Linux-2.6.12-rc2
[linux-flexiantxendom0-natty.git] / drivers / sbus / char / bbc_envctrl.c
1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2  * bbc_envctrl.c: UltraSPARC-III environment control driver.
3  *
4  * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <asm/oplib.h>
12 #include <asm/ebus.h>
13 #define __KERNEL_SYSCALLS__
14 static int errno;
15 #include <asm/unistd.h>
16
17 #include "bbc_i2c.h"
18 #include "max1617.h"
19
20 #undef ENVCTRL_TRACE
21
22 /* WARNING: Making changes to this driver is very dangerous.
23  *          If you misprogram the sensor chips they can
24  *          cut the power on you instantly.
25  */
26
27 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
28  * Both are implemented using max1617 i2c devices.  Each max1617
29  * monitors 2 temperatures, one for one of the cpu dies and the other
30  * for the ambient temperature.
31  *
32  * The max1617 is capable of being programmed with power-off
33  * temperature values, one low limit and one high limit.  These
34  * can be controlled independently for the cpu or ambient temperature.
35  * If a limit is violated, the power is simply shut off.  The frequency
36  * with which the max1617 does temperature sampling can be controlled
37  * as well.
38  *
39  * Three fans exist inside the machine, all three are controlled with
40  * an i2c digital to analog converter.  There is a fan directed at the
41  * two processor slots, another for the rest of the enclosure, and the
42  * third is for the power supply.  The first two fans may be speed
43  * controlled by changing the voltage fed to them.  The third fan may
44  * only be completely off or on.  The third fan is meant to only be
45  * disabled/enabled when entering/exiting the lowest power-saving
46  * mode of the machine.
47  *
48  * An environmental control kernel thread periodically monitors all
49  * temperature sensors.  Based upon the samples it will adjust the
50  * fan speeds to try and keep the system within a certain temperature
51  * range (the goal being to make the fans as quiet as possible without
52  * allowing the system to get too hot).
53  *
54  * If the temperature begins to rise/fall outside of the acceptable
55  * operating range, a periodic warning will be sent to the kernel log.
56  * The fans will be put on full blast to attempt to deal with this
57  * situation.  After exceeding the acceptable operating range by a
58  * certain threshold, the kernel thread will shut down the system.
59  * Here, the thread is attempting to shut the machine down cleanly
60  * before the hardware based power-off event is triggered.
61  */
62
63 /* These settings are in Celsius.  We use these defaults only
64  * if we cannot interrogate the cpu-fru SEEPROM.
65  */
66 struct temp_limits {
67         s8 high_pwroff, high_shutdown, high_warn;
68         s8 low_warn, low_shutdown, low_pwroff;
69 };
70
71 static struct temp_limits cpu_temp_limits[2] = {
72         { 100, 85, 80, 5, -5, -10 },
73         { 100, 85, 80, 5, -5, -10 },
74 };
75
76 static struct temp_limits amb_temp_limits[2] = {
77         { 65, 55, 40, 5, -5, -10 },
78         { 65, 55, 40, 5, -5, -10 },
79 };
80
81 enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
82
83 struct bbc_cpu_temperature {
84         struct bbc_cpu_temperature      *next;
85
86         struct bbc_i2c_client           *client;
87         int                             index;
88
89         /* Current readings, and history. */
90         s8                              curr_cpu_temp;
91         s8                              curr_amb_temp;
92         s8                              prev_cpu_temp;
93         s8                              prev_amb_temp;
94         s8                              avg_cpu_temp;
95         s8                              avg_amb_temp;
96
97         int                             sample_tick;
98
99         enum fan_action                 fan_todo[2];
100 #define FAN_AMBIENT     0
101 #define FAN_CPU         1
102 };
103
104 struct bbc_cpu_temperature *all_bbc_temps;
105
106 struct bbc_fan_control {
107         struct bbc_fan_control  *next;
108
109         struct bbc_i2c_client   *client;
110         int                     index;
111
112         int                     psupply_fan_on;
113         int                     cpu_fan_speed;
114         int                     system_fan_speed;
115 };
116
117 struct bbc_fan_control *all_bbc_fans;
118
119 #define CPU_FAN_REG     0xf0
120 #define SYS_FAN_REG     0xf2
121 #define PSUPPLY_FAN_REG 0xf4
122
123 #define FAN_SPEED_MIN   0x0c
124 #define FAN_SPEED_MAX   0x3f
125
126 #define PSUPPLY_FAN_ON  0x1f
127 #define PSUPPLY_FAN_OFF 0x00
128
129 static void set_fan_speeds(struct bbc_fan_control *fp)
130 {
131         /* Put temperatures into range so we don't mis-program
132          * the hardware.
