Linux-2.6.12-rc2
[linux-flexiantxendom0-natty.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30
31
32 #define SG_MEMPOOL_NR           (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE         32
34
35 struct scsi_host_sg_pool {
36         size_t          size;
37         char            *name; 
38         kmem_cache_t    *slab;
39         mempool_t       *pool;
40 };
41
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45
46 #define SP(x) { x, "sgpool-" #x } 
47 struct scsi_host_sg_pool scsi_sg_pools[] = { 
48         SP(8),
49         SP(16),
50         SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52         SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54         SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56         SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };      
64 #undef SP
65
66
67 /*
68  * Function:    scsi_insert_special_req()
69  *
70  * Purpose:     Insert pre-formed request into request queue.
71  *
72  * Arguments:   sreq    - request that is ready to be queued.
73  *              at_head - boolean.  True if we should insert at head
74  *                        of queue, false if we should insert at tail.
75  *
76  * Lock status: Assumed that lock is not held upon entry.
77  *
78  * Returns:     Nothing
79  *
80  * Notes:       This function is called from character device and from
81  *              ioctl types of functions where the caller knows exactly
82  *              what SCSI command needs to be issued.   The idea is that
83  *              we merely inject the command into the queue (at the head
84  *              for now), and then call the queue request function to actually
85  *              process it.
86  */
87 int scsi_insert_special_req(struct scsi_request *sreq, int at_head)
88 {
89         /*
90          * Because users of this function are apt to reuse requests with no
91          * modification, we have to sanitise the request flags here
92          */
93         sreq->sr_request->flags &= ~REQ_DONTPREP;
94         blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
95                            at_head, sreq, 0);
96         return 0;
97 }
98
99 /*
100  * Function:    scsi_queue_insert()
101  *
102  * Purpose:     Insert a command in the midlevel queue.
103  *
104  * Arguments:   cmd    - command that we are adding to queue.
105  *              reason - why we are inserting command to queue.
106  *
107  * Lock status: Assumed that lock is not held upon entry.
108  *
109  * Returns:     Nothing.
110  *
111  * Notes:       We do this for one of two cases.  Either the host is busy
112  *              and it cannot accept any more commands for the time being,
113  *              or the device returned QUEUE_FULL and can accept no more
114  *              commands.
115  * Notes:       This could be called either from an interrupt context or a
116  *              normal process context.
117  */
118 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
119 {
120         struct Scsi_Host *host = cmd->device->host;
121         struct scsi_device *device = cmd->device;
122
123         SCSI_LOG_MLQUEUE(1,
124                  printk("Inserting command %p into mlqueue\n", cmd));
125
126         /*
127          * We are inserting the command into the ml queue.  First, we
128          * cancel the timer, so it doesn't time out.
129          */
130         scsi_delete_timer(cmd);
131
132         /*
133          * Next, set the appropriate busy bit for the device/host.
134          *
135          * If the host/device isn't busy, assume that something actually
136          * completed, and that we should be able to queue a command now.
137          *
138          * Note that the prior mid-layer assumption that any host could
139          * always queue at least one command is now broken.  The mid-layer
140          * will implement a user specifiable stall (see
141          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
142          * if a command is requeued with no other commands outstanding
143          * either for the device or for the host.
144          */
145         if (reason == SCSI_MLQUEUE_HOST_BUSY)
146                 host->host_blocked = host->max_host_blocked;
147         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
148                 device->device_blocked = device->max_device_blocked;
149
150         /*
151          * Register the fact that we own the thing for now.
152          */
153         cmd->state = SCSI_STATE_MLQUEUE;
154         cmd->owner = SCSI_OWNER_MIDLEVEL;
155
156         /*
157          * Decrement the counters, since these commands are no longer
158          * active on the host/device.
159          */
160         scsi_device_unbusy(device);
161
162         /*
163          * Insert this command at the head of the queue for it's device.
164          * It will go before all other commands that are already in the queue.
165          *
166          * NOTE: there is magic here about the way the queue is plugged if
167          * we have no outstanding commands.
168          * 
169          * Although this *doesn't* plug the queue, it does call the request
170          * function.  The SCSI request function detects the blocked condition
171          * and plugs the queue appropriately.
172          */
173         blk_insert_request(device->request_queue, cmd->request, 1, cmd, 1);
174         return 0;
175 }
176
177 /*
178  * Function:    scsi_do_req
179  *
180  * Purpose:     Queue a SCSI request
181  *
182  * Arguments:   sreq      - command descriptor.
183  *              cmnd      - actual SCSI command to be performed.
184  *              buffer    - data buffer.
185  *              bufflen   - size of data buffer.
186  *              done      - completion function to be run.
187  *              timeout   - how long to let it run before timeout.
188  *              retries   - number of retries we allow.
189  *
190  * Lock status: No locks held upon entry.
191  *
192  * Returns:     Nothing.
193  *
194  * Notes:       This function is only used for queueing requests for things
195  *              like ioctls and character device requests - this is because
196  *              we essentially just inject a request into the queue for the
197  *              device.
198  *
199  *              In order to support the scsi_device_quiesce function, we
200  *              now inject requests on the *head* of the device queue
201  *              rather than the tail.
202  */
203 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
204                  void *buffer, unsigned bufflen,
205                  void (*done)(struct scsi_cmnd *),
206                  int timeout, int retries)
207 {
208         /*
209          * If the upper level driver is reusing these things, then
210          * we should release the low-level block now.  Another one will
211          * be allocated later when this request is getting queued.
212          */
213         __scsi_release_request(sreq);
214
215         /*
216          * Our own function scsi_done (which marks the host as not busy,
217          * disables the timeout counter, etc) will be called by us or by the
218          * scsi_hosts[host].queuecommand() function needs to also call
219          * the completion function for the high level driver.
220          */
221         memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
222         sreq->sr_bufflen = bufflen;
223         sreq->sr_buffer = buffer;
224         sreq->sr_allowed = retries;
225         sreq->sr_done = done;
226         sreq->sr_timeout_per_command = timeout;
227
228         if (sreq->sr_cmd_len == 0)
229                 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
230
231         /*
232          * head injection *required* here otherwise quiesce won't work
233          */
234         scsi_insert_special_req(sreq, 1);
235 }
236 EXPORT_SYMBOL(scsi_do_req);
237
238 static void scsi_wait_done(struct scsi_cmnd *cmd)
239 {
240         struct request *req = cmd->request;
241         struct request_queue *q = cmd->device->request_queue;
242         unsigned long flags;
243
244         req->rq_status = RQ_SCSI_DONE;  /* Busy, but indicate request done */
245
246         spin_lock_irqsave(q->queue_lock, flags);
247         if (blk_rq_tagged(req))
248                 blk_queue_end_tag(q, req);
249         spin_unlock_irqrestore(q->queue_lock, flags);
250
251         if (req->waiting)
252                 complete(req->waiting);
253 }
254
255 /* This is the end routine we get to if a command was never attached
256  * to the request.  Simply complete the request without changing
257  * rq_status; this will cause a DRIVER_ERROR. */
258 static void scsi_wait_req_end_io(struct request *req)
259 {
260         BUG_ON(!req->waiting);
261
262         complete(req->waiting);
263 }
264
265 void scsi_wait_req(struct scsi_request *sreq, const void *cmnd, void *buffer,
266                    unsigned bufflen, int timeout, int retries)
267 {
268         DECLARE_COMPLETION(wait);
269         
270         sreq->sr_request->waiting = &wait;
271         sreq->sr_request->rq_status = RQ_SCSI_BUSY;
272         sreq->sr_request->end_io = scsi_wait_req_end_io;
273         scsi_do_req(sreq, cmnd, buffer, bufflen, scsi_wait_done,
274                         timeout, retries);
275         wait_for_completion(&wait);
276         sreq->sr_request->waiting = NULL;
277         if (sreq->sr_request->rq_status != RQ_SCSI_DONE)
278                 sreq->sr_result |= (DRIVER_ERROR << 24);
279
280         __scsi_release_request(sreq);
281 }
282 EXPORT_SYMBOL(scsi_wait_req);
283
284 /*
285  * Function:    scsi_init_cmd_errh()
286  *
287  * Purpose:     Initialize cmd fields related to error handling.
