Linux-2.6.12-rc2
[linux-flexiantxendom0-natty.git] / drivers / s390 / crypto / z90main.c
1 /*
2  *  linux/drivers/s390/crypto/z90main.c
3  *
4  *  z90crypt 1.3.2
5  *
6  *  Copyright (C)  2001, 2004 IBM Corporation
7  *  Author(s): Robert Burroughs (burrough@us.ibm.com)
8  *             Eric Rossman (edrossma@us.ibm.com)
9  *
10  *  Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26
27 #include <asm/uaccess.h>       // copy_(from|to)_user
28 #include <linux/compat.h>
29 #include <linux/compiler.h>
30 #include <linux/delay.h>       // mdelay
31 #include <linux/init.h>
32 #include <linux/interrupt.h>   // for tasklets
33 #include <linux/ioctl32.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/kobject_uevent.h>
37 #include <linux/proc_fs.h>
38 #include <linux/syscalls.h>
39 #include <linux/version.h>
40 #include "z90crypt.h"
41 #include "z90common.h"
42 #ifndef Z90CRYPT_USE_HOTPLUG
43 #include <linux/miscdevice.h>
44 #endif
45
46 #define VERSION_CODE(vers, rel, seq) (((vers)<<16) | ((rel)<<8) | (seq))
47 #if LINUX_VERSION_CODE < VERSION_CODE(2,4,0) /* version < 2.4 */
48 #  error "This kernel is too old: not supported"
49 #endif
50 #if LINUX_VERSION_CODE > VERSION_CODE(2,7,0) /* version > 2.6 */
51 #  error "This kernel is too recent: not supported by this file"
52 #endif
53
54 #define VERSION_Z90MAIN_C "$Revision: 1.57 $"
55
56 static char z90main_version[] __initdata =
57         "z90main.o (" VERSION_Z90MAIN_C "/"
58                       VERSION_Z90COMMON_H "/" VERSION_Z90CRYPT_H ")";
59
60 extern char z90hardware_version[];
61
62 /**
63  * Defaults that may be modified.
64  */
65
66 #ifndef Z90CRYPT_USE_HOTPLUG
67 /**
68  * You can specify a different minor at compile time.
69  */
70 #ifndef Z90CRYPT_MINOR
71 #define Z90CRYPT_MINOR  MISC_DYNAMIC_MINOR
72 #endif
73 #else
74 /**
75  * You can specify a different major at compile time.
76  */
77 #ifndef Z90CRYPT_MAJOR
78 #define Z90CRYPT_MAJOR  0
79 #endif
80 #endif
81
82 /**
83  * You can specify a different domain at compile time or on the insmod
84  * command line.
85  */
86 #ifndef DOMAIN_INDEX
87 #define DOMAIN_INDEX    -1
88 #endif
89
90 /**
91  * This is the name under which the device is registered in /proc/modules.
92  */
93 #define REG_NAME        "z90crypt"
94
95 /**
96  * Cleanup should run every CLEANUPTIME seconds and should clean up requests
97  * older than CLEANUPTIME seconds in the past.
98  */
99 #ifndef CLEANUPTIME
100 #define CLEANUPTIME 20
101 #endif
102
103 /**
104  * Config should run every CONFIGTIME seconds
105  */
106 #ifndef CONFIGTIME
107 #define CONFIGTIME 30
108 #endif
109
110 /**
111  * The first execution of the config task should take place
112  * immediately after initialization
113  */
114 #ifndef INITIAL_CONFIGTIME
115 #define INITIAL_CONFIGTIME 1
116 #endif
117
118 /**
119  * Reader should run every READERTIME milliseconds
120  * With the 100Hz patch for s390, z90crypt can lock the system solid while
121  * under heavy load. We'll try to avoid that.
122  */
123 #ifndef READERTIME
124 #if HZ > 1000
125 #define READERTIME 2
126 #else
127 #define READERTIME 10
128 #endif
129 #endif
130
131 /**
132  * turn long device array index into device pointer
133  */
134 #define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)])
135
136 /**
137  * turn short device array index into long device array index
138  */
139 #define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)])
140
141 /**
142  * turn short device array index into device pointer
143  */
144 #define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx))
145
146 /**
147  * Status for a work-element
148  */
149 #define STAT_DEFAULT    0x00 // request has not been processed
150
151 #define STAT_ROUTED     0x80 // bit 7: requests get routed to specific device
152                              //        else, device is determined each write
153 #define STAT_FAILED     0x40 // bit 6: this bit is set if the request failed
154                              //        before being sent to the hardware.
155 #define STAT_WRITTEN    0x30 // bits 5-4: work to be done, not sent to device
156 //                      0x20 // UNUSED state
157 #define STAT_READPEND   0x10 // bits 5-4: work done, we're returning data now
158 #define STAT_NOWORK     0x00 // bits off: no work on any queue
159 #define STAT_RDWRMASK   0x30 // mask for bits 5-4
160
161 /**
162  * Macros to check the status RDWRMASK
163  */
164 #define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK)
165 #define SET_RDWRMASK(statbyte, newval) \
166         {(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;}
167
168 /**
169  * Audit Trail.  Progress of a Work element
170  * audit[0]: Unless noted otherwise, these bits are all set by the process
171  */
172 #define FP_COPYFROM     0x80 // Caller's buffer has been copied to work element
173 #define FP_BUFFREQ      0x40 // Low Level buffer requested
174 #define FP_BUFFGOT      0x20 // Low Level buffer obtained
175 #define FP_SENT         0x10 // Work element sent to a crypto device
176                              // (may be set by process or by reader task)
177 #define FP_PENDING      0x08 // Work element placed on pending queue
178                              // (may be set by process or by reader task)
179 #define FP_REQUEST      0x04 // Work element placed on request queue
180 #define FP_ASLEEP       0x02 // Work element about to sleep
181 #define FP_AWAKE        0x01 // Work element has been awakened
182
183 /**
184  * audit[1]: These bits are set by the reader task and/or the cleanup task
185  */
186 #define FP_NOTPENDING     0x80 // Work element removed from pending queue
187 #define FP_AWAKENING      0x40 // Caller about to be awakened
188 #define FP_TIMEDOUT       0x20 // Caller timed out
189 #define FP_RESPSIZESET    0x10 // Response size copied to work element
190 #define FP_RESPADDRCOPIED 0x08 // Response address copied to work element
191 #define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element
192 #define FP_REMREQUEST     0x02 // Work element removed from request queue
193 #define FP_SIGNALED       0x01 // Work element was awakened by a signal
194
195 /**
196  * audit[2]: unused
197  */
198
199 /**
200  * state of the file handle in private_data.status
201  */
202 #define STAT_OPEN 0
203 #define STAT_CLOSED 1
204
205 /**
206  * PID() expands to the process ID of the current process
207  */
208 #define PID() (current->pid)
209
210 /**
211  * Selected Constants.  The number of APs and the number of devices
212  */
213 #ifndef Z90CRYPT_NUM_APS
214 #define Z90CRYPT_NUM_APS 64
215 #endif
216 #ifndef Z90CRYPT_NUM_DEVS
217 #define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS
218 #endif
219
220 /**
221  * Buffer size for receiving responses. The maximum Response Size
222  * is actually the maximum request size, since in an error condition
223  * the request itself may be returned unchanged.
224  */
225 #define MAX_RESPONSE_SIZE 0x0000077C
226
227 /**
228  * A count and status-byte mask
229  */
230 struct status {
231         int           st_count;             // # of enabled devices
232         int           disabled_count;       // # of disabled devices
233         int           user_disabled_count;  // # of devices disabled via proc fs
234         unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask
235 };
236
237 /**
238  * The array of device indexes is a mechanism for fast indexing into
239  * a long (and sparse) array.  For instance, if APs 3, 9 and 47 are
240  * installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and
241  * z90CDeviceIndex[2] is 47.
242  */
243 struct device_x {
244         int device_index[Z90CRYPT_NUM_DEVS];
245 };
246
247 /**
248  * All devices are arranged in a single array: 64 APs
249  */
250 struct device {
251         int              dev_type;          // PCICA, PCICC, PCIXCC_MCL2,
252                                             // PCIXCC_MCL3, CEX2C
253         enum devstat     dev_stat;          // current device status
254         int              dev_self_x;        // Index in array
255         int              disabled;          // Set when device is in error
256         int              user_disabled;     // Set when device is disabled by user
257         int              dev_q_depth;       // q depth
258         unsigned char *  dev_resp_p;        // Response buffer address
259         int              dev_resp_l;        // Response Buffer length
260         int              dev_caller_count;  // Number of callers
261         int              dev_total_req_cnt; // # requests for device since load
262         struct list_head dev_caller_list;   // List of callers
263 };
264
265 /**
266  * There's a struct status and a struct device_x for each device type.
267  */
268 struct hdware_block {
269         struct status   hdware_mask;
270         struct status   type_mask[Z90CRYPT_NUM_TYPES];
271         struct device_x type_x_addr[Z90CRYPT_NUM_TYPES];
272         unsigned char   device_type_array[Z90CRYPT_NUM_APS];
273 };
274
275 /**
276  * z90crypt is the topmost data structure in the hierarchy.
277  */
278 struct z90crypt {
279         int                  max_count;         // Nr of possible crypto devices
280         struct status        mask;
281         int                  q_depth_array[Z90CRYPT_NUM_DEVS];
282         int                  dev_type_array[Z90CRYPT_NUM_DEVS];
283         struct device_x      overall_device_x;  // array device indexes
284         struct device *      device_p[Z90CRYPT_NUM_DEVS];
285         int                  terminating;
286         int                  domain_established;// TRUE:  domain has been found
287         int                  cdx;               // Crypto Domain Index
288         int                  len;               // Length of this data structure
289         struct hdware_block *hdware_info;
290 };
291
292 /**
293  * An array of these structures is pointed to from dev_caller
294  * The length of the array depends on the device type. For APs,
295  * there are 8.
296  *
297  * The caller buffer is allocated to the user at OPEN. At WRITE,
298  * it contains the request; at READ, the response. The function
299  * send_to_crypto_device converts the request to device-dependent
300  * form and use the caller's OPEN-allocated buffer for the response.
301  */
302 struct caller {
303         int              caller_buf_l;           // length of original request
304         unsigned char *  caller_buf_p;           // Original request on WRITE
305         int              caller_dev_dep_req_l;   // len device dependent request
306         unsigned char *  caller_dev_dep_req_p;   // Device dependent form
307         unsigned char    caller_id[8];           // caller-supplied message id
308         struct list_head caller_liste;
309         unsigned char    caller_dev_dep_req[MAX_RESPONSE_SIZE];
310 };
311
312 /**
313  * Function prototypes from z90hardware.c
314  */
315 enum hdstat query_online(int, int, int, int *, int *);
316 enum devstat reset_device(int, int, int);
317 enum devstat send_to_AP(int, int, int, unsigned char *);
318 enum devstat receive_from_AP(int, int, int, unsigned char *, unsigned char *);
319 int convert_request(unsigned char *, int, short, int, int, int *,
320                     unsigned char *);
321 int convert_response(unsigned char *, unsigned char *, int *, unsigned char *);
322
323 /**
324  * Low level function prototypes
325  */
326 static int create_z90crypt(int *);
327 static int refresh_z90crypt(int *);
328 static int find_crypto_devices(struct status *);
329 static int create_crypto_device(int);
330 static int destroy_crypto_device(int);
331 static void destroy_z90crypt(void);
332 static int refresh_index_array(struct status *, struct device_x *);
333 static int probe_device_type(struct device *);
334 static int probe_PCIXCC_type(struct device *);
335
336 /**
337  * proc fs definitions
338  */
339 static struct proc_dir_entry *z90crypt_entry;
340
341 /**
342  * data structures
343  */
344
345 /**
346  * work_element.opener points back to this structure
347  */
348 struct priv_data {
349         pid_t   opener_pid;
350         unsigned char   status;         // 0: open  1: closed
351 };
352
353 /**
354  * A work element is allocated for each request
355  */
356 struct work_element {
357         struct priv_data *priv_data;
358         pid_t             pid;
359         int               devindex;       // index of device processing this w_e
360                                           // (If request did not specify device,
361                                           // -1 until placed onto a queue)
362         int               devtype;
363         struct list_head  liste;          // used for requestq and pendingq
364         char              buffer[128];    // local copy of user request
365         int               buff_size;      // size of the buffer for the request
366         char              resp_buff[RESPBUFFSIZE];
367         int               resp_buff_size;
368         char __user *     resp_addr;      // address of response in user space
369         unsigned int      funccode;       // function code of request
370         wait_queue_head_t waitq;
371         unsigned long     requestsent;    // time at which the request was sent
372         atomic_t          alarmrung;      // wake-up signal
373         unsigned char     caller_id[8];   // pid + counter, for this w_e
374         unsigned char     status[1];      // bits to mark status of the request
375         unsigned char     audit[3];       // record of work element's progress
376         unsigned char *   requestptr;     // address of request buffer
377         int               retcode;        // return code of request
378 };
379
380 /**
381  * High level function prototypes
382  */
383 static int z90crypt_open(struct inode *, struct file *);
384 static int z90crypt_release(struct inode *, struct file *);
385 static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *);
386 static ssize_t z90crypt_write(struct file *, const char __user *,
387                                                         size_t, loff_t *);
388 static int z90crypt_ioctl(struct inode *, struct file *,
389                           unsigned int, unsigned long);
390
391 static void z90crypt_reader_task(unsigned long);
392 static void z90crypt_schedule_reader_task(unsigned long);
393 static void z90crypt_config_task(unsigned long);
394 static void z90crypt_cleanup_task(unsigned long);
395
396 static int z90crypt_status(char *, char **, off_t, int, int *, void *);
397 static int z90crypt_status_write(struct file *, const char __user *,
398                                  unsigned long, void *);
399
400 /**
401  * Hotplug support
402  */
403
404 #ifdef Z90CRYPT_USE_HOTPLUG
405 #define Z90CRYPT_HOTPLUG_ADD     1
406 #define Z90CRYPT_HOTPLUG_REMOVE  2
407
408 static void z90crypt_hotplug_event(int, int, int);
409 #endif
410
411 /**
412  * Storage allocated at initialization and used throughout the life of
413  * this insmod
414  */
415 #ifdef Z90CRYPT_USE_HOTPLUG
416 static int z90crypt_major = Z90CRYPT_MAJOR;
417 #endif
418
419 static int domain = DOMAIN_INDEX;
420 static struct z90crypt z90crypt;
421 static int quiesce_z90crypt;
422 static spinlock_t queuespinlock;
423 static struct list_head request_list;
424 static int requestq_count;
425 static struct list_head pending_list;
426 static int pendingq_count;
427
428 static struct tasklet_struct reader_tasklet;
429 static struct timer_list reader_timer;
430 static struct timer_list config_timer;
431 static struct timer_list cleanup_timer;
432 static atomic_t total_open;
433 static atomic_t z90crypt_step;
434
435 static struct file_operations z90crypt_fops = {
436         .owner   = THIS_MODULE,
437         .read    = z90crypt_read,
438         .write   = z90crypt_write,
439         .ioctl   = z90crypt_ioctl,
440         .open    = z90crypt_open,
441         .release = z90crypt_release
442 };
443
444 #ifndef Z90CRYPT_USE_HOTPLUG
445 static struct miscdevice z90crypt_misc_device = {
446         .minor      = Z90CRYPT_MINOR,
447         .name       = DEV_NAME,
448         .fops       = &z90crypt_fops,
449         .devfs_name = DEV_NAME
450 };
451 #endif
452
453 /**
454  * Documentation values.
