150415e83f61e21e3cdc25f85a9d892b849c7016
[linux-flexiantxendom0-natty.git] / drivers / net / ipg.c
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
27
28 #include <asm/div64.h>
29
30 #define IPG_RX_RING_BYTES       (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES       (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33         (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34          IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35          IPG_AC_AUTO_INIT)
36
37 #define ipg_w32(val32, reg)     iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16, reg)     iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8, reg)       iowrite8((val8), ioaddr + (reg))
40
41 #define ipg_r32(reg)            ioread32(ioaddr + (reg))
42 #define ipg_r16(reg)            ioread16(ioaddr + (reg))
43 #define ipg_r8(reg)             ioread8(ioaddr + (reg))
44
45 enum {
46         netdev_io_size = 128
47 };
48
49 #include "ipg.h"
50 #define DRV_NAME        "ipg"
51
52 MODULE_AUTHOR("IC Plus Corp. 2003");
53 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
54 MODULE_LICENSE("GPL");
55
56 /*
57  * Defaults
58  */
59 #define IPG_MAX_RXFRAME_SIZE    0x0600
60 #define IPG_RXFRAG_SIZE         0x0600
61 #define IPG_RXSUPPORT_SIZE      0x0600
62 #define IPG_IS_JUMBO            false
63
64 /*
65  * Variable record -- index by leading revision/length
66  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
67  */
68 static unsigned short DefaultPhyParam[] = {
69         /* 11/12/03 IP1000A v1-3 rev=0x40 */
70         /*--------------------------------------------------------------------------
71         (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
72                                  27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
73                                  31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
74           --------------------------------------------------------------------------*/
75         /* 12/17/03 IP1000A v1-4 rev=0x40 */
76         (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
77             0x0000,
78         30, 0x005e, 9, 0x0700,
79         /* 01/09/04 IP1000A v1-5 rev=0x41 */
80         (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
81             0x0000,
82         30, 0x005e, 9, 0x0700,
83         0x0000
84 };
85
86 static const char *ipg_brand_name[] = {
87         "IC PLUS IP1000 1000/100/10 based NIC",
88         "Sundance Technology ST2021 based NIC",
89         "Tamarack Microelectronics TC9020/9021 based NIC",
90         "Tamarack Microelectronics TC9020/9021 based NIC",
91         "D-Link NIC IP1000A"
92 };
93
94 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
95         { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
96         { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
97         { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
98         { PCI_VDEVICE(DLINK,    0x9021), 3 },
99         { PCI_VDEVICE(DLINK,    0x4020), 4 },
100         { 0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
104
105 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
106 {
107         struct ipg_nic_private *sp = netdev_priv(dev);
108         return sp->ioaddr;
109 }
110
111 #ifdef IPG_DEBUG
112 static void ipg_dump_rfdlist(struct net_device *dev)
113 {
114         struct ipg_nic_private *sp = netdev_priv(dev);
115         void __iomem *ioaddr = sp->ioaddr;
116         unsigned int i;
117         u32 offset;
118
119         IPG_DEBUG_MSG("_dump_rfdlist\n");
120
121         printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
122         printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
123         printk(KERN_INFO "RFDList start address = %16.16lx\n",
124                (unsigned long) sp->rxd_map);
125         printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
126                ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
127
128         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
129                 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
130                 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
131                        offset, (unsigned long) sp->rxd[i].next_desc);
132                 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
133                 printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
134                        offset, (unsigned long) sp->rxd[i].rfs);
135                 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
136                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
137                        offset, (unsigned long) sp->rxd[i].frag_info);
138         }
139 }
140
141 static void ipg_dump_tfdlist(struct net_device *dev)
142 {
143         struct ipg_nic_private *sp = netdev_priv(dev);
144         void __iomem *ioaddr = sp->ioaddr;
145         unsigned int i;
146         u32 offset;
147
148         IPG_DEBUG_MSG("_dump_tfdlist\n");
149
150         printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
151         printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
152         printk(KERN_INFO "TFDList start address = %16.16lx\n",
153                (unsigned long) sp->txd_map);
154         printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
155                ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
156
157         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
158                 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
159                 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
160                        offset, (unsigned long) sp->txd[i].next_desc);
161
162                 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
163                 printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
164                        offset, (unsigned long) sp->txd[i].tfc);
165                 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
166                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
167                        offset, (unsigned long) sp->txd[i].frag_info);
168         }
169 }
170 #endif
171
172 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
173 {
174         ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
175         ndelay(IPG_PC_PHYCTRLWAIT_NS);
176 }
177
178 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
179 {
180         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
181         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
182 }
183
184 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
185 {
186         phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
187
188         ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
189 }
190
191 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
192 {
193         ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
194                 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
195 }
196
197 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
198 {
199         u16 bit_data;
200
201         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
202
203         bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
204
205         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
206
207         return bit_data;
208 }
209
210 /*
211  * Read a register from the Physical Layer device located
212  * on the IPG NIC, using the IPG PHYCTRL register.
213  */
214 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
215 {
216         void __iomem *ioaddr = ipg_ioaddr(dev);
217         /*
218          * The GMII mangement frame structure for a read is as follows:
219          *
220          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
221          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
222          *
223          * <32 1s> = 32 consecutive logic 1 values
224          * A = bit of Physical Layer device address (MSB first)
225          * R = bit of register address (MSB first)
226          * z = High impedance state
227          * D = bit of read data (MSB first)
228          *
229          * Transmission order is 'Preamble' field first, bits transmitted
230          * left to right (first to last).
231          */
232         struct {
233                 u32 field;
234                 unsigned int len;
235         } p[] = {
236                 { GMII_PREAMBLE,        32 },   /* Preamble */
237                 { GMII_ST,              2  },   /* ST */
238                 { GMII_READ,            2  },   /* OP */
239                 { phy_id,               5  },   /* PHYAD */
240                 { phy_reg,              5  },   /* REGAD */
241                 { 0x0000,               2  },   /* TA */
242                 { 0x0000,               16 },   /* DATA */
243                 { 0x0000,               1  }    /* IDLE */
244         };
245         unsigned int i, j;
246         u8 polarity, data;
247
248         polarity  = ipg_r8(PHY_CTRL);
249         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
250
251         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
252         for (j = 0; j < 5; j++) {
253                 for (i = 0; i < p[j].len; i++) {
254                         /* For each variable length field, the MSB must be
255                          * transmitted first. Rotate through the field bits,
256                          * starting with the MSB, and move each bit into the
257                          * the 1st (2^1) bit position (this is the bit position
258                          * corresponding to the MgmtData bit of the PhyCtrl
259                          * register for the IPG).
260                          *
261                          * Example: ST = 01;
262                          *
263                          *          First write a '0' to bit 1 of the PhyCtrl
264                          *          register, then write a '1' to bit 1 of the
265                          *          PhyCtrl register.
266                          *
267                          * To do this, right shift the MSB of ST by the value:
268                          * [field length - 1 - #ST bits already written]
269                          * then left shift this result by 1.
270                          */
271                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
272                         data &= IPG_PC_MGMTDATA;
273                         data |= polarity | IPG_PC_MGMTDIR;
274
275                         ipg_drive_phy_ctl_low_high(ioaddr, data);
276                 }
277         }
278
279         send_three_state(ioaddr, polarity);
280
281         read_phy_bit(ioaddr, polarity);
282
283         /*
284          * For a read cycle, the bits for the next two fields (TA and
285          * DATA) are driven by the PHY (the IPG reads these bits).
286          */
287         for (i = 0; i < p[6].len; i++) {
288                 p[6].field |=
289                     (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
290         }
291
292         send_three_state(ioaddr, polarity);
293         send_three_state(ioaddr, polarity);
294         send_three_state(ioaddr, polarity);
295         send_end(ioaddr, polarity);
296
297         /* Return the value of the DATA field. */
298         return p[6].field;
299 }
300
301 /*
302  * Write to a register from the Physical Layer device located
303  * on the IPG NIC, using the IPG PHYCTRL register.
304  */
305 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
306 {
307         void __iomem *ioaddr = ipg_ioaddr(dev);
308         /*
309          * The GMII mangement frame structure for a read is as follows:
310          *
311          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
312          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
313          *
314          * <32 1s> = 32 consecutive logic 1 values
315          * A = bit of Physical Layer device address (MSB first)
316          * R = bit of register address (MSB first)
317          * z = High impedance state
318          * D = bit of write data (MSB first)
319          *
320          * Transmission order is 'Preamble' field first, bits transmitted
321          * left to right (first to last).