133          */
134         if (fp->cpu_fan_speed < FAN_SPEED_MIN)
135                 fp->cpu_fan_speed = FAN_SPEED_MIN;
136         if (fp->cpu_fan_speed > FAN_SPEED_MAX)
137                 fp->cpu_fan_speed = FAN_SPEED_MAX;
138         if (fp->system_fan_speed < FAN_SPEED_MIN)
139                 fp->system_fan_speed = FAN_SPEED_MIN;
140         if (fp->system_fan_speed > FAN_SPEED_MAX)
141                 fp->system_fan_speed = FAN_SPEED_MAX;
142 #ifdef ENVCTRL_TRACE
143         printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
144                fp->index,
145                fp->cpu_fan_speed, fp->system_fan_speed);
146 #endif
147
148         bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
149         bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
150         bbc_i2c_writeb(fp->client,
151                        (fp->psupply_fan_on ?
152                         PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
153                        PSUPPLY_FAN_REG);
154 }
155
156 static void get_current_temps(struct bbc_cpu_temperature *tp)
157 {
158         tp->prev_amb_temp = tp->curr_amb_temp;
159         bbc_i2c_readb(tp->client,
160                       (unsigned char *) &tp->curr_amb_temp,
161                       MAX1617_AMB_TEMP);
162         tp->prev_cpu_temp = tp->curr_cpu_temp;
163         bbc_i2c_readb(tp->client,
164                       (unsigned char *) &tp->curr_cpu_temp,
165                       MAX1617_CPU_TEMP);
166 #ifdef ENVCTRL_TRACE
167         printk("temp%d: cpu(%d C) amb(%d C)\n",
168                tp->index,
169                (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
170 #endif
171 }
172
173
174 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
175 {
176         static int shutting_down = 0;
177         static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
178         char *argv[] = { "/sbin/shutdown", "-h", "now", NULL };
179         char *type = "???";
180         s8 val = -1;
181
182         if (shutting_down != 0)
183                 return;
184
185         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
186             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
187                 type = "ambient";
188                 val = tp->curr_amb_temp;
189         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
190                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
191                 type = "CPU";
192                 val = tp->curr_cpu_temp;
193         }
194
195         printk(KERN_CRIT "temp%d: Outside of safe %s "
196                "operating temperature, %d C.\n",
197                tp->index, type, val);
198
199         printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
200
201         shutting_down = 1;
202         if (execve("/sbin/shutdown", argv, envp) < 0)
203                 printk(KERN_CRIT "envctrl: shutdown execution failed\n");
204 }
205
206 #define WARN_INTERVAL   (30 * HZ)
207
208 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
209 {
210         int ret = 0;
211
212         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
213                 if (tp->curr_amb_temp >=
214                     amb_temp_limits[tp->index].high_warn) {
215                         printk(KERN_WARNING "temp%d: "
216                                "Above safe ambient operating temperature, %d C.\n",
217                                tp->index, (int) tp->curr_amb_temp);
218                         ret = 1;
219                 } else if (tp->curr_amb_temp <
220                            amb_temp_limits[tp->index].low_warn) {
221                         printk(KERN_WARNING "temp%d: "
222                                "Below safe ambient operating temperature, %d C.\n",
223                                tp->index, (int) tp->curr_amb_temp);
224                         ret = 1;
225                 }
226                 if (ret)
227                         *last_warn = jiffies;
228         } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
229                    tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
230                 ret = 1;
231
232         /* Now check the shutdown limits. */
233         if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
234             tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
235                 do_envctrl_shutdown(tp);
236                 ret = 1;
237         }
238
239         if (ret) {
240                 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
241         } else if ((tick & (8 - 1)) == 0) {
242                 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
243                 s8 amb_goal_lo;
244
245                 amb_goal_lo = amb_goal_hi - 3;
246
247                 /* We do not try to avoid 'too cold' events.  Basically we
248                  * only try to deal with over-heating and fan noise reduction.