288  *
289  * Arguments:   cmd     - command that is ready to be queued.
290  *
291  * Returns:     Nothing
292  *
293  * Notes:       This function has the job of initializing a number of
294  *              fields related to error handling.   Typically this will
295  *              be called once for each command, as required.
296  */
297 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
298 {
299         cmd->owner = SCSI_OWNER_MIDLEVEL;
300         cmd->serial_number = 0;
301         cmd->serial_number_at_timeout = 0;
302         cmd->abort_reason = 0;
303
304         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
305
306         if (cmd->cmd_len == 0)
307                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
308
309         /*
310          * We need saved copies of a number of fields - this is because
311          * error handling may need to overwrite these with different values
312          * to run different commands, and once error handling is complete,
313          * we will need to restore these values prior to running the actual
314          * command.
315          */
316         cmd->old_use_sg = cmd->use_sg;
317         cmd->old_cmd_len = cmd->cmd_len;
318         cmd->sc_old_data_direction = cmd->sc_data_direction;
319         cmd->old_underflow = cmd->underflow;
320         memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
321         cmd->buffer = cmd->request_buffer;
322         cmd->bufflen = cmd->request_bufflen;
323         cmd->internal_timeout = NORMAL_TIMEOUT;
324         cmd->abort_reason = 0;
325
326         return 1;
327 }
328
329 /*
330  * Function:   scsi_setup_cmd_retry()
331  *
332  * Purpose:    Restore the command state for a retry
333  *
334  * Arguments:  cmd      - command to be restored
335  *
336  * Returns:    Nothing
337  *
338  * Notes:      Immediately prior to retrying a command, we need
339  *             to restore certain fields that we saved above.
340  */
341 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
342 {
343         memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
344         cmd->request_buffer = cmd->buffer;
345         cmd->request_bufflen = cmd->bufflen;
346         cmd->use_sg = cmd->old_use_sg;
347         cmd->cmd_len = cmd->old_cmd_len;
348         cmd->sc_data_direction = cmd->sc_old_data_direction;
349         cmd->underflow = cmd->old_underflow;
350 }
351
352 void scsi_device_unbusy(struct scsi_device *sdev)
353 {
354         struct Scsi_Host *shost = sdev->host;
355         unsigned long flags;
356
357         spin_lock_irqsave(shost->host_lock, flags);
358         shost->host_busy--;
359         if (unlikely(test_bit(SHOST_RECOVERY, &shost->shost_state) &&
360                      shost->host_failed))
361                 scsi_eh_wakeup(shost);
362         spin_unlock(shost->host_lock);
363         spin_lock(&sdev->sdev_lock);
364         sdev->device_busy--;
365         spin_unlock_irqrestore(&sdev->sdev_lock, flags);
366 }
367
368 /*
369  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
370  * and call blk_run_queue for all the scsi_devices on the target -
371  * including current_sdev first.
372  *
373  * Called with *no* scsi locks held.
374  */
375 static void scsi_single_lun_run(struct scsi_device *current_sdev)
376 {
377         struct Scsi_Host *shost = current_sdev->host;
378         struct scsi_device *sdev, *tmp;
379         struct scsi_target *starget = scsi_target(current_sdev);
380         unsigned long flags;
381
382         spin_lock_irqsave(shost->host_lock, flags);
383         starget->starget_sdev_user = NULL;
384         spin_unlock_irqrestore(shost->host_lock, flags);
385
386         /*
387          * Call blk_run_queue for all LUNs on the target, starting with
388          * current_sdev. We race with others (to set starget_sdev_user),
389          * but in most cases, we will be first. Ideally, each LU on the
390          * target would get some limited time or requests on the target.
391          */
392         blk_run_queue(current_sdev->request_queue);
393
394         spin_lock_irqsave(shost->host_lock, flags);
395         if (starget->starget_sdev_user)
396                 goto out;
397         list_for_each_entry_safe(sdev, tmp, &starget->devices,
398                         same_target_siblings) {
399                 if (sdev == current_sdev)
400                         continue;
401                 if (scsi_device_get(sdev))
402                         continue;
403
404                 spin_unlock_irqrestore(shost->host_lock, flags);
405                 blk_run_queue(sdev->request_queue);
406                 spin_lock_irqsave(shost->host_lock, flags);
407         
408                 scsi_device_put(sdev);
409         }
410  out:
411         spin_unlock_irqrestore(shost->host_lock, flags);
412 }
413
414 /*
415  * Function:    scsi_run_queue()
416  *
417  * Purpose:     Select a proper request queue to serve next
418  *
419  * Arguments:   q       - last request's queue
420  *
421  * Returns:     Nothing
422  *
423  * Notes:       The previous command was completely finished, start
424  *              a new one if possible.
425  */
426 static void scsi_run_queue(struct request_queue *q)
427 {
428         struct scsi_device *sdev = q->queuedata;
429         struct Scsi_Host *shost = sdev->host;
430         unsigned long flags;
431
432         if (sdev->single_lun)
433                 scsi_single_lun_run(sdev);
434
435         spin_lock_irqsave(shost->host_lock, flags);
436         while (!list_empty(&shost->starved_list) &&
437                !shost->host_blocked && !shost->host_self_blocked &&
438                 !((shost->can_queue > 0) &&
439                   (shost->host_busy >= shost->can_queue))) {
440                 /*
441                  * As long as shost is accepting commands and we have
442                  * starved queues, call blk_run_queue. scsi_request_fn
443                  * drops the queue_lock and can add us back to the
444                  * starved_list.
445                  *
446                  * host_lock protects the starved_list and starved_entry.
447                  * scsi_request_fn must get the host_lock before checking
448                  * or modifying starved_list or starved_entry.
449                  */
450                 sdev = list_entry(shost->starved_list.next,
451                                           struct scsi_device, starved_entry);
452                 list_del_init(&sdev->starved_entry);
453                 spin_unlock_irqrestore(shost->host_lock, flags);
454
455                 blk_run_queue(sdev->request_queue);
456
457                 spin_lock_irqsave(shost->host_lock, flags);
458                 if (unlikely(!list_empty(&sdev->starved_entry)))
459                         /*
460                          * sdev lost a race, and was put back on the
461                          * starved list. This is unlikely but without this
462                          * in theory we could loop forever.
463                          */
464                         break;
465         }
466         spin_unlock_irqrestore(shost->host_lock, flags);
467
468         blk_run_queue(q);
469 }
470
471 /*
472  * Function:    scsi_requeue_command()
473  *
474  * Purpose:     Handle post-processing of completed commands.
475  *
476  * Arguments:   q       - queue to operate on
477  *              cmd     - command that may need to be requeued.
478  *
479  * Returns:     Nothing
480  *
481  * Notes:       After command completion, there may be blocks left
482  *              over which weren't finished by the previous command
483  *              this can be for a number of reasons - the main one is
484  *              I/O errors in the middle of the request, in which case
485  *              we need to request the blocks that come after the bad
486  *              sector.
487  */
488 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
489 {
490         cmd->request->flags &= ~REQ_DONTPREP;
491         blk_insert_request(q, cmd->request, 1, cmd, 1);
492
493         scsi_run_queue(q);
494 }
495
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498         struct request_queue *q = cmd->device->request_queue;
499
500         scsi_put_command(cmd);
501         scsi_run_queue(q);
502 }
503
504 void scsi_run_host_queues(struct Scsi_Host *shost)
505 {
506         struct scsi_device *sdev;
507
508         shost_for_each_device(sdev, shost)
509                 scsi_run_queue(sdev->request_queue);
510 }
511
512 /*
513  * Function:    scsi_end_request()
514  *
515  * Purpose:     Post-processing of completed commands (usually invoked at end
516  *              of upper level post-processing and scsi_io_completion).
517  *
518  * Arguments:   cmd      - command that is complete.
519  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
520  *              bytes    - number of bytes of completed I/O
521  *              requeue  - indicates whether we should requeue leftovers.
522  *
523  * Lock status: Assumed that lock is not held upon entry.
