Linux-2.6.12-rc2
[linux-flexiantxendom0-natty.git] / net / rose / af_rose.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 2 of the License, or
5  * (at your option) any later version.
6  *
7  * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
8  * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
9  * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
10  * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/types.h>
18 #include <linux/socket.h>
19 #include <linux/in.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/spinlock.h>
23 #include <linux/timer.h>
24 #include <linux/string.h>
25 #include <linux/sockios.h>
26 #include <linux/net.h>
27 #include <linux/stat.h>
28 #include <net/ax25.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_arp.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <linux/fcntl.h>
37 #include <linux/termios.h>
38 #include <linux/mm.h>
39 #include <linux/interrupt.h>
40 #include <linux/notifier.h>
41 #include <net/rose.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <net/tcp.h>
45 #include <net/ip.h>
46 #include <net/arp.h>
47
48 static int rose_ndevs = 10;
49
50 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
51 int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
52 int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
53 int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
54 int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
55 int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
56 int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
57 int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
58 int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
59 int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
60
61 static HLIST_HEAD(rose_list);
62 static DEFINE_SPINLOCK(rose_list_lock);
63
64 static struct proto_ops rose_proto_ops;
65
66 ax25_address rose_callsign;
67
68 /*
69  *      Convert a ROSE address into text.
70  */
71 const char *rose2asc(const rose_address *addr)
72 {
73         static char buffer[11];
74
75         if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
76             addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
77             addr->rose_addr[4] == 0x00) {
78                 strcpy(buffer, "*");
79         } else {
80                 sprintf(buffer, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
81                                                 addr->rose_addr[1] & 0xFF,
82                                                 addr->rose_addr[2] & 0xFF,
83                                                 addr->rose_addr[3] & 0xFF,
84                                                 addr->rose_addr[4] & 0xFF);
85         }
86
87         return buffer;
88 }
89
90 /*
91  *      Compare two ROSE addresses, 0 == equal.
92  */
93 int rosecmp(rose_address *addr1, rose_address *addr2)
94 {
95         int i;
96
97         for (i = 0; i < 5; i++)
98                 if (addr1->rose_addr[i] != addr2->rose_addr[i])
99                         return 1;
100
101         return 0;
102 }
103
104 /*
105  *      Compare two ROSE addresses for only mask digits, 0 == equal.
106  */
107 int rosecmpm(rose_address *addr1, rose_address *addr2, unsigned short mask)
108 {
109         int i, j;
110
111         if (mask > 10)
112                 return 1;
113
114         for (i = 0; i < mask; i++) {
115                 j = i / 2;
116
117                 if ((i % 2) != 0) {
118                         if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
119                                 return 1;
120                 } else {
121                         if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
122                                 return 1;
123                 }
124         }
125
126         return 0;
127 }
128
129 /*
130  *      Socket removal during an interrupt is now safe.
131  */
132 static void rose_remove_socket(struct sock *sk)
133 {
134         spin_lock_bh(&rose_list_lock);
135         sk_del_node_init(sk);
136         spin_unlock_bh(&rose_list_lock);
137 }
138
139 /*
140  *      Kill all bound sockets on a broken link layer connection to a
141  *      particular neighbour.
142  */
143 void rose_kill_by_neigh(struct rose_neigh *neigh)
144 {
145         struct sock *s;
146         struct hlist_node *node;
147
148         spin_lock_bh(&rose_list_lock);
149         sk_for_each(s, node, &rose_list) {
150                 struct rose_sock *rose = rose_sk(s);
151
152                 if (rose->neighbour == neigh) {
153                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
154                         rose->neighbour->use--;
155                         rose->neighbour = NULL;
156                 }
157         }
158         spin_unlock_bh(&rose_list_lock);
159 }
160
161 /*
162  *      Kill all bound sockets on a dropped device.
163  */
164 static void rose_kill_by_device(struct net_device *dev)
165 {
166         struct sock *s;
167         struct hlist_node *node;
168
169         spin_lock_bh(&rose_list_lock);
170         sk_for_each(s, node, &rose_list) {
171                 struct rose_sock *rose = rose_sk(s);
172
173                 if (rose->device == dev) {
174                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
175                         rose->neighbour->use--;
176                         rose->device = NULL;
177                 }
178         }
179         spin_unlock_bh(&rose_list_lock);
180 }
181
182 /*
183  *      Handle device status changes.
184  */
185 static int rose_device_event(struct notifier_block *this, unsigned long event,
186         void *ptr)
187 {
188         struct net_device *dev = (struct net_device *)ptr;
189
190         if (event != NETDEV_DOWN)
191                 return NOTIFY_DONE;
192
193         switch (dev->type) {
194         case ARPHRD_ROSE:
195                 rose_kill_by_device(dev);
196                 break;
197         case ARPHRD_AX25:
198                 rose_link_device_down(dev);
199                 rose_rt_device_down(dev);
200                 break;
201         }
202
203         return NOTIFY_DONE;
204 }
205
206 /*
207  *      Add a socket to the bound sockets list.
208  */
209 static void rose_insert_socket(struct sock *sk)
210 {
211
212         spin_lock_bh(&rose_list_lock);
213         sk_add_node(sk, &rose_list);
214         spin_unlock_bh(&rose_list_lock);
215 }
216
217 /*
218  *      Find a socket that wants to accept the Call Request we just
219  *      received.
220  */
221 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
222 {
223         struct sock *s;
224         struct hlist_node *node;
225
226         spin_lock_bh(&rose_list_lock);
227         sk_for_each(s, node, &rose_list) {
228                 struct rose_sock *rose = rose_sk(s);
229
230                 if (!rosecmp(&rose->source_addr, addr) &&
231                     !ax25cmp(&rose->source_call, call) &&
232                     !rose->source_ndigis && s->sk_state == TCP_LISTEN)
233                         goto found;
234         }
235
236         sk_for_each(s, node, &rose_list) {
237                 struct rose_sock *rose = rose_sk(s);
238
239                 if (!rosecmp(&rose->source_addr, addr) &&
240                     !ax25cmp(&rose->source_call, &null_ax25_address) &&
241                     s->sk_state == TCP_LISTEN)
242                         goto found;
243         }
244         s = NULL;
245 found:
246         spin_unlock_bh(&rose_list_lock);
247         return s;
248 }
249
250 /*
251  *      Find a connected ROSE socket given my LCI and device.
