openmax)
485                 i->max++;
486         return 1;
487 }
488
489 static int snd_interval_refine_last(snd_interval_t *i)
490 {
491         assert(!snd_interval_empty(i));
492         if (snd_interval_single(i))
493                 return 0;
494         i->min = i->max;
495         i->openmin = i->openmax;
496         if (i->openmin)
497                 i->min--;
498         return 1;
499 }
500
501 static int snd_interval_refine_set(snd_interval_t *i, unsigned int val)
502 {
503         snd_interval_t t;
504         t.empty = 0;
505         t.min = t.max = val;
506         t.openmin = t.openmax = 0;
507         t.integer = 1;
508         return snd_interval_refine(i, &t);
509 }
510
511 void snd_interval_mul(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
512 {
513         if (a->empty || b->empty) {
514                 snd_interval_none(c);
515                 return;
516         }
517         c->empty = 0;
518         c->min = mul(a->min, b->min);
519         c->openmin = (a->openmin || b->openmin);
520         c->max = mul(a->max,  b->max);
521         c->openmax = (a->openmax || b->openmax);
522         c->integer = (a->integer && b->integer);
523 }
524
525 /**
526  * snd_interval_div - refine the interval value with division
527  *
528  * c = a / b
529  *
530  * Returns non-zero if the value is changed, zero if not changed.
531  */
532 void snd_interval_div(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
533 {
534         unsigned int r;
535         if (a->empty || b->empty) {
536                 snd_interval_none(c);
537                 return;
538         }
539         c->empty = 0;
540         c->min = div32(a->min, b->max, &r);
541         c->openmin = (r || a->openmin || b->openmax);
542         if (b->min > 0) {
543                 c->max = div32(a->max, b->min, &r);
544                 if (r) {
545                         c->max++;
546                         c->openmax = 1;
547                 } else
548                         c->openmax = (a->openmax || b->openmin);
549         } else {
550                 c->max = UINT_MAX;
551                 c->openmax = 0;
552         }
553         c->integer = 0;
554 }
555
556 /**
557  * snd_interval_muldivk - refine the interval value
558  *
559  * c = a * b / k
560  *
561  * Returns non-zero if the value is changed, zero if not changed.
562  */
563 void snd_interval_muldivk(const snd_interval_t *a, const snd_interval_t *b,
564                       unsigned int k, snd_interval_t *c)
565 {
566         unsigned int r;
567         if (a->empty || b->empty) {
568                 snd_interval_none(c);
569                 return;
570         }
571         c->empty = 0;
572         c->min = muldiv32(a->min, b->min, k, &r);
573         c->openmin = (r || a->openmin || b->openmin);
574         c->max = muldiv32(a->max, b->max, k, &r);
575         if (r) {
576                 c->max++;
577                 c->openmax = 1;
578         } else
579                 c->openmax = (a->openmax || b->openmax);
580         c->integer = 0;
581 }
582
583 /**
584  * snd_interval_mulkdiv - refine the interval value
585  *
586  * c = a * k / b
587  *
588  * Returns non-zero if the value is changed, zero if not changed.
589  */
590 void snd_interval_mulkdiv(const snd_interval_t *a, unsigned int k,
591                       const snd_interval_t *b, snd_interval_t *c)
592 {
593         unsigned int r;
594         if (a->empty || b->empty) {
595                 snd_interval_none(c);
596                 return;
597         }
598         c->empty = 0;
599         c->min = muldiv32(a->min, k, b->max, &r);
600         c->openmin = (r || a->openmin || b->openmax);
601         if (b->min > 0) {
602                 c->max = muldiv32(a->max, k, b->min, &r);
603                 if (r) {
604                         c->max++;
605                         c->openmax = 1;
606                 } else
607                         c->openmax = (a->openmax || b->openmin);
608         } else {
609                 c->max = UINT_MAX;
610                 c->openmax = 0;
611         }
612         c->integer = 0;
613 }
614
615 #undef assert
616 /* ---- */
617
618
619 /**
620  * snd_interval_ratnum - refine the interval value
621  *
622  * Returns non-zero if the value is changed, zero if not changed.
623  */
624 int snd_interval_ratnum(snd_interval_t *i,
625                     unsigned int rats_count, ratnum_t *rats,
626                     unsigned int *nump, unsigned int *denp)
627 {
628         unsigned int best_num, best_diff, best_den;
629         unsigned int k;
630         snd_interval_t t;
631         int err;
632
633         best_num = best_den = best_diff = 0;
634         for (k = 0; k < rats_count; ++k) {
635                 unsigned int num = rats[k].num;
636                 unsigned int den;
637                 unsigned int q = i->min;
638                 int diff;
639                 if (q == 0)
640                         q = 1;
641                 den = div_down(num, q);
642                 if (den < rats[k].den_min)
643                         continue;
644                 if (den > rats[k].den_max)
645                         den = rats[k].den_max;
646                 else {
647                         unsigned int r;
648                         r = (den - rats[k].den_min) % rats[k].den_step;
649                         if (r != 0)
650                                 den -= r;
651                 }
652                 diff = num - q * den;
653                 if (best_num == 0 ||
654                     diff * best_den < best_diff * den) {
655                         best_diff = diff;
656                         best_den = den;
657                         best_num = num;
658                 }
659         }
660         if (best_den == 0) {
661                 i->empty = 1;
662                 return -EINVAL;
663         }
664         t.min = div_down(best_num, best_den);
665         t.openmin = !!(best_num % best_den);
666         
667         best_num = best_den = best_diff = 0;
668         for (k = 0; k < rats_count; ++k) {
669                 unsigned int num = rats[k].num;
670                 unsigned int den;
671                 unsigned int q = i->max;
672                 int diff;
673                 if (q == 0) {
674                         i->empty = 1;
675                         return -EINVAL;
676                 }
677                 den = div_up(num, q);
678                 if (den > rats[k].den_max)
679                         continue;
680                 if (den < rats[k].den_min)
681                         den = rats[k].den_min;
682                 else {
683                         unsigned int r;
684                         r = (den - rats[k].den_min) % rats[k].den_step;
685                         if (r != 0)
686                                 den += rats[k].den_step - r;
687                 }
688                 diff = q * den - num;
689                 if (best_num == 0 ||
690                     diff * best_den < best_diff * den) {
691                         best_diff = diff;
692                         best_den = den;
693                         best_num = num;
694                 }
695         }
696         if (best_den == 0) {
697                 i->empty = 1;
698                 return -EINVAL;
699         }
700         t.max = div_up(best_num, best_den);
701         t.openmax = !!(best_num % best_den);
702         t.integer = 0;
703         err = snd_interval_refine(i, &t);
704         if (err < 0)
705                 return err;
706
707         if (snd_interval_single(i)) {
708                 if (nump)
709                         *nump = best_num;
710                 if (denp)
711                         *denp = best_den;
712         }
713         return err;
714 }
715
716 /**
717  * snd_interval_ratden - refine the interval value
718  *
719  * Returns non-zero if the value is changed, zero if not changed.
720  */
721 static int snd_interval_ratden(snd_interval_t *i,
722                                unsigned int rats_count, ratden_t *rats,
723                                unsigned int *nump, unsigned int *denp)
724 {
725         unsigned int best_num, best_diff, best_den;
726         unsigned int k;
727         snd_interval_t t;
728         int err;
729
730         best_num = best_den = best_diff = 0;
731         for (k = 0; k < rats_count; ++k) {
732                 unsigned int num;
733                 unsigned int den = rats[k].den;
734                 unsigned int q = i->min;
735                 int diff;
736                 num = mul(q, den);
737                 if (num > rats[k].num_max)
738                         continue;
739                 if (num < rats[k].num_min)
740                         num = rats[k].num_max;
741                 else {
742                         unsigned int r;
743                         r = (num - rats[k].num_min) % rats[k].num_step;
744                         if (r != 0)
745                                 num += rats[k].num_step - r;
746                 }
747                 diff = num - q * den;
748                 if (best_num == 0 ||
749                     diff * best_den < best_diff * den) {
750                         best_diff = diff;
751                         best_den = den;
752                         best_num = num;
753                 }
754         }
755         if (best_den == 0) {
756                 i->empty = 1;
757                 return -EINVAL;
758         }
759         t.min = div_down(best_num, best_den);
760         t.openmin = !!(best_num % best_den);
761         
762         best_num = best_den = best_diff = 0;
763         for (k = 0; k < rats_count; ++k) {
764                 unsigned int num;
765                 unsigned int den = rats[k].den;
766                 unsigned int q = i->max;
767                 int diff;
768                 num = mul(q, den);
769                 if (num < rats[k].num_min)
770                         continue;
771                 if (num > rats[k].num_max)
772                         num = rats[k].num_max;
773                 else {
774                         unsigned int r;
775                         r = (num - rats[k].num_min) % rats[k].num_step;
776                         if (r != 0)
777                                 num -= r;
778                 }
779                 diff = q * den - num;
780                 if (best_num == 0 ||
781                     diff * best_den < best_diff * den) {
782                         best_diff = diff;
783                         best_den = den;
784                         best_num = num;
785                 }
786         }
787         if (best_den == 0) {
788                 i->empty = 1;
789                 return -EINVAL;
790         }
791         t.max = div_up(best_num, best_den);
792         t.openmax = !!(best_num % best_den);
793         t.integer = 0;
794         err = snd_interval_refine(i, &t);
795         if (err < 0)
796                 return err;
797
798         if (snd_interval_single(i)) {
799                 if (nump)
800                         *nump = best_num;
801                 if (denp)
802                         *denp = best_den;
803         }
804         return err;
805 }
806
807 /**
808  * snd_interval_list - refine the interval value from the list
809  * @i: the interval value to refine
810  * @count: the number of elements in the list
811  * @list: the value list
812  * @mask: the bit-mask to evaluate
813  *
814  * Refines the interval value from the list.