322          */
323         struct {
324                 u32 field;
325                 unsigned int len;
326         } p[] = {
327                 { GMII_PREAMBLE,        32 },   /* Preamble */
328                 { GMII_ST,              2  },   /* ST */
329                 { GMII_WRITE,           2  },   /* OP */
330                 { phy_id,               5  },   /* PHYAD */
331                 { phy_reg,              5  },   /* REGAD */
332                 { 0x0002,               2  },   /* TA */
333                 { val & 0xffff,         16 },   /* DATA */
334                 { 0x0000,               1  }    /* IDLE */
335         };
336         unsigned int i, j;
337         u8 polarity, data;
338
339         polarity  = ipg_r8(PHY_CTRL);
340         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
341
342         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
343         for (j = 0; j < 7; j++) {
344                 for (i = 0; i < p[j].len; i++) {
345                         /* For each variable length field, the MSB must be
346                          * transmitted first. Rotate through the field bits,
347                          * starting with the MSB, and move each bit into the
348                          * the 1st (2^1) bit position (this is the bit position
349                          * corresponding to the MgmtData bit of the PhyCtrl
350                          * register for the IPG).
351                          *
352                          * Example: ST = 01;
353                          *
354                          *          First write a '0' to bit 1 of the PhyCtrl
355                          *          register, then write a '1' to bit 1 of the
356                          *          PhyCtrl register.
357                          *
358                          * To do this, right shift the MSB of ST by the value:
359                          * [field length - 1 - #ST bits already written]
360                          * then left shift this result by 1.
361                          */
362                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
363                         data &= IPG_PC_MGMTDATA;
364                         data |= polarity | IPG_PC_MGMTDIR;
365
366                         ipg_drive_phy_ctl_low_high(ioaddr, data);
367                 }
368         }
369
370         /* The last cycle is a tri-state, so read from the PHY. */
371         for (j = 7; j < 8; j++) {
372                 for (i = 0; i < p[j].len; i++) {
373                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
374
375                         p[j].field |= ((ipg_r8(PHY_CTRL) &
376                                 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
377
378                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
379                 }
380         }
381 }
382
383 static void ipg_set_led_mode(struct net_device *dev)
384 {
385         struct ipg_nic_private *sp = netdev_priv(dev);
386         void __iomem *ioaddr = sp->ioaddr;
387         u32 mode;
388
389         mode = ipg_r32(ASIC_CTRL);
390         mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
391
392         if ((sp->led_mode & 0x03) > 1)
393                 mode |= IPG_AC_LED_MODE_BIT_1;  /* Write Asic Control Bit 29 */
394
395         if ((sp->led_mode & 0x01) == 1)
396                 mode |= IPG_AC_LED_MODE;        /* Write Asic Control Bit 14 */
397
398         if ((sp->led_mode & 0x08) == 8)
399                 mode |= IPG_AC_LED_SPEED;       /* Write Asic Control Bit 27 */
400
401         ipg_w32(mode, ASIC_CTRL);
402 }
403
404 static void ipg_set_phy_set(struct net_device *dev)
405 {
406         struct ipg_nic_private *sp = netdev_priv(dev);
407         void __iomem *ioaddr = sp->ioaddr;
408         int physet;
409
410         physet = ipg_r8(PHY_SET);
411         physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
412         physet |= ((sp->led_mode & 0x70) >> 4);
413         ipg_w8(physet, PHY_SET);
414 }
415
416 static int ipg_reset(struct net_device *dev, u32 resetflags)
417 {
418         /* Assert functional resets via the IPG AsicCtrl
419          * register as specified by the 'resetflags' input
420          * parameter.
421          */
422         void __iomem *ioaddr = ipg_ioaddr(dev);
423         unsigned int timeout_count = 0;
424
425         IPG_DEBUG_MSG("_reset\n");
426
427         ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
428
429         /* Delay added to account for problem with 10Mbps reset. */
430         mdelay(IPG_AC_RESETWAIT);
431
432         while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
433                 mdelay(IPG_AC_RESETWAIT);
434                 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
435                         return -ETIME;
436         }
437         /* Set LED Mode in Asic Control */
438         ipg_set_led_mode(dev);
439
440         /* Set PHYSet Register Value */
441         ipg_set_phy_set(dev);
442         return 0;
443 }
444
445 /* Find the GMII PHY address. */
446 static int ipg_find_phyaddr(struct net_device *dev)
447 {
448         unsigned int phyaddr, i;
449
450         for (i = 0; i < 32; i++) {
451                 u32 status;
452
453                 /* Search for the correct PHY address among 32 possible. */
454                 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
455
456                 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
457                    GMII_PHY_ID1
458                  */
459
460                 status = mdio_read(dev, phyaddr, MII_BMSR);
461
462                 if ((status != 0xFFFF) && (status != 0))
463                         return phyaddr;
464         }
465
466         return 0x1f;
467 }
468
469 /*
470  * Configure IPG based on result of IEEE 802.3 PHY
471  * auto-negotiation.
472  */
473 static int ipg_config_autoneg(struct net_device *dev)
474 {
475         struct ipg_nic_private *sp = netdev_priv(dev);
476         void __iomem *ioaddr = sp->ioaddr;
477         unsigned int txflowcontrol;
478         unsigned int rxflowcontrol;
479         unsigned int fullduplex;
480         u32 mac_ctrl_val;
481         u32 asicctrl;
482         u8 phyctrl;
483
484         IPG_DEBUG_MSG("_config_autoneg\n");
485
486         asicctrl = ipg_r32(ASIC_CTRL);
487         phyctrl = ipg_r8(PHY_CTRL);
488         mac_ctrl_val = ipg_r32(MAC_CTRL);
489
490         /* Set flags for use in resolving auto-negotation, assuming
491          * non-1000Mbps, half duplex, no flow control.
492          */
493         fullduplex = 0;
494         txflowcontrol = 0;
495         rxflowcontrol = 0;
496
497         /* To accomodate a problem in 10Mbps operation,
498          * set a global flag if PHY running in 10Mbps mode.
499          */
500         sp->tenmbpsmode = 0;
501
502         printk(KERN_INFO "%s: Link speed = ", dev->name);
503
504         /* Determine actual speed of operation. */
505         switch (phyctrl & IPG_PC_LINK_SPEED) {
506         case IPG_PC_LINK_SPEED_10MBPS:
507                 printk("10Mbps.\n");
508                 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
509                        dev->name);
510                 sp->tenmbpsmode = 1;
511                 break;
512         case IPG_PC_LINK_SPEED_100MBPS:
513                 printk("100Mbps.\n");
514                 break;
515         case IPG_PC_LINK_SPEED_1000MBPS:
516                 printk("1000Mbps.\n");
517                 break;
518         default:
519                 printk("undefined!\n");
520                 return 0;
521         }
522
523         if (phyctrl & IPG_PC_DUPLEX_STATUS) {
524                 fullduplex = 1;
525                 txflowcontrol = 1;
526                 rxflowcontrol = 1;
527         }
528
529         /* Configure full duplex, and flow control. */
530         if (fullduplex == 1) {
531                 /* Configure IPG for full duplex operation. */
532                 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
533
534                 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
535
536                 if (txflowcontrol == 1) {
537                         printk("TX flow control");
538                         mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
539                 } else {
540                         printk("no TX flow control");
541                         mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
542                 }
543
544                 if (rxflowcontrol == 1) {
545                         printk(", RX flow control.");
546                         mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
547                 } else {
548                         printk(", no RX flow control.");
549                         mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
550                 }
551
552                 printk("\n");
553         } else {
554                 /* Configure IPG for half duplex operation. */
555                 printk(KERN_INFO "%s: setting half duplex, "
556                        "no TX flow control, no RX flow control.\n", dev->name);
557
558                 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
559                         ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
560                         ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
561         }
562         ipg_w32(mac_ctrl_val, MAC_CTRL);
563         return 0;
564 }
565
566 /* Determine and configure multicast operation and set
567  * receive mode for IPG.
568  */
569 static void ipg_nic_set_multicast_list(struct net_device *dev)
570 {
571         void __iomem *ioaddr = ipg_ioaddr(dev);
572         struct dev_mc_list *mc_list_ptr;
573         unsigned int hashindex;
574         u32 hashtable[2];
575         u8 receivemode;
576
577         IPG_DEBUG_MSG("_nic_set_multicast_list\n");
578
579         receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
580
581         if (dev->flags & IFF_PROMISC) {
582                 /* NIC to be configured in promiscuous mode. */
583                 receivemode = IPG_RM_RECEIVEALLFRAMES;
584         } else if ((dev->flags & IFF_ALLMULTI) ||
585                    ((dev->flags & IFF_MULTICAST) &&
586                     (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
587                 /* NIC to be configured to receive all multicast
588                  * frames. */
589                 receivemode |= IPG_RM_RECEIVEMULTICAST;
590         } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
591                 /* NIC to be configured to receive selected
592                  * multicast addresses. */
593                 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
594         }
595
596         /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
597          * The IPG applies a cyclic-redundancy-check (the same CRC
598          * used to calculate the frame data FCS) to the destination
599          * address all incoming multicast frames whose destination
600          * address has the multicast bit set. The least significant
601          * 6 bits of the CRC result are used as an addressing index
602          * into the hash table. If the value of the bit addressed by
603          * this index is a 1, the frame is passed to the host system.