252  */
253 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
254 {
255         struct sock *s;
256         struct hlist_node *node;
257
258         spin_lock_bh(&rose_list_lock);
259         sk_for_each(s, node, &rose_list) {
260                 struct rose_sock *rose = rose_sk(s);
261
262                 if (rose->lci == lci && rose->neighbour == neigh)
263                         goto found;
264         }
265         s = NULL;
266 found:
267         spin_unlock_bh(&rose_list_lock);
268         return s;
269 }
270
271 /*
272  *      Find a unique LCI for a given device.
273  */
274 unsigned int rose_new_lci(struct rose_neigh *neigh)
275 {
276         int lci;
277
278         if (neigh->dce_mode) {
279                 for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
280                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
281                                 return lci;
282         } else {
283                 for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
284                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
285                                 return lci;
286         }
287
288         return 0;
289 }
290
291 /*
292  *      Deferred destroy.
293  */
294 void rose_destroy_socket(struct sock *);
295
296 /*
297  *      Handler for deferred kills.
298  */
299 static void rose_destroy_timer(unsigned long data)
300 {
301         rose_destroy_socket((struct sock *)data);
302 }
303
304 /*
305  *      This is called from user mode and the timers. Thus it protects itself
306  *      against interrupt users but doesn't worry about being called during
307  *      work.  Once it is removed from the queue no interrupt or bottom half
308  *      will touch it and we are (fairly 8-) ) safe.
309  */
310 void rose_destroy_socket(struct sock *sk)
311 {
312         struct sk_buff *skb;
313
314         rose_remove_socket(sk);
315         rose_stop_heartbeat(sk);
316         rose_stop_idletimer(sk);
317         rose_stop_timer(sk);
318
319         rose_clear_queues(sk);          /* Flush the queues */
320
321         while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
322                 if (skb->sk != sk) {    /* A pending connection */
323                         /* Queue the unaccepted socket for death */
324                         sock_set_flag(skb->sk, SOCK_DEAD);
325                         rose_start_heartbeat(skb->sk);
326                         rose_sk(skb->sk)->state = ROSE_STATE_0;
327                 }
328
329                 kfree_skb(skb);
330         }
331
332         if (atomic_read(&sk->sk_wmem_alloc) ||
333             atomic_read(&sk->sk_rmem_alloc)) {
334                 /* Defer: outstanding buffers */
335                 init_timer(&sk->sk_timer);
336                 sk->sk_timer.expires  = jiffies + 10 * HZ;
337                 sk->sk_timer.function = rose_destroy_timer;
338                 sk->sk_timer.data     = (unsigned long)sk;
339                 add_timer(&sk->sk_timer);
340         } else
341                 sock_put(sk);
342 }
343
344 /*
345  *      Handling for system calls applied via the various interfaces to a
346  *      ROSE socket object.
347  */
348
349 static int rose_setsockopt(struct socket *sock, int level, int optname,
350         char __user *optval, int optlen)
351 {
352         struct sock *sk = sock->sk;
353         struct rose_sock *rose = rose_sk(sk);
354         int opt;
355
356         if (level != SOL_ROSE)
357                 return -ENOPROTOOPT;
358
359         if (optlen < sizeof(int))
360                 return -EINVAL;
361
362         if (get_user(opt, (int __user *)optval))
363                 return -EFAULT;
364
365         switch (optname) {
366         case ROSE_DEFER:
367                 rose->defer = opt ? 1 : 0;
368                 return 0;
369
370         case ROSE_T1:
371                 if (opt < 1)
372                         return -EINVAL;
373                 rose->t1 = opt * HZ;
374                 return 0;
375
376         case ROSE_T2:
377                 if (opt < 1)
378                         return -EINVAL;
379                 rose->t2 = opt * HZ;
380                 return 0;
381
382         case ROSE_T3:
383                 if (opt < 1)
384                         return -EINVAL;
385                 rose->t3 = opt * HZ;
386                 return 0;
387
388         case ROSE_HOLDBACK:
389                 if (opt < 1)
390                         return -EINVAL;
391                 rose->hb = opt * HZ;
392                 return 0;
393
394         case ROSE_IDLE:
395                 if (opt < 0)
396                         return -EINVAL;
397                 rose->idle = opt * 60 * HZ;
398                 return 0;
399
400         case ROSE_QBITINCL:
401                 rose->qbitincl = opt ? 1 : 0;
402                 return 0;
403
404         default:
405                 return -ENOPROTOOPT;
406         }
407 }
408
409 static int rose_getsockopt(struct socket *sock, int level, int optname,
410         char __user *optval, int __user *optlen)
411 {
412         struct sock *sk = sock->sk;
413         struct rose_sock *rose = rose_sk(sk);
414         int val = 0;
415         int len;
416
417         if (level != SOL_ROSE)
418                 return -ENOPROTOOPT;
419
420         if (get_user(len, optlen))
421                 return -EFAULT;
422
423         if (len < 0)
424                 return -EINVAL;
425
426         switch (optname) {
427         case ROSE_DEFER:
428                 val = rose->defer;
429                 break;
430
431         case ROSE_T1:
432                 val = rose->t1 / HZ;
433                 break;
434
435         case ROSE_T2:
436                 val = rose->t2 / HZ;
437                 break;
438
439         case ROSE_T3:
440                 val = rose->t3 / HZ;
441                 break;
442
443         case ROSE_HOLDBACK:
444                 val = rose->hb / HZ;
445                 break;
446
447         case ROSE_IDLE:
448                 val = rose->idle / (60 * HZ);
449                 break;
450
451         case ROSE_QBITINCL:
452                 val = rose->qbitincl;
453                 break;
454
455         default:
456                 return -ENOPROTOOPT;
457         }
458
459         len = min_t(unsigned int, len, sizeof(int));
460
461         if (put_user(len, optlen))
462                 return -EFAULT;
463
464         return copy_to_user(optval, &val, len) ? -EFAULT : 0;
465 }
466
467 static int rose_listen(struct socket *sock, int backlog)
468 {
469         struct sock *sk = sock->sk;
470
471         if (sk->sk_state != TCP_LISTEN) {
472                 struct rose_sock *rose = rose_sk(sk);
473
474                 rose->dest_ndigis = 0;
475                 memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
476                 memset(&rose->dest_call, 0, AX25_ADDR_LEN);
477                 memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
478                 sk->sk_max_ack_backlog = backlog;
479                 sk->sk_state           = TCP_LISTEN;
480                 return 0;
481         }
482
483         return -EOPNOTSUPP;
484 }
485