815  * When mask is non-zero, only the elements corresponding to bit 1 are
816  * evaluated.
817  *
818  * Returns non-zero if the value is changed, zero if not changed.
819  */
820 int snd_interval_list(snd_interval_t *i, unsigned int count, unsigned int *list, unsigned int mask)
821 {
822         unsigned int k;
823         int changed = 0;
824         for (k = 0; k < count; k++) {
825                 if (mask && !(mask & (1 << k)))
826                         continue;
827                 if (i->min == list[k] && !i->openmin)
828                         goto _l1;
829                 if (i->min < list[k]) {
830                         i->min = list[k];
831                         i->openmin = 0;
832                         changed = 1;
833                         goto _l1;
834                 }
835         }
836         i->empty = 1;
837         return -EINVAL;
838  _l1:
839         for (k = count; k-- > 0;) {
840                 if (mask && !(mask & (1 << k)))
841                         continue;
842                 if (i->max == list[k] && !i->openmax)
843                         goto _l2;
844                 if (i->max > list[k]) {
845                         i->max = list[k];
846                         i->openmax = 0;
847                         changed = 1;
848                         goto _l2;
849                 }
850         }
851         i->empty = 1;
852         return -EINVAL;
853  _l2:
854         if (snd_interval_checkempty(i)) {
855                 i->empty = 1;
856                 return -EINVAL;
857         }
858         return changed;
859 }
860
861 static int snd_interval_step(snd_interval_t *i, unsigned int min, unsigned int step)
862 {
863         unsigned int n;
864         int changed = 0;
865         n = (i->min - min) % step;
866         if (n != 0 || i->openmin) {
867                 i->min += step - n;
868                 changed = 1;
869         }
870         n = (i->max - min) % step;
871         if (n != 0 || i->openmax) {
872                 i->max -= n;
873                 changed = 1;
874         }
875         if (snd_interval_checkempty(i)) {
876                 i->empty = 1;
877                 return -EINVAL;
878         }
879         return changed;
880 }
881
882 /* Info constraints helpers */
883
884 /**
885  * snd_pcm_hw_rule_add - add the hw-constraint rule
886  * @runtime: the pcm runtime instance
887  * @cond: condition bits
888  * @var: the variable to evaluate
889  * @func: the evaluation function
890  * @private: the private data pointer passed to function
891  * @dep: the dependent variables
892  *
893  * Returns zero if successful, or a negative error code on failure.
894  */
895 int snd_pcm_hw_rule_add(snd_pcm_runtime_t *runtime, unsigned int cond,
896                         int var,
897                         snd_pcm_hw_rule_func_t func, void *private,
898                         int dep, ...)
899 {
900         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
901         snd_pcm_hw_rule_t *c;
902         unsigned int k;
903         va_list args;
904         va_start(args, dep);
905         if (constrs->rules_num >= constrs->rules_all) {
906                 snd_pcm_hw_rule_t *new;
907                 unsigned int new_rules = constrs->rules_all + 16;
908                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
909                 if (!new)
910                         return -ENOMEM;
911                 if (constrs->rules) {
912                         memcpy(new, constrs->rules,
913                                constrs->rules_num * sizeof(*c));
914                         kfree(constrs->rules);
915                 }
916                 constrs->rules = new;
917                 constrs->rules_all = new_rules;
918         }
919         c = &constrs->rules[constrs->rules_num];
920         c->cond = cond;
921         c->func = func;
922         c->var = var;
923         c->private = private;
924         k = 0;
925         while (1) {
926                 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
927                 c->deps[k++] = dep;
928                 if (dep < 0)
929                         break;
930                 dep = va_arg(args, int);
931         }
932         constrs->rules_num++;
933         va_end(args);
934         return 0;
935 }                                   
936
937 /**
938  * snd_pcm_hw_constraint_mask
939  */
940 int snd_pcm_hw_constraint_mask(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
941                                u_int32_t mask)
942 {
943         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
944         snd_mask_t *maskp = constrs_mask(constrs, var);
945         *maskp->bits &= mask;
946         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
947         if (*maskp->bits == 0)
948                 return -EINVAL;
949         return 0;
950 }
951
952 /**
953  * snd_pcm_hw_constraint_mask64
954  */
955 int snd_pcm_hw_constraint_mask64(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
956                                  u_int64_t mask)
957 {
958         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
959         snd_mask_t *maskp = constrs_mask(constrs, var);
960         maskp->bits[0] &= (u_int32_t)mask;
961         maskp->bits[1] &= (u_int32_t)(mask >> 32);
962         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
963         if (! maskp->bits[0] && ! maskp->bits[1])
964                 return -EINVAL;
965         return 0;
966 }
967
968 /**
969  * snd_pcm_hw_constraint_integer
970  */
971 int snd_pcm_hw_constraint_integer(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var)
972 {
973         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
974         return snd_interval_setinteger(constrs_interval(constrs, var));
975 }
976
977 /**
978  * snd_pcm_hw_constraint_minmax
979  */
980 int snd_pcm_hw_constraint_minmax(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
981                                  unsigned int min, unsigned int max)
982 {
983         snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
984         snd_interval_t t;
985         t.min = min;
986         t.max = max;
987         t.openmin = t.openmax = 0;
988         t.integer = 0;
989         return snd_interval_refine(constrs_interval(constrs, var), &t);
990 }
991
992 static int snd_pcm_hw_rule_list(snd_pcm_hw_params_t *params,
993                                 snd_pcm_hw_rule_t *rule)
994 {
995         snd_pcm_hw_constraint_list_t *list = rule->private;
996         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
997 }               
998
999
1000 /**
1001  * snd_pcm_hw_constraint_list
1002  */
1003 int snd_pcm_hw_constraint_list(snd_pcm_runtime_t *runtime,
1004                                unsigned int cond,
1005                                snd_pcm_hw_param_t var,
1006                                snd_pcm_hw_constraint_list_t *l)
1007 {
1008         return snd_pcm_hw_rule_add(runtime, cond, var,
1009                                    snd_pcm_hw_rule_list, l,
1010                                    var, -1);
1011 }
1012
1013 static int snd_pcm_hw_rule_ratnums(snd_pcm_hw_params_t *params,
1014                                    snd_pcm_hw_rule_t *rule)
1015 {
1016         snd_pcm_hw_constraint_ratnums_t *r = rule->private;
1017         unsigned int num = 0, den = 0;
1018         int err;
1019         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1020                                   r->nrats, r->rats, &num, &den);
1021         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1022                 params->rate_num = num;
1023                 params->rate_den = den;
1024         }
1025         return err;
1026 }
1027
1028 /**
1029  * snd_pcm_hw_constraint_ratnums
1030  */
1031 int snd_pcm_hw_constraint_ratnums(snd_pcm_runtime_t *runtime, 
1032                                   unsigned int cond,
1033                                   snd_pcm_hw_param_t var,
1034                                   snd_pcm_hw_constraint_ratnums_t *r)
1035 {
1036         return snd_pcm_hw_rule_add(runtime, cond, var,
1037                                    snd_pcm_hw_rule_ratnums, r,
1038                                    var, -1);
1039 }
1040
1041 static int snd_pcm_hw_rule_ratdens(snd_pcm_hw_params_t *params,
1042                                    snd_pcm_hw_rule_t *rule)
1043 {
1044         snd_pcm_hw_constraint_ratdens_t *r = rule->private;
1045         unsigned int num = 0, den = 0;
1046         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1047                                   r->nrats, r->rats, &num, &den);
1048         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1049                 params->rate_num = num;
1050                 params->rate_den = den;
1051         }
1052         return err;
1053 }
1054
1055 /**
1056  * snd_pcm_hw_constraint_ratdens
1057  */
1058 int snd_pcm_hw_constraint_ratdens(snd_pcm_runtime_t *runtime, 
1059                                   unsigned int cond,
1060                                   snd_pcm_hw_param_t var,