604          */
605
606         /* Clear hashtable. */
607         hashtable[0] = 0x00000000;
608         hashtable[1] = 0x00000000;
609
610         /* Cycle through all multicast addresses to filter. */
611         netdev_for_each_mc_addr(mc_list_ptr, dev) {
612                 /* Calculate CRC result for each multicast address. */
613                 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
614                                      ETH_ALEN);
615
616                 /* Use only the least significant 6 bits. */
617                 hashindex = hashindex & 0x3F;
618
619                 /* Within "hashtable", set bit number "hashindex"
620                  * to a logic 1.
621                  */
622                 set_bit(hashindex, (void *)hashtable);
623         }
624
625         /* Write the value of the hashtable, to the 4, 16 bit
626          * HASHTABLE IPG registers.
627          */
628         ipg_w32(hashtable[0], HASHTABLE_0);
629         ipg_w32(hashtable[1], HASHTABLE_1);
630
631         ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
632
633         IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
634 }
635
636 static int ipg_io_config(struct net_device *dev)
637 {
638         struct ipg_nic_private *sp = netdev_priv(dev);
639         void __iomem *ioaddr = ipg_ioaddr(dev);
640         u32 origmacctrl;
641         u32 restoremacctrl;
642
643         IPG_DEBUG_MSG("_io_config\n");
644
645         origmacctrl = ipg_r32(MAC_CTRL);
646
647         restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
648
649         /* Based on compilation option, determine if FCS is to be
650          * stripped on receive frames by IPG.
651          */
652         if (!IPG_STRIP_FCS_ON_RX)
653                 restoremacctrl |= IPG_MC_RCV_FCS;
654
655         /* Determine if transmitter and/or receiver are
656          * enabled so we may restore MACCTRL correctly.
657          */
658         if (origmacctrl & IPG_MC_TX_ENABLED)
659                 restoremacctrl |= IPG_MC_TX_ENABLE;
660
661         if (origmacctrl & IPG_MC_RX_ENABLED)
662                 restoremacctrl |= IPG_MC_RX_ENABLE;
663
664         /* Transmitter and receiver must be disabled before setting
665          * IFSSelect.
666          */
667         ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
668                 IPG_MC_RSVD_MASK, MAC_CTRL);
669
670         /* Now that transmitter and receiver are disabled, write
671          * to IFSSelect.
672          */
673         ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
674
675         /* Set RECEIVEMODE register. */
676         ipg_nic_set_multicast_list(dev);
677
678         ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
679
680         ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
681         ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
682         ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
683         ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
684         ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
685         ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
686         ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
687                  IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
688                  IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
689                  IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
690         ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
691         ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
692
693         /* IPG multi-frag frame bug workaround.
694          * Per silicon revision B3 eratta.
695          */
696         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
697
698         /* IPG TX poll now bug workaround.
699          * Per silicon revision B3 eratta.
700          */
701         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
702
703         /* IPG RX poll now bug workaround.
704          * Per silicon revision B3 eratta.
705          */
706         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
707
708         /* Now restore MACCTRL to original setting. */
709         ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
710
711         /* Disable unused RMON statistics. */
712         ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
713
714         /* Disable unused MIB statistics. */
715         ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
716                 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
717                 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
718                 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
719                 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
720                 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
721
722         return 0;
723 }
724
725 /*
726  * Create a receive buffer within system memory and update
727  * NIC private structure appropriately.
728  */
729 static int ipg_get_rxbuff(struct net_device *dev, int entry)
730 {
731         struct ipg_nic_private *sp = netdev_priv(dev);
732         struct ipg_rx *rxfd = sp->rxd + entry;
733         struct sk_buff *skb;
734         u64 rxfragsize;
735
736         IPG_DEBUG_MSG("_get_rxbuff\n");
737
738         skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
739         if (!skb) {
740                 sp->rx_buff[entry] = NULL;
741                 return -ENOMEM;
742         }
743
744         /* Associate the receive buffer with the IPG NIC. */
745         skb->dev = dev;
746
747         /* Save the address of the sk_buff structure. */
748         sp->rx_buff[entry] = skb;
749
750         rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
751                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752
753         /* Set the RFD fragment length. */
754         rxfragsize = sp->rxfrag_size;
755         rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
756
757         return 0;
758 }
759
760 static int init_rfdlist(struct net_device *dev)
761 {
762         struct ipg_nic_private *sp = netdev_priv(dev);
763         void __iomem *ioaddr = sp->ioaddr;
764         unsigned int i;
765
766         IPG_DEBUG_MSG("_init_rfdlist\n");
767
768         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
769                 struct ipg_rx *rxfd = sp->rxd + i;
770
771                 if (sp->rx_buff[i]) {
772                         pci_unmap_single(sp->pdev,
773                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
774                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
775                         dev_kfree_skb_irq(sp->rx_buff[i]);
776                         sp->rx_buff[i] = NULL;
777                 }
778
779                 /* Clear out the RFS field. */
780                 rxfd->rfs = 0x0000000000000000;
781
782                 if (ipg_get_rxbuff(dev, i) < 0) {
783                         /*
784                          * A receive buffer was not ready, break the
785                          * RFD list here.
786                          */
787                         IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
788
789                         /* Just in case we cannot allocate a single RFD.
790                          * Should not occur.
791                          */
792                         if (i == 0) {
793                                 printk(KERN_ERR "%s: No memory available"
794                                         " for RFD list.\n", dev->name);
795                                 return -ENOMEM;
796                         }
797                 }
798
799                 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
800                         sizeof(struct ipg_rx)*(i + 1));
801         }
802         sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
803
804         sp->rx_current = 0;
805         sp->rx_dirty = 0;
806
807         /* Write the location of the RFDList to the IPG. */
808         ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
809         ipg_w32(0x00000000, RFD_LIST_PTR_1);
810
811         return 0;
812 }
813
814 static void init_tfdlist(struct net_device *dev)
815 {
816         struct ipg_nic_private *sp = netdev_priv(dev);
817         void __iomem *ioaddr = sp->ioaddr;
818         unsigned int i;
819
820         IPG_DEBUG_MSG("_init_tfdlist\n");
821
822         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
823                 struct ipg_tx *txfd = sp->txd + i;
824
825                 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
826
827                 if (sp->tx_buff[i]) {
828                         dev_kfree_skb_irq(sp->tx_buff[i]);
829                         sp->tx_buff[i] = NULL;
830                 }
831
832                 txfd->next_desc = cpu_to_le64(sp->txd_map +
833                         sizeof(struct ipg_tx)*(i + 1));
834         }
835         sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
836
837         sp->tx_current = 0;
838         sp->tx_dirty = 0;
839
840         /* Write the location of the TFDList to the IPG. */
841         IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
842                        (u32) sp->txd_map);
843         ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
844         ipg_w32(0x00000000, TFD_LIST_PTR_1);
845
846         sp->reset_current_tfd = 1;
847 }
848
849 /*
850  * Free all transmit buffers which have already been transfered
851  * via DMA to the IPG.
852  */
853 static void ipg_nic_txfree(struct net_device *dev)
854 {
855         struct ipg_nic_private *sp = netdev_priv(dev);
856         unsigned int released, pending, dirty;
857
858         IPG_DEBUG_MSG("_nic_txfree\n");
859
860         pending = sp->tx_current - sp->tx_dirty;
861         dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
862
863         for (released = 0; released < pending; released++) {
864                 struct sk_buff *skb = sp->tx_buff[dirty];
865                 struct ipg_tx *txfd = sp->txd + dirty;
866
867                 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
868
869                 /* Look at each TFD's TFC field beginning
870                  * at the last freed TFD up to the current TFD.
871                  * If the TFDDone bit is set, free the associated
872                  * buffer.