486 static struct proto rose_proto = {
487         .name     = "ROSE",
488         .owner    = THIS_MODULE,
489         .obj_size = sizeof(struct rose_sock),
490 };
491
492 static int rose_create(struct socket *sock, int protocol)
493 {
494         struct sock *sk;
495         struct rose_sock *rose;
496
497         if (sock->type != SOCK_SEQPACKET || protocol != 0)
498                 return -ESOCKTNOSUPPORT;
499
500         if ((sk = sk_alloc(PF_ROSE, GFP_ATOMIC, &rose_proto, 1)) == NULL)
501                 return -ENOMEM;
502
503         rose = rose_sk(sk);
504
505         sock_init_data(sock, sk);
506
507         skb_queue_head_init(&rose->ack_queue);
508 #ifdef M_BIT
509         skb_queue_head_init(&rose->frag_queue);
510         rose->fraglen    = 0;
511 #endif
512
513         sock->ops    = &rose_proto_ops;
514         sk->sk_protocol = protocol;
515
516         init_timer(&rose->timer);
517         init_timer(&rose->idletimer);
518
519         rose->t1   = sysctl_rose_call_request_timeout;
520         rose->t2   = sysctl_rose_reset_request_timeout;
521         rose->t3   = sysctl_rose_clear_request_timeout;
522         rose->hb   = sysctl_rose_ack_hold_back_timeout;
523         rose->idle = sysctl_rose_no_activity_timeout;
524
525         rose->state = ROSE_STATE_0;
526
527         return 0;
528 }
529
530 static struct sock *rose_make_new(struct sock *osk)
531 {
532         struct sock *sk;
533         struct rose_sock *rose, *orose;
534
535         if (osk->sk_type != SOCK_SEQPACKET)
536                 return NULL;
537
538         if ((sk = sk_alloc(PF_ROSE, GFP_ATOMIC, &rose_proto, 1)) == NULL)
539                 return NULL;
540
541         rose = rose_sk(sk);
542
543         sock_init_data(NULL, sk);
544
545         skb_queue_head_init(&rose->ack_queue);
546 #ifdef M_BIT
547         skb_queue_head_init(&rose->frag_queue);
548         rose->fraglen  = 0;
549 #endif
550
551         sk->sk_type     = osk->sk_type;
552         sk->sk_socket   = osk->sk_socket;
553         sk->sk_priority = osk->sk_priority;
554         sk->sk_protocol = osk->sk_protocol;
555         sk->sk_rcvbuf   = osk->sk_rcvbuf;
556         sk->sk_sndbuf   = osk->sk_sndbuf;
557         sk->sk_state    = TCP_ESTABLISHED;
558         sk->sk_sleep    = osk->sk_sleep;
559
560         if (sock_flag(osk, SOCK_ZAPPED))
561                 sock_set_flag(sk, SOCK_ZAPPED);
562
563         if (sock_flag(osk, SOCK_DBG))
564                 sock_set_flag(sk, SOCK_DBG);
565
566         init_timer(&rose->timer);
567         init_timer(&rose->idletimer);
568
569         orose           = rose_sk(osk);
570         rose->t1        = orose->t1;
571         rose->t2        = orose->t2;
572         rose->t3        = orose->t3;
573         rose->hb        = orose->hb;
574         rose->idle      = orose->idle;
575         rose->defer     = orose->defer;
576         rose->device    = orose->device;
577         rose->qbitincl  = orose->qbitincl;
578
579         return sk;
580 }
581
582 static int rose_release(struct socket *sock)
583 {
584         struct sock *sk = sock->sk;
585         struct rose_sock *rose;
586
587         if (sk == NULL) return 0;
588
589         rose = rose_sk(sk);
590
591         switch (rose->state) {
592         case ROSE_STATE_0:
593                 rose_disconnect(sk, 0, -1, -1);
594                 rose_destroy_socket(sk);
595                 break;
596
597         case ROSE_STATE_2:
598                 rose->neighbour->use--;
599                 rose_disconnect(sk, 0, -1, -1);
600                 rose_destroy_socket(sk);
601                 break;
602
603         case ROSE_STATE_1:
604         case ROSE_STATE_3:
605         case ROSE_STATE_4:
606         case ROSE_STATE_5:
607                 rose_clear_queues(sk);
608                 rose_stop_idletimer(sk);
609                 rose_write_internal(sk, ROSE_CLEAR_REQUEST);
610                 rose_start_t3timer(sk);
611                 rose->state  = ROSE_STATE_2;
612                 sk->sk_state    = TCP_CLOSE;
613                 sk->sk_shutdown |= SEND_SHUTDOWN;
614                 sk->sk_state_change(sk);
615                 sock_set_flag(sk, SOCK_DEAD);
616                 sock_set_flag(sk, SOCK_DESTROY);
617                 break;
618
619         default:
620                 break;
621         }
622
623         sock->sk = NULL;
624
625         return 0;
626 }
627
628 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
629 {
630         struct sock *sk = sock->sk;
631         struct rose_sock *rose = rose_sk(sk);
632         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
633         struct net_device *dev;
634         ax25_address *user, *source;
635         int n;
636
637         if (!sock_flag(sk, SOCK_ZAPPED))
638                 return -EINVAL;
639
640         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
641                 return -EINVAL;
642
643         if (addr->srose_family != AF_ROSE)
644                 return -EINVAL;
645
646         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
647                 return -EINVAL;
648
649         if (addr->srose_ndigis > ROSE_MAX_DIGIS)
650                 return -EINVAL;
651
652         if ((dev = rose_dev_get(&addr->srose_addr)) == NULL) {
653                 SOCK_DEBUG(sk, "ROSE: bind failed: invalid address\n");
654                 return -EADDRNOTAVAIL;
655         }
656
657         source = &addr->srose_call;
658
659         if ((user = ax25_findbyuid(current->euid)) == NULL) {
660                 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE))
661                         return -EACCES;
662                 user = source;
663         }
664
665         rose->source_addr   = addr->srose_addr;
666         rose->source_call   = *user;
667         rose->device        = dev;
668         rose->source_ndigis = addr->srose_ndigis;
669
670         if (addr_len == sizeof(struct full_sockaddr_rose)) {
671                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
672                 for (n = 0 ; n < addr->srose_ndigis ; n++)
673                         rose->source_digis[n] = full_addr->srose_digis[n];
674         } else {
675                 if (rose->source_ndigis == 1) {
676                         rose->source_digis[0] = addr->srose_digi;
677                 }
678         }
679
680         rose_insert_socket(sk);
681
682         sock_reset_flag(sk, SOCK_ZAPPED);
683         SOCK_DEBUG(sk, "ROSE: socket is bound\n");
684         return 0;
685 }
686
687 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
688 {
689         struct sock *sk = sock->sk;
690         struct rose_sock *rose = rose_sk(sk);
691         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
692         unsigned char cause, diagnostic;
693         ax25_address *user;
694         struct net_device *dev;
695         int n;
696
697         if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
698                 sock->state = SS_CONNECTED;
699                 return 0;       /* Connect completed during a ERESTARTSYS event */
700         }
701
702         if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
703                 sock->state = SS_UNCONNECTED;