1061                                   snd_pcm_hw_constraint_ratdens_t *r)
1062 {
1063         return snd_pcm_hw_rule_add(runtime, cond, var,
1064                                    snd_pcm_hw_rule_ratdens, r,
1065                                    var, -1);
1066 }
1067
1068 static int snd_pcm_hw_rule_msbits(snd_pcm_hw_params_t *params,
1069                                   snd_pcm_hw_rule_t *rule)
1070 {
1071         unsigned int l = (unsigned long) rule->private;
1072         int width = l & 0xffff;
1073         unsigned int msbits = l >> 16;
1074         snd_interval_t *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1075         if (snd_interval_single(i) && snd_interval_value(i) == width)
1076                 params->msbits = msbits;
1077         return 0;
1078 }
1079
1080 /**
1081  * snd_pcm_hw_constraint_msbits
1082  */
1083 int snd_pcm_hw_constraint_msbits(snd_pcm_runtime_t *runtime, 
1084                                  unsigned int cond,
1085                                  unsigned int width,
1086                                  unsigned int msbits)
1087 {
1088         unsigned long l = (msbits << 16) | width;
1089         return snd_pcm_hw_rule_add(runtime, cond, -1,
1090                                     snd_pcm_hw_rule_msbits,
1091                                     (void*) l,
1092                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1093 }
1094
1095 static int snd_pcm_hw_rule_step(snd_pcm_hw_params_t *params,
1096                                 snd_pcm_hw_rule_t *rule)
1097 {
1098         unsigned long step = (unsigned long) rule->private;
1099         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1100 }
1101
1102 /**
1103  * snd_pcm_hw_constraint_step
1104  */
1105 int snd_pcm_hw_constraint_step(snd_pcm_runtime_t *runtime,
1106                                unsigned int cond,
1107                                snd_pcm_hw_param_t var,
1108                                unsigned long step)
1109 {
1110         return snd_pcm_hw_rule_add(runtime, cond, var, 
1111                                    snd_pcm_hw_rule_step, (void *) step,
1112                                    var, -1);
1113 }
1114
1115 static int snd_pcm_hw_rule_pow2(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule)
1116 {
1117         static int pow2_sizes[] = {
1118                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1119                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1120                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1121                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1122         };
1123         return snd_interval_list(hw_param_interval(params, rule->var),
1124                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1125 }               
1126
1127 /**
1128  * snd_pcm_hw_constraint_pow2
1129  */
1130 int snd_pcm_hw_constraint_pow2(snd_pcm_runtime_t *runtime,
1131                                unsigned int cond,
1132                                snd_pcm_hw_param_t var)
1133 {
1134         return snd_pcm_hw_rule_add(runtime, cond, var, 
1135                                    snd_pcm_hw_rule_pow2, NULL,
1136                                    var, -1);
1137 }
1138
1139 /* To use the same code we have in alsa-lib */
1140 #define snd_pcm_t snd_pcm_substream_t
1141 #define assert(i) snd_assert((i), return -EINVAL)
1142 #ifndef INT_MIN
1143 #define INT_MIN ((int)((unsigned int)INT_MAX+1))
1144 #endif
1145
1146 void _snd_pcm_hw_param_any(snd_pcm_hw_params_t *params, snd_pcm_hw_param_t var)
1147 {
1148         if (hw_is_mask(var)) {
1149                 snd_mask_any(hw_param_mask(params, var));
1150                 params->cmask |= 1 << var;
1151                 params->rmask |= 1 << var;
1152                 return;
1153         }
1154         if (hw_is_interval(var)) {
1155                 snd_interval_any(hw_param_interval(params, var));
1156                 params->cmask |= 1 << var;
1157                 params->rmask |= 1 << var;
1158                 return;
1159         }
1160         snd_BUG();
1161 }
1162
1163 /**
1164  * snd_pcm_hw_param_any
1165  */
1166 int snd_pcm_hw_param_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1167                          snd_pcm_hw_param_t var)
1168 {
1169         _snd_pcm_hw_param_any(params, var);
1170         return snd_pcm_hw_refine(pcm, params);
1171 }
1172
1173 void _snd_pcm_hw_params_any(snd_pcm_hw_params_t *params)
1174 {
1175         unsigned int k;
1176         memset(params, 0, sizeof(*params));
1177         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1178                 _snd_pcm_hw_param_any(params, k);
1179         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1180                 _snd_pcm_hw_param_any(params, k);
1181         params->info = ~0U;
1182 }
1183
1184 /**
1185  * snd_pcm_hw_params_any
1186  *
1187  * Fill PARAMS with full configuration space boundaries
1188  */
1189 int snd_pcm_hw_params_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1190 {
1191         _snd_pcm_hw_params_any(params);
1192         return snd_pcm_hw_refine(pcm, params);
1193 }
1194
1195 /**
1196  * snd_pcm_hw_param_value
1197  *
1198  * Return the value for field PAR if it's fixed in configuration space 
1199  *  defined by PARAMS. Return -EINVAL otherwise
1200  */
1201 int snd_pcm_hw_param_value(const snd_pcm_hw_params_t *params,
1202                            snd_pcm_hw_param_t var, int *dir)
1203 {
1204         if (hw_is_mask(var)) {
1205                 const snd_mask_t *mask = hw_param_mask_c(params, var);
1206                 if (!snd_mask_single(mask))
1207                         return -EINVAL;
1208                 if (dir)
1209                         *dir = 0;
1210                 return snd_mask_value(mask);
1211         }
1212         if (hw_is_interval(var)) {
1213                 const snd_interval_t *i = hw_param_interval_c(params, var);
1214                 if (!snd_interval_single(i))
1215                         return -EINVAL;
1216                 if (dir)
1217                         *dir = i->openmin;
1218                 return snd_interval_value(i);
1219         }
1220         assert(0);
1221         return -EINVAL;
1222 }
1223
1224 /**
1225  * snd_pcm_hw_param_value_min
1226  *
1227  * Return the minimum value for field PAR.
1228  */
1229 unsigned int snd_pcm_hw_param_value_min(const snd_pcm_hw_params_t *params,
1230                                         snd_pcm_hw_param_t var, int *dir)
1231 {
1232         if (hw_is_mask(var)) {
1233                 if (dir)
1234                         *dir = 0;
1235                 return snd_mask_min(hw_param_mask_c(params, var));
1236         }
1237         if (hw_is_interval(var)) {
1238                 const snd_interval_t *i = hw_param_interval_c(params, var);
1239                 if (dir)
1240                         *dir = i->openmin;
1241                 return snd_interval_min(i);
1242         }
1243         assert(0);
1244         return -EINVAL;
1245 }
1246
1247 /**
1248  * snd_pcm_hw_param_value_max
1249  *
1250  * Return the maximum value for field PAR.
1251  */
1252 unsigned int snd_pcm_hw_param_value_max(const snd_pcm_hw_params_t *params,
1253                                         snd_pcm_hw_param_t var, int *dir)
1254 {
1255         if (hw_is_mask(var)) {
1256                 if (dir)
1257                         *dir = 0;
1258                 return snd_mask_max(hw_param_mask_c(params, var));
1259         }
1260         if (hw_is_interval(var)) {
1261                 const snd_interval_t *i = hw_param_interval_c(params, var);
1262                 if (dir)
1263                         *dir = - (int) i->openmax;
1264                 return snd_interval_max(i);
1265         }
1266         assert(0);
1267         return -EINVAL;
1268 }
1269
1270 void _snd_pcm_hw_param_setempty(snd_pcm_hw_params_t *params,
1271                                 snd_pcm_hw_param_t var)
1272 {
1273         if (hw_is_mask(var)) {
1274                 snd_mask_none(hw_param_mask(params, var));
1275                 params->cmask |= 1 << var;
1276                 params->rmask |= 1 << var;
1277         } else if (hw_is_interval(var)) {
1278                 snd_interval_none(hw_param_interval(params, var));
1279                 params->cmask |= 1 << var;
1280                 params->rmask |= 1 << var;
1281         } else {
1282                 snd_BUG();
1283         }
1284 }
1285
1286 int _snd_pcm_hw_param_setinteger(snd_pcm_hw_params_t *params,
1287                                  snd_pcm_hw_param_t var)
1288 {
1289         int changed;
1290         assert(hw_is_interval(var));
1291         changed = snd_interval_setinteger(hw_param_interval(params, var));
1292         if (changed) {
1293                 params->cmask |= 1 << var;
1294                 params->rmask |= 1 << var;
1295         }
1296         return changed;
1297 }
1298         
1299 /**
1300  * snd_pcm_hw_param_setinteger
1301  *
1302  * Inside configuration space defined by PARAMS remove from PAR all 
1303  * non integer values. Reduce configuration space accordingly.
