Linux-2.6.12-rc2
[linux-flexiantxendom0-natty.git] / arch / sparc64 / kernel / kprobes.c
1 /* arch/sparc64/kernel/kprobes.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/config.h>
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9
10 #include <asm/kdebug.h>
11 #include <asm/signal.h>
12
13 /* We do not have hardware single-stepping on sparc64.
14  * So we implement software single-stepping with breakpoint
15  * traps.  The top-level scheme is similar to that used
16  * in the x86 kprobes implementation.
17  *
18  * In the kprobe->ainsn.insn[] array we store the original
19  * instruction at index zero and a break instruction at
20  * index one.
21  *
22  * When we hit a kprobe we:
23  * - Run the pre-handler
24  * - Remember "regs->tnpc" and interrupt level stored in
25  *   "regs->tstate" so we can restore them later
26  * - Disable PIL interrupts
27  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
28  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
29  * - Mark that we are actively in a kprobe
30  *
31  * At this point we wait for the second breakpoint at
32  * kprobe->ainsn.insn[1] to hit.  When it does we:
33  * - Run the post-handler
34  * - Set regs->tpc to "remembered" regs->tnpc stored above,
35  *   restore the PIL interrupt level in "regs->tstate" as well
36  * - Make any adjustments necessary to regs->tnpc in order
37  *   to handle relative branches correctly.  See below.
38  * - Mark that we are no longer actively in a kprobe.
39  */
40
41 int arch_prepare_kprobe(struct kprobe *p)
42 {
43         return 0;
44 }
45
46 void arch_copy_kprobe(struct kprobe *p)
47 {
48         p->ainsn.insn[0] = *p->addr;
49         p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
50 }
51
52 void arch_remove_kprobe(struct kprobe *p)
53 {
54 }
55
56 /* kprobe_status settings */
57 #define KPROBE_HIT_ACTIVE       0x00000001
58 #define KPROBE_HIT_SS           0x00000002
59
60 static struct kprobe *current_kprobe;
61 static unsigned long current_kprobe_orig_tnpc;
62 static unsigned long current_kprobe_orig_tstate_pil;
63 static unsigned int kprobe_status;
64
65 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
66 {
67         current_kprobe_orig_tnpc = regs->tnpc;
68         current_kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
69         regs->tstate |= TSTATE_PIL;
70
71         /*single step inline, if it a breakpoint instruction*/
72         if (p->opcode == BREAKPOINT_INSTRUCTION) {
73                 regs->tpc = (unsigned long) p->addr;
74                 regs->tnpc = current_kprobe_orig_tnpc;
75         } else {
76                 regs->tpc = (unsigned long) &p->ainsn.insn[0];
77                 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
78         }
79 }
80
81 static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
82 {
83         *p->addr = p->opcode;
84         flushi(p->addr);
85
86         regs->tpc = (unsigned long) p->addr;
87         regs->tnpc = current_kprobe_orig_tnpc;
88         regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
89                         current_kprobe_orig_tstate_pil);
90 }
91
92 static int kprobe_handler(struct pt_regs *regs)
93 {
94         struct kprobe *p;
95         void *addr = (void *) regs->tpc;
96         int ret = 0;
97
98         preempt_disable();
99
100         if (kprobe_running()) {
101                 /* We *are* holding lock here, so this is safe.
102                  * Disarm the probe we just hit, and ignore it.
103                  */
104                 p = get_kprobe(addr);
105                 if (p) {
106                         if (kprobe_status == KPROBE_HIT_SS) {
107                                 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
108                                         current_kprobe_orig_tstate_pil);
109                                 unlock_kprobes();
110                                 goto no_kprobe;
111                         }
112                         disarm_kprobe(p, regs);
113                         ret = 1;
114                 } else {
115                         p = current_kprobe;
116                         if (p->break_handler && p->break_handler(p, regs))
117                                 goto ss_probe;
118                 }
119                 /* If it's not ours, can't be delete race, (we hold lock). */
120                 goto no_kprobe;
121         }
122
123         lock_kprobes();
124         p = get_kprobe(addr);
125         if (!p) {
126                 unlock_kprobes();
127                 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
128                         /*
129                          * The breakpoint instruction was removed right
130                          * after we hit it.  Another cpu has removed
131                          * either a probepoint or a debugger breakpoint
132                          * at this address.  In either case, no further
133                          * handling of this interrupt is appropriate.