873                  */
874                 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
875                         break;
876
877                 /* Free the transmit buffer. */
878                 if (skb) {
879                         pci_unmap_single(sp->pdev,
880                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
881                                 skb->len, PCI_DMA_TODEVICE);
882
883                         dev_kfree_skb_irq(skb);
884
885                         sp->tx_buff[dirty] = NULL;
886                 }
887                 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
888         }
889
890         sp->tx_dirty += released;
891
892         if (netif_queue_stopped(dev) &&
893             (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
894                 netif_wake_queue(dev);
895         }
896 }
897
898 static void ipg_tx_timeout(struct net_device *dev)
899 {
900         struct ipg_nic_private *sp = netdev_priv(dev);
901         void __iomem *ioaddr = sp->ioaddr;
902
903         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
904                   IPG_AC_FIFO);
905
906         spin_lock_irq(&sp->lock);
907
908         /* Re-configure after DMA reset. */
909         if (ipg_io_config(dev) < 0) {
910                 printk(KERN_INFO "%s: Error during re-configuration.\n",
911                        dev->name);
912         }
913
914         init_tfdlist(dev);
915
916         spin_unlock_irq(&sp->lock);
917
918         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
919                 MAC_CTRL);
920 }
921
922 /*
923  * For TxComplete interrupts, free all transmit
924  * buffers which have already been transfered via DMA
925  * to the IPG.
926  */
927 static void ipg_nic_txcleanup(struct net_device *dev)
928 {
929         struct ipg_nic_private *sp = netdev_priv(dev);
930         void __iomem *ioaddr = sp->ioaddr;
931         unsigned int i;
932
933         IPG_DEBUG_MSG("_nic_txcleanup\n");
934
935         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
936                 /* Reading the TXSTATUS register clears the
937                  * TX_COMPLETE interrupt.
938                  */
939                 u32 txstatusdword = ipg_r32(TX_STATUS);
940
941                 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
942
943                 /* Check for Transmit errors. Error bits only valid if
944                  * TX_COMPLETE bit in the TXSTATUS register is a 1.
945                  */
946                 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
947                         break;
948
949                 /* If in 10Mbps mode, indicate transmit is ready. */
950                 if (sp->tenmbpsmode) {
951                         netif_wake_queue(dev);
952                 }
953
954                 /* Transmit error, increment stat counters. */
955                 if (txstatusdword & IPG_TS_TX_ERROR) {
956                         IPG_DEBUG_MSG("Transmit error.\n");
957                         sp->stats.tx_errors++;
958                 }
959
960                 /* Late collision, re-enable transmitter. */
961                 if (txstatusdword & IPG_TS_LATE_COLLISION) {
962                         IPG_DEBUG_MSG("Late collision on transmit.\n");
963                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
964                                 IPG_MC_RSVD_MASK, MAC_CTRL);
965                 }
966
967                 /* Maximum collisions, re-enable transmitter. */
968                 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
969                         IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
970                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
971                                 IPG_MC_RSVD_MASK, MAC_CTRL);
972                 }
973
974                 /* Transmit underrun, reset and re-enable
975                  * transmitter.
976                  */
977                 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
978                         IPG_DEBUG_MSG("Transmitter underrun.\n");
979                         sp->stats.tx_fifo_errors++;
980                         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
981                                   IPG_AC_NETWORK | IPG_AC_FIFO);
982
983                         /* Re-configure after DMA reset. */
984                         if (ipg_io_config(dev) < 0) {
985                                 printk(KERN_INFO
986                                        "%s: Error during re-configuration.\n",
987                                        dev->name);
988                         }
989                         init_tfdlist(dev);
990
991                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
992                                 IPG_MC_RSVD_MASK, MAC_CTRL);
993                 }
994         }
995
996         ipg_nic_txfree(dev);
997 }
998
999 /* Provides statistical information about the IPG NIC. */
1000 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1001 {
1002         struct ipg_nic_private *sp = netdev_priv(dev);
1003         void __iomem *ioaddr = sp->ioaddr;
1004         u16 temp1;
1005         u16 temp2;
1006
1007         IPG_DEBUG_MSG("_nic_get_stats\n");
1008
1009         /* Check to see if the NIC has been initialized via nic_open,
1010          * before trying to read statistic registers.
1011          */
1012         if (!test_bit(__LINK_STATE_START, &dev->state))
1013                 return &sp->stats;
1014
1015         sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1016         sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1017         sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1018         sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1019         temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1020         sp->stats.rx_errors += temp1;
1021         sp->stats.rx_missed_errors += temp1;
1022         temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1023                 ipg_r32(IPG_LATECOLLISIONS);
1024         temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1025         sp->stats.collisions += temp1;
1026         sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1027         sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1028                 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1029         sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1030
1031         /* detailed tx_errors */
1032         sp->stats.tx_carrier_errors += temp2;
1033
1034         /* detailed rx_errors */
1035         sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1036                 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1037         sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1038
1039         /* Unutilized IPG statistic registers. */
1040         ipg_r32(IPG_MCSTFRAMESRCVDOK);
1041
1042         return &sp->stats;
1043 }
1044
1045 /* Restore used receive buffers. */
1046 static int ipg_nic_rxrestore(struct net_device *dev)
1047 {
1048         struct ipg_nic_private *sp = netdev_priv(dev);
1049         const unsigned int curr = sp->rx_current;
1050         unsigned int dirty = sp->rx_dirty;
1051
1052         IPG_DEBUG_MSG("_nic_rxrestore\n");
1053
1054         for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1055                 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1056
1057                 /* rx_copybreak may poke hole here and there. */
1058                 if (sp->rx_buff[entry])
1059                         continue;
1060
1061                 /* Generate a new receive buffer to replace the
1062                  * current buffer (which will be released by the
1063                  * Linux system).
1064                  */
1065                 if (ipg_get_rxbuff(dev, entry) < 0) {
1066                         IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1067
1068                         break;
1069                 }
1070
1071                 /* Reset the RFS field. */
1072                 sp->rxd[entry].rfs = 0x0000000000000000;
1073         }
1074         sp->rx_dirty = dirty;
1075
1076         return 0;
1077 }
1078
1079 /* use jumboindex and jumbosize to control jumbo frame status
1080  * initial status is jumboindex=-1 and jumbosize=0
1081  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1082  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1083  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1084  *               previous receiving and need to continue dumping the current one
1085  */
1086 enum {
1087         NORMAL_PACKET,
1088         ERROR_PACKET
1089 };
1090
1091 enum {
1092         FRAME_NO_START_NO_END   = 0,
1093         FRAME_WITH_START                = 1,
1094         FRAME_WITH_END          = 10,
1095         FRAME_WITH_START_WITH_END = 11
1096 };
1097
1098 static void ipg_nic_rx_free_skb(struct net_device *dev)
1099 {
1100         struct ipg_nic_private *sp = netdev_priv(dev);
1101         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1102
1103         if (sp->rx_buff[entry]) {
1104                 struct ipg_rx *rxfd = sp->rxd + entry;
1105
1106                 pci_unmap_single(sp->pdev,
1107                         le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1108                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1109                 dev_kfree_skb_irq(sp->rx_buff[entry]);
1110                 sp->rx_buff[entry] = NULL;
1111         }
1112 }
1113
1114 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1115 {
1116         struct ipg_nic_private *sp = netdev_priv(dev);
1117         struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1118         int type = FRAME_NO_START_NO_END;
1119
1120         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1121                 type += FRAME_WITH_START;
1122         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1123                 type += FRAME_WITH_END;
1124         return type;
1125 }
1126
1127 static int ipg_nic_rx_check_error(struct net_device *dev)
1128 {
1129         struct ipg_nic_private *sp = netdev_priv(dev);
1130         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1131         struct ipg_rx *rxfd = sp->rxd + entry;
1132
1133         if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1134              (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1135               IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1136               IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1137                 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1138                               (unsigned long) rxfd->rfs);
1139
1140                 /* Increment general receive error statistic. */
1141                 sp->stats.rx_errors++;
1142
1143                 /* Increment detailed receive error statistics. */
1144                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1145                         IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1146
1147                         sp->stats.rx_fifo_errors++;
1148                 }
1149
1150                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1151                         IPG_DEBUG_MSG("RX runt occured.\n");
1152                         sp->stats.rx_length_errors++;
1153                 }
1154
1155                 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1156                  * error count handled by a IPG statistic register.
1157                  */
1158
1159                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1160                         IPG_DEBUG_MSG("RX alignment error occured.\n");
1161                         sp->stats.rx_frame_errors++;
1162                 }
1163
1164                 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1165                  * handled by a IPG statistic register.
1166                  */
1167
1168                 /* Free the memory associated with the RX
1169                  * buffer since it is erroneous and we will
1170                  * not pass it to higher layer processes.