455  */
456 MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman"
457               "and Jochen Roehrig");
458 MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, "
459                    "Copyright 2001, 2004 IBM Corporation");
460 MODULE_LICENSE("GPL");
461 module_param(domain, int, 0);
462 MODULE_PARM_DESC(domain, "domain index for device");
463
464 #ifdef CONFIG_COMPAT
465 /**
466  * ioctl32 conversion routines
467  */
468 struct ica_rsa_modexpo_32 { // For 32-bit callers
469         compat_uptr_t   inputdata;
470         unsigned int    inputdatalength;
471         compat_uptr_t   outputdata;
472         unsigned int    outputdatalength;
473         compat_uptr_t   b_key;
474         compat_uptr_t   n_modulus;
475 };
476
477 static int
478 trans_modexpo32(unsigned int fd, unsigned int cmd, unsigned long arg,
479                 struct file *file)
480 {
481         struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg);
482         struct ica_rsa_modexpo_32  mex32k;
483         struct ica_rsa_modexpo __user *mex64;
484         int ret = 0;
485         unsigned int i;
486
487         if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32)))
488                 return -EFAULT;
489         mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo));
490         if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo)))
491                 return -EFAULT;
492         if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32)))
493                 return -EFAULT;
494         if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata)   ||
495             __put_user(mex32k.inputdatalength, &mex64->inputdatalength)   ||
496             __put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) ||
497             __put_user(mex32k.outputdatalength, &mex64->outputdatalength) ||
498             __put_user(compat_ptr(mex32k.b_key), &mex64->b_key)           ||
499             __put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus))
500                 return -EFAULT;
501         ret = sys_ioctl(fd, cmd, (unsigned long)mex64);
502         if (!ret)
503                 if (__get_user(i, &mex64->outputdatalength) ||
504                     __put_user(i, &mex32u->outputdatalength))
505                         ret = -EFAULT;
506         return ret;
507 }
508
509 struct ica_rsa_modexpo_crt_32 { // For 32-bit callers
510         compat_uptr_t   inputdata;
511         unsigned int    inputdatalength;
512         compat_uptr_t   outputdata;
513         unsigned int    outputdatalength;
514         compat_uptr_t   bp_key;
515         compat_uptr_t   bq_key;
516         compat_uptr_t   np_prime;
517         compat_uptr_t   nq_prime;
518         compat_uptr_t   u_mult_inv;
519 };
520
521 static int
522 trans_modexpo_crt32(unsigned int fd, unsigned int cmd, unsigned long arg,
523                     struct file *file)
524 {
525         struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg);
526         struct ica_rsa_modexpo_crt_32  crt32k;
527         struct ica_rsa_modexpo_crt __user *crt64;
528         int ret = 0;
529         unsigned int i;
530
531         if (!access_ok(VERIFY_WRITE, crt32u,
532                        sizeof(struct ica_rsa_modexpo_crt_32)))
533                 return -EFAULT;
534         crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt));
535         if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt)))
536                 return -EFAULT;
537         if (copy_from_user(&crt32k, crt32u,
538                            sizeof(struct ica_rsa_modexpo_crt_32)))
539                 return -EFAULT;
540         if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata)   ||
541             __put_user(crt32k.inputdatalength, &crt64->inputdatalength)   ||
542             __put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) ||
543             __put_user(crt32k.outputdatalength, &crt64->outputdatalength) ||
544             __put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key)         ||
545             __put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key)         ||
546             __put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime)     ||
547             __put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime)     ||
548             __put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv))
549                 ret = -EFAULT;
550         if (!ret)
551                 ret = sys_ioctl(fd, cmd, (unsigned long)crt64);
552         if (!ret)
553                 if (__get_user(i, &crt64->outputdatalength) ||
554                     __put_user(i, &crt32u->outputdatalength))
555                         ret = -EFAULT;
556         return ret;
557 }
558
559 static int compatible_ioctls[] = {
560         ICAZ90STATUS, Z90QUIESCE, Z90STAT_TOTALCOUNT, Z90STAT_PCICACOUNT,
561         Z90STAT_PCICCCOUNT, Z90STAT_PCIXCCCOUNT, Z90STAT_PCIXCCMCL2COUNT,
562         Z90STAT_PCIXCCMCL3COUNT, Z90STAT_CEX2CCOUNT, Z90STAT_REQUESTQ_COUNT,
563         Z90STAT_PENDINGQ_COUNT, Z90STAT_TOTALOPEN_COUNT, Z90STAT_DOMAIN_INDEX,
564         Z90STAT_STATUS_MASK, Z90STAT_QDEPTH_MASK, Z90STAT_PERDEV_REQCNT,
565 };
566
567 static void z90_unregister_ioctl32s(void)
568 {
569         int i;
570
571         unregister_ioctl32_conversion(ICARSAMODEXPO);
572         unregister_ioctl32_conversion(ICARSACRT);
573
574         for(i = 0; i < ARRAY_SIZE(compatible_ioctls); i++)
575                 unregister_ioctl32_conversion(compatible_ioctls[i]);
576 }
577
578 static int z90_register_ioctl32s(void)
579 {
580         int result, i;
581
582         result = register_ioctl32_conversion(ICARSAMODEXPO, trans_modexpo32);
583         if (result == -EBUSY) {
584                 unregister_ioctl32_conversion(ICARSAMODEXPO);
585                 result = register_ioctl32_conversion(ICARSAMODEXPO,
586                                                      trans_modexpo32);
587         }
588         if (result)
589                 return result;
590         result = register_ioctl32_conversion(ICARSACRT, trans_modexpo_crt32);
591         if (result == -EBUSY) {
592                 unregister_ioctl32_conversion(ICARSACRT);
593                 result = register_ioctl32_conversion(ICARSACRT,
594                                                      trans_modexpo_crt32);
595         }
596         if (result)
597                 return result;
598
599         for(i = 0; i < ARRAY_SIZE(compatible_ioctls); i++) {
600                 result = register_ioctl32_conversion(compatible_ioctls[i], 0);
601                 if (result == -EBUSY) {
602                         unregister_ioctl32_conversion(compatible_ioctls[i]);
603                         result = register_ioctl32_conversion(
604                                                        compatible_ioctls[i], 0);
605                 }
606                 if (result)
607                         return result;
608         }
609         return 0;
610 }
611 #else // !CONFIG_COMPAT
612 static inline void z90_unregister_ioctl32s(void)
613 {
614 }
615
616 static inline int z90_register_ioctl32s(void)
617 {
618         return 0;
619 }
620 #endif
621
622 /**
623  * The module initialization code.
624  */
625 static int __init
626 z90crypt_init_module(void)
627 {
628         int result, nresult;
629         struct proc_dir_entry *entry;
630
631         PDEBUG("PID %d\n", PID());
632
633         if ((domain < -1) || (domain > 15)) {
634                 PRINTKW("Invalid param: domain = %d.  Not loading.\n", domain);
635                 return -EINVAL;
636         }
637
638 #ifndef Z90CRYPT_USE_HOTPLUG
639         /* Register as misc device with given minor (or get a dynamic one). */
640         result = misc_register(&z90crypt_misc_device);
641         if (result < 0) {
642                 PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n",
643                         z90crypt_misc_device.minor, result);
644                 return result;
645         }
646 #else
647         /* Register the major (or get a dynamic one). */
648         result = register_chrdev(z90crypt_major, REG_NAME, &z90crypt_fops);
649         if (result < 0) {
650                 PRINTKW("register_chrdev (major %d) failed with %d.\n",
651                         z90crypt_major, result);
652                 return result;
653         }
654
655         if (z90crypt_major == 0)
656                 z90crypt_major = result;
657 #endif
658
659         PDEBUG("Registered " DEV_NAME " with result %d\n", result);
660
661         result = create_z90crypt(&domain);
662         if (result != 0) {
663                 PRINTKW("create_z90crypt (domain index %d) failed with %d.\n",
664                         domain, result);
665                 result = -ENOMEM;
666                 goto init_module_cleanup;
667         }
668
669         if (result == 0) {
670                 PRINTKN("Version %d.%d.%d loaded, built on %s %s\n",
671                         z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT,
672                         __DATE__, __TIME__);
673                 PRINTKN("%s\n", z90main_version);
674                 PRINTKN("%s\n", z90hardware_version);
675                 PDEBUG("create_z90crypt (domain index %d) successful.\n",
676                        domain);
677         } else
678                 PRINTK("No devices at startup\n");
679
680 #ifdef Z90CRYPT_USE_HOTPLUG
681         /* generate hotplug event for device node generation */
682         z90crypt_hotplug_event(z90crypt_major, 0, Z90CRYPT_HOTPLUG_ADD);
683 #endif
684
685         /* Initialize globals. */
686         spin_lock_init(&queuespinlock);
687
688         INIT_LIST_HEAD(&pending_list);
689         pendingq_count = 0;
690
691         INIT_LIST_HEAD(&request_list);
692         requestq_count = 0;
693
694         quiesce_z90crypt = 0;
695
696         atomic_set(&total_open, 0);
697         atomic_set(&z90crypt_step, 0);
698
699         /* Set up the cleanup task. */
700         init_timer(&cleanup_timer);
701         cleanup_timer.function = z90crypt_cleanup_task;
702         cleanup_timer.data = 0;
703         cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ);
704         add_timer(&cleanup_timer);
705
706         /* Set up the proc file system */
707         entry = create_proc_entry("driver/z90crypt", 0644, 0);
708         if (entry) {
709                 entry->nlink = 1;
710                 entry->data = 0;
711                 entry->read_proc = z90crypt_status;
712                 entry->write_proc = z90crypt_status_write;
713         }
714         else
715                 PRINTK("Couldn't create z90crypt proc entry\n");
716         z90crypt_entry = entry;
717
718         /* Set up the configuration task. */
719         init_timer(&config_timer);
720         config_timer.function = z90crypt_config_task;
721         config_timer.data = 0;
722         config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ);
723         add_timer(&config_timer);
724
725         /* Set up the reader task */
726         tasklet_init(&reader_tasklet, z90crypt_reader_task, 0);
727         init_timer(&reader_timer);
728         reader_timer.function = z90crypt_schedule_reader_task;
729         reader_timer.data = 0;
730         reader_timer.expires = jiffies + (READERTIME * HZ / 1000);
731         add_timer(&reader_timer);
732
733         if ((result = z90_register_ioctl32s()))
734                 goto init_module_cleanup;
735
736         return 0; // success
737
738 init_module_cleanup:
739         z90_unregister_ioctl32s();
740
741 #ifndef Z90CRYPT_USE_HOTPLUG
742         if ((nresult = misc_deregister(&z90crypt_misc_device)))
743                 PRINTK("misc_deregister failed with %d.\n", nresult);
744         else
745                 PDEBUG("misc_deregister successful.\n");
746 #else
747         if ((nresult = unregister_chrdev(z90crypt_major, REG_NAME)))
748                 PRINTK("unregister_chrdev failed with %d.\n", nresult);
749         else
750                 PDEBUG("unregister_chrdev successful.\n");
751 #endif
752
753         return result; // failure
754 }
755
756 /**
757  * The module termination code
758  */
759 static void __exit
760 z90crypt_cleanup_module(void)
761 {
762         int nresult;
763
764         PDEBUG("PID %d\n", PID());
765
766         z90_unregister_ioctl32s();
767
768         remove_proc_entry("driver/z90crypt", 0);
769
770 #ifndef Z90CRYPT_USE_HOTPLUG
771         if ((nresult = misc_deregister(&z90crypt_misc_device)))
772                 PRINTK("misc_deregister failed with %d.\n", nresult);
773         else
774                 PDEBUG("misc_deregister successful.\n");
775 #else
776         z90crypt_hotplug_event(z90crypt_major, 0, Z90CRYPT_HOTPLUG_REMOVE);
777
778         if ((nresult = unregister_chrdev(z90crypt_major, REG_NAME)))
779                 PRINTK("unregister_chrdev failed with %d.\n", nresult);
780         else
781                 PDEBUG("unregister_chrdev successful.\n");
782 #endif
783
784         /* Remove the tasks */
785         tasklet_kill(&reader_tasklet);
786         del_timer(&reader_timer);
787         del_timer(&config_timer);
788         del_timer(&cleanup_timer);
789
790         destroy_z90crypt();
791
792         PRINTKN("Unloaded.\n");
793 }
794
795 /**
796  * Functions running under a process id
797  *
798  * The I/O functions:
799  *     z90crypt_open
800  *     z90crypt_release
801  *     z90crypt_read
802  *     z90crypt_write
803  *     z90crypt_ioctl
804  *     z90crypt_status
805  *     z90crypt_status_write
806  *       disable_card
807  *       enable_card
808  *       scan_char
809  *       scan_string
810  *
811  * Helper functions:
812  *     z90crypt_rsa
813  *       z90crypt_prepare
814  *       z90crypt_send
815  *       z90crypt_process_results
816  *
817  */
818 static int
819 z90crypt_open(struct inode *inode, struct file *filp)
820 {
821         struct priv_data *private_data_p;
822
823         if (quiesce_z90crypt)
824                 return -EQUIESCE;
825
826         private_data_p = kmalloc(sizeof(struct priv_data), GFP_KERNEL);
827         if (!private_data_p) {
828                 PRINTK("Memory allocate failed\n");
829                 return -ENOMEM;
830         }
831
832         memset((void *)private_data_p, 0, sizeof(struct priv_data));
833         private_data_p->status = STAT_OPEN;
834         private_data_p->opener_pid = PID();
835         filp->private_data = private_data_p;
836         atomic_inc(&total_open);
837
838         return 0;
839 }
840
841 static int
842 z90crypt_release(struct inode *inode, struct file *filp)
843 {
844         struct priv_data *private_data_p = filp->private_data;
845
846         PDEBUG("PID %d (filp %p)\n", PID(), filp);
847
848         private_data_p->status = STAT_CLOSED;
849         memset(private_data_p, 0, sizeof(struct priv_data));
850         kfree(private_data_p);
851         atomic_dec(&total_open);
852
853         return 0;
854 }
855
856 /*
857  * there are two read functions, of which compile options will choose one
858  * without USE_GET_RANDOM_BYTES
859  *   => read() always returns -EPERM;
860  * otherwise
861  *   => read() uses get_random_bytes() kernel function
862  */
863 #ifndef USE_GET_RANDOM_BYTES
864 /**
865  * z90crypt_read will not be supported beyond z90crypt 1.3.1
866  */
867 static ssize_t
868 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
869 {
870         PDEBUG("filp %p (PID %d)\n", filp, PID());
871         return -EPERM;
872 }
873 #else // we want to use get_random_bytes
874 /**
875  * read() just returns a string of random bytes.  Since we have no way
876  * to generate these cryptographically, we just execute get_random_bytes
877  * for the length specified.