1304  * Return -EINVAL if the configuration space is empty
1305  */
1306 int snd_pcm_hw_param_setinteger(snd_pcm_t *pcm, 
1307                                 snd_pcm_hw_params_t *params,
1308                                 snd_pcm_hw_param_t var)
1309 {
1310         int changed = _snd_pcm_hw_param_setinteger(params, var);
1311         if (changed < 0)
1312                 return changed;
1313         if (params->rmask) {
1314                 int err = snd_pcm_hw_refine(pcm, params);
1315                 if (err < 0)
1316                         return err;
1317         }
1318         return 0;
1319 }
1320
1321 int _snd_pcm_hw_param_first(snd_pcm_hw_params_t *params,
1322                             snd_pcm_hw_param_t var)
1323 {
1324         int changed;
1325         if (hw_is_mask(var))
1326                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1327         else if (hw_is_interval(var))
1328                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1329         else {
1330                 assert(0);
1331                 return -EINVAL;
1332         }
1333         if (changed) {
1334                 params->cmask |= 1 << var;
1335                 params->rmask |= 1 << var;
1336         }
1337         return changed;
1338 }
1339
1340
1341 /**
1342  * snd_pcm_hw_param_first
1343  *
1344  * Inside configuration space defined by PARAMS remove from PAR all 
1345  * values > minimum. Reduce configuration space accordingly.
1346  * Return the minimum.
1347  */
1348 int snd_pcm_hw_param_first(snd_pcm_t *pcm, 
1349                            snd_pcm_hw_params_t *params, 
1350                            snd_pcm_hw_param_t var, int *dir)
1351 {
1352         int changed = _snd_pcm_hw_param_first(params, var);
1353         if (changed < 0)
1354                 return changed;
1355         if (params->rmask) {
1356                 int err = snd_pcm_hw_refine(pcm, params);
1357                 assert(err >= 0);
1358         }
1359         return snd_pcm_hw_param_value(params, var, dir);
1360 }
1361
1362 int _snd_pcm_hw_param_last(snd_pcm_hw_params_t *params,
1363                            snd_pcm_hw_param_t var)
1364 {
1365         int changed;
1366         if (hw_is_mask(var))
1367                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1368         else if (hw_is_interval(var))
1369                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1370         else {
1371                 assert(0);
1372                 return -EINVAL;
1373         }
1374         if (changed) {
1375                 params->cmask |= 1 << var;
1376                 params->rmask |= 1 << var;
1377         }
1378         return changed;
1379 }
1380
1381
1382 /**
1383  * snd_pcm_hw_param_last
1384  *
1385  * Inside configuration space defined by PARAMS remove from PAR all 
1386  * values < maximum. Reduce configuration space accordingly.
1387  * Return the maximum.
1388  */
1389 int snd_pcm_hw_param_last(snd_pcm_t *pcm, 
1390                           snd_pcm_hw_params_t *params,
1391                           snd_pcm_hw_param_t var, int *dir)
1392 {
1393         int changed = _snd_pcm_hw_param_last(params, var);
1394         if (changed < 0)
1395                 return changed;
1396         if (params->rmask) {
1397                 int err = snd_pcm_hw_refine(pcm, params);
1398                 assert(err >= 0);
1399         }
1400         return snd_pcm_hw_param_value(params, var, dir);
1401 }
1402
1403 int _snd_pcm_hw_param_min(snd_pcm_hw_params_t *params,
1404                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1405 {
1406         int changed;
1407         int open = 0;
1408         if (dir) {
1409                 if (dir > 0) {
1410                         open = 1;
1411                 } else if (dir < 0) {
1412                         if (val > 0) {
1413                                 open = 1;
1414                                 val--;
1415                         }
1416                 }
1417         }
1418         if (hw_is_mask(var))
1419                 changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
1420         else if (hw_is_interval(var))
1421                 changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
1422         else {
1423                 assert(0);
1424                 return -EINVAL;
1425         }
1426         if (changed) {
1427                 params->cmask |= 1 << var;
1428                 params->rmask |= 1 << var;
1429         }
1430         return changed;
1431 }
1432
1433 /**
1434  * snd_pcm_hw_param_min
1435  *
1436  * Inside configuration space defined by PARAMS remove from PAR all 
1437  * values < VAL. Reduce configuration space accordingly.
1438  * Return new minimum or -EINVAL if the configuration space is empty
1439  */
1440 int snd_pcm_hw_param_min(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1441                          snd_pcm_hw_param_t var, unsigned int val, int *dir)
1442 {
1443         int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
1444         if (changed < 0)
1445                 return changed;
1446         if (params->rmask) {
1447                 int err = snd_pcm_hw_refine(pcm, params);
1448                 if (err < 0)
1449                         return err;
1450         }
1451         return snd_pcm_hw_param_value_min(params, var, dir);
1452 }
1453
1454 int _snd_pcm_hw_param_max(snd_pcm_hw_params_t *params,
1455                            snd_pcm_hw_param_t var, unsigned int val, int dir)
1456 {
1457         int changed;
1458         int open = 0;
1459         if (dir) {
1460                 if (dir < 0) {
1461                         open = 1;
1462                 } else if (dir > 0) {
1463                         open = 1;
1464                         val++;
1465                 }
1466         }
1467         if (hw_is_mask(var)) {
1468                 if (val == 0 && open) {
1469                         snd_mask_none(hw_param_mask(params, var));
1470                         changed = -EINVAL;
1471                 } else
1472                         changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
1473         } else if (hw_is_interval(var))
1474                 changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
1475         else {
1476                 assert(0);
1477                 return -EINVAL;
1478         }
1479         if (changed) {
1480                 params->cmask |= 1 << var;
1481                 params->rmask |= 1 << var;
1482         }
1483         return changed;
1484 }
1485
1486 /**
1487  * snd_pcm_hw_param_max
1488  *
1489  * Inside configuration space defined by PARAMS remove from PAR all 
1490  *  values >= VAL + 1. Reduce configuration space accordingly.
1491  *  Return new maximum or -EINVAL if the configuration space is empty
1492  */
1493 int snd_pcm_hw_param_max(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1494                           snd_pcm_hw_param_t var, unsigned int val, int *dir)
1495 {
1496         int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
1497         if (changed < 0)
1498                 return changed;
1499         if (params->rmask) {
1500                 int err = snd_pcm_hw_refine(pcm, params);
1501                 if (err < 0)
1502                         return err;
1503         }
1504         return snd_pcm_hw_param_value_max(params, var, dir);
1505 }
1506
1507 int _snd_pcm_hw_param_set(snd_pcm_hw_params_t *params,
1508                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1509 {
1510         int changed;
1511         if (hw_is_mask(var)) {
1512                 snd_mask_t *m = hw_param_mask(params, var);
1513                 if (val == 0 && dir < 0) {
1514                         changed = -EINVAL;
1515                         snd_mask_none(m);
1516                 } else {
1517                         if (dir > 0)
1518                                 val++;
1519                         else if (dir < 0)
1520                                 val--;
1521                         changed = snd_mask_refine_set(hw_param_mask(params, var), val);
1522                 }
1523         } else if (hw_is_interval(var)) {
1524                 snd_interval_t *i = hw_param_interval(params, var);
1525                 if (val == 0 && dir < 0) {
1526                         changed = -EINVAL;
1527                         snd_interval_none(i);
1528                 } else if (dir == 0)
1529                         changed = snd_interval_refine_set(i, val);
1530                 else {
1531                         snd_interval_t t;
1532                         t.openmin = 1;
1533                         t.openmax = 1;
1534                         t.empty = 0;
1535                         t.integer = 0;
1536                         if (dir < 0) {
1537                                 t.min = val - 1;
1538                                 t.max = val;
1539                         } else {
1540                                 t.min = val;
1541                                 t.max = val+1;
1542                         }
1543                         changed = snd_interval_refine(i, &t);
1544                 }
1545         } else {
1546                 assert(0);
1547                 return -EINVAL;
1548         }
1549         if (changed) {
1550                 params->cmask |= 1 << var;
1551                 params->rmask |= 1 << var;
1552         }
1553         return changed;
1554 }
1555
1556 /**
1557  * snd_pcm_hw_param_set
1558  *
1559  * Inside configuration space defined by PARAMS remove from PAR all 
1560  * values != VAL. Reduce configuration space accordingly.