1171                  */
1172                 if (sp->rx_buff[entry]) {
1173                         pci_unmap_single(sp->pdev,
1174                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1175                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1176
1177                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1178                         sp->rx_buff[entry] = NULL;
1179                 }
1180                 return ERROR_PACKET;
1181         }
1182         return NORMAL_PACKET;
1183 }
1184
1185 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1186                                           struct ipg_nic_private *sp,
1187                                           struct ipg_rx *rxfd, unsigned entry)
1188 {
1189         struct ipg_jumbo *jumbo = &sp->jumbo;
1190         struct sk_buff *skb;
1191         int framelen;
1192
1193         if (jumbo->found_start) {
1194                 dev_kfree_skb_irq(jumbo->skb);
1195                 jumbo->found_start = 0;
1196                 jumbo->current_size = 0;
1197                 jumbo->skb = NULL;
1198         }
1199
1200         /* 1: found error, 0 no error */
1201         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1202                 return;
1203
1204         skb = sp->rx_buff[entry];
1205         if (!skb)
1206                 return;
1207
1208         /* accept this frame and send to upper layer */
1209         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1210         if (framelen > sp->rxfrag_size)
1211                 framelen = sp->rxfrag_size;
1212
1213         skb_put(skb, framelen);
1214         skb->protocol = eth_type_trans(skb, dev);
1215         skb->ip_summed = CHECKSUM_NONE;
1216         netif_rx(skb);
1217         sp->rx_buff[entry] = NULL;
1218 }
1219
1220 static void ipg_nic_rx_with_start(struct net_device *dev,
1221                                   struct ipg_nic_private *sp,
1222                                   struct ipg_rx *rxfd, unsigned entry)
1223 {
1224         struct ipg_jumbo *jumbo = &sp->jumbo;
1225         struct pci_dev *pdev = sp->pdev;
1226         struct sk_buff *skb;
1227
1228         /* 1: found error, 0 no error */
1229         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1230                 return;
1231
1232         /* accept this frame and send to upper layer */
1233         skb = sp->rx_buff[entry];
1234         if (!skb)
1235                 return;
1236
1237         if (jumbo->found_start)
1238                 dev_kfree_skb_irq(jumbo->skb);
1239
1240         pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1241                          sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1242
1243         skb_put(skb, sp->rxfrag_size);
1244
1245         jumbo->found_start = 1;
1246         jumbo->current_size = sp->rxfrag_size;
1247         jumbo->skb = skb;
1248
1249         sp->rx_buff[entry] = NULL;
1250 }
1251
1252 static void ipg_nic_rx_with_end(struct net_device *dev,
1253                                 struct ipg_nic_private *sp,
1254                                 struct ipg_rx *rxfd, unsigned entry)
1255 {
1256         struct ipg_jumbo *jumbo = &sp->jumbo;
1257
1258         /* 1: found error, 0 no error */
1259         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1260                 struct sk_buff *skb = sp->rx_buff[entry];
1261
1262                 if (!skb)
1263                         return;
1264
1265                 if (jumbo->found_start) {
1266                         int framelen, endframelen;
1267
1268                         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1269
1270                         endframelen = framelen - jumbo->current_size;
1271                         if (framelen > sp->rxsupport_size)
1272                                 dev_kfree_skb_irq(jumbo->skb);
1273                         else {
1274                                 memcpy(skb_put(jumbo->skb, endframelen),
1275                                        skb->data, endframelen);
1276
1277                                 jumbo->skb->protocol =
1278                                     eth_type_trans(jumbo->skb, dev);
1279
1280                                 jumbo->skb->ip_summed = CHECKSUM_NONE;
1281                                 netif_rx(jumbo->skb);
1282                         }
1283                 }
1284
1285                 jumbo->found_start = 0;
1286                 jumbo->current_size = 0;
1287                 jumbo->skb = NULL;
1288
1289                 ipg_nic_rx_free_skb(dev);
1290         } else {
1291                 dev_kfree_skb_irq(jumbo->skb);
1292                 jumbo->found_start = 0;
1293                 jumbo->current_size = 0;
1294                 jumbo->skb = NULL;
1295         }
1296 }
1297
1298 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1299                                        struct ipg_nic_private *sp,
1300                                        struct ipg_rx *rxfd, unsigned entry)
1301 {
1302         struct ipg_jumbo *jumbo = &sp->jumbo;
1303
1304         /* 1: found error, 0 no error */
1305         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1306                 struct sk_buff *skb = sp->rx_buff[entry];
1307
1308                 if (skb) {
1309                         if (jumbo->found_start) {
1310                                 jumbo->current_size += sp->rxfrag_size;
1311                                 if (jumbo->current_size <= sp->rxsupport_size) {
1312                                         memcpy(skb_put(jumbo->skb,
1313                                                        sp->rxfrag_size),
1314                                                skb->data, sp->rxfrag_size);
1315                                 }
1316                         }
1317                         ipg_nic_rx_free_skb(dev);
1318                 }
1319         } else {
1320                 dev_kfree_skb_irq(jumbo->skb);
1321                 jumbo->found_start = 0;
1322                 jumbo->current_size = 0;
1323                 jumbo->skb = NULL;
1324         }
1325 }
1326
1327 static int ipg_nic_rx_jumbo(struct net_device *dev)
1328 {
1329         struct ipg_nic_private *sp = netdev_priv(dev);
1330         unsigned int curr = sp->rx_current;
1331         void __iomem *ioaddr = sp->ioaddr;
1332         unsigned int i;
1333
1334         IPG_DEBUG_MSG("_nic_rx\n");
1335
1336         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1337                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1338                 struct ipg_rx *rxfd = sp->rxd + entry;
1339
1340                 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1341                         break;
1342
1343                 switch (ipg_nic_rx_check_frame_type(dev)) {
1344                 case FRAME_WITH_START_WITH_END:
1345                         ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1346                         break;
1347                 case FRAME_WITH_START:
1348                         ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1349                         break;
1350                 case FRAME_WITH_END:
1351                         ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1352                         break;
1353                 case FRAME_NO_START_NO_END:
1354                         ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1355                         break;
1356                 }
1357         }
1358
1359         sp->rx_current = curr;
1360
1361         if (i == IPG_MAXRFDPROCESS_COUNT) {
1362                 /* There are more RFDs to process, however the
1363                  * allocated amount of RFD processing time has
1364                  * expired. Assert Interrupt Requested to make
1365                  * sure we come back to process the remaining RFDs.
1366                  */
1367                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1368         }
1369
1370         ipg_nic_rxrestore(dev);
1371
1372         return 0;
1373 }
1374
1375 static int ipg_nic_rx(struct net_device *dev)
1376 {
1377         /* Transfer received Ethernet frames to higher network layers. */
1378         struct ipg_nic_private *sp = netdev_priv(dev);
1379         unsigned int curr = sp->rx_current;
1380         void __iomem *ioaddr = sp->ioaddr;
1381         struct ipg_rx *rxfd;
1382         unsigned int i;
1383
1384         IPG_DEBUG_MSG("_nic_rx\n");
1385
1386 #define __RFS_MASK \
1387         cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1388
1389         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1390                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1391                 struct sk_buff *skb = sp->rx_buff[entry];
1392                 unsigned int framelen;
1393
1394                 rxfd = sp->rxd + entry;
1395
1396                 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1397                         break;
1398
1399                 /* Get received frame length. */
1400                 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1401
1402                 /* Check for jumbo frame arrival with too small
1403                  * RXFRAG_SIZE.
1404                  */
1405                 if (framelen > sp->rxfrag_size) {
1406                         IPG_DEBUG_MSG
1407                             ("RFS FrameLen > allocated fragment size.\n");
1408
1409                         framelen = sp->rxfrag_size;
1410                 }
1411
1412                 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1413                        (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1414                         IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1415                         IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1416
1417                         IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1418                                       (unsigned long int) rxfd->rfs);
1419
1420                         /* Increment general receive error statistic. */
1421                         sp->stats.rx_errors++;
1422
1423                         /* Increment detailed receive error statistics. */
1424                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1425                                 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1426                                 sp->stats.rx_fifo_errors++;
1427                         }
1428
1429                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1430                                 IPG_DEBUG_MSG("RX runt occured.\n");
1431                                 sp->stats.rx_length_errors++;
1432                         }
1433
1434                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1435                         /* Do nothing, error count handled by a IPG
1436                          * statistic register.
1437                          */
1438
1439                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1440                                 IPG_DEBUG_MSG("RX alignment error occured.\n");
1441                                 sp->stats.rx_frame_errors++;
1442                         }
1443
1444                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1445                         /* Do nothing, error count handled by a IPG
1446                          * statistic register.
1447                          */
1448
1449                         /* Free the memory associated with the RX
1450                          * buffer since it is erroneous and we will
1451                          * not pass it to higher layer processes.
1452                          */
1453                         if (skb) {
1454                                 __le64 info = rxfd->frag_info;
1455
1456                                 pci_unmap_single(sp->pdev,
1457                                         le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1458                                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1459
1460                                 dev_kfree_skb_irq(skb);
1461                         }
1462                 } else {
1463
1464                         /* Adjust the new buffer length to accomodate the size
1465                          * of the received frame.