878  */
879 #include <linux/random.h>
880 static ssize_t
881 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
882 {
883         unsigned char *temp_buff;
884
885         PDEBUG("filp %p (PID %d)\n", filp, PID());
886
887         if (quiesce_z90crypt)
888                 return -EQUIESCE;
889         if (count < 0) {
890                 PRINTK("Requested random byte count negative: %ld\n", count);
891                 return -EINVAL;
892         }
893         if (count > RESPBUFFSIZE) {
894                 PDEBUG("count[%d] > RESPBUFFSIZE", count);
895                 return -EINVAL;
896         }
897         if (count == 0)
898                 return 0;
899         temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL);
900         if (!temp_buff) {
901                 PRINTK("Memory allocate failed\n");
902                 return -ENOMEM;
903         }
904         get_random_bytes(temp_buff, count);
905
906         if (copy_to_user(buf, temp_buff, count) != 0) {
907                 kfree(temp_buff);
908                 return -EFAULT;
909         }
910         kfree(temp_buff);
911         return count;
912 }
913 #endif
914
915 /**
916  * Write is is not allowed
917  */
918 static ssize_t
919 z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
920 {
921         PDEBUG("filp %p (PID %d)\n", filp, PID());
922         return -EPERM;
923 }
924
925 /**
926  * New status functions
927  */
928 static inline int
929 get_status_totalcount(void)
930 {
931         return z90crypt.hdware_info->hdware_mask.st_count;
932 }
933
934 static inline int
935 get_status_PCICAcount(void)
936 {
937         return z90crypt.hdware_info->type_mask[PCICA].st_count;
938 }
939
940 static inline int
941 get_status_PCICCcount(void)
942 {
943         return z90crypt.hdware_info->type_mask[PCICC].st_count;
944 }
945
946 static inline int
947 get_status_PCIXCCcount(void)
948 {
949         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count +
950                z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
951 }
952
953 static inline int
954 get_status_PCIXCCMCL2count(void)
955 {
956         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count;
957 }
958
959 static inline int
960 get_status_PCIXCCMCL3count(void)
961 {
962         return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
963 }
964
965 static inline int
966 get_status_CEX2Ccount(void)
967 {
968         return z90crypt.hdware_info->type_mask[CEX2C].st_count;
969 }
970
971 static inline int
972 get_status_requestq_count(void)
973 {
974         return requestq_count;
975 }
976
977 static inline int
978 get_status_pendingq_count(void)
979 {
980         return pendingq_count;
981 }
982
983 static inline int
984 get_status_totalopen_count(void)
985 {
986         return atomic_read(&total_open);
987 }
988
989 static inline int
990 get_status_domain_index(void)
991 {
992         return z90crypt.cdx;
993 }
994
995 static inline unsigned char *
996 get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS])
997 {
998         int i, ix;
999
1000         memcpy(status, z90crypt.hdware_info->device_type_array,
1001                Z90CRYPT_NUM_APS);
1002
1003         for (i = 0; i < get_status_totalcount(); i++) {
1004                 ix = SHRT2LONG(i);
1005                 if (LONG2DEVPTR(ix)->user_disabled)
1006                         status[ix] = 0x0d;
1007         }
1008
1009         return status;
1010 }
1011
1012 static inline unsigned char *
1013 get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS])
1014 {
1015         int i, ix;
1016
1017         memset(qdepth, 0, Z90CRYPT_NUM_APS);
1018
1019         for (i = 0; i < get_status_totalcount(); i++) {
1020                 ix = SHRT2LONG(i);
1021                 qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count;
1022         }
1023
1024         return qdepth;
1025 }
1026
1027 static inline unsigned int *
1028 get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS])
1029 {
1030         int i, ix;
1031
1032         memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int));
1033
1034         for (i = 0; i < get_status_totalcount(); i++) {
1035                 ix = SHRT2LONG(i);
1036                 reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt;
1037         }
1038
1039         return reqcnt;
1040 }
1041
1042 static inline void
1043 init_work_element(struct work_element *we_p,
1044                   struct priv_data *priv_data, pid_t pid)
1045 {
1046         int step;
1047
1048         we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element);
1049         /* Come up with a unique id for this caller. */
1050         step = atomic_inc_return(&z90crypt_step);
1051         memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid));
1052         memcpy(we_p->caller_id+4, (void *) &step, sizeof(step));
1053         we_p->pid = pid;
1054         we_p->priv_data = priv_data;
1055         we_p->status[0] = STAT_DEFAULT;
1056         we_p->audit[0] = 0x00;
1057         we_p->audit[1] = 0x00;
1058         we_p->audit[2] = 0x00;
1059         we_p->resp_buff_size = 0;
1060         we_p->retcode = 0;
1061         we_p->devindex = -1;
1062         we_p->devtype = -1;
1063         atomic_set(&we_p->alarmrung, 0);
1064         init_waitqueue_head(&we_p->waitq);
1065         INIT_LIST_HEAD(&(we_p->liste));
1066 }
1067
1068 static inline int
1069 allocate_work_element(struct work_element **we_pp,
1070                       struct priv_data *priv_data_p, pid_t pid)
1071 {
1072         struct work_element *we_p;
1073
1074         we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL);
1075         if (!we_p)
1076                 return -ENOMEM;
1077         init_work_element(we_p, priv_data_p, pid);
1078         *we_pp = we_p;
1079         return 0;
1080 }
1081
1082 static inline void
1083 remove_device(struct device *device_p)
1084 {
1085         if (!device_p || (device_p->disabled != 0))
1086                 return;
1087         device_p->disabled = 1;
1088         z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++;
1089         z90crypt.hdware_info->hdware_mask.disabled_count++;
1090 }
1091
1092 /**
1093  * Bitlength limits for each card
1094  *
1095  * There are new MCLs which allow more bitlengths. See the table for details.
1096  * The MCL must be applied and the newer bitlengths enabled for these to work.
1097  *
1098  * Card Type    Old limit    New limit
1099  * PCICC         512-1024     512-2048
1100  * PCIXCC_MCL2   512-2048     no change (applying this MCL == card is MCL3+)
1101  * PCIXCC_MCL3   512-2048     128-2048
1102  * CEX2C         512-2048     128-2048
1103  *
1104  * ext_bitlens (extended bitlengths) is a global, since you should not apply an
1105  * MCL to just one card in a machine. We assume, at first, that all cards have
1106  * these capabilities.
1107  */
1108 int ext_bitlens = 1; // This is global
1109 #define PCIXCC_MIN_MOD_SIZE      16     //  128 bits
1110 #define OLD_PCIXCC_MIN_MOD_SIZE  64     //  512 bits
1111 #define PCICC_MIN_MOD_SIZE       64     //  512 bits
1112 #define OLD_PCICC_MAX_MOD_SIZE  128     // 1024 bits
1113 #define MAX_MOD_SIZE            256     // 2048 bits
1114
1115 static inline int
1116 select_device_type(int *dev_type_p, int bytelength)
1117 {
1118         static int count = 0;
1119         int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, index_to_use;
1120         struct status *stat;
1121         if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) &&
1122             (*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) &&
1123             (*dev_type_p != CEX2C) && (*dev_type_p != ANYDEV))
1124                 return -1;
1125         if (*dev_type_p != ANYDEV) {
1126                 stat = &z90crypt.hdware_info->type_mask[*dev_type_p];
1127                 if (stat->st_count >
1128                     (stat->disabled_count + stat->user_disabled_count))
1129                         return 0;
1130                 return -1;
1131         }
1132
1133         /* Assumption: PCICA, PCIXCC_MCL3, and CEX2C are all similar in speed */
1134         stat = &z90crypt.hdware_info->type_mask[PCICA];
1135         PCICA_avail = stat->st_count -
1136                         (stat->disabled_count + stat->user_disabled_count);
1137         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3];
1138         PCIXCC_MCL3_avail = stat->st_count -
1139                         (stat->disabled_count + stat->user_disabled_count);
1140         stat = &z90crypt.hdware_info->type_mask[CEX2C];
1141         CEX2C_avail = stat->st_count -
1142                         (stat->disabled_count + stat->user_disabled_count);
1143         if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail) {
1144                 /**
1145                  * bitlength is a factor, PCICA is the most capable, even with
1146                  * the new MCL.
1147                  */
1148                 if ((bytelength < PCIXCC_MIN_MOD_SIZE) ||
1149                     (!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) {
1150                         if (!PCICA_avail)
1151                                 return -1;
1152                         else {
1153                                 *dev_type_p = PCICA;
1154                                 return 0;
1155                         }
1156                 }
1157
1158                 index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail +
1159                                         CEX2C_avail);
1160                 if (index_to_use < PCICA_avail)
1161                         *dev_type_p = PCICA;
1162                 else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail))
1163                         *dev_type_p = PCIXCC_MCL3;
1164                 else
1165                         *dev_type_p = CEX2C;
1166                 count++;
1167                 return 0;
1168         }
1169
1170         /* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */
1171         if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE)
1172                 return -1;
1173         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2];
1174         if (stat->st_count >
1175             (stat->disabled_count + stat->user_disabled_count)) {
1176                 *dev_type_p = PCIXCC_MCL2;
1177                 return 0;
1178         }
1179
1180         /**
1181          * Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE
1182          * (if we don't have the MCL applied and the newer bitlengths enabled)
1183          * cannot go to a PCICC
1184          */
1185         if ((bytelength < PCICC_MIN_MOD_SIZE) ||
1186             (!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) {
1187                 return -1;
1188         }
1189         stat = &z90crypt.hdware_info->type_mask[PCICC];
1190         if (stat->st_count >
1191             (stat->disabled_count + stat->user_disabled_count)) {
1192                 *dev_type_p = PCICC;
1193                 return 0;
1194         }
1195
1196         return -1;
1197 }
1198
1199 /**
1200  * Try the selected number, then the selected type (can be ANYDEV)
1201  */
1202 static inline int
1203 select_device(int *dev_type_p, int *device_nr_p, int bytelength)
1204 {
1205         int i, indx, devTp, low_count, low_indx;
1206         struct device_x *index_p;
1207         struct device *dev_ptr;
1208
1209         PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p);
1210         if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) {
1211                 PDEBUG("trying index = %d\n", *device_nr_p);
1212                 dev_ptr = z90crypt.device_p[*device_nr_p];
1213
1214                 if (dev_ptr &&
1215                     (dev_ptr->dev_stat != DEV_GONE) &&
1216                     (dev_ptr->disabled == 0) &&
1217                     (dev_ptr->user_disabled == 0)) {
1218                         PDEBUG("selected by number, index = %d\n",
1219                                *device_nr_p);
1220                         *dev_type_p = dev_ptr->dev_type;
1221                         return *device_nr_p;
1222                 }
1223         }
1224         *device_nr_p = -1;
1225         PDEBUG("trying type = %d\n", *dev_type_p);
1226         devTp = *dev_type_p;
1227         if (select_device_type(&devTp, bytelength) == -1) {
1228                 PDEBUG("failed to select by type\n");
1229                 return -1;
1230         }
1231         PDEBUG("selected type = %d\n", devTp);
1232         index_p = &z90crypt.hdware_info->type_x_addr[devTp];
1233         low_count = 0x0000FFFF;
1234         low_indx = -1;
1235         for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) {
1236                 indx = index_p->device_index[i];
1237                 dev_ptr = z90crypt.device_p[indx];
1238                 if (dev_ptr &&
1239                     (dev_ptr->dev_stat != DEV_GONE) &&
1240                     (dev_ptr->disabled == 0) &&
1241                     (dev_ptr->user_disabled == 0) &&
1242                     (devTp == dev_ptr->dev_type) &&
1243                     (low_count > dev_ptr->dev_caller_count)) {
1244                         low_count = dev_ptr->dev_caller_count;
1245                         low_indx = indx;
1246                 }
1247         }
1248         *device_nr_p = low_indx;
1249         return low_indx;
1250 }
1251
1252 static inline int
1253 send_to_crypto_device(struct work_element *we_p)
1254 {
1255         struct caller *caller_p;
1256         struct device *device_p;
1257         int dev_nr;
1258         int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength;
1259
1260         if (!we_p->requestptr)
1261                 return SEN_FATAL_ERROR;
1262         caller_p = (struct caller *)we_p->requestptr;
1263         dev_nr = we_p->devindex;
1264         if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) {
1265                 if (z90crypt.hdware_info->hdware_mask.st_count != 0)
1266                         return SEN_RETRY;
1267                 else
1268                         return SEN_NOT_AVAIL;
1269         }
1270         we_p->devindex = dev_nr;
1271         device_p = z90crypt.device_p[dev_nr];
1272         if (!device_p)
1273                 return SEN_NOT_AVAIL;
1274         if (device_p->dev_type != we_p->devtype)
1275                 return SEN_RETRY;
1276         if (device_p->dev_caller_count >= device_p->dev_q_depth)
1277                 return SEN_QUEUE_FULL;
1278         PDEBUG("device number prior to send: %d\n", dev_nr);
1279         switch (send_to_AP(dev_nr, z90crypt.cdx,
1280                            caller_p->caller_dev_dep_req_l,
1281                            caller_p->caller_dev_dep_req_p)) {
1282         case DEV_SEN_EXCEPTION:
1283                 PRINTKC("Exception during send to device %d\n", dev_nr);
1284                 z90crypt.terminating = 1;
1285                 return SEN_FATAL_ERROR;
1286         case DEV_GONE:
1287                 PRINTK("Device %d not available\n", dev_nr);
1288                 remove_device(device_p);
1289                 return SEN_NOT_AVAIL;
1290         case DEV_EMPTY:
1291                 return SEN_NOT_AVAIL;
1292         case DEV_NO_WORK:
1293                 return SEN_FATAL_ERROR;
1294         case DEV_BAD_MESSAGE:
1295                 return SEN_USER_ERROR;
1296         case DEV_QUEUE_FULL:
1297                 return SEN_QUEUE_FULL;
1298         default:
1299         case DEV_ONLINE:
1300                 break;
1301         }
1302         list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list));
1303         device_p->dev_caller_count++;
1304         return 0;
1305 }
1306
1307 /**
1308  * Send puts the user's work on one of two queues:
1309  *   the pending queue if the send was successful
1310  *   the request queue if the send failed because device full or busy
1311  */
1312 static inline int
1313 z90crypt_send(struct work_element *we_p, const char *buf)
1314 {
1315         int rv;
1316
1317         PDEBUG("PID %d\n", PID());
1318
1319         if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) {
1320                 PDEBUG("PID %d tried to send more work but has outstanding "
1321                        "work.\n", PID());
1322                 return -EWORKPEND;
1323         }
1324         we_p->devindex = -1; // Reset device number
1325         spin_lock_irq(&queuespinlock);
1326         rv = send_to_crypto_device(we_p);
1327         switch (rv) {
1328         case 0:
1329                 we_p->requestsent = jiffies;
1330                 we_p->audit[0] |= FP_SENT;
1331                 list_add_tail(&we_p->liste, &pending_list);
1332                 ++pendingq_count;
1333                 we_p->audit[0] |= FP_PENDING;
1334                 break;
1335         case SEN_BUSY:
1336         case SEN_QUEUE_FULL:
1337                 rv = 0;
1338                 we_p->devindex = -1; // any device will do
1339                 we_p->requestsent = jiffies;
1340                 list_add_tail(&we_p->liste, &request_list);
1341                 ++requestq_count;
1342                 we_p->audit[0] |= FP_REQUEST;
1343                 break;
1344         case SEN_RETRY:
1345                 rv = -ERESTARTSYS;
1346                 break;
1347         case SEN_NOT_AVAIL:
1348                 PRINTK("*** No devices available.\n");
1349                 rv = we_p->retcode = -ENODEV;
1350                 we_p->status[0] |= STAT_FAILED;
1351                 break;
1352         case REC_OPERAND_INV:
1353         case REC_OPERAND_SIZE:
1354         case REC_EVEN_MOD:
1355         case REC_INVALID_PAD:
1356                 rv = we_p->retcode = -EINVAL;
1357                 we_p->status[0] |= STAT_FAILED;
1358                 break;
1359         default:
1360                 we_p->retcode = rv;
1361                 we_p->status[0] |= STAT_FAILED;
1362                 break;
1363         }
1364         if (rv != -ERESTARTSYS)
1365                 SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1366         spin_unlock_irq(&queuespinlock);
1367         if (rv == 0)
1368                 tasklet_schedule(&reader_tasklet);
1369         return rv;
1370 }
1371
1372 /**
1373  * process_results copies the user's work from kernel space.