704                 return -ECONNREFUSED;
705         }
706
707         if (sk->sk_state == TCP_ESTABLISHED)
708                 return -EISCONN;        /* No reconnect on a seqpacket socket */
709
710         sk->sk_state   = TCP_CLOSE;
711         sock->state = SS_UNCONNECTED;
712
713         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
714                 return -EINVAL;
715
716         if (addr->srose_family != AF_ROSE)
717                 return -EINVAL;
718
719         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
720                 return -EINVAL;
721
722         if (addr->srose_ndigis > ROSE_MAX_DIGIS)
723                 return -EINVAL;
724
725         /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
726         if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
727                 return -EINVAL;
728
729         rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
730                                          &diagnostic);
731         if (!rose->neighbour)
732                 return -ENETUNREACH;
733
734         rose->lci = rose_new_lci(rose->neighbour);
735         if (!rose->lci)
736                 return -ENETUNREACH;
737
738         if (sock_flag(sk, SOCK_ZAPPED)) {       /* Must bind first - autobinding in this may or may not work */
739                 sock_reset_flag(sk, SOCK_ZAPPED);
740
741                 if ((dev = rose_dev_first()) == NULL)
742                         return -ENETUNREACH;
743
744                 if ((user = ax25_findbyuid(current->euid)) == NULL)
745                         return -EINVAL;
746
747                 memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
748                 rose->source_call = *user;
749                 rose->device      = dev;
750
751                 rose_insert_socket(sk);         /* Finish the bind */
752         }
753
754         rose->dest_addr   = addr->srose_addr;
755         rose->dest_call   = addr->srose_call;
756         rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
757         rose->dest_ndigis = addr->srose_ndigis;
758
759         if (addr_len == sizeof(struct full_sockaddr_rose)) {
760                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
761                 for (n = 0 ; n < addr->srose_ndigis ; n++)
762                         rose->dest_digis[n] = full_addr->srose_digis[n];
763         } else {
764                 if (rose->dest_ndigis == 1) {
765                         rose->dest_digis[0] = addr->srose_digi;
766                 }
767         }
768
769         /* Move to connecting socket, start sending Connect Requests */
770         sock->state   = SS_CONNECTING;
771         sk->sk_state     = TCP_SYN_SENT;
772
773         rose->state = ROSE_STATE_1;
774
775         rose->neighbour->use++;
776
777         rose_write_internal(sk, ROSE_CALL_REQUEST);
778         rose_start_heartbeat(sk);
779         rose_start_t1timer(sk);
780
781         /* Now the loop */
782         if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
783                 return -EINPROGRESS;
784
785         /*
786          * A Connect Ack with Choke or timeout or failed routing will go to
787          * closed.
788          */
789         if (sk->sk_state == TCP_SYN_SENT) {
790                 struct task_struct *tsk = current;
791                 DECLARE_WAITQUEUE(wait, tsk);
792
793                 add_wait_queue(sk->sk_sleep, &wait);
794                 for (;;) {
795                         set_current_state(TASK_INTERRUPTIBLE);
796                         if (sk->sk_state != TCP_SYN_SENT)
797                                 break;
798                         if (!signal_pending(tsk)) {
799                                 schedule();
800                                 continue;
801                         }
802                         current->state = TASK_RUNNING;
803                         remove_wait_queue(sk->sk_sleep, &wait);
804                         return -ERESTARTSYS;
805                 }
806                 current->state = TASK_RUNNING;
807                 remove_wait_queue(sk->sk_sleep, &wait);
808         }
809
810         if (sk->sk_state != TCP_ESTABLISHED) {
811                 sock->state = SS_UNCONNECTED;
812                 return sock_error(sk);  /* Always set at this point */
813         }
814
815         sock->state = SS_CONNECTED;
816
817         return 0;
818 }
819
820 static int rose_accept(struct socket *sock, struct socket *newsock, int flags)
821 {
822         struct task_struct *tsk = current;
823         DECLARE_WAITQUEUE(wait, tsk);
824         struct sk_buff *skb;
825         struct sock *newsk;
826         struct sock *sk;
827         int err = 0;
828
829         if ((sk = sock->sk) == NULL)
830                 return -EINVAL;
831
832         lock_sock(sk);
833         if (sk->sk_type != SOCK_SEQPACKET) {
834                 err = -EOPNOTSUPP;
835                 goto out;
836         }
837
838         if (sk->sk_state != TCP_LISTEN) {
839                 err = -EINVAL;
840                 goto out;
841         }
842
843         /*
844          *      The write queue this time is holding sockets ready to use
845          *      hooked into the SABM we saved
846          */
847         add_wait_queue(sk->sk_sleep, &wait);
848         for (;;) {
849                 skb = skb_dequeue(&sk->sk_receive_queue);
850                 if (skb)
851                         break;
852
853                 current->state = TASK_INTERRUPTIBLE;
854                 release_sock(sk);
855                 if (flags & O_NONBLOCK) {
856                         current->state = TASK_RUNNING;
857                         remove_wait_queue(sk->sk_sleep, &wait);
858                         return -EWOULDBLOCK;
859                 }
860                 if (!signal_pending(tsk)) {
861                         schedule();
862                         lock_sock(sk);
863                         continue;
864                 }
865                 return -ERESTARTSYS;
866         }
867         current->state = TASK_RUNNING;
868         remove_wait_queue(sk->sk_sleep, &wait);
869
870         newsk = skb->sk;
871         newsk->sk_socket = newsock;
872         newsk->sk_sleep = &newsock->wait;
873
874         /* Now attach up the new socket */
875         skb->sk = NULL;
876         kfree_skb(skb);
877         sk->sk_ack_backlog--;
878         newsock->sk = newsk;
879
880 out:
881         release_sock(sk);
882
883         return err;
884 }
885
886 static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
887         int *uaddr_len, int peer)
888 {
889         struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
890         struct sock *sk = sock->sk;
891         struct rose_sock *rose = rose_sk(sk);
892         int n;
893
894         if (peer != 0) {
895                 if (sk->sk_state != TCP_ESTABLISHED)
896                         return -ENOTCONN;
897                 srose->srose_family = AF_ROSE;
898                 srose->srose_addr   = rose->dest_addr;
899                 srose->srose_call   = rose->dest_call;
900                 srose->srose_ndigis = rose->dest_ndigis;