524  *
525  * Returns:     cmd if requeue done or required, NULL otherwise
526  *
527  * Notes:       This is called for block device requests in order to
528  *              mark some number of sectors as complete.
529  * 
530  *              We are guaranteeing that the request queue will be goosed
531  *              at some point during this call.
532  */
533 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
534                                           int bytes, int requeue)
535 {
536         request_queue_t *q = cmd->device->request_queue;
537         struct request *req = cmd->request;
538         unsigned long flags;
539
540         /*
541          * If there are blocks left over at the end, set up the command
542          * to queue the remainder of them.
543          */
544         if (end_that_request_chunk(req, uptodate, bytes)) {
545                 int leftover = (req->hard_nr_sectors << 9);
546
547                 if (blk_pc_request(req))
548                         leftover = req->data_len;
549
550                 /* kill remainder if no retrys */
551                 if (!uptodate && blk_noretry_request(req))
552                         end_that_request_chunk(req, 0, leftover);
553                 else {
554                         if (requeue)
555                                 /*
556                                  * Bleah.  Leftovers again.  Stick the
557                                  * leftovers in the front of the
558                                  * queue, and goose the queue again.
559                                  */
560                                 scsi_requeue_command(q, cmd);
561
562                         return cmd;
563                 }
564         }
565
566         add_disk_randomness(req->rq_disk);
567
568         spin_lock_irqsave(q->queue_lock, flags);
569         if (blk_rq_tagged(req))
570                 blk_queue_end_tag(q, req);
571         end_that_request_last(req);
572         spin_unlock_irqrestore(q->queue_lock, flags);
573
574         /*
575          * This will goose the queue request function at the end, so we don't
576          * need to worry about launching another command.
577          */
578         scsi_next_command(cmd);
579         return NULL;
580 }
581
582 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, int gfp_mask)
583 {
584         struct scsi_host_sg_pool *sgp;
585         struct scatterlist *sgl;
586
587         BUG_ON(!cmd->use_sg);
588
589         switch (cmd->use_sg) {
590         case 1 ... 8:
591                 cmd->sglist_len = 0;
592                 break;
593         case 9 ... 16:
594                 cmd->sglist_len = 1;
595                 break;
596         case 17 ... 32:
597                 cmd->sglist_len = 2;
598                 break;
599 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
600         case 33 ... 64:
601                 cmd->sglist_len = 3;
602                 break;
603 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
604         case 65 ... 128:
605                 cmd->sglist_len = 4;
606                 break;
607 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
608         case 129 ... 256:
609                 cmd->sglist_len = 5;
610                 break;
611 #endif
612 #endif
613 #endif
614         default:
615                 return NULL;
616         }
617
618         sgp = scsi_sg_pools + cmd->sglist_len;
619         sgl = mempool_alloc(sgp->pool, gfp_mask);
620         if (sgl)
621                 memset(sgl, 0, sgp->size);
622         return sgl;
623 }
624
625 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
626 {
627         struct scsi_host_sg_pool *sgp;
628
629         BUG_ON(index > SG_MEMPOOL_NR);
630
631         sgp = scsi_sg_pools + index;
632         mempool_free(sgl, sgp->pool);
633 }
634
635 /*
636  * Function:    scsi_release_buffers()
637  *
638  * Purpose:     Completion processing for block device I/O requests.
639  *
640  * Arguments:   cmd     - command that we are bailing.
641  *
642  * Lock status: Assumed that no lock is held upon entry.
643  *
644  * Returns:     Nothing
645  *
646  * Notes:       In the event that an upper level driver rejects a
647  *              command, we must release resources allocated during
648  *              the __init_io() function.  Primarily this would involve
649  *              the scatter-gather table, and potentially any bounce
650  *              buffers.
651  */
652 static void scsi_release_buffers(struct scsi_cmnd *cmd)
653 {
654         struct request *req = cmd->request;
655
656         /*
657          * Free up any indirection buffers we allocated for DMA purposes. 
658          */
659         if (cmd->use_sg)
660                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
661         else if (cmd->request_buffer != req->buffer)
662                 kfree(cmd->request_buffer);
663
664         /*
665          * Zero these out.  They now point to freed memory, and it is
666          * dangerous to hang onto the pointers.
667          */
668         cmd->buffer  = NULL;
669         cmd->bufflen = 0;
670         cmd->request_buffer = NULL;
671         cmd->request_bufflen = 0;
672 }
673
674 /*
675  * Function:    scsi_io_completion()
676  *
677  * Purpose:     Completion processing for block device I/O requests.
678  *
679  * Arguments:   cmd   - command that is finished.
680  *
681  * Lock status: Assumed that no lock is held upon entry.
682  *
683  * Returns:     Nothing
684  *
685  * Notes:       This function is matched in terms of capabilities to
686  *              the function that created the scatter-gather list.
687  *              In other words, if there are no bounce buffers
688  *              (the normal case for most drivers), we don't need
689  *              the logic to deal with cleaning up afterwards.
690  *
691  *              We must do one of several things here:
692  *
693  *              a) Call scsi_end_request.  This will finish off the
694  *                 specified number of sectors.  If we are done, the
695  *                 command block will be released, and the queue
696  *                 function will be goosed.  If we are not done, then
697  *                 scsi_end_request will directly goose the queue.
698  *
699  *              b) We can just use scsi_requeue_command() here.  This would
700  *                 be used if we just wanted to retry, for example.
701  */
702 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
703                         unsigned int block_bytes)
704 {
705         int result = cmd->result;
706         int this_count = cmd->bufflen;
707         request_queue_t *q = cmd->device->request_queue;
708         struct request *req = cmd->request;
709         int clear_errors = 1;
710         struct scsi_sense_hdr sshdr;
711         int sense_valid = 0;
712         int sense_deferred = 0;
713
714         if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
715                 return;
716
717         /*
718          * Free up any indirection buffers we allocated for DMA purposes. 
719          * For the case of a READ, we need to copy the data out of the
720          * bounce buffer and into the real buffer.
721          */
722         if (cmd->use_sg)
723                 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
724         else if (cmd->buffer != req->buffer) {
725                 if (rq_data_dir(req) == READ) {
726                         unsigned long flags;
727                         char *to = bio_kmap_irq(req->bio, &flags);
728                         memcpy(to, cmd->buffer, cmd->bufflen);
729                         bio_kunmap_irq(to, &flags);
730                 }
731                 kfree(cmd->buffer);
732         }
733
734         if (result) {
735                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
736                 if (sense_valid)
737                         sense_deferred = scsi_sense_is_deferred(&sshdr);
738         }
739         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
740                 req->errors = result;
741                 if (result) {
742                         clear_errors = 0;
743                         if (sense_valid && req->sense) {
744                                 /*
745                                  * SG_IO wants current and deferred errors
746                                  */
747                                 int len = 8 + cmd->sense_buffer[7];
748
749                                 if (len > SCSI_SENSE_BUFFERSIZE)
750                                         len = SCSI_SENSE_BUFFERSIZE;
751                                 memcpy(req->sense, cmd->sense_buffer,  len);
752                                 req->sense_len = len;
753                         }
754                 } else
755                         req->data_len = cmd->resid;
756         }
757
758         /*
759          * Zero these out.  They now point to freed memory, and it is
760          * dangerous to hang onto the pointers.
761          */
762         cmd->buffer  = NULL;
763         cmd->bufflen = 0;
764         cmd->request_buffer = NULL;
765         cmd->request_bufflen = 0;
766
767         /*
768          * Next deal with any sectors which we were able to correctly
769          * handle.
770          */
771         if (good_bytes >= 0) {
772                 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
773                                               req->nr_sectors, good_bytes));
774                 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
775
776                 if (clear_errors)
777                         req->errors = 0;
778                 /*
779                  * If multiple sectors are requested in one buffer, then
780                  * they will have been finished off by the first command.
781                  * If not, then we have a multi-buffer command.
782                  *
783                  * If block_bytes != 0, it means we had a medium error
784                  * of some sort, and that we want to mark some number of
785                  * sectors as not uptodate.  Thus we want to inhibit
786                  * requeueing right here - we will requeue down below
787                  * when we handle the bad sectors.