134                          */
135                         ret = 1;
136                 }
137                 /* Not one of ours: let kernel handle it */
138                 goto no_kprobe;
139         }
140
141         kprobe_status = KPROBE_HIT_ACTIVE;
142         current_kprobe = p;
143         if (p->pre_handler && p->pre_handler(p, regs))
144                 return 1;
145
146 ss_probe:
147         prepare_singlestep(p, regs);
148         kprobe_status = KPROBE_HIT_SS;
149         return 1;
150
151 no_kprobe:
152         preempt_enable_no_resched();
153         return ret;
154 }
155
156 /* If INSN is a relative control transfer instruction,
157  * return the corrected branch destination value.
158  *
159  * The original INSN location was REAL_PC, it actually
160  * executed at PC and produced destination address NPC.
161  */
162 static unsigned long relbranch_fixup(u32 insn, unsigned long real_pc,
163                                      unsigned long pc, unsigned long npc)
164 {
165         /* Branch not taken, no mods necessary.  */
166         if (npc == pc + 0x4UL)
167                 return real_pc + 0x4UL;
168
169         /* The three cases are call, branch w/prediction,
170          * and traditional branch.
171          */
172         if ((insn & 0xc0000000) == 0x40000000 ||
173             (insn & 0xc1c00000) == 0x00400000 ||
174             (insn & 0xc1c00000) == 0x00800000) {
175                 /* The instruction did all the work for us
176                  * already, just apply the offset to the correct
177                  * instruction location.
178                  */
179                 return (real_pc + (npc - pc));
180         }
181
182         return real_pc + 0x4UL;
183 }
184
185 /* If INSN is an instruction which writes it's PC location
186  * into a destination register, fix that up.
187  */
188 static void retpc_fixup(struct pt_regs *regs, u32 insn, unsigned long real_pc)
189 {
190         unsigned long *slot = NULL;
191
192         /* Simplest cast is call, which always uses %o7 */
193         if ((insn & 0xc0000000) == 0x40000000) {
194                 slot = &regs->u_regs[UREG_I7];
195         }
196
197         /* Jmpl encodes the register inside of the opcode */
198         if ((insn & 0xc1f80000) == 0x81c00000) {
199                 unsigned long rd = ((insn >> 25) & 0x1f);
200
201                 if (rd <= 15) {
202                         slot = &regs->u_regs[rd];
203                 } else {
204                         /* Hard case, it goes onto the stack. */
205                         flushw_all();
206
207                         rd -= 16;
208                         slot = (unsigned long *)
209                                 (regs->u_regs[UREG_FP] + STACK_BIAS);
210                         slot += rd;
211                 }
212         }
213         if (slot != NULL)
214                 *slot = real_pc;
215 }
216
217 /*
218  * Called after single-stepping.  p->addr is the address of the
219  * instruction whose first byte has been replaced by the breakpoint
220  * instruction.  To avoid the SMP problems that can occur when we
221  * temporarily put back the original opcode to single-step, we
222  * single-stepped a copy of the instruction.  The address of this
223  * copy is p->ainsn.insn.
224  *
225  * This function prepares to return from the post-single-step
226  * breakpoint trap.
227  */
228 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
229 {
230         u32 insn = p->ainsn.insn[0];
231
232         regs->tpc = current_kprobe_orig_tnpc;
233         regs->tnpc = relbranch_fixup(insn,
234                                      (unsigned long) p->addr,
235                                      (unsigned long) &p->ainsn.insn[0],
236                                      regs->tnpc);
237         retpc_fixup(regs, insn, (unsigned long) p->addr);
238
239         regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
240                         current_kprobe_orig_tstate_pil);
241 }
242
243 static inline int post_kprobe_handler(struct pt_regs *regs)
244 {
245         if (!kprobe_running())
246                 return 0;
247
248         if (current_kprobe->post_handler)
249                 current_kprobe->post_handler(current_kprobe, regs, 0);
250
251         resume_execution(current_kprobe, regs);
252
253         unlock_kprobes();
254         preempt_enable_no_resched();
255
256         return 1;
257 }
258
259 /* Interrupts disabled, kprobe_lock held. */
260 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
261 {
262         if (current_kprobe->fault_handler
263             && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
264                 return 1;
265
266         if (kprobe_status & KPROBE_HIT_SS) {
267                 resume_execution(current_kprobe, regs);
268
269                 unlock_kprobes();
270                 preempt_enable_no_resched();
271         }
272         return 0;
273 }
274
275 /*
276  * Wrapper routine to for handling exceptions.