1561  *  Return VAL or -EINVAL if the configuration space is empty
1562  */
1563 int snd_pcm_hw_param_set(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1564                          snd_pcm_hw_param_t var, unsigned int val, int dir)
1565 {
1566         int changed = _snd_pcm_hw_param_set(params, var, val, dir);
1567         if (changed < 0)
1568                 return changed;
1569         if (params->rmask) {
1570                 int err = snd_pcm_hw_refine(pcm, params);
1571                 if (err < 0)
1572                         return err;
1573         }
1574         return snd_pcm_hw_param_value(params, var, NULL);
1575 }
1576
1577 int _snd_pcm_hw_param_mask(snd_pcm_hw_params_t *params,
1578                            snd_pcm_hw_param_t var, const snd_mask_t *val)
1579 {
1580         int changed;
1581         assert(hw_is_mask(var));
1582         changed = snd_mask_refine(hw_param_mask(params, var), val);
1583         if (changed) {
1584                 params->cmask |= 1 << var;
1585                 params->rmask |= 1 << var;
1586         }
1587         return changed;
1588 }
1589
1590 /**
1591  * snd_pcm_hw_param_mask
1592  *
1593  * Inside configuration space defined by PARAMS remove from PAR all values
1594  * not contained in MASK. Reduce configuration space accordingly.
1595  * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
1596  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1597  * Return 0 on success or -EINVAL
1598  * if the configuration space is empty
1599  */
1600 int snd_pcm_hw_param_mask(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1601                           snd_pcm_hw_param_t var, const snd_mask_t *val)
1602 {
1603         int changed = _snd_pcm_hw_param_mask(params, var, val);
1604         if (changed < 0)
1605                 return changed;
1606         if (params->rmask) {
1607                 int err = snd_pcm_hw_refine(pcm, params);
1608                 if (err < 0)
1609                         return err;
1610         }
1611         return 0;
1612 }
1613
1614 static int boundary_sub(int a, int adir,
1615                         int b, int bdir,
1616                         int *c, int *cdir)
1617 {
1618         adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
1619         bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
1620         *c = a - b;
1621         *cdir = adir - bdir;
1622         if (*cdir == -2) {
1623                 assert(*c > INT_MIN);
1624                 (*c)--;
1625         } else if (*cdir == 2) {
1626                 assert(*c < INT_MAX);
1627                 (*c)++;
1628         }
1629         return 0;
1630 }
1631
1632 static int boundary_lt(unsigned int a, int adir,
1633                        unsigned int b, int bdir)
1634 {
1635         assert(a > 0 || adir >= 0);
1636         assert(b > 0 || bdir >= 0);
1637         if (adir < 0) {
1638                 a--;
1639                 adir = 1;
1640         } else if (adir > 0)
1641                 adir = 1;
1642         if (bdir < 0) {
1643                 b--;
1644                 bdir = 1;
1645         } else if (bdir > 0)
1646                 bdir = 1;
1647         return a < b || (a == b && adir < bdir);
1648 }
1649
1650 /* Return 1 if min is nearer to best than max */
1651 static int boundary_nearer(int min, int mindir,
1652                            int best, int bestdir,
1653                            int max, int maxdir)
1654 {
1655         int dmin, dmindir;
1656         int dmax, dmaxdir;
1657         boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
1658         boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
1659         return boundary_lt(dmin, dmindir, dmax, dmaxdir);
1660 }
1661
1662 /**
1663  * snd_pcm_hw_param_near
1664  *
1665  * Inside configuration space defined by PARAMS set PAR to the available value
1666  * nearest to VAL. Reduce configuration space accordingly.
1667  * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
1668  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1669  * Return the value found.
1670   */
1671 int snd_pcm_hw_param_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1672                           snd_pcm_hw_param_t var, unsigned int best, int *dir)
1673 {
1674         snd_pcm_hw_params_t *save = NULL;
1675         int v;
1676         unsigned int saved_min;
1677         int last = 0;
1678         int min, max;
1679         int mindir, maxdir;
1680         int valdir = dir ? *dir : 0;
1681         /* FIXME */
1682         if (best > INT_MAX)
1683                 best = INT_MAX;
1684         min = max = best;
1685         mindir = maxdir = valdir;
1686         if (maxdir > 0)
1687                 maxdir = 0;
1688         else if (maxdir == 0)
1689                 maxdir = -1;
1690         else {
1691                 maxdir = 1;
1692                 max--;
1693         }
1694         save = kmalloc(sizeof(*save), GFP_KERNEL);
1695         if (save == NULL)
1696                 return -ENOMEM;
1697         *save = *params;
1698         saved_min = min;
1699         min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
1700         if (min >= 0) {
1701                 snd_pcm_hw_params_t *params1;
1702                 if (max < 0)
1703                         goto _end;
1704                 if ((unsigned int)min == saved_min && mindir == valdir)
1705                         goto _end;
1706                 params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
1707                 if (params1 == NULL) {
1708                         kfree(save);
1709                         return -ENOMEM;
1710                 }
1711                 *params1 = *save;
1712                 max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
1713                 if (max < 0) {
1714                         kfree(params1);
1715                         goto _end;
1716                 }
1717                 if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
1718                         *params = *params1;
1719                         last = 1;
1720                 }
1721                 kfree(params1);
1722         } else {
1723                 *params = *save;
1724                 max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
1725                 assert(max >= 0);
1726                 last = 1;
1727         }
1728  _end:
1729         kfree(save);
1730         if (last)
1731                 v = snd_pcm_hw_param_last(pcm, params, var, dir);
1732         else
1733                 v = snd_pcm_hw_param_first(pcm, params, var, dir);
1734         assert(v >= 0);
1735         return v;
1736 }
1737
1738 /**
1739  * snd_pcm_hw_param_choose
1740  *
1741  * Choose one configuration from configuration space defined by PARAMS
1742  * The configuration chosen is that obtained fixing in this order:
1743  * first access, first format, first subformat, min channels,
1744  * min rate, min period time, max buffer size, min tick time
1745  */
1746 int snd_pcm_hw_params_choose(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1747 {
1748         int err;
1749
1750         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
1751         assert(err >= 0);
1752
1753         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
1754         assert(err >= 0);
1755
1756         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
1757         assert(err >= 0);
1758
1759         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
1760         assert(err >= 0);
1761
1762         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
1763         assert(err >= 0);
1764
1765         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
1766         assert(err >= 0);
1767
1768         err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
1769         assert(err >= 0);
1770
1771         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
1772         assert(err >= 0);
1773
1774         return 0;
1775 }
1776
1777 #undef snd_pcm_t
1778 #undef assert
1779
1780 static int snd_pcm_lib_ioctl_reset(snd_pcm_substream_t *substream,
1781                                    void *arg)
1782 {
1783         snd_pcm_runtime_t *runtime = substream->runtime;
1784         unsigned long flags;
1785         snd_pcm_stream_lock_irqsave(substream, flags);
1786         if (snd_pcm_running(substream) &&
1787             snd_pcm_update_hw_ptr(substream) >= 0)
1788                 runtime->status->hw_ptr %= runtime->buffer_size;
1789         else
1790                 runtime->status->hw_ptr = 0;
1791         snd_pcm_stream_unlock_irqrestore(substream, flags);
1792         return 0;
1793 }
1794
1795 static int snd_pcm_lib_ioctl_channel_info(snd_pcm_substream_t *substream,
1796                                           void *arg)
1797 {
1798         snd_pcm_channel_info_t *info = arg;
1799         snd_pcm_runtime_t *runtime = substream->runtime;
1800         int width;
1801         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1802                 info->offset = -1;
1803                 return 0;
1804         }
1805         width = snd_pcm_format_physical_width(runtime->format);
1806         if (width < 0)
1807                 return width;
1808         info->offset = 0;
1809         switch (runtime->access) {
1810         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1811         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1812                 info->first = info->channel * width;
1813                 info->step = runtime->channels * width;
1814                 break;
1815         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1816         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1817         {
1818                 size_t size = runtime->dma_bytes / runtime->channels;
1819                 info->first = info->channel * size * 8;
1820                 info->step = width;
1821                 break;
1822         }
1823         default:
1824                 snd_BUG();
1825                 break;
1826         }
1827         return 0;
1828 }
1829
1830 /**
1831  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832  * @substream: the pcm substream instance
1833  * @cmd: ioctl command
1834  * @arg: ioctl argument
1835  *
1836  * Processes the generic ioctl commands for PCM.
1837  * Can be passed as the ioctl callback for PCM ops.
1838  *
1839  * Returns zero if successful, or a negative error code on failure.