249                  */
250                 if (tp->avg_amb_temp < amb_goal_hi) {
251                         if (tp->avg_amb_temp >= amb_goal_lo)
252                                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
253                         else
254                                 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
255                 } else {
256                         tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
257                 }
258         } else {
259                 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
260         }
261 }
262
263 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
264 {
265         int ret = 0;
266
267         if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
268                 if (tp->curr_cpu_temp >=
269                     cpu_temp_limits[tp->index].high_warn) {
270                         printk(KERN_WARNING "temp%d: "
271                                "Above safe CPU operating temperature, %d C.\n",
272                                tp->index, (int) tp->curr_cpu_temp);
273                         ret = 1;
274                 } else if (tp->curr_cpu_temp <
275                            cpu_temp_limits[tp->index].low_warn) {
276                         printk(KERN_WARNING "temp%d: "
277                                "Below safe CPU operating temperature, %d C.\n",
278                                tp->index, (int) tp->curr_cpu_temp);
279                         ret = 1;
280                 }
281                 if (ret)
282                         *last_warn = jiffies;
283         } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
284                    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
285                 ret = 1;
286
287         /* Now check the shutdown limits. */
288         if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
289             tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
290                 do_envctrl_shutdown(tp);
291                 ret = 1;
292         }
293
294         if (ret) {
295                 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
296         } else if ((tick & (8 - 1)) == 0) {
297                 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
298                 s8 cpu_goal_lo;
299
300                 cpu_goal_lo = cpu_goal_hi - 3;
301
302                 /* We do not try to avoid 'too cold' events.  Basically we
303                  * only try to deal with over-heating and fan noise reduction.
304                  */
305                 if (tp->avg_cpu_temp < cpu_goal_hi) {
306                         if (tp->avg_cpu_temp >= cpu_goal_lo)
307                                 tp->fan_todo[FAN_CPU] = FAN_SAME;
308                         else
309                                 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
310                 } else {
311                         tp->fan_todo[FAN_CPU] = FAN_FASTER;
312                 }
313         } else {
314                 tp->fan_todo[FAN_CPU] = FAN_SAME;
315         }
316 }
317
318 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
319 {
320         tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
321         tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
322
323         analyze_ambient_temp(tp, last_warn, tp->sample_tick);
324         analyze_cpu_temp(tp, last_warn, tp->sample_tick);
325
326         tp->sample_tick++;
327 }
328
329 static enum fan_action prioritize_fan_action(int which_fan)
330 {
331         struct bbc_cpu_temperature *tp;
332         enum fan_action decision = FAN_STATE_MAX;
333
334         /* Basically, prioritize what the temperature sensors
335          * recommend we do, and perform that action on all the
336          * fans.