788                  */
789                 cmd = scsi_end_request(cmd, 1, good_bytes, result == 0);
790
791                 /*
792                  * If the command completed without error, then either finish off the
793                  * rest of the command, or start a new one.
794                  */
795                 if (result == 0 || cmd == NULL ) {
796                         return;
797                 }
798         }
799         /*
800          * Now, if we were good little boys and girls, Santa left us a request
801          * sense buffer.  We can extract information from this, so we
802          * can choose a block to remap, etc.
803          */
804         if (sense_valid && !sense_deferred) {
805                 switch (sshdr.sense_key) {
806                 case UNIT_ATTENTION:
807                         if (cmd->device->removable) {
808                                 /* detected disc change.  set a bit 
809                                  * and quietly refuse further access.
810                                  */
811                                 cmd->device->changed = 1;
812                                 cmd = scsi_end_request(cmd, 0,
813                                                 this_count, 1);
814                                 return;
815                         } else {
816                                 /*
817                                 * Must have been a power glitch, or a
818                                 * bus reset.  Could not have been a
819                                 * media change, so we just retry the
820                                 * request and see what happens.  
821                                 */
822                                 scsi_requeue_command(q, cmd);
823                                 return;
824                         }
825                         break;
826                 case ILLEGAL_REQUEST:
827                         /*
828                         * If we had an ILLEGAL REQUEST returned, then we may
829                         * have performed an unsupported command.  The only
830                         * thing this should be would be a ten byte read where
831                         * only a six byte read was supported.  Also, on a
832                         * system where READ CAPACITY failed, we may have read
833                         * past the end of the disk.
834                         */
835                         if (cmd->device->use_10_for_rw &&
836                             (cmd->cmnd[0] == READ_10 ||
837                              cmd->cmnd[0] == WRITE_10)) {
838                                 cmd->device->use_10_for_rw = 0;
839                                 /*
840                                  * This will cause a retry with a 6-byte
841                                  * command.
842                                  */
843                                 scsi_requeue_command(q, cmd);
844                                 result = 0;
845                         } else {
846                                 cmd = scsi_end_request(cmd, 0, this_count, 1);
847                                 return;
848                         }
849                         break;
850                 case NOT_READY:
851                         /*
852                          * If the device is in the process of becoming ready,
853                          * retry.
854                          */
855                         if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
856                                 scsi_requeue_command(q, cmd);
857                                 return;
858                         }
859                         printk(KERN_INFO "Device %s not ready.\n",
860                                req->rq_disk ? req->rq_disk->disk_name : "");
861                         cmd = scsi_end_request(cmd, 0, this_count, 1);
862                         return;
863                 case VOLUME_OVERFLOW:
864                         printk(KERN_INFO "Volume overflow <%d %d %d %d> CDB: ",
865                                cmd->device->host->host_no,
866                                (int)cmd->device->channel,
867                                (int)cmd->device->id, (int)cmd->device->lun);
868                         __scsi_print_command(cmd->data_cmnd);
869                         scsi_print_sense("", cmd);
870                         cmd = scsi_end_request(cmd, 0, block_bytes, 1);
871                         return;
872                 default:
873                         break;
874                 }
875         }                       /* driver byte != 0 */
876         if (host_byte(result) == DID_RESET) {
877                 /*
878                  * Third party bus reset or reset for error
879                  * recovery reasons.  Just retry the request
880                  * and see what happens.  
881                  */
882                 scsi_requeue_command(q, cmd);
883                 return;
884         }
885         if (result) {
886                 printk(KERN_INFO "SCSI error : <%d %d %d %d> return code "
887                        "= 0x%x\n", cmd->device->host->host_no,
888                        cmd->device->channel,
889                        cmd->device->id,
890                        cmd->device->lun, result);
891
892                 if (driver_byte(result) & DRIVER_SENSE)
893                         scsi_print_sense("", cmd);
894                 /*
895                  * Mark a single buffer as not uptodate.  Queue the remainder.
896                  * We sometimes get this cruft in the event that a medium error
897                  * isn't properly reported.
898                  */
899                 block_bytes = req->hard_cur_sectors << 9;
900                 if (!block_bytes)
901                         block_bytes = req->data_len;
902                 cmd = scsi_end_request(cmd, 0, block_bytes, 1);
903         }
904 }
905 EXPORT_SYMBOL(scsi_io_completion);
906
907 /*
908  * Function:    scsi_init_io()
909  *
910  * Purpose:     SCSI I/O initialize function.
911  *
912  * Arguments:   cmd   - Command descriptor we wish to initialize
913  *
914  * Returns:     0 on success
915  *              BLKPREP_DEFER if the failure is retryable
916  *              BLKPREP_KILL if the failure is fatal
917  */
918 static int scsi_init_io(struct scsi_cmnd *cmd)
919 {
920         struct request     *req = cmd->request;
921         struct scatterlist *sgpnt;
922         int                count;
923
924         /*
925          * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
926          */
927         if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
928                 cmd->request_bufflen = req->data_len;
929                 cmd->request_buffer = req->data;
930                 req->buffer = req->data;
931                 cmd->use_sg = 0;
932                 return 0;
933         }
934
935         /*
936          * we used to not use scatter-gather for single segment request,
937          * but now we do (it makes highmem I/O easier to support without
938          * kmapping pages)
939          */
940         cmd->use_sg = req->nr_phys_segments;
941
942         /*
943          * if sg table allocation fails, requeue request later.
944          */
945         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
946         if (unlikely(!sgpnt)) {
947                 req->flags |= REQ_SPECIAL;
948                 return BLKPREP_DEFER;
949         }
950
951         cmd->request_buffer = (char *) sgpnt;
952         cmd->request_bufflen = req->nr_sectors << 9;
953         if (blk_pc_request(req))
954                 cmd->request_bufflen = req->data_len;
955         req->buffer = NULL;
956
957         /* 
958          * Next, walk the list, and fill in the addresses and sizes of
959          * each segment.
960          */
961         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
962
963         /*
964          * mapped well, send it off
965          */
966         if (likely(count <= cmd->use_sg)) {
967                 cmd->use_sg = count;
968                 return 0;
969         }
970
971         printk(KERN_ERR "Incorrect number of segments after building list\n");
972         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
973         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
974                         req->current_nr_sectors);
975
976         /* release the command and kill it */
977         scsi_release_buffers(cmd);
978         scsi_put_command(cmd);
979         return BLKPREP_KILL;
980 }
981
982 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
983 {
984         struct scsi_device *sdev = q->queuedata;
985         struct scsi_driver *drv;
986
987         if (sdev->sdev_state == SDEV_RUNNING) {
988                 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
989
990                 if (drv->prepare_flush)
991                         return drv->prepare_flush(q, rq);
992         }
993
994         return 0;
995 }
996
997 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
998 {
999         struct scsi_device *sdev = q->queuedata;
1000         struct request *flush_rq = rq->end_io_data;
1001         struct scsi_driver *drv;
1002
1003         if (flush_rq->errors) {
1004                 printk("scsi: barrier error, disabling flush support\n");
1005                 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1006         }
1007
1008         if (sdev->sdev_state == SDEV_RUNNING) {
1009                 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1010                 drv->end_flush(q, rq);
1011         }
1012 }
1013
1014 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1015                                sector_t *error_sector)
1016 {
1017         struct scsi_device *sdev = q->queuedata;
1018         struct scsi_driver *drv;
1019
1020         if (sdev->sdev_state != SDEV_RUNNING)
1021                 return -ENXIO;
1022
1023         drv = *(struct scsi_driver **) disk->private_data;
1024         if (drv->issue_flush)
1025                 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1026
1027         return -EOPNOTSUPP;
1028 }
1029
1030 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1031 {
1032         struct scsi_device *sdev = q->queuedata;
1033         struct scsi_cmnd *cmd;
1034         int specials_only = 0;
1035
1036         /*
1037          * Just check to see if the device is online.  If it isn't, we
1038          * refuse to process any commands.  The device must be brought
1039          * online before trying any recovery commands
1040          */
1041         if (unlikely(!scsi_device_online(sdev))) {
1042                 printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1043                        sdev->host->host_no, sdev->id, sdev->lun);
1044                 return BLKPREP_KILL;
1045         }
1046         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1047                 /* OK, we're not in a running state don't prep
1048                  * user commands */
1049                 if (sdev->sdev_state == SDEV_DEL) {
1050                         /* Device is fully deleted, no commands
1051                          * at all allowed down */
1052                         printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to dead device\n",
1053                                sdev->host->host_no, sdev->id, sdev->lun);
1054                         return BLKPREP_KILL;
1055                 }
1056                 /* OK, we only allow special commands (i.e. not
1057                  * user initiated ones */
1058                 specials_only = sdev->sdev_state;
1059         }
1060
1061         /*
1062          * Find the actual device driver associated with this command.