1466                          */
1467                         skb_put(skb, framelen);
1468
1469                         /* Set the buffer's protocol field to Ethernet. */
1470                         skb->protocol = eth_type_trans(skb, dev);
1471
1472                         /* The IPG encountered an error with (or
1473                          * there were no) IP/TCP/UDP checksums.
1474                          * This may or may not indicate an invalid
1475                          * IP/TCP/UDP frame was received. Let the
1476                          * upper layer decide.
1477                          */
1478                         skb->ip_summed = CHECKSUM_NONE;
1479
1480                         /* Hand off frame for higher layer processing.
1481                          * The function netif_rx() releases the sk_buff
1482                          * when processing completes.
1483                          */
1484                         netif_rx(skb);
1485                 }
1486
1487                 /* Assure RX buffer is not reused by IPG. */
1488                 sp->rx_buff[entry] = NULL;
1489         }
1490
1491         /*
1492          * If there are more RFDs to proces and the allocated amount of RFD
1493          * processing time has expired, assert Interrupt Requested to make
1494          * sure we come back to process the remaining RFDs.
1495          */
1496         if (i == IPG_MAXRFDPROCESS_COUNT)
1497                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1498
1499 #ifdef IPG_DEBUG
1500         /* Check if the RFD list contained no receive frame data. */
1501         if (!i)
1502                 sp->EmptyRFDListCount++;
1503 #endif
1504         while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1505                !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1506                  (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1507                 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1508
1509                 rxfd = sp->rxd + entry;
1510
1511                 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1512
1513                 /* An unexpected event, additional code needed to handle
1514                  * properly. So for the time being, just disregard the
1515                  * frame.
1516                  */
1517
1518                 /* Free the memory associated with the RX
1519                  * buffer since it is erroneous and we will
1520                  * not pass it to higher layer processes.
1521                  */
1522                 if (sp->rx_buff[entry]) {
1523                         pci_unmap_single(sp->pdev,
1524                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1525                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1526                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1527                 }
1528
1529                 /* Assure RX buffer is not reused by IPG. */
1530                 sp->rx_buff[entry] = NULL;
1531         }
1532
1533         sp->rx_current = curr;
1534
1535         /* Check to see if there are a minimum number of used
1536          * RFDs before restoring any (should improve performance.)
1537          */
1538         if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1539                 ipg_nic_rxrestore(dev);
1540
1541         return 0;
1542 }
1543
1544 static void ipg_reset_after_host_error(struct work_struct *work)
1545 {
1546         struct ipg_nic_private *sp =
1547                 container_of(work, struct ipg_nic_private, task.work);
1548         struct net_device *dev = sp->dev;
1549
1550         IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1551
1552         /*
1553          * Acknowledge HostError interrupt by resetting
1554          * IPG DMA and HOST.
1555          */
1556         ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1557
1558         init_rfdlist(dev);
1559         init_tfdlist(dev);
1560
1561         if (ipg_io_config(dev) < 0) {
1562                 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1563                        dev->name);
1564                 schedule_delayed_work(&sp->task, HZ);
1565         }
1566 }
1567
1568 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1569 {
1570         struct net_device *dev = dev_inst;
1571         struct ipg_nic_private *sp = netdev_priv(dev);
1572         void __iomem *ioaddr = sp->ioaddr;
1573         unsigned int handled = 0;
1574         u16 status;
1575
1576         IPG_DEBUG_MSG("_interrupt_handler\n");
1577
1578         if (sp->is_jumbo)
1579                 ipg_nic_rxrestore(dev);
1580
1581         spin_lock(&sp->lock);
1582
1583         /* Get interrupt source information, and acknowledge
1584          * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1585          * IntRequested, MacControlFrame, LinkEvent) interrupts
1586          * if issued. Also, all IPG interrupts are disabled by
1587          * reading IntStatusAck.
1588          */
1589         status = ipg_r16(INT_STATUS_ACK);
1590
1591         IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1592
1593         /* Shared IRQ of remove event. */
1594         if (!(status & IPG_IS_RSVD_MASK))
1595                 goto out_enable;
1596
1597         handled = 1;
1598
1599         if (unlikely(!netif_running(dev)))
1600                 goto out_unlock;
1601
1602         /* If RFDListEnd interrupt, restore all used RFDs. */
1603         if (status & IPG_IS_RFD_LIST_END) {
1604                 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1605
1606                 /* The RFD list end indicates an RFD was encountered
1607                  * with a 0 NextPtr, or with an RFDDone bit set to 1
1608                  * (indicating the RFD is not read for use by the
1609                  * IPG.) Try to restore all RFDs.
1610                  */
1611                 ipg_nic_rxrestore(dev);
1612
1613 #ifdef IPG_DEBUG
1614                 /* Increment the RFDlistendCount counter. */
1615                 sp->RFDlistendCount++;
1616 #endif
1617         }
1618
1619         /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1620          * IntRequested interrupt, process received frames. */
1621         if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1622             (status & IPG_IS_RFD_LIST_END) ||
1623             (status & IPG_IS_RX_DMA_COMPLETE) ||
1624             (status & IPG_IS_INT_REQUESTED)) {
1625 #ifdef IPG_DEBUG
1626                 /* Increment the RFD list checked counter if interrupted
1627                  * only to check the RFD list. */
1628                 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1629                                 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1630                                (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1631                                 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1632                                 IPG_IS_UPDATE_STATS)))
1633                         sp->RFDListCheckedCount++;
1634 #endif
1635
1636                 if (sp->is_jumbo)
1637                         ipg_nic_rx_jumbo(dev);
1638                 else
1639                         ipg_nic_rx(dev);
1640         }
1641
1642         /* If TxDMAComplete interrupt, free used TFDs. */
1643         if (status & IPG_IS_TX_DMA_COMPLETE)
1644                 ipg_nic_txfree(dev);
1645
1646         /* TxComplete interrupts indicate one of numerous actions.
1647          * Determine what action to take based on TXSTATUS register.
1648          */
1649         if (status & IPG_IS_TX_COMPLETE)
1650                 ipg_nic_txcleanup(dev);
1651
1652         /* If UpdateStats interrupt, update Linux Ethernet statistics */
1653         if (status & IPG_IS_UPDATE_STATS)
1654                 ipg_nic_get_stats(dev);
1655
1656         /* If HostError interrupt, reset IPG. */
1657         if (status & IPG_IS_HOST_ERROR) {
1658                 IPG_DDEBUG_MSG("HostError Interrupt\n");
1659
1660                 schedule_delayed_work(&sp->task, 0);
1661         }
1662
1663         /* If LinkEvent interrupt, resolve autonegotiation. */
1664         if (status & IPG_IS_LINK_EVENT) {
1665                 if (ipg_config_autoneg(dev) < 0)
1666                         printk(KERN_INFO "%s: Auto-negotiation error.\n",
1667                                dev->name);
1668         }
1669
1670         /* If MACCtrlFrame interrupt, do nothing. */
1671         if (status & IPG_IS_MAC_CTRL_FRAME)
1672                 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1673
1674         /* If RxComplete interrupt, do nothing. */
1675         if (status & IPG_IS_RX_COMPLETE)
1676                 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1677
1678         /* If RxEarly interrupt, do nothing. */
1679         if (status & IPG_IS_RX_EARLY)
1680                 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1681
1682 out_enable:
1683         /* Re-enable IPG interrupts. */
1684         ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1685                 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1686                 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1687 out_unlock:
1688         spin_unlock(&sp->lock);
1689
1690         return IRQ_RETVAL(handled);
1691 }
1692
1693 static void ipg_rx_clear(struct ipg_nic_private *sp)
1694 {
1695         unsigned int i;
1696
1697         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1698                 if (sp->rx_buff[i]) {
1699                         struct ipg_rx *rxfd = sp->rxd + i;
1700
1701                         dev_kfree_skb_irq(sp->rx_buff[i]);
1702                         sp->rx_buff[i] = NULL;
1703                         pci_unmap_single(sp->pdev,
1704                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1705                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1706                 }
1707         }
1708 }
1709
1710 static void ipg_tx_clear(struct ipg_nic_private *sp)
1711 {
1712         unsigned int i;
1713
1714         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1715                 if (sp->tx_buff[i]) {
1716                         struct ipg_tx *txfd = sp->txd + i;
1717
1718                         pci_unmap_single(sp->pdev,
1719                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1720                                 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1721
1722                         dev_kfree_skb_irq(sp->tx_buff[i]);
1723
1724                         sp->tx_buff[i] = NULL;
1725                 }
1726         }
1727 }
1728
1729 static int ipg_nic_open(struct net_device *dev)
1730 {
1731         struct ipg_nic_private *sp = netdev_priv(dev);
1732         void __iomem *ioaddr = sp->ioaddr;
1733         struct pci_dev *pdev = sp->pdev;
1734         int rc;
1735
1736         IPG_DEBUG_MSG("_nic_open\n");
1737
1738         sp->rx_buf_sz = sp->rxsupport_size;
1739
1740         /* Check for interrupt line conflicts, and request interrupt
1741          * line for IPG.