1840  */
1841 int snd_pcm_lib_ioctl(snd_pcm_substream_t *substream,
1842                       unsigned int cmd, void *arg)
1843 {
1844         switch (cmd) {
1845         case SNDRV_PCM_IOCTL1_INFO:
1846                 return 0;
1847         case SNDRV_PCM_IOCTL1_RESET:
1848                 return snd_pcm_lib_ioctl_reset(substream, arg);
1849         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851         }
1852         return -ENXIO;
1853 }
1854
1855 /*
1856  *  Conditions
1857  */
1858
1859 static void snd_pcm_system_tick_set(snd_pcm_substream_t *substream, 
1860                                     unsigned long ticks)
1861 {
1862         snd_pcm_runtime_t *runtime = substream->runtime;
1863         if (ticks == 0)
1864                 del_timer(&runtime->tick_timer);
1865         else {
1866                 ticks += (1000000 / HZ) - 1;
1867                 ticks /= (1000000 / HZ);
1868                 mod_timer(&runtime->tick_timer, jiffies + ticks);
1869         }
1870 }
1871
1872 /* Temporary alias */
1873 void snd_pcm_tick_set(snd_pcm_substream_t *substream, unsigned long ticks)
1874 {
1875         snd_pcm_system_tick_set(substream, ticks);
1876 }
1877
1878 void snd_pcm_tick_prepare(snd_pcm_substream_t *substream)
1879 {
1880         snd_pcm_runtime_t *runtime = substream->runtime;
1881         snd_pcm_uframes_t frames = ULONG_MAX;
1882         snd_pcm_uframes_t avail, dist;
1883         unsigned int ticks;
1884         u_int64_t n;
1885         u_int32_t r;
1886         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1887                 if (runtime->silence_size >= runtime->boundary) {
1888                         frames = 1;
1889                 } else if (runtime->silence_size > 0 &&
1890                            runtime->silence_filled < runtime->buffer_size) {
1891                         snd_pcm_sframes_t noise_dist;
1892                         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
1893                         snd_assert(noise_dist <= (snd_pcm_sframes_t)runtime->silence_threshold, );
1894                         frames = noise_dist - runtime->silence_threshold;
1895                 }
1896                 avail = snd_pcm_playback_avail(runtime);
1897         } else {
1898                 avail = snd_pcm_capture_avail(runtime);
1899         }
1900         if (avail < runtime->control->avail_min) {
1901                 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
1902                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1903                         frames = n;
1904         }
1905         if (avail < runtime->buffer_size) {
1906                 snd_pcm_sframes_t n = runtime->buffer_size - avail;
1907                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1908                         frames = n;
1909         }
1910         if (frames == ULONG_MAX) {
1911                 snd_pcm_tick_set(substream, 0);
1912                 return;
1913         }
1914         dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
1915         /* Distance to next interrupt */
1916         dist = runtime->period_size - dist % runtime->period_size;
1917         if (dist <= frames) {
1918                 snd_pcm_tick_set(substream, 0);
1919                 return;
1920         }
1921         /* the base time is us */
1922         n = frames;
1923         n *= 1000000;
1924         div64_32(&n, runtime->tick_time * runtime->rate, &r);
1925         ticks = n + (r > 0 ? 1 : 0);
1926         if (ticks < runtime->sleep_min)
1927                 ticks = runtime->sleep_min;
1928         snd_pcm_tick_set(substream, (unsigned long) ticks);
1929 }
1930
1931 void snd_pcm_tick_elapsed(snd_pcm_substream_t *substream)
1932 {
1933         snd_pcm_runtime_t *runtime;
1934         unsigned long flags;
1935         
1936         snd_assert(substream != NULL, return);
1937         runtime = substream->runtime;
1938         snd_assert(runtime != NULL, return);
1939
1940         snd_pcm_stream_lock_irqsave(substream, flags);
1941         if (!snd_pcm_running(substream) ||
1942             snd_pcm_update_hw_ptr(substream) < 0)
1943                 goto _end;
1944         if (runtime->sleep_min)
1945                 snd_pcm_tick_prepare(substream);
1946  _end:
1947         snd_pcm_stream_unlock_irqrestore(substream, flags);
1948 }
1949
1950 /**
1951  * snd_pcm_period_elapsed - update the pcm status for the next period
1952  * @substream: the pcm substream instance
1953  *
1954  * This function is called from the interrupt handler when the
1955  * PCM has processed the period size.  It will update the current
1956  * pointer, set up the tick, wake up sleepers, etc.
1957  *
1958  * Even if more than one periods have elapsed since the last call, you
1959  * have to call this only once.
1960  */
1961 void snd_pcm_period_elapsed(snd_pcm_substream_t *substream)
1962 {
1963         snd_pcm_runtime_t *runtime;
1964         unsigned long flags;
1965
1966         snd_assert(substream != NULL, return);
1967         runtime = substream->runtime;
1968         snd_assert(runtime != NULL, return);
1969
1970         if (runtime->transfer_ack_begin)
1971                 runtime->transfer_ack_begin(substream);
1972
1973         snd_pcm_stream_lock_irqsave(substream, flags);
1974         if (!snd_pcm_running(substream) ||
1975             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1976                 goto _end;
1977
1978         if (substream->timer_running)
1979                 snd_timer_interrupt(substream->timer, 1);
1980         if (runtime->sleep_min)
1981                 snd_pcm_tick_prepare(substream);
1982  _end:
1983         snd_pcm_stream_unlock_irqrestore(substream, flags);
1984         if (runtime->transfer_ack_end)
1985                 runtime->transfer_ack_end(substream);
1986         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1987 }
1988
1989 static int snd_pcm_lib_write_transfer(snd_pcm_substream_t *substream,
1990                                       unsigned int hwoff,
1991                                       unsigned long data, unsigned int off,
1992                                       snd_pcm_uframes_t frames)
1993 {
1994         snd_pcm_runtime_t *runtime = substream->runtime;
1995         int err;
1996         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1997         if (substream->ops->copy) {
1998                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1999                         return err;
2000         } else {
2001                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2002                 snd_assert(runtime->dma_area, return -EFAULT);
2003                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2004                         return -EFAULT;
2005         }
2006         return 0;
2007 }
2008  
2009 typedef int (*transfer_f)(snd_pcm_substream_t *substream, unsigned int hwoff,
2010                           unsigned long data, unsigned int off,
2011                           snd_pcm_uframes_t size);
2012
2013 static snd_pcm_sframes_t snd_pcm_lib_write1(snd_pcm_substream_t *substream, 
2014                                             unsigned long data,
2015                                             snd_pcm_uframes_t size,
2016                                             int nonblock,
2017                                             transfer_f transfer)
2018 {
2019         snd_pcm_runtime_t *runtime = substream->runtime;
2020         snd_pcm_uframes_t xfer = 0;
2021         snd_pcm_uframes_t offset = 0;
2022         int err = 0;
2023
2024         if (size == 0)
2025                 return 0;
2026         if (size > runtime->xfer_align)
2027                 size -= size % runtime->xfer_align;
2028
2029         snd_pcm_stream_lock_irq(substream);
2030         switch (runtime->status->state) {
2031         case SNDRV_PCM_STATE_PREPARED:
2032         case SNDRV_PCM_STATE_RUNNING:
2033         case SNDRV_PCM_STATE_PAUSED:
2034                 break;
2035         case SNDRV_PCM_STATE_XRUN:
2036                 err = -EPIPE;
2037                 goto _end_unlock;
2038         case SNDRV_PCM_STATE_SUSPENDED:
2039                 err = -ESTRPIPE;
2040                 goto _end_unlock;
2041         default:
2042                 err = -EBADFD;
2043                 goto _end_unlock;
2044         }
2045
2046         while (size > 0) {
2047                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048                 snd_pcm_uframes_t avail;
2049                 snd_pcm_uframes_t cont;
2050                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2051                         snd_pcm_update_hw_ptr(substream);
2052                 avail = snd_pcm_playback_avail(runtime);
2053                 if (((avail < runtime->control->avail_min && size > avail) ||
2054                    (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
2055                         wait_queue_t wait;
2056                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED } state;
2057                         long tout;
2058
2059                         if (nonblock) {
2060                                 err = -EAGAIN;
2061                                 goto _end_unlock;
2062                         }
2063
2064                         init_waitqueue_entry(&wait, current);
2065                         add_wait_queue(&runtime->sleep, &wait);
2066                         while (1) {
2067                                 if (signal_pending(current)) {
2068                                         state = SIGNALED;
2069                                         break;
2070                                 }
2071                                 set_current_state(TASK_INTERRUPTIBLE);
2072                                 snd_pcm_stream_unlock_irq(substream);
2073                                 tout = schedule_timeout(10 * HZ);
2074                                 snd_pcm_stream_lock_irq(substream);
2075                                 if (tout == 0) {
2076                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2077                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2078                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2079                                                 break;
2080                                         }
2081                                 }
2082                                 switch (runtime->status->state) {
2083                                 case SNDRV_PCM_STATE_XRUN:
2084                                 case SNDRV_PCM_STATE_DRAINING:
2085                                         state = ERROR;
2086                                         goto _end_loop;
2087                                 case SNDRV_PCM_STATE_SUSPENDED:
2088                                         state = SUSPENDED;
2089                                         goto _end_loop;
2090                                 default:
2091                                         break;
2092                                 }
2093                                 avail = snd_pcm_playback_avail(runtime);
2094                                 if (avail >= runtime->control->avail_min) {
2095                                         state = READY;
2096                                         break;
2097                                 }
2098                         }
2099                        _end_loop:
2100                         remove_wait_queue(&runtime->sleep, &wait);
2101
2102                         switch (state) {
2103                         case ERROR:
2104                                 err = -EPIPE;
2105                                 goto _end_unlock;
2106                         case SUSPENDED:
2107                                 err = -ESTRPIPE;