1063          * The SPECIAL requests are things like character device or
1064          * ioctls, which did not originate from ll_rw_blk.  Note that
1065          * the special field is also used to indicate the cmd for
1066          * the remainder of a partially fulfilled request that can 
1067          * come up when there is a medium error.  We have to treat
1068          * these two cases differently.  We differentiate by looking
1069          * at request->cmd, as this tells us the real story.
1070          */
1071         if (req->flags & REQ_SPECIAL) {
1072                 struct scsi_request *sreq = req->special;
1073
1074                 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1075                         cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1076                         if (unlikely(!cmd))
1077                                 goto defer;
1078                         scsi_init_cmd_from_req(cmd, sreq);
1079                 } else
1080                         cmd = req->special;
1081         } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1082
1083                 if(unlikely(specials_only)) {
1084                         if(specials_only == SDEV_QUIESCE ||
1085                                         specials_only == SDEV_BLOCK)
1086                                 return BLKPREP_DEFER;
1087                         
1088                         printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to device being removed\n",
1089                                sdev->host->host_no, sdev->id, sdev->lun);
1090                         return BLKPREP_KILL;
1091                 }
1092                         
1093                         
1094                 /*
1095                  * Now try and find a command block that we can use.
1096                  */
1097                 if (!req->special) {
1098                         cmd = scsi_get_command(sdev, GFP_ATOMIC);
1099                         if (unlikely(!cmd))
1100                                 goto defer;
1101                 } else
1102                         cmd = req->special;
1103                 
1104                 /* pull a tag out of the request if we have one */
1105                 cmd->tag = req->tag;
1106         } else {
1107                 blk_dump_rq_flags(req, "SCSI bad req");
1108                 return BLKPREP_KILL;
1109         }
1110         
1111         /* note the overloading of req->special.  When the tag
1112          * is active it always means cmd.  If the tag goes
1113          * back for re-queueing, it may be reset */
1114         req->special = cmd;
1115         cmd->request = req;
1116         
1117         /*
1118          * FIXME: drop the lock here because the functions below
1119          * expect to be called without the queue lock held.  Also,
1120          * previously, we dequeued the request before dropping the
1121          * lock.  We hope REQ_STARTED prevents anything untoward from
1122          * happening now.
1123          */
1124         if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1125                 struct scsi_driver *drv;
1126                 int ret;
1127
1128                 /*
1129                  * This will do a couple of things:
1130                  *  1) Fill in the actual SCSI command.
1131                  *  2) Fill in any other upper-level specific fields
1132                  * (timeout).
1133                  *
1134                  * If this returns 0, it means that the request failed
1135                  * (reading past end of disk, reading offline device,
1136                  * etc).   This won't actually talk to the device, but
1137                  * some kinds of consistency checking may cause the     
1138                  * request to be rejected immediately.
1139                  */
1140
1141                 /* 
1142                  * This sets up the scatter-gather table (allocating if
1143                  * required).
1144                  */
1145                 ret = scsi_init_io(cmd);
1146                 if (ret)        /* BLKPREP_KILL return also releases the command */
1147                         return ret;
1148                 
1149                 /*
1150                  * Initialize the actual SCSI command for this request.
1151                  */
1152                 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1153                 if (unlikely(!drv->init_command(cmd))) {
1154                         scsi_release_buffers(cmd);
1155                         scsi_put_command(cmd);
1156                         return BLKPREP_KILL;
1157                 }
1158         }
1159
1160         /*
1161          * The request is now prepped, no need to come back here
1162          */
1163         req->flags |= REQ_DONTPREP;
1164         return BLKPREP_OK;
1165
1166  defer:
1167         /* If we defer, the elv_next_request() returns NULL, but the
1168          * queue must be restarted, so we plug here if no returning
1169          * command will automatically do that. */
1170         if (sdev->device_busy == 0)
1171                 blk_plug_device(q);
1172         return BLKPREP_DEFER;
1173 }
1174
1175 /*
1176  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1177  * return 0.
1178  *
1179  * Called with the queue_lock held.
1180  */
1181 static inline int scsi_dev_queue_ready(struct request_queue *q,
1182                                   struct scsi_device *sdev)
1183 {
1184         if (sdev->device_busy >= sdev->queue_depth)
1185                 return 0;
1186         if (sdev->device_busy == 0 && sdev->device_blocked) {
1187                 /*
1188                  * unblock after device_blocked iterates to zero
1189                  */
1190                 if (--sdev->device_blocked == 0) {
1191                         SCSI_LOG_MLQUEUE(3,
1192                                 printk("scsi%d (%d:%d) unblocking device at"
1193                                        " zero depth\n", sdev->host->host_no,
1194                                        sdev->id, sdev->lun));
1195                 } else {
1196                         blk_plug_device(q);
1197                         return 0;
1198                 }
1199         }
1200         if (sdev->device_blocked)
1201                 return 0;
1202
1203         return 1;
1204 }
1205
1206 /*
1207  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1208  * return 0. We must end up running the queue again whenever 0 is
1209  * returned, else IO can hang.
1210  *
1211  * Called with host_lock held.
1212  */
1213 static inline int scsi_host_queue_ready(struct request_queue *q,
1214                                    struct Scsi_Host *shost,
1215                                    struct scsi_device *sdev)
1216 {
1217         if (test_bit(SHOST_RECOVERY, &shost->shost_state))
1218                 return 0;
1219         if (shost->host_busy == 0 && shost->host_blocked) {
1220                 /*
1221                  * unblock after host_blocked iterates to zero
1222                  */
1223                 if (--shost->host_blocked == 0) {
1224                         SCSI_LOG_MLQUEUE(3,
1225                                 printk("scsi%d unblocking host at zero depth\n",
1226                                         shost->host_no));
1227                 } else {
1228                         blk_plug_device(q);
1229                         return 0;
1230                 }
1231         }
1232         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1233             shost->host_blocked || shost->host_self_blocked) {
1234                 if (list_empty(&sdev->starved_entry))
1235                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1236                 return 0;
1237         }
1238
1239         /* We're OK to process the command, so we can't be starved */
1240         if (!list_empty(&sdev->starved_entry))
1241                 list_del_init(&sdev->starved_entry);
1242
1243         return 1;
1244 }
1245
1246 /*
1247  * Kill requests for a dead device
1248  */
1249 static void scsi_kill_requests(request_queue_t *q)
1250 {
1251         struct request *req;
1252
1253         while ((req = elv_next_request(q)) != NULL) {
1254                 blkdev_dequeue_request(req);
1255                 req->flags |= REQ_QUIET;
1256                 while (end_that_request_first(req, 0, req->nr_sectors))
1257                         ;
1258                 end_that_request_last(req);
1259         }
1260 }
1261
1262 /*
1263  * Function:    scsi_request_fn()
1264  *
1265  * Purpose:     Main strategy routine for SCSI.
1266  *
1267  * Arguments:   q       - Pointer to actual queue.
1268  *
1269  * Returns:     Nothing
1270  *
1271  * Lock status: IO request lock assumed to be held when called.
1272  */
1273 static void scsi_request_fn(struct request_queue *q)
1274 {
1275         struct scsi_device *sdev = q->queuedata;
1276         struct Scsi_Host *shost;
1277         struct scsi_cmnd *cmd;
1278         struct request *req;
1279
1280         if (!sdev) {
1281                 printk("scsi: killing requests for dead queue\n");
1282                 scsi_kill_requests(q);
1283                 return;
1284         }
1285
1286         if(!get_device(&sdev->sdev_gendev))
1287                 /* We must be tearing the block queue down already */
1288                 return;
1289
1290         /*
1291          * To start with, we keep looping until the queue is empty, or until
1292          * the host is no longer able to accept any more requests.