1374  */
1375 static inline int
1376 z90crypt_process_results(struct work_element *we_p, char __user *buf)
1377 {
1378         int rv;
1379
1380         PDEBUG("we_p %p (PID %d)\n", we_p, PID());
1381
1382         LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++;
1383         SET_RDWRMASK(we_p->status[0], STAT_READPEND);
1384
1385         rv = 0;
1386         if (!we_p->buffer) {
1387                 PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n",
1388                         we_p, PID());
1389                 rv = -ENOBUFF;
1390         }
1391
1392         if (!rv)
1393                 if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) {
1394                         PDEBUG("copy_to_user failed: rv = %d\n", rv);
1395                         rv = -EFAULT;
1396                 }
1397
1398         if (!rv)
1399                 rv = we_p->retcode;
1400         if (!rv)
1401                 if (we_p->resp_buff_size
1402                     &&  copy_to_user(we_p->resp_addr, we_p->resp_buff,
1403                                      we_p->resp_buff_size))
1404                         rv = -EFAULT;
1405
1406         SET_RDWRMASK(we_p->status[0], STAT_NOWORK);
1407         return rv;
1408 }
1409
1410 static unsigned char NULL_psmid[8] =
1411 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
1412
1413 /**
1414  * Used in device configuration functions
1415  */
1416 #define MAX_RESET 90
1417
1418 /**
1419  * This is used only for PCICC support
1420  */
1421 static inline int
1422 is_PKCS11_padded(unsigned char *buffer, int length)
1423 {
1424         int i;
1425         if ((buffer[0] != 0x00) || (buffer[1] != 0x01))
1426                 return 0;
1427         for (i = 2; i < length; i++)
1428                 if (buffer[i] != 0xFF)
1429                         break;
1430         if ((i < 10) || (i == length))
1431                 return 0;
1432         if (buffer[i] != 0x00)
1433                 return 0;
1434         return 1;
1435 }
1436
1437 /**
1438  * This is used only for PCICC support
1439  */
1440 static inline int
1441 is_PKCS12_padded(unsigned char *buffer, int length)
1442 {
1443         int i;
1444         if ((buffer[0] != 0x00) || (buffer[1] != 0x02))
1445                 return 0;
1446         for (i = 2; i < length; i++)
1447                 if (buffer[i] == 0x00)
1448                         break;
1449         if ((i < 10) || (i == length))
1450                 return 0;
1451         if (buffer[i] != 0x00)
1452                 return 0;
1453         return 1;
1454 }
1455
1456 /**
1457  * builds struct caller and converts message from generic format to
1458  * device-dependent format
1459  * func is ICARSAMODEXPO or ICARSACRT
1460  * function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT
1461  */
1462 static inline int
1463 build_caller(struct work_element *we_p, short function)
1464 {
1465         int rv;
1466         struct caller *caller_p = (struct caller *)we_p->requestptr;
1467
1468         if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) &&
1469             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1470             (we_p->devtype != CEX2C))
1471                 return SEN_NOT_AVAIL;
1472
1473         memcpy(caller_p->caller_id, we_p->caller_id,
1474                sizeof(caller_p->caller_id));
1475         caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req;
1476         caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE;
1477         caller_p->caller_buf_p = we_p->buffer;
1478         INIT_LIST_HEAD(&(caller_p->caller_liste));
1479
1480         rv = convert_request(we_p->buffer, we_p->funccode, function,
1481                              z90crypt.cdx, we_p->devtype,
1482                              &caller_p->caller_dev_dep_req_l,
1483                              caller_p->caller_dev_dep_req_p);
1484         if (rv) {
1485                 if (rv == SEN_NOT_AVAIL)
1486                         PDEBUG("request can't be processed on hdwr avail\n");
1487                 else
1488                         PRINTK("Error from convert_request: %d\n", rv);
1489         }
1490         else
1491                 memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8);
1492         return rv;
1493 }
1494
1495 static inline void
1496 unbuild_caller(struct device *device_p, struct caller *caller_p)
1497 {
1498         if (!caller_p)
1499                 return;
1500         if (caller_p->caller_liste.next && caller_p->caller_liste.prev)
1501                 if (!list_empty(&caller_p->caller_liste)) {
1502                         list_del_init(&caller_p->caller_liste);
1503                         device_p->dev_caller_count--;
1504                 }
1505         memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id));
1506 }
1507
1508 static inline int
1509 get_crypto_request_buffer(struct work_element *we_p)
1510 {
1511         struct ica_rsa_modexpo *mex_p;
1512         struct ica_rsa_modexpo_crt *crt_p;
1513         unsigned char *temp_buffer;
1514         short function;
1515         int rv;
1516
1517         mex_p = (struct ica_rsa_modexpo *) we_p->buffer;
1518         crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer;
1519
1520         PDEBUG("device type input = %d\n", we_p->devtype);
1521
1522         if (z90crypt.terminating)
1523                 return REC_NO_RESPONSE;
1524         if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) {
1525                 PRINTK("psmid zeroes\n");
1526                 return SEN_FATAL_ERROR;
1527         }
1528         if (!we_p->buffer) {
1529                 PRINTK("buffer pointer NULL\n");
1530                 return SEN_USER_ERROR;
1531         }
1532         if (!we_p->requestptr) {
1533                 PRINTK("caller pointer NULL\n");
1534                 return SEN_USER_ERROR;
1535         }
1536
1537         if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) &&
1538             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1539             (we_p->devtype != CEX2C) && (we_p->devtype != ANYDEV)) {
1540                 PRINTK("invalid device type\n");
1541                 return SEN_USER_ERROR;
1542         }
1543
1544         if ((mex_p->inputdatalength < 1) ||
1545             (mex_p->inputdatalength > MAX_MOD_SIZE)) {
1546                 PRINTK("inputdatalength[%d] is not valid\n",
1547                        mex_p->inputdatalength);
1548                 return SEN_USER_ERROR;
1549         }
1550
1551         if (mex_p->outputdatalength < mex_p->inputdatalength) {
1552                 PRINTK("outputdatalength[%d] < inputdatalength[%d]\n",
1553                        mex_p->outputdatalength, mex_p->inputdatalength);
1554                 return SEN_USER_ERROR;
1555         }
1556
1557         if (!mex_p->inputdata || !mex_p->outputdata) {
1558                 PRINTK("inputdata[%p] or outputdata[%p] is NULL\n",
1559                        mex_p->outputdata, mex_p->inputdata);
1560                 return SEN_USER_ERROR;
1561         }
1562
1563         /**
1564          * As long as outputdatalength is big enough, we can set the
1565          * outputdatalength equal to the inputdatalength, since that is the
1566          * number of bytes we will copy in any case
1567          */
1568         mex_p->outputdatalength = mex_p->inputdatalength;
1569
1570         rv = 0;
1571         switch (we_p->funccode) {
1572         case ICARSAMODEXPO:
1573                 if (!mex_p->b_key || !mex_p->n_modulus)
1574                         rv = SEN_USER_ERROR;
1575                 break;
1576         case ICARSACRT:
1577                 if (!IS_EVEN(crt_p->inputdatalength)) {
1578                         PRINTK("inputdatalength[%d] is odd, CRT form\n",
1579                                crt_p->inputdatalength);
1580                         rv = SEN_USER_ERROR;
1581                         break;
1582                 }
1583                 if (!crt_p->bp_key ||
1584                     !crt_p->bq_key ||
1585                     !crt_p->np_prime ||
1586                     !crt_p->nq_prime ||
1587                     !crt_p->u_mult_inv) {
1588                         PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n",
1589                                crt_p->bp_key, crt_p->bq_key,
1590                                crt_p->np_prime, crt_p->nq_prime,
1591                                crt_p->u_mult_inv);
1592                         rv = SEN_USER_ERROR;
1593                 }
1594                 break;
1595         default:
1596                 PRINTK("bad func = %d\n", we_p->funccode);
1597                 rv = SEN_USER_ERROR;
1598                 break;
1599         }
1600         if (rv != 0)
1601                 return rv;
1602
1603         if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0)
1604                 return SEN_NOT_AVAIL;
1605
1606         temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) +
1607                       sizeof(struct caller);
1608         if (copy_from_user(temp_buffer, mex_p->inputdata,
1609                            mex_p->inputdatalength) != 0)
1610                 return SEN_RELEASED;
1611
1612         function = PCI_FUNC_KEY_ENCRYPT;
1613         switch (we_p->devtype) {
1614         /* PCICA does everything with a simple RSA mod-expo operation */
1615         case PCICA:
1616                 function = PCI_FUNC_KEY_ENCRYPT;
1617                 break;
1618         /**
1619          * PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo
1620          * operation, and all CRT forms with a PKCS-1.2 format decrypt.
1621          * PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA
1622          * mod-expo operation
1623          */
1624         case PCIXCC_MCL2:
1625                 if (we_p->funccode == ICARSAMODEXPO)
1626                         function = PCI_FUNC_KEY_ENCRYPT;
1627                 else
1628                         function = PCI_FUNC_KEY_DECRYPT;
1629                 break;
1630         case PCIXCC_MCL3:
1631         case CEX2C:
1632                 if (we_p->funccode == ICARSAMODEXPO)
1633                         function = PCI_FUNC_KEY_ENCRYPT;
1634                 else
1635                         function = PCI_FUNC_KEY_DECRYPT;
1636                 break;
1637         /**
1638          * PCICC does everything as a PKCS-1.2 format request
1639          */
1640         case PCICC:
1641                 /* PCICC cannot handle input that is is PKCS#1.1 padded */
1642                 if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) {
1643                         return SEN_NOT_AVAIL;
1644                 }
1645                 if (we_p->funccode == ICARSAMODEXPO) {
1646                         if (is_PKCS12_padded(temp_buffer,
1647                                              mex_p->inputdatalength))
1648                                 function = PCI_FUNC_KEY_ENCRYPT;
1649                         else
1650                                 function = PCI_FUNC_KEY_DECRYPT;
1651                 } else
1652                         /* all CRT forms are decrypts */
1653                         function = PCI_FUNC_KEY_DECRYPT;
1654                 break;
1655         }
1656         PDEBUG("function: %04x\n", function);
1657         rv = build_caller(we_p, function);
1658         PDEBUG("rv from build_caller = %d\n", rv);
1659         return rv;
1660 }
1661
1662 static inline int
1663 z90crypt_prepare(struct work_element *we_p, unsigned int funccode,
1664                  const char __user *buffer)
1665 {
1666         int rv;
1667
1668         we_p->devindex = -1;
1669         if (funccode == ICARSAMODEXPO)
1670                 we_p->buff_size = sizeof(struct ica_rsa_modexpo);
1671         else
1672                 we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt);
1673
1674         if (copy_from_user(we_p->buffer, buffer, we_p->buff_size))
1675                 return -EFAULT;
1676
1677         we_p->audit[0] |= FP_COPYFROM;
1678         SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1679         we_p->funccode = funccode;
1680         we_p->devtype = -1;
1681         we_p->audit[0] |= FP_BUFFREQ;
1682         rv = get_crypto_request_buffer(we_p);
1683         switch (rv) {
1684         case 0:
1685                 we_p->audit[0] |= FP_BUFFGOT;
1686                 break;
1687         case SEN_USER_ERROR:
1688                 rv = -EINVAL;
1689                 break;
1690         case SEN_QUEUE_FULL:
1691                 rv = 0;
1692                 break;
1693         case SEN_RELEASED:
1694                 rv = -EFAULT;
1695                 break;
1696         case REC_NO_RESPONSE:
1697                 rv = -ENODEV;
1698                 break;
1699         case SEN_NOT_AVAIL:
1700         case EGETBUFF:
1701                 rv = -EGETBUFF;
1702                 break;
1703         default:
1704                 PRINTK("rv = %d\n", rv);
1705                 rv = -EGETBUFF;
1706                 break;
1707         }
1708         if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN)
1709                 SET_RDWRMASK(we_p->status[0], STAT_DEFAULT);
1710         return rv;
1711 }
1712
1713 static inline void
1714 purge_work_element(struct work_element *we_p)
1715 {
1716         struct list_head *lptr;
1717
1718         spin_lock_irq(&queuespinlock);
1719         list_for_each(lptr, &request_list) {
1720                 if (lptr == &we_p->liste) {
1721                         list_del_init(lptr);
1722                         requestq_count--;
1723                         break;
1724                 }
1725         }
1726         list_for_each(lptr, &pending_list) {
1727                 if (lptr == &we_p->liste) {
1728                         list_del_init(lptr);
1729                         pendingq_count--;
1730                         break;
1731                 }
1732         }
1733         spin_unlock_irq(&queuespinlock);
1734 }
1735
1736 /**
1737  * Build the request and send it.
1738  */
1739 static inline int
1740 z90crypt_rsa(struct priv_data *private_data_p, pid_t pid,
1741              unsigned int cmd, unsigned long arg)
1742 {
1743         struct work_element *we_p;
1744         int rv;
1745
1746         if ((rv = allocate_work_element(&we_p, private_data_p, pid))) {
1747                 PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid);
1748                 return rv;
1749         }
1750         if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg)))
1751                 PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv);
1752         if (!rv)
1753                 if ((rv = z90crypt_send(we_p, (const char *)arg)))
1754                         PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv);
1755         if (!rv) {
1756                 we_p->audit[0] |= FP_ASLEEP;
1757                 wait_event(we_p->waitq, atomic_read(&we_p->alarmrung));
1758                 we_p->audit[0] |= FP_AWAKE;
1759                 rv = we_p->retcode;
1760         }
1761         if (!rv)
1762                 rv = z90crypt_process_results(we_p, (char __user *)arg);
1763
1764         if ((we_p->status[0] & STAT_FAILED)) {
1765                 switch (rv) {
1766                 /**
1767                  * EINVAL *after* receive is almost always a padding error or
1768                  * length error issued by a coprocessor (not an accelerator).
1769                  * We convert this return value to -EGETBUFF which should
1770                  * trigger a fallback to software.
1771                  */
1772                 case -EINVAL:
1773                         if (we_p->devtype != PCICA)
1774                                 rv = -EGETBUFF;
1775                         break;
1776                 case -ETIMEOUT:
1777                         if (z90crypt.mask.st_count > 0)
1778                                 rv = -ERESTARTSYS; // retry with another
1779                         else
1780                                 rv = -ENODEV; // no cards left
1781                 /* fall through to clean up request queue */
1782                 case -ERESTARTSYS:
1783                 case -ERELEASED:
1784                         switch (CHK_RDWRMASK(we_p->status[0])) {
1785                         case STAT_WRITTEN:
1786                                 purge_work_element(we_p);
1787                                 break;
1788                         case STAT_READPEND:
1789                         case STAT_NOWORK:
1790                         default:
1791                                 break;
1792                         }
1793                         break;
1794                 default:
1795                         we_p->status[0] ^= STAT_FAILED;
1796                         break;
1797                 }
1798         }
1799         free_page((long)we_p);
1800         return rv;
1801 }
1802
1803 /**
1804  * This function is a little long, but it's really just one large switch
1805  * statement.