901                 for (n = 0; n < rose->dest_ndigis; n++)
902                         srose->srose_digis[n] = rose->dest_digis[n];
903         } else {
904                 srose->srose_family = AF_ROSE;
905                 srose->srose_addr   = rose->source_addr;
906                 srose->srose_call   = rose->source_call;
907                 srose->srose_ndigis = rose->source_ndigis;
908                 for (n = 0; n < rose->source_ndigis; n++)
909                         srose->srose_digis[n] = rose->source_digis[n];
910         }
911
912         *uaddr_len = sizeof(struct full_sockaddr_rose);
913         return 0;
914 }
915
916 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
917 {
918         struct sock *sk;
919         struct sock *make;
920         struct rose_sock *make_rose;
921         struct rose_facilities_struct facilities;
922         int n, len;
923
924         skb->sk = NULL;         /* Initially we don't know who it's for */
925
926         /*
927          *      skb->data points to the rose frame start
928          */
929         memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
930
931         len  = (((skb->data[3] >> 4) & 0x0F) + 1) / 2;
932         len += (((skb->data[3] >> 0) & 0x0F) + 1) / 2;
933         if (!rose_parse_facilities(skb->data + len + 4, &facilities)) {
934                 rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
935                 return 0;
936         }
937
938         sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
939
940         /*
941          * We can't accept the Call Request.
942          */
943         if (sk == NULL || sk_acceptq_is_full(sk) ||
944             (make = rose_make_new(sk)) == NULL) {
945                 rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
946                 return 0;
947         }
948
949         skb->sk     = make;
950         make->sk_state = TCP_ESTABLISHED;
951         make_rose = rose_sk(make);
952
953         make_rose->lci           = lci;
954         make_rose->dest_addr     = facilities.dest_addr;
955         make_rose->dest_call     = facilities.dest_call;
956         make_rose->dest_ndigis   = facilities.dest_ndigis;
957         for (n = 0 ; n < facilities.dest_ndigis ; n++)
958                 make_rose->dest_digis[n] = facilities.dest_digis[n];
959         make_rose->source_addr   = facilities.source_addr;
960         make_rose->source_call   = facilities.source_call;
961         make_rose->source_ndigis = facilities.source_ndigis;
962         for (n = 0 ; n < facilities.source_ndigis ; n++)
963                 make_rose->source_digis[n]= facilities.source_digis[n];
964         make_rose->neighbour     = neigh;
965         make_rose->device        = dev;
966         make_rose->facilities    = facilities;
967
968         make_rose->neighbour->use++;
969
970         if (rose_sk(sk)->defer) {
971                 make_rose->state = ROSE_STATE_5;
972         } else {
973                 rose_write_internal(make, ROSE_CALL_ACCEPTED);
974                 make_rose->state = ROSE_STATE_3;
975                 rose_start_idletimer(make);
976         }
977
978         make_rose->condition = 0x00;
979         make_rose->vs        = 0;
980         make_rose->va        = 0;
981         make_rose->vr        = 0;
982         make_rose->vl        = 0;
983         sk->sk_ack_backlog++;
984
985         rose_insert_socket(make);
986
987         skb_queue_head(&sk->sk_receive_queue, skb);
988
989         rose_start_heartbeat(make);
990
991         if (!sock_flag(sk, SOCK_DEAD))
992                 sk->sk_data_ready(sk, skb->len);
993
994         return 1;
995 }
996
997 static int rose_sendmsg(struct kiocb *iocb, struct socket *sock,
998                         struct msghdr *msg, size_t len)
999 {
1000         struct sock *sk = sock->sk;
1001         struct rose_sock *rose = rose_sk(sk);
1002         struct sockaddr_rose *usrose = (struct sockaddr_rose *)msg->msg_name;
1003         int err;
1004         struct full_sockaddr_rose srose;
1005         struct sk_buff *skb;
1006         unsigned char *asmptr;
1007         int n, size, qbit = 0;
1008
1009         if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1010                 return -EINVAL;
1011
1012         if (sock_flag(sk, SOCK_ZAPPED))
1013                 return -EADDRNOTAVAIL;
1014
1015         if (sk->sk_shutdown & SEND_SHUTDOWN) {
1016                 send_sig(SIGPIPE, current, 0);
1017                 return -EPIPE;
1018         }
1019
1020         if (rose->neighbour == NULL || rose->device == NULL)
1021                 return -ENETUNREACH;
1022
1023         if (usrose != NULL) {
1024                 if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
1025                         return -EINVAL;
1026                 memset(&srose, 0, sizeof(struct full_sockaddr_rose));
1027                 memcpy(&srose, usrose, msg->msg_namelen);
1028                 if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
1029                     ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
1030                         return -EISCONN;
1031                 if (srose.srose_ndigis != rose->dest_ndigis)
1032                         return -EISCONN;
1033                 if (srose.srose_ndigis == rose->dest_ndigis) {
1034                         for (n = 0 ; n < srose.srose_ndigis ; n++)
1035                                 if (ax25cmp(&rose->dest_digis[n],
1036                                             &srose.srose_digis[n]))
1037                                         return -EISCONN;
1038                 }
1039                 if (srose.srose_family != AF_ROSE)
1040                         return -EINVAL;
1041         } else {
1042                 if (sk->sk_state != TCP_ESTABLISHED)
1043                         return -ENOTCONN;
1044
1045                 srose.srose_family = AF_ROSE;
1046                 srose.srose_addr   = rose->dest_addr;
1047                 srose.srose_call   = rose->dest_call;
1048                 srose.srose_ndigis = rose->dest_ndigis;
1049                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1050                         srose.srose_digis[n] = rose->dest_digis[n];
1051         }
1052
1053         SOCK_DEBUG(sk, "ROSE: sendto: Addresses built.\n");
1054
1055         /* Build a packet */
1056         SOCK_DEBUG(sk, "ROSE: sendto: building packet.\n");
1057         size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
1058
1059         if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1060                 return err;
1061
1062         skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
1063
1064         /*
1065          *      Put the data on the end
1066          */
1067         SOCK_DEBUG(sk, "ROSE: Appending user data\n");
1068
1069         asmptr = skb->h.raw = skb_put(skb, len);
1070
1071         err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1072         if (err) {
1073                 kfree_skb(skb);
1074                 return err;
1075         }
1076
1077         /*
1078          *      If the Q BIT Include socket option is in force, the first
1079          *      byte of the user data is the logical value of the Q Bit.