1293          */
1294         shost = sdev->host;
1295         while (!blk_queue_plugged(q)) {
1296                 int rtn;
1297                 /*
1298                  * get next queueable request.  We do this early to make sure
1299                  * that the request is fully prepared even if we cannot 
1300                  * accept it.
1301                  */
1302                 req = elv_next_request(q);
1303                 if (!req || !scsi_dev_queue_ready(q, sdev))
1304                         break;
1305
1306                 if (unlikely(!scsi_device_online(sdev))) {
1307                         printk(KERN_ERR "scsi%d (%d:%d): rejecting I/O to offline device\n",
1308                                sdev->host->host_no, sdev->id, sdev->lun);
1309                         blkdev_dequeue_request(req);
1310                         req->flags |= REQ_QUIET;
1311                         while (end_that_request_first(req, 0, req->nr_sectors))
1312                                 ;
1313                         end_that_request_last(req);
1314                         continue;
1315                 }
1316
1317
1318                 /*
1319                  * Remove the request from the request list.
1320                  */
1321                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1322                         blkdev_dequeue_request(req);
1323                 sdev->device_busy++;
1324
1325                 spin_unlock(q->queue_lock);
1326                 spin_lock(shost->host_lock);
1327
1328                 if (!scsi_host_queue_ready(q, shost, sdev))
1329                         goto not_ready;
1330                 if (sdev->single_lun) {
1331                         if (scsi_target(sdev)->starget_sdev_user &&
1332                             scsi_target(sdev)->starget_sdev_user != sdev)
1333                                 goto not_ready;
1334                         scsi_target(sdev)->starget_sdev_user = sdev;
1335                 }
1336                 shost->host_busy++;
1337
1338                 /*
1339                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1340                  *              take the lock again.
1341                  */
1342                 spin_unlock_irq(shost->host_lock);
1343
1344                 cmd = req->special;
1345                 if (unlikely(cmd == NULL)) {
1346                         printk(KERN_CRIT "impossible request in %s.\n"
1347                                          "please mail a stack trace to "
1348                                          "linux-scsi@vger.kernel.org",
1349                                          __FUNCTION__);
1350                         BUG();
1351                 }
1352
1353                 /*
1354                  * Finally, initialize any error handling parameters, and set up
1355                  * the timers for timeouts.
1356                  */
1357                 scsi_init_cmd_errh(cmd);
1358
1359                 /*
1360                  * Dispatch the command to the low-level driver.
1361                  */
1362                 rtn = scsi_dispatch_cmd(cmd);
1363                 spin_lock_irq(q->queue_lock);
1364                 if(rtn) {
1365                         /* we're refusing the command; because of
1366                          * the way locks get dropped, we need to 
1367                          * check here if plugging is required */
1368                         if(sdev->device_busy == 0)
1369                                 blk_plug_device(q);
1370
1371                         break;
1372                 }
1373         }
1374
1375         goto out;
1376
1377  not_ready:
1378         spin_unlock_irq(shost->host_lock);
1379
1380         /*
1381          * lock q, handle tag, requeue req, and decrement device_busy. We
1382          * must return with queue_lock held.
1383          *
1384          * Decrementing device_busy without checking it is OK, as all such
1385          * cases (host limits or settings) should run the queue at some
1386          * later time.
1387          */
1388         spin_lock_irq(q->queue_lock);
1389         blk_requeue_request(q, req);
1390         sdev->device_busy--;
1391         if(sdev->device_busy == 0)
1392                 blk_plug_device(q);
1393  out:
1394         /* must be careful here...if we trigger the ->remove() function
1395          * we cannot be holding the q lock */
1396         spin_unlock_irq(q->queue_lock);
1397         put_device(&sdev->sdev_gendev);
1398         spin_lock_irq(q->queue_lock);
1399 }
1400
1401 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1402 {
1403         struct device *host_dev;
1404         u64 bounce_limit = 0xffffffff;
1405
1406         if (shost->unchecked_isa_dma)
1407                 return BLK_BOUNCE_ISA;
1408         /*
1409          * Platforms with virtual-DMA translation
1410          * hardware have no practical limit.
1411          */
1412         if (!PCI_DMA_BUS_IS_PHYS)
1413                 return BLK_BOUNCE_ANY;
1414
1415         host_dev = scsi_get_device(shost);
1416         if (host_dev && host_dev->dma_mask)
1417                 bounce_limit = *host_dev->dma_mask;
1418
1419         return bounce_limit;
1420 }
1421 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1422
1423 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1424 {
1425         struct Scsi_Host *shost = sdev->host;
1426         struct request_queue *q;
1427
1428         q = blk_init_queue(scsi_request_fn, &sdev->sdev_lock);
1429         if (!q)
1430                 return NULL;
1431
1432         blk_queue_prep_rq(q, scsi_prep_fn);
1433
1434         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1435         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1436         blk_queue_max_sectors(q, shost->max_sectors);
1437         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1438         blk_queue_segment_boundary(q, shost->dma_boundary);
1439         blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1440
1441         /*
1442          * ordered tags are superior to flush ordering
1443          */
1444         if (shost->ordered_tag)
1445                 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1446         else if (shost->ordered_flush) {
1447                 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1448                 q->prepare_flush_fn = scsi_prepare_flush_fn;
1449                 q->end_flush_fn = scsi_end_flush_fn;
1450         }
1451
1452         if (!shost->use_clustering)
1453                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1454         return q;
1455 }
1456
1457 void scsi_free_queue(struct request_queue *q)
1458 {
1459         blk_cleanup_queue(q);
1460 }
1461
1462 /*
1463  * Function:    scsi_block_requests()
1464  *
1465  * Purpose:     Utility function used by low-level drivers to prevent further
1466  *              commands from being queued to the device.
1467  *
1468  * Arguments:   shost       - Host in question
1469  *
1470  * Returns:     Nothing
1471  *
1472  * Lock status: No locks are assumed held.
1473  *
1474  * Notes:       There is no timer nor any other means by which the requests
1475  *              get unblocked other than the low-level driver calling
1476  *              scsi_unblock_requests().
1477  */
1478 void scsi_block_requests(struct Scsi_Host *shost)
1479 {
1480         shost->host_self_blocked = 1;
1481 }
1482 EXPORT_SYMBOL(scsi_block_requests);
1483
1484 /*
1485  * Function:    scsi_unblock_requests()
1486  *
1487  * Purpose:     Utility function used by low-level drivers to allow further
1488  *              commands from being queued to the device.
1489  *
1490  * Arguments:   shost       - Host in question
1491  *
1492  * Returns:     Nothing
1493  *
1494  * Lock status: No locks are assumed held.
1495  *
1496  * Notes:       There is no timer nor any other means by which the requests
1497  *              get unblocked other than the low-level driver calling
1498  *              scsi_unblock_requests().
1499  *
1500  *              This is done as an API function so that changes to the
1501  *              internals of the scsi mid-layer won't require wholesale
1502  *              changes to drivers that use this feature.
1503  */
1504 void scsi_unblock_requests(struct Scsi_Host *shost)
1505 {
1506         shost->host_self_blocked = 0;
1507         scsi_run_host_queues(shost);
1508 }
1509 EXPORT_SYMBOL(scsi_unblock_requests);
1510
1511 int __init scsi_init_queue(void)
1512 {
1513         int i;
1514
1515         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1516                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1517                 int size = sgp->size * sizeof(struct scatterlist);
1518
1519                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1520                                 SLAB_HWCACHE_ALIGN, NULL, NULL);
1521                 if (!sgp->slab) {
1522                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1523                                         sgp->name);
1524                 }
1525
1526                 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1527                                 mempool_alloc_slab, mempool_free_slab,
1528                                 sgp->slab);
1529                 if (!sgp->pool) {
1530                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1531                                         sgp->name);
1532                 }
1533         }
1534
1535         return 0;
1536 }
1537
1538 void scsi_exit_queue(void)
1539 {
1540         int i;
1541
1542         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1543                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1544                 mempool_destroy(sgp->pool);
1545                 kmem_cache_destroy(sgp->slab);
1546         }
1547 }
1548 /**
1549  *      __scsi_mode_sense - issue a mode sense, falling back from 10 to 
1550  *              six bytes if necessary.