2108                                 goto _end_unlock;
2109                         case SIGNALED:
2110                                 err = -ERESTARTSYS;
2111                                 goto _end_unlock;
2112                         case EXPIRED:
2113                                 snd_printd("playback write error (DMA or IRQ trouble?)\n");
2114                                 err = -EIO;
2115                                 goto _end_unlock;
2116                         default:
2117                                 break;
2118                         }
2119                 }
2120                 if (avail > runtime->xfer_align)
2121                         avail -= avail % runtime->xfer_align;
2122                 frames = size > avail ? avail : size;
2123                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2124                 if (frames > cont)
2125                         frames = cont;
2126                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2127                 appl_ptr = runtime->control->appl_ptr;
2128                 appl_ofs = appl_ptr % runtime->buffer_size;
2129                 snd_pcm_stream_unlock_irq(substream);
2130                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2131                         goto _end;
2132                 snd_pcm_stream_lock_irq(substream);
2133                 switch (runtime->status->state) {
2134                 case SNDRV_PCM_STATE_XRUN:
2135                         err = -EPIPE;
2136                         goto _end_unlock;
2137                 case SNDRV_PCM_STATE_SUSPENDED:
2138                         err = -ESTRPIPE;
2139                         goto _end_unlock;
2140                 default:
2141                         break;
2142                 }
2143                 appl_ptr += frames;
2144                 if (appl_ptr >= runtime->boundary)
2145                         appl_ptr -= runtime->boundary;
2146                 runtime->control->appl_ptr = appl_ptr;
2147                 if (substream->ops->ack)
2148                         substream->ops->ack(substream);
2149
2150                 offset += frames;
2151                 size -= frames;
2152                 xfer += frames;
2153                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2154                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2155                         err = snd_pcm_start(substream);
2156                         if (err < 0)
2157                                 goto _end_unlock;
2158                 }
2159                 if (runtime->sleep_min &&
2160                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2161                         snd_pcm_tick_prepare(substream);
2162         }
2163  _end_unlock:
2164         snd_pcm_stream_unlock_irq(substream);
2165  _end:
2166         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2167 }
2168
2169 snd_pcm_sframes_t snd_pcm_lib_write(snd_pcm_substream_t *substream, const void __user *buf, snd_pcm_uframes_t size)
2170 {
2171         snd_pcm_runtime_t *runtime;
2172         int nonblock;
2173
2174         snd_assert(substream != NULL, return -ENXIO);
2175         runtime = substream->runtime;
2176         snd_assert(runtime != NULL, return -ENXIO);
2177         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2178         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2179                 return -EBADFD;
2180
2181         snd_assert(substream->ffile != NULL, return -ENXIO);
2182         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2183 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2184         if (substream->oss.oss) {
2185                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2186                 if (setup != NULL) {
2187                         if (setup->nonblock)
2188                                 nonblock = 1;
2189                         else if (setup->block)
2190                                 nonblock = 0;
2191                 }
2192         }
2193 #endif
2194
2195         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2196             runtime->channels > 1)
2197                 return -EINVAL;
2198         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2199                                   snd_pcm_lib_write_transfer);
2200 }
2201
2202 static int snd_pcm_lib_writev_transfer(snd_pcm_substream_t *substream,
2203                                        unsigned int hwoff,
2204                                        unsigned long data, unsigned int off,
2205                                        snd_pcm_uframes_t frames)
2206 {
2207         snd_pcm_runtime_t *runtime = substream->runtime;
2208         int err;
2209         void __user **bufs = (void __user **)data;
2210         int channels = runtime->channels;
2211         int c;
2212         if (substream->ops->copy) {
2213                 snd_assert(substream->ops->silence != NULL, return -EINVAL);
2214                 for (c = 0; c < channels; ++c, ++bufs) {
2215                         if (*bufs == NULL) {
2216                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2217                                         return err;
2218                         } else {
2219                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2220                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2221                                         return err;
2222                         }
2223                 }
2224         } else {
2225                 /* default transfer behaviour */
2226                 size_t dma_csize = runtime->dma_bytes / channels;
2227                 snd_assert(runtime->dma_area, return -EFAULT);
2228                 for (c = 0; c < channels; ++c, ++bufs) {
2229                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2230                         if (*bufs == NULL) {
2231                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2232                         } else {
2233                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2234                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2235                                         return -EFAULT;
2236                         }
2237                 }
2238         }
2239         return 0;
2240 }
2241  
2242 snd_pcm_sframes_t snd_pcm_lib_writev(snd_pcm_substream_t *substream,
2243                                      void __user **bufs,
2244                                      snd_pcm_uframes_t frames)
2245 {
2246         snd_pcm_runtime_t *runtime;
2247         int nonblock;
2248
2249         snd_assert(substream != NULL, return -ENXIO);
2250         runtime = substream->runtime;
2251         snd_assert(runtime != NULL, return -ENXIO);
2252         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2253         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2254                 return -EBADFD;
2255
2256         snd_assert(substream->ffile != NULL, return -ENXIO);
2257         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2258 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2259         if (substream->oss.oss) {
2260                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2261                 if (setup != NULL) {
2262                         if (setup->nonblock)
2263                                 nonblock = 1;
2264                         else if (setup->block)
2265                                 nonblock = 0;
2266                 }
2267         }
2268 #endif
2269
2270         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2271                 return -EINVAL;
2272         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2273                                   nonblock, snd_pcm_lib_writev_transfer);
2274 }
2275
2276 static int snd_pcm_lib_read_transfer(snd_pcm_substream_t *substream, 
2277                                      unsigned int hwoff,
2278                                      unsigned long data, unsigned int off,
2279                                      snd_pcm_uframes_t frames)
2280 {
2281         snd_pcm_runtime_t *runtime = substream->runtime;
2282         int err;
2283         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2284         if (substream->ops->copy) {
2285                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2286                         return err;
2287         } else {
2288                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2289                 snd_assert(runtime->dma_area, return -EFAULT);
2290                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2291                         return -EFAULT;
2292         }
2293         return 0;
2294 }
2295
2296 static snd_pcm_sframes_t snd_pcm_lib_read1(snd_pcm_substream_t *substream,
2297                                            unsigned long data,
2298                                            snd_pcm_uframes_t size,
2299                                            int nonblock,
2300                                            transfer_f transfer)
2301 {
2302         snd_pcm_runtime_t *runtime = substream->runtime;
2303         snd_pcm_uframes_t xfer = 0;
2304         snd_pcm_uframes_t offset = 0;
2305         int err = 0;
2306
2307         if (size == 0)
2308                 return 0;
2309         if (size > runtime->xfer_align)
2310                 size -= size % runtime->xfer_align;
2311
2312         snd_pcm_stream_lock_irq(substream);
2313         switch (runtime->status->state) {
2314         case SNDRV_PCM_STATE_PREPARED:
2315                 if (size >= runtime->start_threshold) {
2316                         err = snd_pcm_start(substream);
2317                         if (err < 0)
2318                                 goto _end_unlock;
2319                 }
2320                 break;
2321         case SNDRV_PCM_STATE_DRAINING:
2322         case SNDRV_PCM_STATE_RUNNING:
2323         case SNDRV_PCM_STATE_PAUSED:
2324                 break;
2325         case SNDRV_PCM_STATE_XRUN:
2326                 err = -EPIPE;
2327                 goto _end_unlock;
2328         case SNDRV_PCM_STATE_SUSPENDED:
2329                 err = -ESTRPIPE;
2330                 goto _end_unlock;
2331         default:
2332                 err = -EBADFD;
2333                 goto _end_unlock;
2334         }
2335
2336         while (size > 0) {
2337                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2338                 snd_pcm_uframes_t avail;
2339                 snd_pcm_uframes_t cont;
2340                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2341                         snd_pcm_update_hw_ptr(substream);
2342               __draining:
2343                 avail = snd_pcm_capture_avail(runtime);
2344                 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2345                         if (avail < runtime->xfer_align) {
2346                                 err = -EPIPE;
2347                                 goto _end_unlock;
2348                         }
2349                 } else if ((avail < runtime->control->avail_min && size > avail) ||
2350                            (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
2351                         wait_queue_t wait;
2352                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED } state;
2353                         long tout;
2354
2355                         if (nonblock) {
2356                                 err = -EAGAIN;
2357                                 goto _end_unlock;
2358                         }
2359
2360                         init_waitqueue_entry(&wait, current);
2361                         add_wait_queue(&runtime->sleep, &wait);
2362                         while (1) {
2363                                 if (signal_pending(current)) {