1080          */
1081         if (rose->qbitincl) {
1082                 qbit = skb->data[0];
1083                 skb_pull(skb, 1);
1084         }
1085
1086         /*
1087          *      Push down the ROSE header
1088          */
1089         asmptr = skb_push(skb, ROSE_MIN_LEN);
1090
1091         SOCK_DEBUG(sk, "ROSE: Building Network Header.\n");
1092
1093         /* Build a ROSE Network header */
1094         asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
1095         asmptr[1] = (rose->lci >> 0) & 0xFF;
1096         asmptr[2] = ROSE_DATA;
1097
1098         if (qbit)
1099                 asmptr[0] |= ROSE_Q_BIT;
1100
1101         SOCK_DEBUG(sk, "ROSE: Built header.\n");
1102
1103         SOCK_DEBUG(sk, "ROSE: Transmitting buffer\n");
1104
1105         if (sk->sk_state != TCP_ESTABLISHED) {
1106                 kfree_skb(skb);
1107                 return -ENOTCONN;
1108         }
1109
1110 #ifdef M_BIT
1111 #define ROSE_PACLEN (256-ROSE_MIN_LEN)
1112         if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
1113                 unsigned char header[ROSE_MIN_LEN];
1114                 struct sk_buff *skbn;
1115                 int frontlen;
1116                 int lg;
1117
1118                 /* Save a copy of the Header */
1119                 memcpy(header, skb->data, ROSE_MIN_LEN);
1120                 skb_pull(skb, ROSE_MIN_LEN);
1121
1122                 frontlen = skb_headroom(skb);
1123
1124                 while (skb->len > 0) {
1125                         if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
1126                                 kfree_skb(skb);
1127                                 return err;
1128                         }
1129
1130                         skbn->sk   = sk;
1131                         skbn->free = 1;
1132                         skbn->arp  = 1;
1133
1134                         skb_reserve(skbn, frontlen);
1135
1136                         lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
1137
1138                         /* Copy the user data */
1139                         memcpy(skb_put(skbn, lg), skb->data, lg);
1140                         skb_pull(skb, lg);
1141
1142                         /* Duplicate the Header */
1143                         skb_push(skbn, ROSE_MIN_LEN);
1144                         memcpy(skbn->data, header, ROSE_MIN_LEN);
1145
1146                         if (skb->len > 0)
1147                                 skbn->data[2] |= M_BIT;
1148
1149                         skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
1150                 }
1151
1152                 skb->free = 1;
1153                 kfree_skb(skb);
1154         } else {
1155                 skb_queue_tail(&sk->sk_write_queue, skb);               /* Throw it on the queue */
1156         }
1157 #else
1158         skb_queue_tail(&sk->sk_write_queue, skb);       /* Shove it onto the queue */
1159 #endif
1160
1161         rose_kick(sk);
1162
1163         return len;
1164 }
1165
1166
1167 static int rose_recvmsg(struct kiocb *iocb, struct socket *sock,
1168                         struct msghdr *msg, size_t size, int flags)
1169 {
1170         struct sock *sk = sock->sk;
1171         struct rose_sock *rose = rose_sk(sk);
1172         struct sockaddr_rose *srose = (struct sockaddr_rose *)msg->msg_name;
1173         size_t copied;
1174         unsigned char *asmptr;
1175         struct sk_buff *skb;
1176         int n, er, qbit;
1177
1178         /*
1179          * This works for seqpacket too. The receiver has ordered the queue for
1180          * us! We do one quick check first though
1181          */
1182         if (sk->sk_state != TCP_ESTABLISHED)
1183                 return -ENOTCONN;
1184
1185         /* Now we can treat all alike */
1186         if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL)
1187                 return er;
1188
1189         qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
1190
1191         skb_pull(skb, ROSE_MIN_LEN);
1192
1193         if (rose->qbitincl) {
1194                 asmptr  = skb_push(skb, 1);
1195                 *asmptr = qbit;
1196         }
1197
1198         skb->h.raw = skb->data;
1199         copied     = skb->len;
1200
1201         if (copied > size) {
1202                 copied = size;
1203                 msg->msg_flags |= MSG_TRUNC;
1204         }
1205
1206         skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1207
1208         if (srose != NULL) {
1209                 srose->srose_family = AF_ROSE;
1210                 srose->srose_addr   = rose->dest_addr;
1211                 srose->srose_call   = rose->dest_call;
1212                 srose->srose_ndigis = rose->dest_ndigis;
1213                 if (msg->msg_namelen >= sizeof(struct full_sockaddr_rose)) {
1214                         struct full_sockaddr_rose *full_srose = (struct full_sockaddr_rose *)msg->msg_name;
1215                         for (n = 0 ; n < rose->dest_ndigis ; n++)
1216                                 full_srose->srose_digis[n] = rose->dest_digis[n];
1217                         msg->msg_namelen = sizeof(struct full_sockaddr_rose);
1218                 } else {
1219                         if (rose->dest_ndigis >= 1) {
1220                                 srose->srose_ndigis = 1;
1221                                 srose->srose_digi = rose->dest_digis[0];
1222                         }
1223                         msg->msg_namelen = sizeof(struct sockaddr_rose);
1224                 }
1225         }
1226
1227         skb_free_datagram(sk, skb);
1228
1229         return copied;
1230 }
1231
1232
1233 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1234 {
1235         struct sock *sk = sock->sk;
1236         struct rose_sock *rose = rose_sk(sk);
1237         void __user *argp = (void __user *)arg;
1238
1239         switch (cmd) {
1240         case TIOCOUTQ: {
1241                 long amount;
1242                 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1243                 if (amount < 0)
1244                         amount = 0;
1245                 return put_user(amount, (unsigned int __user *)argp);
1246         }
1247
1248         case TIOCINQ: {
1249                 struct sk_buff *skb;
1250                 long amount = 0L;