1551  *      @sreq:  SCSI request to fill in with the MODE_SENSE
1552  *      @dbd:   set if mode sense will allow block descriptors to be returned
1553  *      @modepage: mode page being requested
1554  *      @buffer: request buffer (may not be smaller than eight bytes)
1555  *      @len:   length of request buffer.
1556  *      @timeout: command timeout
1557  *      @retries: number of retries before failing
1558  *      @data: returns a structure abstracting the mode header data
1559  *
1560  *      Returns zero if unsuccessful, or the header offset (either 4
1561  *      or 8 depending on whether a six or ten byte command was
1562  *      issued) if successful.
1563  **/
1564 int
1565 __scsi_mode_sense(struct scsi_request *sreq, int dbd, int modepage,
1566                   unsigned char *buffer, int len, int timeout, int retries,
1567                   struct scsi_mode_data *data) {
1568         unsigned char cmd[12];
1569         int use_10_for_ms;
1570         int header_length;
1571
1572         memset(data, 0, sizeof(*data));
1573         memset(&cmd[0], 0, 12);
1574         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1575         cmd[2] = modepage;
1576
1577  retry:
1578         use_10_for_ms = sreq->sr_device->use_10_for_ms;
1579
1580         if (use_10_for_ms) {
1581                 if (len < 8)
1582                         len = 8;
1583
1584                 cmd[0] = MODE_SENSE_10;
1585                 cmd[8] = len;
1586                 header_length = 8;
1587         } else {
1588                 if (len < 4)
1589                         len = 4;
1590
1591                 cmd[0] = MODE_SENSE;
1592                 cmd[4] = len;
1593                 header_length = 4;
1594         }
1595
1596         sreq->sr_cmd_len = 0;
1597         memset(sreq->sr_sense_buffer, 0, sizeof(sreq->sr_sense_buffer));
1598         sreq->sr_data_direction = DMA_FROM_DEVICE;
1599
1600         memset(buffer, 0, len);
1601
1602         scsi_wait_req(sreq, cmd, buffer, len, timeout, retries);
1603
1604         /* This code looks awful: what it's doing is making sure an
1605          * ILLEGAL REQUEST sense return identifies the actual command
1606          * byte as the problem.  MODE_SENSE commands can return
1607          * ILLEGAL REQUEST if the code page isn't supported */
1608
1609         if (use_10_for_ms && !scsi_status_is_good(sreq->sr_result) &&
1610             (driver_byte(sreq->sr_result) & DRIVER_SENSE)) {
1611                 struct scsi_sense_hdr sshdr;
1612
1613                 if (scsi_request_normalize_sense(sreq, &sshdr)) {
1614                         if ((sshdr.sense_key == ILLEGAL_REQUEST) &&
1615                             (sshdr.asc == 0x20) && (sshdr.ascq == 0)) {
1616                                 /* 
1617                                  * Invalid command operation code
1618                                  */
1619                                 sreq->sr_device->use_10_for_ms = 0;
1620                                 goto retry;
1621                         }
1622                 }
1623         }
1624
1625         if(scsi_status_is_good(sreq->sr_result)) {
1626                 data->header_length = header_length;
1627                 if(use_10_for_ms) {
1628                         data->length = buffer[0]*256 + buffer[1] + 2;
1629                         data->medium_type = buffer[2];
1630                         data->device_specific = buffer[3];
1631                         data->longlba = buffer[4] & 0x01;
1632                         data->block_descriptor_length = buffer[6]*256
1633                                 + buffer[7];
1634                 } else {
1635                         data->length = buffer[0] + 1;
1636                         data->medium_type = buffer[1];
1637                         data->device_specific = buffer[2];
1638                         data->block_descriptor_length = buffer[3];
1639                 }
1640         }
1641
1642         return sreq->sr_result;
1643 }
1644 EXPORT_SYMBOL(__scsi_mode_sense);
1645
1646 /**
1647  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1648  *              six bytes if necessary.
1649  *      @sdev:  scsi device to send command to.
1650  *      @dbd:   set if mode sense will disable block descriptors in the return
1651  *      @modepage: mode page being requested
1652  *      @buffer: request buffer (may not be smaller than eight bytes)
1653  *      @len:   length of request buffer.
1654  *      @timeout: command timeout
1655  *      @retries: number of retries before failing
1656  *
1657  *      Returns zero if unsuccessful, or the header offset (either 4
1658  *      or 8 depending on whether a six or ten byte command was
1659  *      issued) if successful.
1660  **/
1661 int
1662 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1663                 unsigned char *buffer, int len, int timeout, int retries,
1664                 struct scsi_mode_data *data)
1665 {
1666         struct scsi_request *sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1667         int ret;
1668
1669         if (!sreq)
1670                 return -1;
1671
1672         ret = __scsi_mode_sense(sreq, dbd, modepage, buffer, len,
1673                                 timeout, retries, data);
1674
1675         scsi_release_request(sreq);
1676
1677         return ret;
1678 }
1679 EXPORT_SYMBOL(scsi_mode_sense);
1680
1681 int
1682 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1683 {
1684         struct scsi_request *sreq;
1685         char cmd[] = {
1686                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1687         };
1688         int result;
1689         
1690         sreq = scsi_allocate_request(sdev, GFP_KERNEL);
1691         if (!sreq)
1692                 return -ENOMEM;
1693
1694         sreq->sr_data_direction = DMA_NONE;
1695         scsi_wait_req(sreq, cmd, NULL, 0, timeout, retries);
1696
1697         if ((driver_byte(sreq->sr_result) & DRIVER_SENSE) && sdev->removable) {
1698                 struct scsi_sense_hdr sshdr;
1699
1700                 if ((scsi_request_normalize_sense(sreq, &sshdr)) &&
1701                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1702                      (sshdr.sense_key == NOT_READY))) {
1703                         sdev->changed = 1;
1704                         sreq->sr_result = 0;
1705                 }
1706         }
1707         result = sreq->sr_result;
1708         scsi_release_request(sreq);
1709         return result;
1710 }
1711 EXPORT_SYMBOL(scsi_test_unit_ready);
1712
1713 /**
1714  *      scsi_device_set_state - Take the given device through the device
1715  *              state model.
1716  *      @sdev:  scsi device to change the state of.
1717  *      @state: state to change to.
1718  *
1719  *      Returns zero if unsuccessful or an error if the requested 
1720  *      transition is illegal.
1721  **/
1722 int
1723 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1724 {
1725         enum scsi_device_state oldstate = sdev->sdev_state;
1726
1727         if (state == oldstate)
1728                 return 0;
1729
1730         switch (state) {
1731         case SDEV_CREATED:
1732                 /* There are no legal states that come back to
1733                  * created.  This is the manually initialised start
1734                  * state */
1735                 goto illegal;
1736                         
1737         case SDEV_RUNNING:
1738                 switch (oldstate) {
1739                 case SDEV_CREATED:
1740                 case SDEV_OFFLINE:
1741                 case SDEV_QUIESCE:
1742                 case SDEV_BLOCK:
1743                         break;
1744                 default:
1745                         goto illegal;
1746                 }
1747                 break;
1748
1749         case SDEV_QUIESCE:
1750                 switch (oldstate) {
1751                 case SDEV_RUNNING:
1752                 case SDEV_OFFLINE:
1753                         break;
1754                 default:
1755                         goto illegal;
1756                 }
1757                 break;
1758
1759         case SDEV_OFFLINE:
1760                 switch (oldstate) {
1761                 case SDEV_CREATED:
1762                 case SDEV_RUNNING:
1763                 case SDEV_QUIESCE:
1764                 case SDEV_BLOCK:
1765                         break;
1766                 default:
1767                         goto illegal;
1768                 }
1769                 break;
1770
1771         case SDEV_BLOCK:
1772                 switch (oldstate) {
1773                 case SDEV_CREATED:
1774                 case SDEV_RUNNING:
1775                         break;
1776                 default:
1777                         goto illegal;
1778                 }
1779                 break;
1780
1781         case SDEV_CANCEL:
1782                 switch (oldstate) {
1783                 case SDEV_CREATED:
1784                 case SDEV_RUNNING:
1785                 case SDEV_OFFLINE:
1786                 case SDEV_BLOCK:
1787                         break;
1788                 default:
1789                         goto illegal;
1790                 }
1791                 break;
1792
1793         case SDEV_DEL:
1794                 switch (oldstate) {
1795                 case SDEV_CANCEL:
1796                         break;
1797                 default:
1798                         goto illegal;
1799                 }
1800                 break;
1801
1802         }
1803         sdev->sdev_state = state;
1804         return 0;
1805
1806  illegal:
1807         SCSI_LOG_ERROR_RECOVERY(1, 
1808                                 dev_printk(KERN_ERR, &sdev->sdev_gendev,
1809                                            "Illegal state transition %s->%s\n",
1810                                            scsi_device_state_name(oldstate),
1811                                            scsi_device_state_name(state))
1812                                 );
1813         return -EINVAL;
1814 }
1815 EXPORT_SYMBOL(scsi_device_set_state);
1816
1817 /**
1818  *      scsi_device_quiesce - Block user issued commands.