1806  */
1807 static int
1808 z90crypt_ioctl(struct inode *inode, struct file *filp,
1809                unsigned int cmd, unsigned long arg)
1810 {
1811         struct priv_data *private_data_p = filp->private_data;
1812         unsigned char *status;
1813         unsigned char *qdepth;
1814         unsigned int *reqcnt;
1815         struct ica_z90_status *pstat;
1816         int ret, i, loopLim, tempstat;
1817         static int deprecated_msg_count1 = 0;
1818         static int deprecated_msg_count2 = 0;
1819
1820         PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd);
1821         PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n",
1822                 cmd,
1823                 !_IOC_DIR(cmd) ? "NO"
1824                 : ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW"
1825                 : ((_IOC_DIR(cmd) == _IOC_READ) ? "RD"
1826                 : "WR")),
1827                 _IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd));
1828
1829         if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) {
1830                 PRINTK("cmd 0x%08X contains bad magic\n", cmd);
1831                 return -ENOTTY;
1832         }
1833
1834         ret = 0;
1835         switch (cmd) {
1836         case ICARSAMODEXPO:
1837         case ICARSACRT:
1838                 if (quiesce_z90crypt) {
1839                         ret = -EQUIESCE;
1840                         break;
1841                 }
1842                 ret = -ENODEV; // Default if no devices
1843                 loopLim = z90crypt.hdware_info->hdware_mask.st_count -
1844                         (z90crypt.hdware_info->hdware_mask.disabled_count +
1845                          z90crypt.hdware_info->hdware_mask.user_disabled_count);
1846                 for (i = 0; i < loopLim; i++) {
1847                         ret = z90crypt_rsa(private_data_p, PID(), cmd, arg);
1848                         if (ret != -ERESTARTSYS)
1849                                 break;
1850                 }
1851                 if (ret == -ERESTARTSYS)
1852                         ret = -ENODEV;
1853                 break;
1854
1855         case Z90STAT_TOTALCOUNT:
1856                 tempstat = get_status_totalcount();
1857                 if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0)
1858                         ret = -EFAULT;
1859                 break;
1860
1861         case Z90STAT_PCICACOUNT:
1862                 tempstat = get_status_PCICAcount();
1863                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1864                         ret = -EFAULT;
1865                 break;
1866
1867         case Z90STAT_PCICCCOUNT:
1868                 tempstat = get_status_PCICCcount();
1869                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1870                         ret = -EFAULT;
1871                 break;
1872
1873         case Z90STAT_PCIXCCMCL2COUNT:
1874                 tempstat = get_status_PCIXCCMCL2count();
1875                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1876                         ret = -EFAULT;
1877                 break;
1878
1879         case Z90STAT_PCIXCCMCL3COUNT:
1880                 tempstat = get_status_PCIXCCMCL3count();
1881                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1882                         ret = -EFAULT;
1883                 break;
1884
1885         case Z90STAT_CEX2CCOUNT:
1886                 tempstat = get_status_CEX2Ccount();
1887                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1888                         ret = -EFAULT;
1889                 break;
1890
1891         case Z90STAT_REQUESTQ_COUNT:
1892                 tempstat = get_status_requestq_count();
1893                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1894                         ret = -EFAULT;
1895                 break;
1896
1897         case Z90STAT_PENDINGQ_COUNT:
1898                 tempstat = get_status_pendingq_count();
1899                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1900                         ret = -EFAULT;
1901                 break;
1902
1903         case Z90STAT_TOTALOPEN_COUNT:
1904                 tempstat = get_status_totalopen_count();
1905                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1906                         ret = -EFAULT;
1907                 break;
1908
1909         case Z90STAT_DOMAIN_INDEX:
1910                 tempstat = get_status_domain_index();
1911                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1912                         ret = -EFAULT;
1913                 break;
1914
1915         case Z90STAT_STATUS_MASK:
1916                 status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1917                 if (!status) {
1918                         PRINTK("kmalloc for status failed!\n");
1919                         ret = -ENOMEM;
1920                         break;
1921                 }
1922                 get_status_status_mask(status);
1923                 if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS)
1924                                                                         != 0)
1925                         ret = -EFAULT;
1926                 kfree(status);
1927                 break;
1928
1929         case Z90STAT_QDEPTH_MASK:
1930                 qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1931                 if (!qdepth) {
1932                         PRINTK("kmalloc for qdepth failed!\n");
1933                         ret = -ENOMEM;
1934                         break;
1935                 }
1936                 get_status_qdepth_mask(qdepth);
1937                 if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0)
1938                         ret = -EFAULT;
1939                 kfree(qdepth);
1940                 break;
1941
1942         case Z90STAT_PERDEV_REQCNT:
1943                 reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL);
1944                 if (!reqcnt) {
1945                         PRINTK("kmalloc for reqcnt failed!\n");
1946                         ret = -ENOMEM;
1947                         break;
1948                 }
1949                 get_status_perdevice_reqcnt(reqcnt);
1950                 if (copy_to_user((char __user *) arg, reqcnt,
1951                                  Z90CRYPT_NUM_APS * sizeof(int)) != 0)
1952                         ret = -EFAULT;
1953                 kfree(reqcnt);
1954                 break;
1955
1956                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1957         case ICAZ90STATUS:
1958                 if (deprecated_msg_count1 < 20) {
1959                         PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n");
1960                         deprecated_msg_count1++;
1961                         if (deprecated_msg_count1 == 20)
1962                                 PRINTK("No longer issuing messages related to "
1963                                        "deprecated call to ICAZ90STATUS.\n");
1964                 }
1965
1966                 pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL);
1967                 if (!pstat) {
1968                         PRINTK("kmalloc for pstat failed!\n");
1969                         ret = -ENOMEM;
1970                         break;
1971                 }
1972
1973                 pstat->totalcount        = get_status_totalcount();
1974                 pstat->leedslitecount    = get_status_PCICAcount();
1975                 pstat->leeds2count       = get_status_PCICCcount();
1976                 pstat->requestqWaitCount = get_status_requestq_count();
1977                 pstat->pendingqWaitCount = get_status_pendingq_count();
1978                 pstat->totalOpenCount    = get_status_totalopen_count();
1979                 pstat->cryptoDomain      = get_status_domain_index();
1980                 get_status_status_mask(pstat->status);
1981                 get_status_qdepth_mask(pstat->qdepth);
1982
1983                 if (copy_to_user((struct ica_z90_status __user *) arg, pstat,
1984                                  sizeof(struct ica_z90_status)) != 0)
1985                         ret = -EFAULT;
1986                 kfree(pstat);
1987                 break;
1988
1989                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1990         case Z90STAT_PCIXCCCOUNT:
1991                 if (deprecated_msg_count2 < 20) {
1992                         PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n");
1993                         deprecated_msg_count2++;
1994                         if (deprecated_msg_count2 == 20)
1995                                 PRINTK("No longer issuing messages about depre"
1996                                        "cated ioctl Z90STAT_PCIXCCCOUNT.\n");
1997                 }
1998
1999                 tempstat = get_status_PCIXCCcount();
2000                 if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0)
2001                         ret = -EFAULT;
2002                 break;
2003
2004         case Z90QUIESCE:
2005                 if (current->euid != 0) {
2006                         PRINTK("QUIESCE fails: euid %d\n",
2007                                current->euid);
2008                         ret = -EACCES;
2009                 } else {
2010                         PRINTK("QUIESCE device from PID %d\n", PID());
2011                         quiesce_z90crypt = 1;
2012                 }
2013                 break;
2014
2015         default:
2016                 /* user passed an invalid IOCTL number */
2017                 PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd);
2018                 ret = -ENOTTY;
2019                 break;
2020         }
2021
2022         return ret;
2023 }
2024
2025 static inline int
2026 sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len)
2027 {
2028         int hl, i;
2029
2030         hl = 0;
2031         for (i = 0; i < len; i++)
2032                 hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]);
2033         hl += sprintf(outaddr+hl, " ");
2034
2035         return hl;
2036 }
2037
2038 static inline int
2039 sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len)
2040 {
2041         int hl, inl, c, cx;
2042
2043         hl = sprintf(outaddr, "    ");
2044         inl = 0;
2045         for (c = 0; c < (len / 16); c++) {
2046                 hl += sprintcl(outaddr+hl, addr+inl, 16);
2047                 inl += 16;
2048         }
2049
2050         cx = len%16;
2051         if (cx) {
2052                 hl += sprintcl(outaddr+hl, addr+inl, cx);
2053                 inl += cx;
2054         }
2055
2056         hl += sprintf(outaddr+hl, "\n");
2057
2058         return hl;
2059 }
2060
2061 static inline int
2062 sprinthx(unsigned char *title, unsigned char *outaddr,
2063          unsigned char *addr, unsigned int len)
2064 {
2065         int hl, inl, r, rx;
2066
2067         hl = sprintf(outaddr, "\n%s\n", title);
2068         inl = 0;
2069         for (r = 0; r < (len / 64); r++) {
2070                 hl += sprintrw(outaddr+hl, addr+inl, 64);
2071                 inl += 64;
2072         }
2073         rx = len % 64;
2074         if (rx) {
2075                 hl += sprintrw(outaddr+hl, addr+inl, rx);
2076                 inl += rx;
2077         }
2078
2079         hl += sprintf(outaddr+hl, "\n");
2080
2081         return hl;
2082 }
2083
2084 static inline int
2085 sprinthx4(unsigned char *title, unsigned char *outaddr,
2086           unsigned int *array, unsigned int len)
2087 {
2088         int hl, r;
2089
2090         hl = sprintf(outaddr, "\n%s\n", title);
2091
2092         for (r = 0; r < len; r++) {
2093                 if ((r % 8) == 0)
2094                         hl += sprintf(outaddr+hl, "    ");
2095                 hl += sprintf(outaddr+hl, "%08X ", array[r]);
2096                 if ((r % 8) == 7)
2097                         hl += sprintf(outaddr+hl, "\n");
2098         }
2099
2100         hl += sprintf(outaddr+hl, "\n");
2101
2102         return hl;
2103 }
2104
2105 static int
2106 z90crypt_status(char *resp_buff, char **start, off_t offset,
2107                 int count, int *eof, void *data)
2108 {
2109         unsigned char *workarea;
2110         int len;
2111
2112         /* resp_buff is a page. Use the right half for a work area */
2113         workarea = resp_buff+2000;
2114         len = 0;
2115         len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n",
2116                 z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT);
2117         len += sprintf(resp_buff+len, "Cryptographic domain: %d\n",
2118                 get_status_domain_index());
2119         len += sprintf(resp_buff+len, "Total device count: %d\n",
2120                 get_status_totalcount());
2121         len += sprintf(resp_buff+len, "PCICA count: %d\n",
2122                 get_status_PCICAcount());
2123         len += sprintf(resp_buff+len, "PCICC count: %d\n",
2124                 get_status_PCICCcount());
2125         len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n",
2126                 get_status_PCIXCCMCL2count());
2127         len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n",
2128                 get_status_PCIXCCMCL3count());
2129         len += sprintf(resp_buff+len, "CEX2C count: %d\n",
2130                 get_status_CEX2Ccount());
2131         len += sprintf(resp_buff+len, "requestq count: %d\n",
2132                 get_status_requestq_count());
2133         len += sprintf(resp_buff+len, "pendingq count: %d\n",
2134                 get_status_pendingq_count());
2135         len += sprintf(resp_buff+len, "Total open handles: %d\n\n",
2136                 get_status_totalopen_count());
2137         len += sprinthx(
2138                 "Online devices: 1: PCICA, 2: PCICC, 3: PCIXCC (MCL2), "
2139                 "4: PCIXCC (MCL3), 5: CEX2C",
2140                 resp_buff+len,
2141                 get_status_status_mask(workarea),
2142                 Z90CRYPT_NUM_APS);
2143         len += sprinthx("Waiting work element counts",
2144                 resp_buff+len,
2145                 get_status_qdepth_mask(workarea),
2146                 Z90CRYPT_NUM_APS);
2147         len += sprinthx4(
2148                 "Per-device successfully completed request counts",
2149                 resp_buff+len,
2150                 get_status_perdevice_reqcnt((unsigned int *)workarea),
2151                 Z90CRYPT_NUM_APS);
2152         *eof = 1;
2153         memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int));
2154         return len;
2155 }
2156
2157 static inline void
2158 disable_card(int card_index)
2159 {
2160         struct device *devp;
2161
2162         devp = LONG2DEVPTR(card_index);
2163         if (!devp || devp->user_disabled)
2164                 return;
2165         devp->user_disabled = 1;
2166         z90crypt.hdware_info->hdware_mask.user_disabled_count++;
2167         if (devp->dev_type == -1)
2168                 return;
2169         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++;
2170 }
2171
2172 static inline void
2173 enable_card(int card_index)
2174 {
2175         struct device *devp;
2176
2177         devp = LONG2DEVPTR(card_index);
2178         if (!devp || !devp->user_disabled)
2179                 return;
2180         devp->user_disabled = 0;
2181         z90crypt.hdware_info->hdware_mask.user_disabled_count--;
2182         if (devp->dev_type == -1)
2183                 return;
2184         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--;
2185 }
2186
2187 static inline int
2188 scan_char(unsigned char *bf, unsigned int len,
2189           unsigned int *offs, unsigned int *p_eof, unsigned char c)
2190 {
2191         unsigned int i, found;
2192
2193         found = 0;
2194         for (i = 0; i < len; i++) {
2195                 if (bf[i] == c) {
2196                         found = 1;
2197                         break;
2198                 }
2199                 if (bf[i] == '\0') {
2200                         *p_eof = 1;
2201                         break;
2202                 }
2203                 if (bf[i] == '\n') {
2204                         break;
2205                 }
2206         }
2207         *offs = i+1;
2208         return found;
2209 }
2210
2211 static inline int
2212 scan_string(unsigned char *bf, unsigned int len,
2213             unsigned int *offs, unsigned int *p_eof, unsigned char *s)
2214 {
2215         unsigned int temp_len, temp_offs, found, eof;
2216
2217         temp_len = temp_offs = found = eof = 0;
2218         while (!eof && !found) {
2219                 found = scan_char(bf+temp_len, len-temp_len,
2220                                   &temp_offs, &eof, *s);
2221
2222                 temp_len += temp_offs;
2223                 if (eof) {
2224                         found = 0;
2225                         break;
2226                 }
2227
2228                 if (found) {
2229                         if (len >= temp_offs+strlen(s)) {