2364                                         state = SIGNALED;
2365                                         break;
2366                                 }
2367                                 set_current_state(TASK_INTERRUPTIBLE);
2368                                 snd_pcm_stream_unlock_irq(substream);
2369                                 tout = schedule_timeout(10 * HZ);
2370                                 snd_pcm_stream_lock_irq(substream);
2371                                 if (tout == 0) {
2372                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2373                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2374                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2375                                                 break;
2376                                         }
2377                                 }
2378                                 switch (runtime->status->state) {
2379                                 case SNDRV_PCM_STATE_XRUN:
2380                                         state = ERROR;
2381                                         goto _end_loop;
2382                                 case SNDRV_PCM_STATE_SUSPENDED:
2383                                         state = SUSPENDED;
2384                                         goto _end_loop;
2385                                 case SNDRV_PCM_STATE_DRAINING:
2386                                         goto __draining;
2387                                 default:
2388                                         break;
2389                                 }
2390                                 avail = snd_pcm_capture_avail(runtime);
2391                                 if (avail >= runtime->control->avail_min) {
2392                                         state = READY;
2393                                         break;
2394                                 }
2395                         }
2396                        _end_loop:
2397                         remove_wait_queue(&runtime->sleep, &wait);
2398
2399                         switch (state) {
2400                         case ERROR:
2401                                 err = -EPIPE;
2402                                 goto _end_unlock;
2403                         case SUSPENDED:
2404                                 err = -ESTRPIPE;
2405                                 goto _end_unlock;
2406                         case SIGNALED:
2407                                 err = -ERESTARTSYS;
2408                                 goto _end_unlock;
2409                         case EXPIRED:
2410                                 snd_printd("capture read error (DMA or IRQ trouble?)\n");
2411                                 err = -EIO;
2412                                 goto _end_unlock;
2413                         default:
2414                                 break;
2415                         }
2416                 }
2417                 if (avail > runtime->xfer_align)
2418                         avail -= avail % runtime->xfer_align;
2419                 frames = size > avail ? avail : size;
2420                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2421                 if (frames > cont)
2422                         frames = cont;
2423                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2424                 appl_ptr = runtime->control->appl_ptr;
2425                 appl_ofs = appl_ptr % runtime->buffer_size;
2426                 snd_pcm_stream_unlock_irq(substream);
2427                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2428                         goto _end;
2429                 snd_pcm_stream_lock_irq(substream);
2430                 switch (runtime->status->state) {
2431                 case SNDRV_PCM_STATE_XRUN:
2432                         err = -EPIPE;
2433                         goto _end_unlock;
2434                 case SNDRV_PCM_STATE_SUSPENDED:
2435                         err = -ESTRPIPE;
2436                         goto _end_unlock;
2437                 default:
2438                         break;
2439                 }
2440                 appl_ptr += frames;
2441                 if (appl_ptr >= runtime->boundary)
2442                         appl_ptr -= runtime->boundary;
2443                 runtime->control->appl_ptr = appl_ptr;
2444                 if (substream->ops->ack)
2445                         substream->ops->ack(substream);
2446
2447                 offset += frames;
2448                 size -= frames;
2449                 xfer += frames;
2450                 if (runtime->sleep_min &&
2451                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2452                         snd_pcm_tick_prepare(substream);
2453         }
2454  _end_unlock:
2455         snd_pcm_stream_unlock_irq(substream);
2456  _end:
2457         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2458 }
2459
2460 snd_pcm_sframes_t snd_pcm_lib_read(snd_pcm_substream_t *substream, void __user *buf, snd_pcm_uframes_t size)
2461 {
2462         snd_pcm_runtime_t *runtime;
2463         int nonblock;
2464         
2465         snd_assert(substream != NULL, return -ENXIO);
2466         runtime = substream->runtime;
2467         snd_assert(runtime != NULL, return -ENXIO);
2468         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2469         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2470                 return -EBADFD;
2471
2472         snd_assert(substream->ffile != NULL, return -ENXIO);
2473         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2474 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2475         if (substream->oss.oss) {
2476                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2477                 if (setup != NULL) {
2478                         if (setup->nonblock)
2479                                 nonblock = 1;
2480                         else if (setup->block)
2481                                 nonblock = 0;
2482                 }
2483         }
2484 #endif
2485         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2486                 return -EINVAL;
2487         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2488 }
2489
2490 static int snd_pcm_lib_readv_transfer(snd_pcm_substream_t *substream,
2491                                       unsigned int hwoff,
2492                                       unsigned long data, unsigned int off,
2493                                       snd_pcm_uframes_t frames)
2494 {
2495         snd_pcm_runtime_t *runtime = substream->runtime;
2496         int err;
2497         void __user **bufs = (void __user **)data;
2498         int channels = runtime->channels;
2499         int c;
2500         if (substream->ops->copy) {
2501                 for (c = 0; c < channels; ++c, ++bufs) {
2502                         char __user *buf;
2503                         if (*bufs == NULL)
2504                                 continue;
2505                         buf = *bufs + samples_to_bytes(runtime, off);
2506                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2507                                 return err;
2508                 }
2509         } else {
2510                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2511                 snd_assert(runtime->dma_area, return -EFAULT);
2512                 for (c = 0; c < channels; ++c, ++bufs) {
2513                         char *hwbuf;
2514                         char __user *buf;
2515                         if (*bufs == NULL)
2516                                 continue;
2517
2518                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2519                         buf = *bufs + samples_to_bytes(runtime, off);
2520                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2521                                 return -EFAULT;
2522                 }
2523         }
2524         return 0;
2525 }
2526  
2527 snd_pcm_sframes_t snd_pcm_lib_readv(snd_pcm_substream_t *substream,
2528                                     void __user **bufs,
2529                                     snd_pcm_uframes_t frames)
2530 {
2531         snd_pcm_runtime_t *runtime;
2532         int nonblock;
2533
2534         snd_assert(substream != NULL, return -ENXIO);
2535         runtime = substream->runtime;
2536         snd_assert(runtime != NULL, return -ENXIO);
2537         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2538         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2539                 return -EBADFD;
2540
2541         snd_assert(substream->ffile != NULL, return -ENXIO);
2542         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2543 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2544         if (substream->oss.oss) {
2545                 snd_pcm_oss_setup_t *setup = substream->oss.setup;
2546                 if (setup != NULL) {
2547                         if (setup->nonblock)
2548                                 nonblock = 1;
2549                         else if (setup->block)
2550                                 nonblock = 0;
2551                 }
2552         }
2553 #endif
2554
2555         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2556                 return -EINVAL;
2557         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2558 }
2559
2560 /*
2561  *  Exported symbols
2562  */
2563
2564 EXPORT_SYMBOL(snd_interval_refine);
2565 EXPORT_SYMBOL(snd_interval_list);
2566 EXPORT_SYMBOL(snd_interval_ratnum);
2567 EXPORT_SYMBOL(snd_interval_muldivk);
2568 EXPORT_SYMBOL(snd_interval_mulkdiv);
2569 EXPORT_SYMBOL(snd_interval_div);
2570 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
2571 EXPORT_SYMBOL(_snd_pcm_hw_param_min);
2572 EXPORT_SYMBOL(_snd_pcm_hw_param_set);
2573 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
2574 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
2575 EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
2576 EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
2577 EXPORT_SYMBOL(snd_pcm_hw_param_mask);
2578 EXPORT_SYMBOL(snd_pcm_hw_param_first);
2579 EXPORT_SYMBOL(snd_pcm_hw_param_last);
2580 EXPORT_SYMBOL(snd_pcm_hw_param_near);
2581 EXPORT_SYMBOL(snd_pcm_hw_param_set);
2582 EXPORT_SYMBOL(snd_pcm_hw_refine);
2583 EXPORT_SYMBOL(snd_pcm_hw_params);
2584 EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
2585 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
2586 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
2587 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
2588 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
2589 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
2590 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
2591 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
2592 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
2593 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
2594 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
2595 EXPORT_SYMBOL(snd_pcm_set_ops);
2596 EXPORT_SYMBOL(snd_pcm_set_sync);
2597 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
2598 EXPORT_SYMBOL(snd_pcm_stop);
2599 EXPORT_SYMBOL(snd_pcm_period_elapsed);
2600 EXPORT_SYMBOL(snd_pcm_lib_write);
2601 EXPORT_SYMBOL(snd_pcm_lib_read);
2602 EXPORT_SYMBOL(snd_pcm_lib_writev);
2603 EXPORT_SYMBOL(snd_pcm_lib_readv);
2604 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
2605 EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
2606 /* pcm_memory.c */
2607 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
2608 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
2609 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
2610 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
2611 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
2612 EXPORT_SYMBOL(snd_pcm_lib_free_pages);