1819  *      @sdev:  scsi device to quiesce.
1820  *
1821  *      This works by trying to transition to the SDEV_QUIESCE state
1822  *      (which must be a legal transition).  When the device is in this
1823  *      state, only special requests will be accepted, all others will
1824  *      be deferred.  Since special requests may also be requeued requests,
1825  *      a successful return doesn't guarantee the device will be 
1826  *      totally quiescent.
1827  *
1828  *      Must be called with user context, may sleep.
1829  *
1830  *      Returns zero if unsuccessful or an error if not.
1831  **/
1832 int
1833 scsi_device_quiesce(struct scsi_device *sdev)
1834 {
1835         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
1836         if (err)
1837                 return err;
1838
1839         scsi_run_queue(sdev->request_queue);
1840         while (sdev->device_busy) {
1841                 msleep_interruptible(200);
1842                 scsi_run_queue(sdev->request_queue);
1843         }
1844         return 0;
1845 }
1846 EXPORT_SYMBOL(scsi_device_quiesce);
1847
1848 /**
1849  *      scsi_device_resume - Restart user issued commands to a quiesced device.
1850  *      @sdev:  scsi device to resume.
1851  *
1852  *      Moves the device from quiesced back to running and restarts the
1853  *      queues.
1854  *
1855  *      Must be called with user context, may sleep.
1856  **/
1857 void
1858 scsi_device_resume(struct scsi_device *sdev)
1859 {
1860         if(scsi_device_set_state(sdev, SDEV_RUNNING))
1861                 return;
1862         scsi_run_queue(sdev->request_queue);
1863 }
1864 EXPORT_SYMBOL(scsi_device_resume);
1865
1866 static void
1867 device_quiesce_fn(struct scsi_device *sdev, void *data)
1868 {
1869         scsi_device_quiesce(sdev);
1870 }
1871
1872 void
1873 scsi_target_quiesce(struct scsi_target *starget)
1874 {
1875         starget_for_each_device(starget, NULL, device_quiesce_fn);
1876 }
1877 EXPORT_SYMBOL(scsi_target_quiesce);
1878
1879 static void
1880 device_resume_fn(struct scsi_device *sdev, void *data)
1881 {
1882         scsi_device_resume(sdev);
1883 }
1884
1885 void
1886 scsi_target_resume(struct scsi_target *starget)
1887 {
1888         starget_for_each_device(starget, NULL, device_resume_fn);
1889 }
1890 EXPORT_SYMBOL(scsi_target_resume);
1891
1892 /**
1893  * scsi_internal_device_block - internal function to put a device
1894  *                              temporarily into the SDEV_BLOCK state
1895  * @sdev:       device to block
1896  *
1897  * Block request made by scsi lld's to temporarily stop all
1898  * scsi commands on the specified device.  Called from interrupt
1899  * or normal process context.
1900  *
1901  * Returns zero if successful or error if not
1902  *
1903  * Notes:       
1904  *      This routine transitions the device to the SDEV_BLOCK state
1905  *      (which must be a legal transition).  When the device is in this
1906  *      state, all commands are deferred until the scsi lld reenables
1907  *      the device with scsi_device_unblock or device_block_tmo fires.
1908  *      This routine assumes the host_lock is held on entry.
1909  **/
1910 int
1911 scsi_internal_device_block(struct scsi_device *sdev)
1912 {
1913         request_queue_t *q = sdev->request_queue;
1914         unsigned long flags;
1915         int err = 0;
1916
1917         err = scsi_device_set_state(sdev, SDEV_BLOCK);
1918         if (err)
1919                 return err;
1920
1921         /* 
1922          * The device has transitioned to SDEV_BLOCK.  Stop the
1923          * block layer from calling the midlayer with this device's
1924          * request queue. 
1925          */
1926         spin_lock_irqsave(q->queue_lock, flags);
1927         blk_stop_queue(q);
1928         spin_unlock_irqrestore(q->queue_lock, flags);
1929
1930         return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
1933  
1934 /**
1935  * scsi_internal_device_unblock - resume a device after a block request
1936  * @sdev:       device to resume
1937  *
1938  * Called by scsi lld's or the midlayer to restart the device queue
1939  * for the previously suspended scsi device.  Called from interrupt or
1940  * normal process context.
1941  *
1942  * Returns zero if successful or error if not.
1943  *
1944  * Notes:       
1945  *      This routine transitions the device to the SDEV_RUNNING state
1946  *      (which must be a legal transition) allowing the midlayer to
1947  *      goose the queue for this device.  This routine assumes the 
1948  *      host_lock is held upon entry.
1949  **/
1950 int
1951 scsi_internal_device_unblock(struct scsi_device *sdev)
1952 {
1953         request_queue_t *q = sdev->request_queue; 
1954         int err;
1955         unsigned long flags;
1956         
1957         /* 
1958          * Try to transition the scsi device to SDEV_RUNNING
1959          * and goose the device queue if successful.  
1960          */
1961         err = scsi_device_set_state(sdev, SDEV_RUNNING);
1962         if (err)
1963                 return err;
1964
1965         spin_lock_irqsave(q->queue_lock, flags);
1966         blk_start_queue(q);
1967         spin_unlock_irqrestore(q->queue_lock, flags);
1968
1969         return 0;
1970 }
1971 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
1972
1973 static void
1974 device_block(struct scsi_device *sdev, void *data)
1975 {
1976         scsi_internal_device_block(sdev);
1977 }
1978
1979 static int
1980 target_block(struct device *dev, void *data)
1981 {
1982         if (scsi_is_target_device(dev))
1983                 starget_for_each_device(to_scsi_target(dev), NULL,
1984                                         device_block);
1985         return 0;
1986 }
1987
1988 void
1989 scsi_target_block(struct device *dev)
1990 {
1991         if (scsi_is_target_device(dev))
1992                 starget_for_each_device(to_scsi_target(dev), NULL,
1993                                         device_block);
1994         else
1995                 device_for_each_child(dev, NULL, target_block);
1996 }
1997 EXPORT_SYMBOL_GPL(scsi_target_block);
1998
1999 static void
2000 device_unblock(struct scsi_device *sdev, void *data)
2001 {
2002         scsi_internal_device_unblock(sdev);
2003 }
2004
2005 static int
2006 target_unblock(struct device *dev, void *data)
2007 {
2008         if (scsi_is_target_device(dev))
2009                 starget_for_each_device(to_scsi_target(dev), NULL,
2010                                         device_unblock);
2011         return 0;
2012 }
2013
2014 void
2015 scsi_target_unblock(struct device *dev)
2016 {
2017         if (scsi_is_target_device(dev))
2018                 starget_for_each_device(to_scsi_target(dev), NULL,
2019                                         device_unblock);
2020         else
2021                 device_for_each_child(dev, NULL, target_unblock);
2022 }
2023 EXPORT_SYMBOL_GPL(scsi_target_unblock);