2230                                 found = !strncmp(bf+temp_len-1, s, strlen(s));
2231                                 if (found) {
2232                                         *offs = temp_len+strlen(s)-1;
2233                                         break;
2234                                 }
2235                         } else {
2236                                 found = 0;
2237                                 *p_eof = 1;
2238                                 break;
2239                         }
2240                 }
2241         }
2242         return found;
2243 }
2244
2245 static int
2246 z90crypt_status_write(struct file *file, const char __user *buffer,
2247                       unsigned long count, void *data)
2248 {
2249         int i, j, len, offs, found, eof;
2250         unsigned char *lbuf;
2251         unsigned int local_count;
2252
2253 #define LBUFSIZE 600
2254         lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
2255         if (!lbuf) {
2256                 PRINTK("kmalloc failed!\n");
2257                 return 0;
2258         }
2259
2260         if (count <= 0)
2261                 return 0;
2262
2263         local_count = UMIN((unsigned int)count, LBUFSIZE-1);
2264
2265         if (copy_from_user(lbuf, buffer, local_count) != 0) {
2266                 kfree(lbuf);
2267                 return -EFAULT;
2268         }
2269
2270         lbuf[local_count-1] = '\0';
2271
2272         len = 0;
2273         eof = 0;
2274         found = 0;
2275         while (!eof) {
2276                 found = scan_string(lbuf+len, local_count-len, &offs, &eof,
2277                                     "Online devices");
2278                 len += offs;
2279                 if (found == 1)
2280                         break;
2281         }
2282
2283         if (eof) {
2284                 kfree(lbuf);
2285                 return count;
2286         }
2287
2288         if (found)
2289                 found = scan_char(lbuf+len, local_count-len, &offs, &eof, '\n');
2290
2291         if (!found || eof) {
2292                 kfree(lbuf);
2293                 return count;
2294         }
2295
2296         len += offs;
2297         j = 0;
2298         for (i = 0; i < 80; i++) {
2299                 switch (*(lbuf+len+i)) {
2300                 case '\t':
2301                 case ' ':
2302                         break;
2303                 case '\n':
2304                 default:
2305                         eof = 1;
2306                         break;
2307                 case '0':
2308                 case '1':
2309                 case '2':
2310                 case '3':
2311                 case '4':
2312                 case '5':
2313                         j++;
2314                         break;
2315                 case 'd':
2316                 case 'D':
2317                         disable_card(j);
2318                         j++;
2319                         break;
2320                 case 'e':
2321                 case 'E':
2322                         enable_card(j);
2323                         j++;
2324                         break;
2325                 }
2326                 if (eof)
2327                         break;
2328         }
2329
2330         kfree(lbuf);
2331         return count;
2332 }
2333
2334 /**
2335  * Functions that run under a timer, with no process id
2336  *
2337  * The task functions:
2338  *     z90crypt_reader_task
2339  *       helper_send_work
2340  *       helper_handle_work_element
2341  *       helper_receive_rc
2342  *     z90crypt_config_task
2343  *     z90crypt_cleanup_task
2344  *
2345  * Helper functions:
2346  *     z90crypt_schedule_reader_timer
2347  *     z90crypt_schedule_reader_task
2348  *     z90crypt_schedule_config_task
2349  *     z90crypt_schedule_cleanup_task
2350  */
2351 static inline int
2352 receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p,
2353                            unsigned char *buff, unsigned char __user **dest_p_p)
2354 {
2355         int dv, rv;
2356         struct device *dev_ptr;
2357         struct caller *caller_p;
2358         struct ica_rsa_modexpo *icaMsg_p;
2359         struct list_head *ptr, *tptr;
2360
2361         memcpy(psmid, NULL_psmid, sizeof(NULL_psmid));
2362
2363         if (z90crypt.terminating)
2364                 return REC_FATAL_ERROR;
2365
2366         caller_p = 0;
2367         dev_ptr = z90crypt.device_p[index];
2368         rv = 0;
2369         do {
2370                 if (!dev_ptr || dev_ptr->disabled) {
2371                         rv = REC_NO_WORK; // a disabled device can't return work
2372                         break;
2373                 }
2374                 if (dev_ptr->dev_self_x != index) {
2375                         PRINTKC("Corrupt dev ptr\n");
2376                         z90crypt.terminating = 1;
2377                         rv = REC_FATAL_ERROR;
2378                         break;
2379                 }
2380                 if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) {
2381                         dv = DEV_REC_EXCEPTION;
2382                         PRINTK("dev_resp_l = %d, dev_resp_p = %p\n",
2383                                dev_ptr->dev_resp_l, dev_ptr->dev_resp_p);
2384                 } else {
2385                         PDEBUG("Dequeue called for device %d\n", index);
2386                         dv = receive_from_AP(index, z90crypt.cdx,
2387                                              dev_ptr->dev_resp_l,
2388                                              dev_ptr->dev_resp_p, psmid);
2389                 }
2390                 switch (dv) {
2391                 case DEV_REC_EXCEPTION:
2392                         rv = REC_FATAL_ERROR;
2393                         z90crypt.terminating = 1;
2394                         PRINTKC("Exception in receive from device %d\n",
2395                                 index);
2396                         break;
2397                 case DEV_ONLINE:
2398                         rv = 0;
2399                         break;
2400                 case DEV_EMPTY:
2401                         rv = REC_EMPTY;
2402                         break;
2403                 case DEV_NO_WORK:
2404                         rv = REC_NO_WORK;
2405                         break;
2406                 case DEV_BAD_MESSAGE:
2407                 case DEV_GONE:
2408                 case REC_HARDWAR_ERR:
2409                 default:
2410                         rv = REC_NO_RESPONSE;
2411                         break;
2412                 }
2413                 if (rv)
2414                         break;
2415                 if (dev_ptr->dev_caller_count <= 0) {
2416                         rv = REC_USER_GONE;
2417                         break;
2418                 }
2419
2420                 list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) {
2421                         caller_p = list_entry(ptr, struct caller, caller_liste);
2422                         if (!memcmp(caller_p->caller_id, psmid,
2423                                     sizeof(caller_p->caller_id))) {
2424                                 if (!list_empty(&caller_p->caller_liste)) {
2425                                         list_del_init(ptr);
2426                                         dev_ptr->dev_caller_count--;
2427                                         break;
2428                                 }
2429                         }
2430                         caller_p = 0;
2431                 }
2432                 if (!caller_p) {
2433                         PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X"
2434                                 "%02X%02X%02X in device list\n",
2435                                 psmid[0], psmid[1], psmid[2], psmid[3],
2436                                 psmid[4], psmid[5], psmid[6], psmid[7]);
2437                         rv = REC_USER_GONE;
2438                         break;
2439                 }
2440
2441                 PDEBUG("caller_p after successful receive: %p\n", caller_p);
2442                 rv = convert_response(dev_ptr->dev_resp_p,
2443                                       caller_p->caller_buf_p, buff_len_p, buff);
2444                 switch (rv) {
2445                 case REC_USE_PCICA:
2446                         break;
2447                 case REC_OPERAND_INV:
2448                 case REC_OPERAND_SIZE:
2449                 case REC_EVEN_MOD:
2450                 case REC_INVALID_PAD:
2451                         PDEBUG("device %d: 'user error' %d\n", index, rv);
2452                         break;
2453                 case WRONG_DEVICE_TYPE:
2454                 case REC_HARDWAR_ERR:
2455                 case REC_BAD_MESSAGE:
2456                         PRINTKW("device %d: hardware error %d\n", index, rv);
2457                         rv = REC_NO_RESPONSE;
2458                         break;
2459                 default:
2460                         PDEBUG("device %d: rv = %d\n", index, rv);
2461                         break;
2462                 }
2463         } while (0);
2464
2465         switch (rv) {
2466         case 0:
2467                 PDEBUG("Successful receive from device %d\n", index);
2468                 icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p;
2469                 *dest_p_p = icaMsg_p->outputdata;
2470                 if (*buff_len_p == 0)
2471                         PRINTK("Zero *buff_len_p\n");
2472                 break;
2473         case REC_NO_RESPONSE:
2474                 PRINTKW("Removing device %d from availability\n", index);
2475                 remove_device(dev_ptr);
2476                 break;
2477         }
2478
2479         if (caller_p)
2480                 unbuild_caller(dev_ptr, caller_p);
2481
2482         return rv;
2483 }
2484
2485 static inline void
2486 helper_send_work(int index)
2487 {
2488         struct work_element *rq_p;
2489         int rv;
2490
2491         if (list_empty(&request_list))
2492                 return;
2493         requestq_count--;
2494         rq_p = list_entry(request_list.next, struct work_element, liste);
2495         list_del_init(&rq_p->liste);
2496         rq_p->audit[1] |= FP_REMREQUEST;
2497         if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) {
2498                 rq_p->devindex = SHRT2LONG(index);
2499                 rv = send_to_crypto_device(rq_p);
2500                 if (rv == 0) {
2501                         rq_p->requestsent = jiffies;
2502                         rq_p->audit[0] |= FP_SENT;
2503                         list_add_tail(&rq_p->liste, &pending_list);
2504                         ++pendingq_count;
2505                         rq_p->audit[0] |= FP_PENDING;
2506                 } else {
2507                         switch (rv) {
2508                         case REC_OPERAND_INV:
2509                         case REC_OPERAND_SIZE:
2510                         case REC_EVEN_MOD:
2511                         case REC_INVALID_PAD:
2512                                 rq_p->retcode = -EINVAL;
2513                                 break;
2514                         case SEN_NOT_AVAIL:
2515                         case SEN_RETRY:
2516                         case REC_NO_RESPONSE:
2517                         default:
2518                                 if (z90crypt.mask.st_count > 1)
2519                                         rq_p->retcode =
2520                                                 -ERESTARTSYS;
2521                                 else
2522                                         rq_p->retcode = -ENODEV;
2523                                 break;
2524                         }
2525                         rq_p->status[0] |= STAT_FAILED;
2526                         rq_p->audit[1] |= FP_AWAKENING;
2527                         atomic_set(&rq_p->alarmrung, 1);
2528                         wake_up(&rq_p->waitq);
2529                 }
2530         } else {
2531                 if (z90crypt.mask.st_count > 1)
2532                         rq_p->retcode = -ERESTARTSYS;
2533                 else
2534                         rq_p->retcode = -ENODEV;
2535                 rq_p->status[0] |= STAT_FAILED;
2536                 rq_p->audit[1] |= FP_AWAKENING;
2537                 atomic_set(&rq_p->alarmrung, 1);
2538                 wake_up(&rq_p->waitq);
2539         }
2540 }
2541
2542 static inline void
2543 helper_handle_work_element(int index, unsigned char psmid[8], int rc,
2544                            int buff_len, unsigned char *buff,
2545                            unsigned char __user *resp_addr)
2546 {
2547         struct work_element *pq_p;
2548         struct list_head *lptr, *tptr;
2549
2550         pq_p = 0;
2551         list_for_each_safe(lptr, tptr, &pending_list) {
2552                 pq_p = list_entry(lptr, struct work_element, liste);
2553                 if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) {
2554                         list_del_init(lptr);
2555                         pendingq_count--;
2556                         pq_p->audit[1] |= FP_NOTPENDING;
2557                         break;
2558                 }
2559                 pq_p = 0;
2560         }
2561
2562         if (!pq_p) {
2563                 PRINTK("device %d has work but no caller exists on pending Q\n",
2564                        SHRT2LONG(index));
2565                 return;
2566         }
2567
2568         switch (rc) {
2569                 case 0:
2570                         pq_p->resp_buff_size = buff_len;
2571                         pq_p->audit[1] |= FP_RESPSIZESET;
2572                         if (buff_len) {
2573                                 pq_p->resp_addr = resp_addr;
2574                                 pq_p->audit[1] |= FP_RESPADDRCOPIED;
2575                                 memcpy(pq_p->resp_buff, buff, buff_len);
2576                                 pq_p->audit[1] |= FP_RESPBUFFCOPIED;
2577                         }
2578                         break;
2579                 case REC_OPERAND_INV:
2580                 case REC_OPERAND_SIZE:
2581                 case REC_EVEN_MOD:
2582                 case REC_INVALID_PAD:
2583                         PDEBUG("-EINVAL after application error %d\n", rc);
2584                         pq_p->retcode = -EINVAL;
2585                         pq_p->status[0] |= STAT_FAILED;
2586                         break;
2587                 case REC_USE_PCICA:
2588                         pq_p->retcode = -ERESTARTSYS;
2589                         pq_p->status[0] |= STAT_FAILED;
2590                         break;
2591                 case REC_NO_RESPONSE:
2592                 default:
2593                         if (z90crypt.mask.st_count > 1)
2594                                 pq_p->retcode = -ERESTARTSYS;
2595                         else
2596                                 pq_p->retcode = -ENODEV;
2597                         pq_p->status[0] |= STAT_FAILED;
2598                         break;
2599         }
2600         if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) {
2601                 pq_p->audit[1] |= FP_AWAKENING;
2602                 atomic_set(&pq_p->alarmrung, 1);
2603                 wake_up(&pq_p->waitq);
2604         }
2605 }
2606
2607 /**
2608  * return TRUE if the work element should be removed from the queue
2609  */
2610 static inline int
2611 helper_receive_rc(int index, int *rc_p)
2612 {
2613         switch (*rc_p) {
2614         case 0:
2615         case REC_OPERAND_INV:
2616         case REC_OPERAND_SIZE:
2617         case REC_EVEN_MOD:
2618         case REC_INVALID_PAD:
2619         case REC_USE_PCICA:
2620                 break;
2621
2622         case REC_BUSY:
2623         case REC_NO_WORK:
2624         case REC_EMPTY:
2625         case REC_RETRY_DEV:
2626         case REC_FATAL_ERROR:
2627                 return 0;
2628
2629         case REC_NO_RESPONSE:
2630                 break;
2631
2632         default:
2633                 PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n",
2634                        *rc_p, SHRT2LONG(index));
2635                 *rc_p = REC_NO_RESPONSE;
2636                 break;
2637         }
2638         return 1;
2639 }
2640
2641 static inline void
2642 z90crypt_schedule_reader_timer(void)
2643 {
2644         if (timer_pending(&reader_timer))
2645                 return;
2646         if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0)
2647                 PRINTK("Timer pending while modifying reader timer\n");
2648 }
2649
2650 static void
2651 z90crypt_reader_task(unsigned long ptr)
2652 {
2653         int workavail, index, rc, buff_len;
2654         unsigned char   psmid[8];
2655         unsigned char __user *resp_addr;
2656         static unsigned char buff[1024];
2657
2658         /**
2659          * we use workavail = 2 to ensure 2 passes with nothing dequeued before
2660          * exiting the loop. If (pendingq_count+requestq_count) == 0 after the
2661          * loop, there is no work remaining on the queues.