277  */
278 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
279                              void *data)
280 {
281         struct die_args *args = (struct die_args *)data;
282         switch (val) {
283         case DIE_DEBUG:
284                 if (kprobe_handler(args->regs))
285                         return NOTIFY_STOP;
286                 break;
287         case DIE_DEBUG_2:
288                 if (post_kprobe_handler(args->regs))
289                         return NOTIFY_STOP;
290                 break;
291         case DIE_GPF:
292                 if (kprobe_running() &&
293                     kprobe_fault_handler(args->regs, args->trapnr))
294                         return NOTIFY_STOP;
295                 break;
296         case DIE_PAGE_FAULT:
297                 if (kprobe_running() &&
298                     kprobe_fault_handler(args->regs, args->trapnr))
299                         return NOTIFY_STOP;
300                 break;
301         default:
302                 break;
303         }
304         return NOTIFY_DONE;
305 }
306
307 asmlinkage void kprobe_trap(unsigned long trap_level, struct pt_regs *regs)
308 {
309         BUG_ON(trap_level != 0x170 && trap_level != 0x171);
310
311         if (user_mode(regs)) {
312                 local_irq_enable();
313                 bad_trap(regs, trap_level);
314                 return;
315         }
316
317         /* trap_level == 0x170 --> ta 0x70
318          * trap_level == 0x171 --> ta 0x71
319          */
320         if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
321                        (trap_level == 0x170) ? "debug" : "debug_2",
322                        regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
323                 bad_trap(regs, trap_level);
324 }
325
326 /* Jprobes support.  */
327 static struct pt_regs jprobe_saved_regs;
328 static struct pt_regs *jprobe_saved_regs_location;
329 static struct sparc_stackf jprobe_saved_stack;
330
331 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
332 {
333         struct jprobe *jp = container_of(p, struct jprobe, kp);
334
335         jprobe_saved_regs_location = regs;
336         memcpy(&jprobe_saved_regs, regs, sizeof(*regs));
337
338         /* Save a whole stack frame, this gets arguments
339          * pushed onto the stack after using up all the
340          * arg registers.
341          */
342         memcpy(&jprobe_saved_stack,
343                (char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
344                sizeof(jprobe_saved_stack));
345
346         regs->tpc  = (unsigned long) jp->entry;
347         regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
348         regs->tstate |= TSTATE_PIL;
349
350         return 1;
351 }
352
353 void jprobe_return(void)
354 {
355         preempt_enable_no_resched();
356         __asm__ __volatile__(
357                 ".globl jprobe_return_trap_instruction\n"
358 "jprobe_return_trap_instruction:\n\t"
359                 "ta 0x70");
360 }
361
362 extern void jprobe_return_trap_instruction(void);
363
364 extern void __show_regs(struct pt_regs * regs);
365
366 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
367 {
368         u32 *addr = (u32 *) regs->tpc;
369
370         if (addr == (u32 *) jprobe_return_trap_instruction) {
371                 if (jprobe_saved_regs_location != regs) {
372                         printk("JPROBE: Current regs (%p) does not match "
373                                "saved regs (%p).\n",
374                                regs, jprobe_saved_regs_location);
375                         printk("JPROBE: Saved registers\n");
376                         __show_regs(jprobe_saved_regs_location);
377                         printk("JPROBE: Current registers\n");
378                         __show_regs(regs);
379                         BUG();
380                 }
381                 /* Restore old register state.  Do pt_regs
382                  * first so that UREG_FP is the original one for
383                  * the stack frame restore.
384                  */
385                 memcpy(regs, &jprobe_saved_regs, sizeof(*regs));
386
387                 memcpy((char *) (regs->u_regs[UREG_FP] + STACK_BIAS),
388                        &jprobe_saved_stack,
389                        sizeof(jprobe_saved_stack));
390
391                 return 1;
392         }
393         return 0;
394 }