337          */
338         for (tp = all_bbc_temps; tp; tp = tp->next) {
339                 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
340                         decision = FAN_FULLBLAST;
341                         break;
342                 }
343                 if (tp->fan_todo[which_fan] == FAN_SAME &&
344                     decision != FAN_FASTER)
345                         decision = FAN_SAME;
346                 else if (tp->fan_todo[which_fan] == FAN_FASTER)
347                         decision = FAN_FASTER;
348                 else if (decision != FAN_FASTER &&
349                          decision != FAN_SAME &&
350                          tp->fan_todo[which_fan] == FAN_SLOWER)
351                         decision = FAN_SLOWER;
352         }
353         if (decision == FAN_STATE_MAX)
354                 decision = FAN_SAME;
355
356         return decision;
357 }
358
359 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
360 {
361         enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
362         int ret;
363
364         if (decision == FAN_SAME)
365                 return 0;
366
367         ret = 1;
368         if (decision == FAN_FULLBLAST) {
369                 if (fp->system_fan_speed >= FAN_SPEED_MAX)
370                         ret = 0;
371                 else
372                         fp->system_fan_speed = FAN_SPEED_MAX;
373         } else {
374                 if (decision == FAN_FASTER) {
375                         if (fp->system_fan_speed >= FAN_SPEED_MAX)
376                                 ret = 0;
377                         else
378                                 fp->system_fan_speed += 2;
379                 } else {
380                         int orig_speed = fp->system_fan_speed;
381
382                         if (orig_speed <= FAN_SPEED_MIN ||
383                             orig_speed <= (fp->cpu_fan_speed - 3))
384                                 ret = 0;
385                         else
386                                 fp->system_fan_speed -= 1;
387                 }
388         }
389
390         return ret;
391 }
392
393 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
394 {
395         enum fan_action decision = prioritize_fan_action(FAN_CPU);
396         int ret;
397
398         if (decision == FAN_SAME)
399                 return 0;
400
401         ret = 1;
402         if (decision == FAN_FULLBLAST) {
403                 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
404                         ret = 0;
405                 else
406                         fp->cpu_fan_speed = FAN_SPEED_MAX;
407         } else {
408                 if (decision == FAN_FASTER) {
409                         if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
410                                 ret = 0;
411                         else {
412                                 fp->cpu_fan_speed += 2;
413                                 if (fp->system_fan_speed <
414                                     (fp->cpu_fan_speed - 3))
415                                         fp->system_fan_speed =
416                                                 fp->cpu_fan_speed - 3;
417                         }
418                 } else {
419                         if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
420                                 ret = 0;
421                         else
422                                 fp->cpu_fan_speed -= 1;
423                 }
424         }
425
426         return ret;
427 }
428
429 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
430 {
431         int new;
432
433         new  = maybe_new_ambient_fan_speed(fp);
434         new |= maybe_new_cpu_fan_speed(fp);
435
436         if (new)
437                 set_fan_speeds(fp);
438 }
439
440 static void fans_full_blast(void)
441 {
442         struct bbc_fan_control *fp;
443
444         /* Since we will not be monitoring things anymore, put
445          * the fans on full blast.
446          */
447         for (fp = all_bbc_fans; fp; fp = fp->next) {
448                 fp->cpu_fan_speed = FAN_SPEED_MAX;
449                 fp->system_fan_speed = FAN_SPEED_MAX;
450                 fp->psupply_fan_on = 1;
451                 set_fan_speeds(fp);
452         }
453 }
454
455 #define POLL_INTERVAL   (5 * 1000)
456 static unsigned long last_warning_jiffies;
457 static struct task_struct *kenvctrld_task;
458
459 static int kenvctrld(void *__unused)
460 {
461         daemonize("kenvctrld");
462         allow_signal(SIGKILL);
463         kenvctrld_task = current;
464
465         printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
466         last_warning_jiffies = jiffies - WARN_INTERVAL;
467         for (;;) {
468                 struct bbc_cpu_temperature *tp;
469                 struct bbc_fan_control *fp;
470
471                 msleep_interruptible(POLL_INTERVAL);
472                 if (signal_pending(current))
473                         break;
474
475                 for (tp = all_bbc_temps; tp; tp = tp->next) {
476                         get_current_temps(tp);
477                         analyze_temps(tp, &last_warning_jiffies);
478                 }
479                 for (fp = all_bbc_fans; fp; fp = fp->next)
480                         maybe_new_fan_speeds(fp);
481         }
482         printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
483
484         fans_full_blast();
485
486         return 0;
487 }
488
489 static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
490 {
491         struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
492
493         if (!tp)
494                 return;
495         memset(tp, 0, sizeof(*tp));
496         tp->client = bbc_i2c_attach(echild);
497         if (!tp->client) {
498                 kfree(tp);
499                 return;
500         }
501
502         tp->index = temp_idx;
503         {
504                 struct bbc_cpu_temperature **tpp = &all_bbc_temps;
505                 while (*tpp)
506                         tpp = &((*tpp)->next);
507                 tp->next = NULL;
508                 *tpp = tp;
509         }
510
511         /* Tell it to convert once every 5 seconds, clear all cfg
512          * bits.