2662          */
2663         resp_addr = 0;
2664         workavail = 2;
2665         buff_len = 0;
2666         while (workavail) {
2667                 workavail--;
2668                 rc = 0;
2669                 spin_lock_irq(&queuespinlock);
2670                 memset(buff, 0x00, sizeof(buff));
2671
2672                 /* Dequeue once from each device in round robin. */
2673                 for (index = 0; index < z90crypt.mask.st_count; index++) {
2674                         PDEBUG("About to receive.\n");
2675                         rc = receive_from_crypto_device(SHRT2LONG(index),
2676                                                         psmid,
2677                                                         &buff_len,
2678                                                         buff,
2679                                                         &resp_addr);
2680                         PDEBUG("Dequeued: rc = %d.\n", rc);
2681
2682                         if (helper_receive_rc(index, &rc)) {
2683                                 if (rc != REC_NO_RESPONSE) {
2684                                         helper_send_work(index);
2685                                         workavail = 2;
2686                                 }
2687
2688                                 helper_handle_work_element(index, psmid, rc,
2689                                                            buff_len, buff,
2690                                                            resp_addr);
2691                         }
2692
2693                         if (rc == REC_FATAL_ERROR)
2694                                 PRINTKW("REC_FATAL_ERROR from device %d!\n",
2695                                         SHRT2LONG(index));
2696                 }
2697                 spin_unlock_irq(&queuespinlock);
2698         }
2699
2700         if (pendingq_count + requestq_count)
2701                 z90crypt_schedule_reader_timer();
2702 }
2703
2704 static inline void
2705 z90crypt_schedule_config_task(unsigned int expiration)
2706 {
2707         if (timer_pending(&config_timer))
2708                 return;
2709         if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0)
2710                 PRINTK("Timer pending while modifying config timer\n");
2711 }
2712
2713 static void
2714 z90crypt_config_task(unsigned long ptr)
2715 {
2716         int rc;
2717
2718         PDEBUG("jiffies %ld\n", jiffies);
2719
2720         if ((rc = refresh_z90crypt(&z90crypt.cdx)))
2721                 PRINTK("Error %d detected in refresh_z90crypt.\n", rc);
2722         /* If return was fatal, don't bother reconfiguring */
2723         if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR))
2724                 z90crypt_schedule_config_task(CONFIGTIME);
2725 }
2726
2727 static inline void
2728 z90crypt_schedule_cleanup_task(void)
2729 {
2730         if (timer_pending(&cleanup_timer))
2731                 return;
2732         if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0)
2733                 PRINTK("Timer pending while modifying cleanup timer\n");
2734 }
2735
2736 static inline void
2737 helper_drain_queues(void)
2738 {
2739         struct work_element *pq_p;
2740         struct list_head *lptr, *tptr;
2741
2742         list_for_each_safe(lptr, tptr, &pending_list) {
2743                 pq_p = list_entry(lptr, struct work_element, liste);
2744                 pq_p->retcode = -ENODEV;
2745                 pq_p->status[0] |= STAT_FAILED;
2746                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2747                                (struct caller *)pq_p->requestptr);
2748                 list_del_init(lptr);
2749                 pendingq_count--;
2750                 pq_p->audit[1] |= FP_NOTPENDING;
2751                 pq_p->audit[1] |= FP_AWAKENING;
2752                 atomic_set(&pq_p->alarmrung, 1);
2753                 wake_up(&pq_p->waitq);
2754         }
2755
2756         list_for_each_safe(lptr, tptr, &request_list) {
2757                 pq_p = list_entry(lptr, struct work_element, liste);
2758                 pq_p->retcode = -ENODEV;
2759                 pq_p->status[0] |= STAT_FAILED;
2760                 list_del_init(lptr);
2761                 requestq_count--;
2762                 pq_p->audit[1] |= FP_REMREQUEST;
2763                 pq_p->audit[1] |= FP_AWAKENING;
2764                 atomic_set(&pq_p->alarmrung, 1);
2765                 wake_up(&pq_p->waitq);
2766         }
2767 }
2768
2769 static inline void
2770 helper_timeout_requests(void)
2771 {
2772         struct work_element *pq_p;
2773         struct list_head *lptr, *tptr;
2774         long timelimit;
2775
2776         timelimit = jiffies - (CLEANUPTIME * HZ);
2777         /* The list is in strict chronological order */
2778         list_for_each_safe(lptr, tptr, &pending_list) {
2779                 pq_p = list_entry(lptr, struct work_element, liste);
2780                 if (pq_p->requestsent >= timelimit)
2781                         break;
2782                 PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2783                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2784                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2785                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2786                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2787                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2788                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2789                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2790                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2791                 pq_p->retcode = -ETIMEOUT;
2792                 pq_p->status[0] |= STAT_FAILED;
2793                 /* get this off any caller queue it may be on */
2794                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2795                                (struct caller *) pq_p->requestptr);
2796                 list_del_init(lptr);
2797                 pendingq_count--;
2798                 pq_p->audit[1] |= FP_TIMEDOUT;
2799                 pq_p->audit[1] |= FP_NOTPENDING;
2800                 pq_p->audit[1] |= FP_AWAKENING;
2801                 atomic_set(&pq_p->alarmrung, 1);
2802                 wake_up(&pq_p->waitq);
2803         }
2804
2805         /**
2806          * If pending count is zero, items left on the request queue may
2807          * never be processed.
2808          */
2809         if (pendingq_count <= 0) {
2810                 list_for_each_safe(lptr, tptr, &request_list) {
2811                         pq_p = list_entry(lptr, struct work_element, liste);
2812                         if (pq_p->requestsent >= timelimit)
2813                                 break;
2814                 PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2815                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2816                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2817                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2818                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2819                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2820                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2821                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2822                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2823                         pq_p->retcode = -ETIMEOUT;
2824                         pq_p->status[0] |= STAT_FAILED;
2825                         list_del_init(lptr);
2826                         requestq_count--;
2827                         pq_p->audit[1] |= FP_TIMEDOUT;
2828                         pq_p->audit[1] |= FP_REMREQUEST;
2829                         pq_p->audit[1] |= FP_AWAKENING;
2830                         atomic_set(&pq_p->alarmrung, 1);
2831                         wake_up(&pq_p->waitq);
2832                 }
2833         }
2834 }
2835
2836 static void
2837 z90crypt_cleanup_task(unsigned long ptr)
2838 {
2839         PDEBUG("jiffies %ld\n", jiffies);
2840         spin_lock_irq(&queuespinlock);
2841         if (z90crypt.mask.st_count <= 0) // no devices!
2842                 helper_drain_queues();
2843         else
2844                 helper_timeout_requests();
2845         spin_unlock_irq(&queuespinlock);
2846         z90crypt_schedule_cleanup_task();
2847 }
2848
2849 static void
2850 z90crypt_schedule_reader_task(unsigned long ptr)
2851 {
2852         tasklet_schedule(&reader_tasklet);
2853 }
2854
2855 /**
2856  * Lowlevel Functions:
2857  *
2858  *   create_z90crypt:  creates and initializes basic data structures
2859  *   refresh_z90crypt:  re-initializes basic data structures
2860  *   find_crypto_devices: returns a count and mask of hardware status
2861  *   create_crypto_device:  builds the descriptor for a device
2862  *   destroy_crypto_device:  unallocates the descriptor for a device
2863  *   destroy_z90crypt:  drains all work, unallocates structs
2864  */
2865
2866 /**
2867  * build the z90crypt root structure using the given domain index
2868  */
2869 static int
2870 create_z90crypt(int *cdx_p)
2871 {
2872         struct hdware_block *hdware_blk_p;
2873
2874         memset(&z90crypt, 0x00, sizeof(struct z90crypt));
2875         z90crypt.domain_established = 0;
2876         z90crypt.len = sizeof(struct z90crypt);
2877         z90crypt.max_count = Z90CRYPT_NUM_DEVS;
2878         z90crypt.cdx = *cdx_p;
2879
2880         hdware_blk_p = (struct hdware_block *)
2881                 kmalloc(sizeof(struct hdware_block), GFP_ATOMIC);
2882         if (!hdware_blk_p) {
2883                 PDEBUG("kmalloc for hardware block failed\n");
2884                 return ENOMEM;
2885         }
2886         memset(hdware_blk_p, 0x00, sizeof(struct hdware_block));
2887         z90crypt.hdware_info = hdware_blk_p;
2888
2889         return 0;
2890 }
2891
2892 static inline int
2893 helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found)
2894 {
2895         enum hdstat hd_stat;
2896         int q_depth, dev_type;
2897         int indx, chkdom, numdomains;
2898
2899         q_depth = dev_type = numdomains = 0;
2900         for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1);
2901         for (indx = 0; indx < z90crypt.max_count; indx++) {
2902                 hd_stat = HD_NOT_THERE;
2903                 numdomains = 0;
2904                 for (chkdom = 0; chkdom <= 15; chkdom++) {
2905                         hd_stat = query_online(indx, chkdom, MAX_RESET,
2906                                                &q_depth, &dev_type);
2907                         if (hd_stat == HD_TSQ_EXCEPTION) {
2908                                 z90crypt.terminating = 1;
2909                                 PRINTKC("exception taken!\n");
2910                                 break;
2911                         }
2912                         if (hd_stat == HD_ONLINE) {
2913                                 cdx_array[numdomains++] = chkdom;
2914                                 if (*cdx_p == chkdom) {
2915                                         *correct_cdx_found  = 1;
2916                                         break;
2917                                 }
2918                         }
2919                 }
2920                 if ((*correct_cdx_found == 1) || (numdomains != 0))
2921                         break;
2922                 if (z90crypt.terminating)
2923                         break;
2924         }
2925         return numdomains;
2926 }
2927
2928 static inline int
2929 probe_crypto_domain(int *cdx_p)
2930 {
2931         int cdx_array[16];
2932         char cdx_array_text[53], temp[5];
2933         int correct_cdx_found, numdomains;
2934
2935         correct_cdx_found = 0;
2936         numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found);
2937
2938         if (z90crypt.terminating)
2939                 return TSQ_FATAL_ERROR;
2940
2941         if (correct_cdx_found)
2942                 return 0;
2943
2944         if (numdomains == 0) {
2945                 PRINTKW("Unable to find crypto domain: No devices found\n");
2946                 return Z90C_NO_DEVICES;
2947         }
2948
2949         if (numdomains == 1) {
2950                 if (*cdx_p == -1) {
2951                         *cdx_p = cdx_array[0];
2952                         return 0;
2953                 }
2954                 PRINTKW("incorrect domain: specified = %d, found = %d\n",
2955                        *cdx_p, cdx_array[0]);
2956                 return Z90C_INCORRECT_DOMAIN;
2957         }
2958
2959         numdomains--;
2960         sprintf(cdx_array_text, "%d", cdx_array[numdomains]);
2961         while (numdomains) {
2962                 numdomains--;
2963                 sprintf(temp, ", %d", cdx_array[numdomains]);
2964                 strcat(cdx_array_text, temp);
2965         }
2966
2967         PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n",
2968                 *cdx_p, cdx_array_text);
2969         return Z90C_AMBIGUOUS_DOMAIN;
2970 }
2971
2972 static int
2973 refresh_z90crypt(int *cdx_p)
2974 {
2975         int i, j, indx, rv;
2976         static struct status local_mask;
2977         struct device *devPtr;
2978         unsigned char oldStat, newStat;
2979         int return_unchanged;
2980
2981         if (z90crypt.len != sizeof(z90crypt))
2982                 return ENOTINIT;
2983         if (z90crypt.terminating)
2984                 return TSQ_FATAL_ERROR;
2985         rv = 0;
2986         if (!z90crypt.hdware_info->hdware_mask.st_count &&
2987             !z90crypt.domain_established) {
2988                 rv = probe_crypto_domain(cdx_p);
2989                 if (z90crypt.terminating)
2990                         return TSQ_FATAL_ERROR;
2991                 if (rv == Z90C_NO_DEVICES)
2992                         return 0; // try later
2993                 if (rv)
2994                         return rv;
2995                 z90crypt.cdx = *cdx_p;
2996                 z90crypt.domain_established = 1;
2997         }
2998         rv = find_crypto_devices(&local_mask);
2999         if (rv) {
3000                 PRINTK("find crypto devices returned %d\n", rv);
3001                 return rv;
3002         }
3003         if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask,
3004                     sizeof(struct status))) {
3005                 return_unchanged = 1;
3006                 for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) {
3007                         /**
3008                          * Check for disabled cards.  If any device is marked
3009                          * disabled, destroy it.
3010                          */
3011                         for (j = 0;
3012                              j < z90crypt.hdware_info->type_mask[i].st_count;
3013                              j++) {
3014                                 indx = z90crypt.hdware_info->type_x_addr[i].