1251                 /* These two are safe on a single CPU system as only user tasks fiddle here */
1252                 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1253                         amount = skb->len;
1254                 return put_user(amount, (unsigned int __user *)argp);
1255         }
1256
1257         case SIOCGSTAMP:
1258                 if (sk != NULL) 
1259                         return sock_get_timestamp(sk, (struct timeval __user *)argp);
1260                 return -EINVAL;
1261
1262         case SIOCGIFADDR:
1263         case SIOCSIFADDR:
1264         case SIOCGIFDSTADDR:
1265         case SIOCSIFDSTADDR:
1266         case SIOCGIFBRDADDR:
1267         case SIOCSIFBRDADDR:
1268         case SIOCGIFNETMASK:
1269         case SIOCSIFNETMASK:
1270         case SIOCGIFMETRIC:
1271         case SIOCSIFMETRIC:
1272                 return -EINVAL;
1273
1274         case SIOCADDRT:
1275         case SIOCDELRT:
1276         case SIOCRSCLRRT:
1277                 if (!capable(CAP_NET_ADMIN))
1278                         return -EPERM;
1279                 return rose_rt_ioctl(cmd, argp);
1280
1281         case SIOCRSGCAUSE: {
1282                 struct rose_cause_struct rose_cause;
1283                 rose_cause.cause      = rose->cause;
1284                 rose_cause.diagnostic = rose->diagnostic;
1285                 return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
1286         }
1287
1288         case SIOCRSSCAUSE: {
1289                 struct rose_cause_struct rose_cause;
1290                 if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
1291                         return -EFAULT;
1292                 rose->cause      = rose_cause.cause;
1293                 rose->diagnostic = rose_cause.diagnostic;
1294                 return 0;
1295         }
1296
1297         case SIOCRSSL2CALL:
1298                 if (!capable(CAP_NET_ADMIN)) return -EPERM;
1299                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1300                         ax25_listen_release(&rose_callsign, NULL);
1301                 if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
1302                         return -EFAULT;
1303                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1304                         ax25_listen_register(&rose_callsign, NULL);
1305                 return 0;
1306
1307         case SIOCRSGL2CALL:
1308                 return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
1309
1310         case SIOCRSACCEPT:
1311                 if (rose->state == ROSE_STATE_5) {
1312                         rose_write_internal(sk, ROSE_CALL_ACCEPTED);
1313                         rose_start_idletimer(sk);
1314                         rose->condition = 0x00;
1315                         rose->vs        = 0;
1316                         rose->va        = 0;
1317                         rose->vr        = 0;
1318                         rose->vl        = 0;
1319                         rose->state     = ROSE_STATE_3;
1320                 }
1321                 return 0;
1322
1323         default:
1324                 return dev_ioctl(cmd, argp);
1325         }
1326
1327         return 0;
1328 }
1329
1330 #ifdef CONFIG_PROC_FS
1331 static void *rose_info_start(struct seq_file *seq, loff_t *pos)
1332 {
1333         int i;
1334         struct sock *s;
1335         struct hlist_node *node;
1336
1337         spin_lock_bh(&rose_list_lock);
1338         if (*pos == 0)
1339                 return SEQ_START_TOKEN;
1340         
1341         i = 1;
1342         sk_for_each(s, node, &rose_list) {
1343                 if (i == *pos)
1344                         return s;
1345                 ++i;
1346         }
1347         return NULL;
1348 }
1349
1350 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
1351 {
1352         ++*pos;
1353
1354         return (v == SEQ_START_TOKEN) ? sk_head(&rose_list) 
1355                 : sk_next((struct sock *)v);
1356 }
1357         
1358 static void rose_info_stop(struct seq_file *seq, void *v)
1359 {
1360         spin_unlock_bh(&rose_list_lock);
1361 }
1362
1363 static int rose_info_show(struct seq_file *seq, void *v)
1364 {
1365         if (v == SEQ_START_TOKEN)
1366                 seq_puts(seq, 
1367                          "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");
1368
1369         else {
1370                 struct sock *s = v;
1371                 struct rose_sock *rose = rose_sk(s);
1372                 const char *devname, *callsign;
1373                 const struct net_device *dev = rose->device;
1374
1375                 if (!dev)
1376                         devname = "???";
1377                 else
1378                         devname = dev->name;
1379                 
1380                 seq_printf(seq, "%-10s %-9s ",
1381                         rose2asc(&rose->dest_addr),
1382                         ax2asc(&rose->dest_call));
1383
1384                 if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
1385                         callsign = "??????-?";
1386                 else
1387                         callsign = ax2asc(&rose->source_call);
1388
1389                 seq_printf(seq,
1390                            "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
1391                         rose2asc(&rose->source_addr),
1392                         callsign,
1393                         devname,
1394                         rose->lci & 0x0FFF,
1395                         (rose->neighbour) ? rose->neighbour->number : 0,
1396                         rose->state,
1397                         rose->vs,
1398                         rose->vr,
1399                         rose->va,
1400                         ax25_display_timer(&rose->timer) / HZ,
1401                         rose->t1 / HZ,
1402                         rose->t2 / HZ,
1403                         rose->t3 / HZ,
1404                         rose->hb / HZ,
1405                         ax25_display_timer(&rose->idletimer) / (60 * HZ),
1406                         rose->idle / (60 * HZ),
1407                         atomic_read(&s->sk_wmem_alloc),
1408                         atomic_read(&s->sk_rmem_alloc),
1409                         s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1410         }