1742          *
1743          * IMPORTANT: Disable IPG interrupts prior to registering
1744          *            IRQ.
1745          */
1746         ipg_w16(0x0000, INT_ENABLE);
1747
1748         /* Register the interrupt line to be used by the IPG within
1749          * the Linux system.
1750          */
1751         rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1752                          dev->name, dev);
1753         if (rc < 0) {
1754                 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1755                        dev->name);
1756                 goto out;
1757         }
1758
1759         dev->irq = pdev->irq;
1760
1761         rc = -ENOMEM;
1762
1763         sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1764                                      &sp->rxd_map, GFP_KERNEL);
1765         if (!sp->rxd)
1766                 goto err_free_irq_0;
1767
1768         sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1769                                      &sp->txd_map, GFP_KERNEL);
1770         if (!sp->txd)
1771                 goto err_free_rx_1;
1772
1773         rc = init_rfdlist(dev);
1774         if (rc < 0) {
1775                 printk(KERN_INFO "%s: Error during configuration.\n",
1776                        dev->name);
1777                 goto err_free_tx_2;
1778         }
1779
1780         init_tfdlist(dev);
1781
1782         rc = ipg_io_config(dev);
1783         if (rc < 0) {
1784                 printk(KERN_INFO "%s: Error during configuration.\n",
1785                        dev->name);
1786                 goto err_release_tfdlist_3;
1787         }
1788
1789         /* Resolve autonegotiation. */
1790         if (ipg_config_autoneg(dev) < 0)
1791                 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1792
1793         /* initialize JUMBO Frame control variable */
1794         sp->jumbo.found_start = 0;
1795         sp->jumbo.current_size = 0;
1796         sp->jumbo.skb = NULL;
1797
1798         /* Enable transmit and receive operation of the IPG. */
1799         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1800                  IPG_MC_RSVD_MASK, MAC_CTRL);
1801
1802         netif_start_queue(dev);
1803 out:
1804         return rc;
1805
1806 err_release_tfdlist_3:
1807         ipg_tx_clear(sp);
1808         ipg_rx_clear(sp);
1809 err_free_tx_2:
1810         dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1811 err_free_rx_1:
1812         dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1813 err_free_irq_0:
1814         free_irq(pdev->irq, dev);
1815         goto out;
1816 }
1817
1818 static int ipg_nic_stop(struct net_device *dev)
1819 {
1820         struct ipg_nic_private *sp = netdev_priv(dev);
1821         void __iomem *ioaddr = sp->ioaddr;
1822         struct pci_dev *pdev = sp->pdev;
1823
1824         IPG_DEBUG_MSG("_nic_stop\n");
1825
1826         netif_stop_queue(dev);
1827
1828         IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1829         IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1830         IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1831         IPG_DUMPTFDLIST(dev);
1832
1833         do {
1834                 (void) ipg_r16(INT_STATUS_ACK);
1835
1836                 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1837
1838                 synchronize_irq(pdev->irq);
1839         } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1840
1841         ipg_rx_clear(sp);
1842
1843         ipg_tx_clear(sp);
1844
1845         pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1846         pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1847
1848         free_irq(pdev->irq, dev);
1849
1850         return 0;
1851 }
1852
1853 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1854                                            struct net_device *dev)
1855 {
1856         struct ipg_nic_private *sp = netdev_priv(dev);
1857         void __iomem *ioaddr = sp->ioaddr;
1858         unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1859         unsigned long flags;
1860         struct ipg_tx *txfd;
1861
1862         IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1863
1864         /* If in 10Mbps mode, stop the transmit queue so
1865          * no more transmit frames are accepted.
1866          */
1867         if (sp->tenmbpsmode)
1868                 netif_stop_queue(dev);
1869
1870         if (sp->reset_current_tfd) {
1871                 sp->reset_current_tfd = 0;
1872                 entry = 0;
1873         }
1874
1875         txfd = sp->txd + entry;
1876
1877         sp->tx_buff[entry] = skb;
1878
1879         /* Clear all TFC fields, except TFDDONE. */
1880         txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1881
1882         /* Specify the TFC field within the TFD. */
1883         txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1884                 (IPG_TFC_FRAMEID & sp->tx_current) |
1885                 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1886         /*
1887          * 16--17 (WordAlign) <- 3 (disable),
1888          * 0--15 (FrameId) <- sp->tx_current,
1889          * 24--27 (FragCount) <- 1
1890          */
1891
1892         /* Request TxComplete interrupts at an interval defined
1893          * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1894          * Request TxComplete interrupt for every frame
1895          * if in 10Mbps mode to accomodate problem with 10Mbps
1896          * processing.
1897          */
1898         if (sp->tenmbpsmode)
1899                 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1900         txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1901         /* Based on compilation option, determine if FCS is to be
1902          * appended to transmit frame by IPG.
1903          */
1904         if (!(IPG_APPEND_FCS_ON_TX))
1905                 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1906
1907         /* Based on compilation option, determine if IP, TCP and/or
1908          * UDP checksums are to be added to transmit frame by IPG.
1909          */
1910         if (IPG_ADD_IPCHECKSUM_ON_TX)
1911                 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1912
1913         if (IPG_ADD_TCPCHECKSUM_ON_TX)
1914                 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1915
1916         if (IPG_ADD_UDPCHECKSUM_ON_TX)
1917                 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1918
1919         /* Based on compilation option, determine if VLAN tag info is to be
1920          * inserted into transmit frame by IPG.
1921          */
1922         if (IPG_INSERT_MANUAL_VLAN_TAG) {
1923                 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1924                         ((u64) IPG_MANUAL_VLAN_VID << 32) |
1925                         ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1926                         ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1927         }
1928
1929         /* The fragment start location within system memory is defined
1930          * by the sk_buff structure's data field. The physical address
1931          * of this location within the system's virtual memory space
1932          * is determined using the IPG_HOST2BUS_MAP function.
1933          */
1934         txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1935                 skb->len, PCI_DMA_TODEVICE));
1936
1937         /* The length of the fragment within system memory is defined by
1938          * the sk_buff structure's len field.
1939          */
1940         txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1941                 ((u64) (skb->len & 0xffff) << 48));
1942
1943         /* Clear the TFDDone bit last to indicate the TFD is ready
1944          * for transfer to the IPG.
1945          */
1946         txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1947
1948         spin_lock_irqsave(&sp->lock, flags);
1949
1950         sp->tx_current++;
1951
1952         mmiowb();
1953
1954         ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1955
1956         if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1957                 netif_stop_queue(dev);
1958
1959         spin_unlock_irqrestore(&sp->lock, flags);
1960
1961         return NETDEV_TX_OK;
1962 }
1963
1964 static void ipg_set_phy_default_param(unsigned char rev,
1965                                       struct net_device *dev, int phy_address)
1966 {
1967         unsigned short length;
1968         unsigned char revision;
1969         unsigned short *phy_param;
1970         unsigned short address, value;
1971
1972         phy_param = &DefaultPhyParam[0];
1973         length = *phy_param & 0x00FF;
1974         revision = (unsigned char)((*phy_param) >> 8);
1975         phy_param++;
1976         while (length != 0) {
1977                 if (rev == revision) {
1978                         while (length > 1) {
1979                                 address = *phy_param;
1980                                 value = *(phy_param + 1);
1981                                 phy_param += 2;
1982                                 mdio_write(dev, phy_address, address, value);
1983                                 length -= 4;
1984                         }
1985                         break;
1986                 } else {
1987                         phy_param += length / 2;
1988                         length = *phy_param & 0x00FF;
1989                         revision = (unsigned char)((*phy_param) >> 8);
1990                         phy_param++;
1991                 }
1992         }
1993 }
1994
1995 static int read_eeprom(struct net_device *dev, int eep_addr)
1996 {
1997         void __iomem *ioaddr = ipg_ioaddr(dev);
1998         unsigned int i;
1999         int ret = 0;
2000         u16 value;
2001
2002         value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2003         ipg_w16(value, EEPROM_CTRL);
2004
2005         for (i = 0; i < 1000; i++) {
2006                 u16 data;
2007
2008                 mdelay(10);
2009                 data = ipg_r16(EEPROM_CTRL);
2010                 if (!(data & IPG_EC_EEPROM_BUSY)) {
2011                         ret = ipg_r16(EEPROM_DATA);
2012                         break;
2013                 }
2014         }
2015         return ret;
2016 }
2017
2018 static void ipg_init_mii(struct net_device *dev)
2019 {
2020         struct ipg_nic_private *sp = netdev_priv(dev);
2021         struct mii_if_info *mii_if = &sp->mii_if;
2022         int phyaddr;
2023
2024         mii_if->dev          = dev;
2025         mii_if->mdio_read    = mdio_read;
2026         mii_if->mdio_write   = mdio_write;
2027         mii_if->phy_id_mask  = 0x1f;
2028         mii_if->reg_num_mask = 0x1f;
2029
2030         mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2031
2032         if (phyaddr != 0x1f) {
2033                 u16 mii_phyctrl, mii_1000cr;
2034                 u8 revisionid = 0;
2035
2036                 mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2037                 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2038                         GMII_PHY_1000BASETCONTROL_PreferMaster;
2039                 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2040
2041                 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2042
2043                 /* Set default phyparam */
2044                 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2045                 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2046
2047                 /* Reset PHY */
2048                 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2049                 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2050
2051         }
2052 }
2053
2054 static int ipg_hw_init(struct net_device *dev)
2055 {
2056         struct ipg_nic_private *sp = netdev_priv(dev);
2057         void __iomem *ioaddr = sp->ioaddr;
2058         unsigned int i;
2059         int rc;
2060
2061         /* Read/Write and Reset EEPROM Value */
2062         /* Read LED Mode Configuration from EEPROM */
2063         sp->led_mode = read_eeprom(dev, 6);
2064
2065         /* Reset all functions within the IPG. Do not assert
2066          * RST_OUT as not compatible with some PHYs.