3015                                                                 device_index[j];
3016                                 devPtr = z90crypt.device_p[indx];
3017                                 if (devPtr && devPtr->disabled) {
3018                                         local_mask.st_mask[indx] = HD_NOT_THERE;
3019                                         return_unchanged = 0;
3020                                 }
3021                         }
3022                 }
3023                 if (return_unchanged == 1)
3024                         return 0;
3025         }
3026
3027         spin_lock_irq(&queuespinlock);
3028         for (i = 0; i < z90crypt.max_count; i++) {
3029                 oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i];
3030                 newStat = local_mask.st_mask[i];
3031                 if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE))
3032                         destroy_crypto_device(i);
3033                 else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) {
3034                         rv = create_crypto_device(i);
3035                         if (rv >= REC_FATAL_ERROR)
3036                                 return rv;
3037                         if (rv != 0) {
3038                                 local_mask.st_mask[i] = HD_NOT_THERE;
3039                                 local_mask.st_count--;
3040                         }
3041                 }
3042         }
3043         memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask,
3044                sizeof(local_mask.st_mask));
3045         z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count;
3046         z90crypt.hdware_info->hdware_mask.disabled_count =
3047                                                       local_mask.disabled_count;
3048         refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x);
3049         for (i = 0; i < Z90CRYPT_NUM_TYPES; i++)
3050                 refresh_index_array(&(z90crypt.hdware_info->type_mask[i]),
3051                                     &(z90crypt.hdware_info->type_x_addr[i]));
3052         spin_unlock_irq(&queuespinlock);
3053
3054         return rv;
3055 }
3056
3057 static int
3058 find_crypto_devices(struct status *deviceMask)
3059 {
3060         int i, q_depth, dev_type;
3061         enum hdstat hd_stat;
3062
3063         deviceMask->st_count = 0;
3064         deviceMask->disabled_count = 0;
3065         deviceMask->user_disabled_count = 0;
3066
3067         for (i = 0; i < z90crypt.max_count; i++) {
3068                 hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth,
3069                                        &dev_type);
3070                 if (hd_stat == HD_TSQ_EXCEPTION) {
3071                         z90crypt.terminating = 1;
3072                         PRINTKC("Exception during probe for crypto devices\n");
3073                         return TSQ_FATAL_ERROR;
3074                 }
3075                 deviceMask->st_mask[i] = hd_stat;
3076                 if (hd_stat == HD_ONLINE) {
3077                         PDEBUG("Got an online crypto!: %d\n", i);
3078                         PDEBUG("Got a queue depth of %d\n", q_depth);
3079                         PDEBUG("Got a device type of %d\n", dev_type);
3080                         if (q_depth <= 0)
3081                                 return TSQ_FATAL_ERROR;
3082                         deviceMask->st_count++;
3083                         z90crypt.q_depth_array[i] = q_depth;
3084                         z90crypt.dev_type_array[i] = dev_type;
3085                 }
3086         }
3087
3088         return 0;
3089 }
3090
3091 static int
3092 refresh_index_array(struct status *status_str, struct device_x *index_array)
3093 {
3094         int i, count;
3095         enum devstat stat;
3096
3097         i = -1;
3098         count = 0;
3099         do {
3100                 stat = status_str->st_mask[++i];
3101                 if (stat == DEV_ONLINE)
3102                         index_array->device_index[count++] = i;
3103         } while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count));
3104
3105         return count;
3106 }
3107
3108 static int
3109 create_crypto_device(int index)
3110 {
3111         int rv, devstat, total_size;
3112         struct device *dev_ptr;
3113         struct status *type_str_p;
3114         int deviceType;
3115
3116         dev_ptr = z90crypt.device_p[index];
3117         if (!dev_ptr) {
3118                 total_size = sizeof(struct device) +
3119                              z90crypt.q_depth_array[index] * sizeof(int);
3120
3121                 dev_ptr = (struct device *) kmalloc(total_size, GFP_ATOMIC);
3122                 if (!dev_ptr) {
3123                         PRINTK("kmalloc device %d failed\n", index);
3124                         return ENOMEM;
3125                 }
3126                 memset(dev_ptr, 0, total_size);
3127                 dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC);
3128                 if (!dev_ptr->dev_resp_p) {
3129                         kfree(dev_ptr);
3130                         PRINTK("kmalloc device %d rec buffer failed\n", index);
3131                         return ENOMEM;
3132                 }
3133                 dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE;
3134                 INIT_LIST_HEAD(&(dev_ptr->dev_caller_list));
3135         }
3136
3137         devstat = reset_device(index, z90crypt.cdx, MAX_RESET);
3138         if (devstat == DEV_RSQ_EXCEPTION) {
3139                 PRINTK("exception during reset device %d\n", index);
3140                 kfree(dev_ptr->dev_resp_p);
3141                 kfree(dev_ptr);
3142                 return RSQ_FATAL_ERROR;
3143         }
3144         if (devstat == DEV_ONLINE) {
3145                 dev_ptr->dev_self_x = index;
3146                 dev_ptr->dev_type = z90crypt.dev_type_array[index];
3147                 if (dev_ptr->dev_type == NILDEV) {
3148                         rv = probe_device_type(dev_ptr);
3149                         if (rv) {
3150                                 PRINTK("rv = %d from probe_device_type %d\n",
3151                                        rv, index);
3152                                 kfree(dev_ptr->dev_resp_p);
3153                                 kfree(dev_ptr);
3154                                 return rv;
3155                         }
3156                 }
3157                 if (dev_ptr->dev_type == PCIXCC_UNK) {
3158                         rv = probe_PCIXCC_type(dev_ptr);
3159                         if (rv) {
3160                                 PRINTK("rv = %d from probe_PCIXCC_type %d\n",
3161                                        rv, index);
3162                                 kfree(dev_ptr->dev_resp_p);
3163                                 kfree(dev_ptr);
3164                                 return rv;
3165                         }
3166                 }
3167                 deviceType = dev_ptr->dev_type;
3168                 z90crypt.dev_type_array[index] = deviceType;
3169                 if (deviceType == PCICA)
3170                         z90crypt.hdware_info->device_type_array[index] = 1;
3171                 else if (deviceType == PCICC)
3172                         z90crypt.hdware_info->device_type_array[index] = 2;
3173                 else if (deviceType == PCIXCC_MCL2)
3174                         z90crypt.hdware_info->device_type_array[index] = 3;
3175                 else if (deviceType == PCIXCC_MCL3)
3176                         z90crypt.hdware_info->device_type_array[index] = 4;
3177                 else if (deviceType == CEX2C)
3178                         z90crypt.hdware_info->device_type_array[index] = 5;
3179                 else
3180                         z90crypt.hdware_info->device_type_array[index] = -1;
3181         }
3182
3183         /**
3184          * 'q_depth' returned by the hardware is one less than
3185          * the actual depth
3186          */
3187         dev_ptr->dev_q_depth = z90crypt.q_depth_array[index];
3188         dev_ptr->dev_type = z90crypt.dev_type_array[index];
3189         dev_ptr->dev_stat = devstat;
3190         dev_ptr->disabled = 0;
3191         z90crypt.device_p[index] = dev_ptr;
3192
3193         if (devstat == DEV_ONLINE) {
3194                 if (z90crypt.mask.st_mask[index] != DEV_ONLINE) {
3195                         z90crypt.mask.st_mask[index] = DEV_ONLINE;
3196                         z90crypt.mask.st_count++;
3197                 }
3198                 deviceType = dev_ptr->dev_type;
3199                 type_str_p = &z90crypt.hdware_info->type_mask[deviceType];
3200                 if (type_str_p->st_mask[index] != DEV_ONLINE) {
3201                         type_str_p->st_mask[index] = DEV_ONLINE;
3202                         type_str_p->st_count++;
3203                 }
3204         }
3205
3206         return 0;
3207 }
3208
3209 static int
3210 destroy_crypto_device(int index)
3211 {
3212         struct device *dev_ptr;
3213         int t, disabledFlag;
3214
3215         dev_ptr = z90crypt.device_p[index];
3216
3217         /* remember device type; get rid of device struct */
3218         if (dev_ptr) {
3219                 disabledFlag = dev_ptr->disabled;
3220                 t = dev_ptr->dev_type;
3221                 if (dev_ptr->dev_resp_p)
3222                         kfree(dev_ptr->dev_resp_p);
3223                 kfree(dev_ptr);
3224         } else {
3225                 disabledFlag = 0;
3226                 t = -1;
3227         }
3228         z90crypt.device_p[index] = 0;
3229
3230         /* if the type is valid, remove the device from the type_mask */
3231         if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) {
3232                   z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00;
3233                   z90crypt.hdware_info->type_mask[t].st_count--;
3234                   if (disabledFlag == 1)
3235                         z90crypt.hdware_info->type_mask[t].disabled_count--;
3236         }
3237         if (z90crypt.mask.st_mask[index] != DEV_GONE) {
3238                 z90crypt.mask.st_mask[index] = DEV_GONE;
3239                 z90crypt.mask.st_count--;
3240         }
3241         z90crypt.hdware_info->device_type_array[index] = 0;
3242
3243         return 0;
3244 }
3245
3246 static void
3247 destroy_z90crypt(void)
3248 {
3249         int i;
3250         for (i = 0; i < z90crypt.max_count; i++)
3251                 if (z90crypt.device_p[i])
3252                         destroy_crypto_device(i);
3253         if (z90crypt.hdware_info)
3254                 kfree((void *)z90crypt.hdware_info);
3255         memset((void *)&z90crypt, 0, sizeof(z90crypt));
3256 }
3257
3258 static unsigned char static_testmsg[384] = {
3259 0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00,
3260 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58,
3261 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43,
3262 0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00,
3263 0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3264 0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3265 0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32,
3266 0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3267 0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3268 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3269 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3270 0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3271 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46,
3272 0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32,
3273 0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
3274 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
3275 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
3276 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00,
3277 0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00,
3278 0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58,
3279 0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8,
3280 0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e,
3281 0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f,
3282 0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
3283 };
3284
3285 static int
3286 probe_device_type(struct device *devPtr)
3287 {
3288         int rv, dv, i, index, length;
3289         unsigned char psmid[8];
3290         static unsigned char loc_testmsg[sizeof(static_testmsg)];
3291
3292         index = devPtr->dev_self_x;
3293         rv = 0;
3294         do {
3295                 memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg));
3296                 length = sizeof(static_testmsg) - 24;
3297                 /* the -24 allows for the header */
3298                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3299                 if (dv) {
3300                         PDEBUG("dv returned by send during probe: %d\n", dv);
3301                         if (dv == DEV_SEN_EXCEPTION) {
3302                                 rv = SEN_FATAL_ERROR;
3303                                 PRINTKC("exception in send to AP %d\n", index);
3304                                 break;
3305                         }
3306                         PDEBUG("return value from send_to_AP: %d\n", rv);
3307                         switch (dv) {
3308                         case DEV_GONE:
3309                                 PDEBUG("dev %d not available\n", index);
3310                                 rv = SEN_NOT_AVAIL;
3311                                 break;
3312                         case DEV_ONLINE:
3313                                 rv = 0;
3314                                 break;
3315                         case DEV_EMPTY:
3316                                 rv = SEN_NOT_AVAIL;
3317                                 break;
3318                         case DEV_NO_WORK:
3319                                 rv = SEN_FATAL_ERROR;
3320                                 break;
3321                         case DEV_BAD_MESSAGE:
3322                                 rv = SEN_USER_ERROR;
3323                                 break;
3324                         case DEV_QUEUE_FULL:
3325                                 rv = SEN_QUEUE_FULL;
3326                                 break;
3327                         default:
3328                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3329                                 rv = SEN_NOT_AVAIL;
3330                                 break;
3331                         }
3332                 }
3333
3334                 if (rv)
3335                         break;
3336
3337                 for (i = 0; i < 6; i++) {
3338                         mdelay(300);
3339                         dv = receive_from_AP(index, z90crypt.cdx,
3340                                              devPtr->dev_resp_l,
3341                                              devPtr->dev_resp_p, psmid);
3342                         PDEBUG("dv returned by DQ = %d\n", dv);
3343                         if (dv == DEV_REC_EXCEPTION) {
3344                                 rv = REC_FATAL_ERROR;
3345                                 PRINTKC("exception in dequeue %d\n",
3346                                         index);
3347                                 break;
3348                         }
3349                         switch (dv) {
3350                         case DEV_ONLINE:
3351                                 rv = 0;
3352                                 break;
3353                         case DEV_EMPTY:
3354                                 rv = REC_EMPTY;
3355                                 break;
3356                         case DEV_NO_WORK:
3357                                 rv = REC_NO_WORK;
3358                                 break;
3359                         case DEV_BAD_MESSAGE:
3360                         case DEV_GONE:
3361                         default:
3362                                 rv = REC_NO_RESPONSE;
3363                                 break;
3364                         }
3365                         if ((rv != 0) && (rv != REC_NO_WORK))
3366                                 break;
3367                         if (rv == 0)
3368                                 break;
3369                 }
3370                 if (rv)
3371                         break;
3372                 rv = (devPtr->dev_resp_p[0] == 0x00) &&
3373                      (devPtr->dev_resp_p[1] == 0x86);
3374                 if (rv)
3375                         devPtr->dev_type = PCICC;
3376                 else
3377                         devPtr->dev_type = PCICA;
3378                 rv = 0;
3379         } while (0);
3380         /* In a general error case, the card is not marked online */
3381         return rv;
3382 }
3383
3384 static unsigned char MCL3_testmsg[] = {
3385 0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
3386 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3387 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3388 0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3389 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00,
3390 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00,
3391 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32,
3392 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,
3393 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3394 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3395 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3396 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3397 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3398 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3399 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3400 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3401 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3402 0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3403 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3404 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3405 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20,
3406 0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
3407 0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,
3408 0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,
3409 0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54,
3410 0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00,
3411 0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C,
3412 0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9,
3413 0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5,
3414 0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01,
3415 0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91,
3416 0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C,
3417 0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96,
3418 0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47,
3419 0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53
3420 };
3421
3422 static int
3423 probe_PCIXCC_type(struct device *devPtr)
3424 {
3425         int rv, dv, i, index, length;
3426         unsigned char psmid[8];
3427         static unsigned char loc_testmsg[548];
3428         struct CPRBX *cprbx_p;
3429
3430         index = devPtr->dev_self_x;
3431         rv = 0;
3432         do {
3433                 memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg));
3434                 length = sizeof(MCL3_testmsg) - 0x0C;
3435                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3436                 if (dv) {
3437                         PDEBUG("dv returned = %d\n", dv);
3438                         if (dv == DEV_SEN_EXCEPTION) {
3439                                 rv = SEN_FATAL_ERROR;
3440                                 PRINTKC("exception in send to AP %d\n", index);
3441                                 break;
3442                         }
3443                         PDEBUG("return value from send_to_AP: %d\n", rv);
3444                         switch (dv) {
3445                         case DEV_GONE:
3446                                 PDEBUG("dev %d not available\n", index);
3447                                 rv = SEN_NOT_AVAIL;
3448                                 break;
3449                         case DEV_ONLINE:
3450                                 rv = 0;
3451                                 break;
3452                         case DEV_EMPTY:
3453                                 rv = SEN_NOT_AVAIL;
3454                                 break;
3455                         case DEV_NO_WORK:
3456                                 rv = SEN_FATAL_ERROR;
3457                                 break;
3458                         case DEV_BAD_MESSAGE:
3459                                 rv = SEN_USER_ERROR;
3460                                 break;
3461                         case DEV_QUEUE_FULL:
3462                                 rv = SEN_QUEUE_FULL;
3463                                 break;
3464                         default:
3465                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3466                                 rv = SEN_NOT_AVAIL;
3467                                 break;
3468                         }
3469                 }
3470
3471                 if (rv)
3472                         break;
3473
3474                 for (i = 0; i < 6; i++) {
3475                         mdelay(300);
3476                         dv = receive_from_AP(index, z90crypt.cdx,
3477                                              devPtr->dev_resp_l,
3478                                              devPtr->dev_resp_p, psmid);
3479                         PDEBUG("dv returned by DQ = %d\n", dv);
3480                         if (dv == DEV_REC_EXCEPTION) {
3481                                 rv = REC_FATAL_ERROR;
3482                                 PRINTKC("exception in dequeue %d\n",
3483                                         index);
3484                                 break;
3485                         }
3486                         switch (dv) {
3487                         case DEV_ONLINE:
3488                                 rv = 0;
3489                                 break;
3490                         case DEV_EMPTY:
3491                                 rv = REC_EMPTY;
3492                                 break;
3493                         case DEV_NO_WORK:
3494                                 rv = REC_NO_WORK;
3495                                 break;
3496                         case DEV_BAD_MESSAGE:
3497                         case DEV_GONE:
3498                         default:
3499                                 rv = REC_NO_RESPONSE;
3500                                 break;
3501                         }
3502                         if ((rv != 0) && (rv != REC_NO_WORK))
3503                                 break;
3504                         if (rv == 0)
3505                                 break;
3506                 }
3507                 if (rv)
3508                         break;
3509                 cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48);
3510                 if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) {
3511                         devPtr->dev_type = PCIXCC_MCL2;
3512                         PDEBUG("device %d is MCL2\n", index);
3513                 } else {
3514                         devPtr->dev_type = PCIXCC_MCL3;
3515                         PDEBUG("device %d is MCL3\n", index);
3516                 }
3517         } while (0);
3518         /* In a general error case, the card is not marked online */
3519         return rv;
3520 }
3521
3522 #ifdef Z90CRYPT_USE_HOTPLUG
3523 static void
3524 z90crypt_hotplug_event(int dev_major, int dev_minor, int action)
3525 {
3526 #ifdef CONFIG_HOTPLUG
3527         char *argv[3];
3528         char *envp[6];
3529         char  major[20];
3530         char  minor[20];
3531
3532         sprintf(major, "MAJOR=%d", dev_major);
3533         sprintf(minor, "MINOR=%d", dev_minor);
3534
3535         argv[0] = hotplug_path;
3536         argv[1] = "z90crypt";
3537         argv[2] = 0;
3538
3539         envp[0] = "HOME=/";
3540         envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3541
3542         switch (action) {
3543         case Z90CRYPT_HOTPLUG_ADD:
3544                 envp[2] = "ACTION=add";
3545                 break;
3546         case Z90CRYPT_HOTPLUG_REMOVE:
3547                 envp[2] = "ACTION=remove";
3548                 break;
3549         default:
3550                 BUG();
3551                 break;
3552         }
3553         envp[3] = major;
3554         envp[4] = minor;
3555         envp[5] = 0;
3556
3557         call_usermodehelper(argv[0], argv, envp, 0);
3558 #endif
3559 }
3560 #endif
3561
3562 module_init(z90crypt_init_module);
3563 module_exit(z90crypt_cleanup_module);