513          */
514         bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
515         bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
516
517         /* Program the hard temperature limits into the chip. */
518         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
519                        MAX1617_WR_AMB_HIGHLIM);
520         bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
521                        MAX1617_WR_AMB_LOWLIM);
522         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
523                        MAX1617_WR_CPU_HIGHLIM);
524         bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
525                        MAX1617_WR_CPU_LOWLIM);
526
527         get_current_temps(tp);
528         tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
529         tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
530
531         tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
532         tp->fan_todo[FAN_CPU] = FAN_SAME;
533 }
534
535 static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
536 {
537         struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
538
539         if (!fp)
540                 return;
541         memset(fp, 0, sizeof(*fp));
542         fp->client = bbc_i2c_attach(echild);
543         if (!fp->client) {
544                 kfree(fp);
545                 return;
546         }
547
548         fp->index = fan_idx;
549
550         {
551                 struct bbc_fan_control **fpp = &all_bbc_fans;
552                 while (*fpp)
553                         fpp = &((*fpp)->next);
554                 fp->next = NULL;
555                 *fpp = fp;
556         }
557
558         /* The i2c device controlling the fans is write-only.
559          * So the only way to keep track of the current power
560          * level fed to the fans is via software.  Choose half
561          * power for cpu/system and 'on' fo the powersupply fan
562          * and set it now.
563          */
564         fp->psupply_fan_on = 1;
565         fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
566         fp->cpu_fan_speed += FAN_SPEED_MIN;
567         fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
568         fp->system_fan_speed += FAN_SPEED_MIN;
569
570         set_fan_speeds(fp);
571 }
572
573 int bbc_envctrl_init(void)
574 {
575         struct linux_ebus_child *echild;
576         int temp_index = 0;
577         int fan_index = 0;
578         int devidx = 0;
579         int err = 0;
580
581         while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
582                 if (!strcmp(echild->prom_name, "temperature"))
583                         attach_one_temp(echild, temp_index++);
584                 if (!strcmp(echild->prom_name, "fan-control"))
585                         attach_one_fan(echild, fan_index++);
586         }
587         if (temp_index != 0 && fan_index != 0)
588                 err = kernel_thread(kenvctrld, NULL, CLONE_FS | CLONE_FILES);
589         return err;
590 }
591
592 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
593 {
594         bbc_i2c_detach(tp->client);
595         kfree(tp);
596 }
597
598 static void destroy_one_fan(struct bbc_fan_control *fp)
599 {
600         bbc_i2c_detach(fp->client);
601         kfree(fp);
602 }
603
604 void bbc_envctrl_cleanup(void)
605 {
606         struct bbc_cpu_temperature *tp;
607         struct bbc_fan_control *fp;
608
609         if (kenvctrld_task != NULL) {
610                 force_sig(SIGKILL, kenvctrld_task);
611                 for (;;) {
612                         struct task_struct *p;
613                         int found = 0;
614
615                         read_lock(&tasklist_lock);
616                         for_each_process(p) {
617                                 if (p == kenvctrld_task) {
618                                         found = 1;
619                                         break;
620                                 }
621                         }
622                         read_unlock(&tasklist_lock);
623                         if (!found)
624                                 break;
625                         msleep(1000);
626                 }
627                 kenvctrld_task = NULL;
628         }
629
630         tp = all_bbc_temps;
631         while (tp != NULL) {
632                 struct bbc_cpu_temperature *next = tp->next;
633                 destroy_one_temp(tp);
634                 tp = next;
635         }
636         all_bbc_temps = NULL;
637
638         fp = all_bbc_fans;
639         while (fp != NULL) {
640                 struct bbc_fan_control *next = fp->next;
641                 destroy_one_fan(fp);
642                 fp = next;
643         }
644         all_bbc_fans = NULL;
645 }