1411
1412         return 0;
1413 }
1414
1415 static struct seq_operations rose_info_seqops = {
1416         .start = rose_info_start,
1417         .next = rose_info_next,
1418         .stop = rose_info_stop,
1419         .show = rose_info_show,
1420 };
1421
1422 static int rose_info_open(struct inode *inode, struct file *file)
1423 {
1424         return seq_open(file, &rose_info_seqops);
1425 }
1426
1427 static struct file_operations rose_info_fops = {
1428         .owner = THIS_MODULE,
1429         .open = rose_info_open,
1430         .read = seq_read,
1431         .llseek = seq_lseek,
1432         .release = seq_release,
1433 };
1434 #endif  /* CONFIG_PROC_FS */
1435
1436 static struct net_proto_family rose_family_ops = {
1437         .family         =       PF_ROSE,
1438         .create         =       rose_create,
1439         .owner          =       THIS_MODULE,
1440 };
1441
1442 static struct proto_ops rose_proto_ops = {
1443         .family         =       PF_ROSE,
1444         .owner          =       THIS_MODULE,
1445         .release        =       rose_release,
1446         .bind           =       rose_bind,
1447         .connect        =       rose_connect,
1448         .socketpair     =       sock_no_socketpair,
1449         .accept         =       rose_accept,
1450         .getname        =       rose_getname,
1451         .poll           =       datagram_poll,
1452         .ioctl          =       rose_ioctl,
1453         .listen         =       rose_listen,
1454         .shutdown       =       sock_no_shutdown,
1455         .setsockopt     =       rose_setsockopt,
1456         .getsockopt     =       rose_getsockopt,
1457         .sendmsg        =       rose_sendmsg,
1458         .recvmsg        =       rose_recvmsg,
1459         .mmap           =       sock_no_mmap,
1460         .sendpage       =       sock_no_sendpage,
1461 };
1462
1463 static struct notifier_block rose_dev_notifier = {
1464         .notifier_call  =       rose_device_event,
1465 };
1466
1467 static struct net_device **dev_rose;
1468
1469 static const char banner[] = KERN_INFO "F6FBB/G4KLX ROSE for Linux. Version 0.62 for AX25.037 Linux 2.4\n";
1470
1471 static int __init rose_proto_init(void)
1472 {
1473         int i;
1474         int rc = proto_register(&rose_proto, 0);
1475
1476         if (rc != 0)
1477                 goto out;
1478
1479         rose_callsign = null_ax25_address;
1480
1481         if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
1482                 printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter to large\n");
1483                 return -1;
1484         }
1485
1486         dev_rose = kmalloc(rose_ndevs * sizeof(struct net_device *), GFP_KERNEL);
1487         if (dev_rose == NULL) {
1488                 printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
1489                 return -1;
1490         }
1491
1492         memset(dev_rose, 0x00, rose_ndevs * sizeof(struct net_device*));
1493         for (i = 0; i < rose_ndevs; i++) {
1494                 struct net_device *dev;
1495                 char name[IFNAMSIZ];
1496
1497                 sprintf(name, "rose%d", i);
1498                 dev = alloc_netdev(sizeof(struct net_device_stats), 
1499                                    name, rose_setup);
1500                 if (!dev) {
1501                         printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
1502                         goto fail;
1503                 }
1504                 if (register_netdev(dev)) {
1505                         printk(KERN_ERR "ROSE: netdevice regeistration failed\n");
1506                         free_netdev(dev);
1507                         goto fail;
1508                 }
1509                 dev_rose[i] = dev;
1510         }
1511
1512         sock_register(&rose_family_ops);
1513         register_netdevice_notifier(&rose_dev_notifier);
1514         printk(banner);
1515
1516         ax25_protocol_register(AX25_P_ROSE, rose_route_frame);
1517         ax25_linkfail_register(rose_link_failed);
1518
1519 #ifdef CONFIG_SYSCTL
1520         rose_register_sysctl();
1521 #endif
1522         rose_loopback_init();
1523
1524         rose_add_loopback_neigh();
1525
1526         proc_net_fops_create("rose", S_IRUGO, &rose_info_fops);
1527         proc_net_fops_create("rose_neigh", S_IRUGO, &rose_neigh_fops);
1528         proc_net_fops_create("rose_nodes", S_IRUGO, &rose_nodes_fops);
1529         proc_net_fops_create("rose_routes", S_IRUGO, &rose_routes_fops);
1530 out:
1531         return rc;
1532 fail:
1533         while (--i >= 0) {
1534                 unregister_netdev(dev_rose[i]);
1535                 free_netdev(dev_rose[i]);
1536         }
1537         kfree(dev_rose);
1538         proto_unregister(&rose_proto);
1539         return -ENOMEM;
1540 }
1541 module_init(rose_proto_init);
1542
1543 module_param(rose_ndevs, int, 0);
1544 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
1545
1546 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1547 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
1548 MODULE_LICENSE("GPL");
1549 MODULE_ALIAS_NETPROTO(PF_ROSE);
1550
1551 static void __exit rose_exit(void)
1552 {
1553         int i;
1554
1555         proc_net_remove("rose");
1556         proc_net_remove("rose_neigh");
1557         proc_net_remove("rose_nodes");
1558         proc_net_remove("rose_routes");
1559         rose_loopback_clear();
1560
1561         rose_rt_free();
1562
1563         ax25_protocol_release(AX25_P_ROSE);
1564         ax25_linkfail_release(rose_link_failed);
1565
1566         if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1567                 ax25_listen_release(&rose_callsign, NULL);
1568
1569 #ifdef CONFIG_SYSCTL
1570         rose_unregister_sysctl();
1571 #endif
1572         unregister_netdevice_notifier(&rose_dev_notifier);
1573
1574         sock_unregister(PF_ROSE);
1575
1576         for (i = 0; i < rose_ndevs; i++) {
1577                 struct net_device *dev = dev_rose[i];
1578
1579                 if (dev) {
1580                         unregister_netdev(dev);
1581                         free_netdev(dev);
1582                 }
1583         }
1584
1585         kfree(dev_rose);
1586         proto_unregister(&rose_proto);
1587 }
1588
1589 module_exit(rose_exit);