2067          */
2068         rc = ipg_reset(dev, IPG_RESET_MASK);
2069         if (rc < 0)
2070                 goto out;
2071
2072         ipg_init_mii(dev);
2073
2074         /* Read MAC Address from EEPROM */
2075         for (i = 0; i < 3; i++)
2076                 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2077
2078         for (i = 0; i < 3; i++)
2079                 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2080
2081         /* Set station address in ethernet_device structure. */
2082         dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2083         dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2084         dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2085         dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2086         dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2087         dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2088 out:
2089         return rc;
2090 }
2091
2092 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2093 {
2094         struct ipg_nic_private *sp = netdev_priv(dev);
2095         int rc;
2096
2097         mutex_lock(&sp->mii_mutex);
2098         rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2099         mutex_unlock(&sp->mii_mutex);
2100
2101         return rc;
2102 }
2103
2104 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2105 {
2106         struct ipg_nic_private *sp = netdev_priv(dev);
2107         int err;
2108
2109         /* Function to accomodate changes to Maximum Transfer Unit
2110          * (or MTU) of IPG NIC. Cannot use default function since
2111          * the default will not allow for MTU > 1500 bytes.
2112          */
2113
2114         IPG_DEBUG_MSG("_nic_change_mtu\n");
2115
2116         /*
2117          * Check that the new MTU value is between 68 (14 byte header, 46 byte
2118          * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2119          */
2120         if (new_mtu < 68 || new_mtu > 10240)
2121                 return -EINVAL;
2122
2123         err = ipg_nic_stop(dev);
2124         if (err)
2125                 return err;
2126
2127         dev->mtu = new_mtu;
2128
2129         sp->max_rxframe_size = new_mtu;
2130
2131         sp->rxfrag_size = new_mtu;
2132         if (sp->rxfrag_size > 4088)
2133                 sp->rxfrag_size = 4088;
2134
2135         sp->rxsupport_size = sp->max_rxframe_size;
2136
2137         if (new_mtu > 0x0600)
2138                 sp->is_jumbo = true;
2139         else
2140                 sp->is_jumbo = false;
2141
2142         return ipg_nic_open(dev);
2143 }
2144
2145 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2146 {
2147         struct ipg_nic_private *sp = netdev_priv(dev);
2148         int rc;
2149
2150         mutex_lock(&sp->mii_mutex);
2151         rc = mii_ethtool_gset(&sp->mii_if, cmd);
2152         mutex_unlock(&sp->mii_mutex);
2153
2154         return rc;
2155 }
2156
2157 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2158 {
2159         struct ipg_nic_private *sp = netdev_priv(dev);
2160         int rc;
2161
2162         mutex_lock(&sp->mii_mutex);
2163         rc = mii_ethtool_sset(&sp->mii_if, cmd);
2164         mutex_unlock(&sp->mii_mutex);
2165
2166         return rc;
2167 }
2168
2169 static int ipg_nway_reset(struct net_device *dev)
2170 {
2171         struct ipg_nic_private *sp = netdev_priv(dev);
2172         int rc;
2173
2174         mutex_lock(&sp->mii_mutex);
2175         rc = mii_nway_restart(&sp->mii_if);
2176         mutex_unlock(&sp->mii_mutex);
2177
2178         return rc;
2179 }
2180
2181 static const struct ethtool_ops ipg_ethtool_ops = {
2182         .get_settings = ipg_get_settings,
2183         .set_settings = ipg_set_settings,
2184         .nway_reset   = ipg_nway_reset,
2185 };
2186
2187 static void __devexit ipg_remove(struct pci_dev *pdev)
2188 {
2189         struct net_device *dev = pci_get_drvdata(pdev);
2190         struct ipg_nic_private *sp = netdev_priv(dev);
2191
2192         IPG_DEBUG_MSG("_remove\n");
2193
2194         /* Un-register Ethernet device. */
2195         unregister_netdev(dev);
2196
2197         pci_iounmap(pdev, sp->ioaddr);
2198
2199         pci_release_regions(pdev);
2200
2201         free_netdev(dev);
2202         pci_disable_device(pdev);
2203         pci_set_drvdata(pdev, NULL);
2204 }
2205
2206 static const struct net_device_ops ipg_netdev_ops = {
2207         .ndo_open               = ipg_nic_open,
2208         .ndo_stop               = ipg_nic_stop,
2209         .ndo_start_xmit         = ipg_nic_hard_start_xmit,
2210         .ndo_get_stats          = ipg_nic_get_stats,
2211         .ndo_set_multicast_list = ipg_nic_set_multicast_list,
2212         .ndo_do_ioctl           = ipg_ioctl,
2213         .ndo_tx_timeout         = ipg_tx_timeout,
2214         .ndo_change_mtu         = ipg_nic_change_mtu,
2215         .ndo_set_mac_address    = eth_mac_addr,
2216         .ndo_validate_addr      = eth_validate_addr,
2217 };
2218
2219 static int __devinit ipg_probe(struct pci_dev *pdev,
2220                                const struct pci_device_id *id)
2221 {
2222         unsigned int i = id->driver_data;
2223         struct ipg_nic_private *sp;
2224         struct net_device *dev;
2225         void __iomem *ioaddr;
2226         int rc;
2227
2228         rc = pci_enable_device(pdev);
2229         if (rc < 0)
2230                 goto out;
2231
2232         printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2233
2234         pci_set_master(pdev);
2235
2236         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2237         if (rc < 0) {
2238                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2239                 if (rc < 0) {
2240                         printk(KERN_ERR "%s: DMA config failed.\n",
2241                                pci_name(pdev));
2242                         goto err_disable_0;
2243                 }
2244         }
2245
2246         /*
2247          * Initialize net device.
2248          */
2249         dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2250         if (!dev) {
2251                 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2252                 rc = -ENOMEM;
2253                 goto err_disable_0;
2254         }
2255
2256         sp = netdev_priv(dev);
2257         spin_lock_init(&sp->lock);
2258         mutex_init(&sp->mii_mutex);
2259
2260         sp->is_jumbo = IPG_IS_JUMBO;
2261         sp->rxfrag_size = IPG_RXFRAG_SIZE;
2262         sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2263         sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2264
2265         /* Declare IPG NIC functions for Ethernet device methods.
2266          */
2267         dev->netdev_ops = &ipg_netdev_ops;
2268         SET_NETDEV_DEV(dev, &pdev->dev);
2269         SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2270
2271         rc = pci_request_regions(pdev, DRV_NAME);
2272         if (rc)
2273                 goto err_free_dev_1;
2274
2275         ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2276         if (!ioaddr) {
2277                 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2278                 rc = -EIO;
2279                 goto err_release_regions_2;
2280         }
2281
2282         /* Save the pointer to the PCI device information. */
2283         sp->ioaddr = ioaddr;
2284         sp->pdev = pdev;
2285         sp->dev = dev;
2286
2287         INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2288
2289         pci_set_drvdata(pdev, dev);
2290
2291         rc = ipg_hw_init(dev);
2292         if (rc < 0)
2293                 goto err_unmap_3;
2294
2295         rc = register_netdev(dev);
2296         if (rc < 0)
2297                 goto err_unmap_3;
2298
2299         printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2300 out:
2301         return rc;
2302
2303 err_unmap_3:
2304         pci_iounmap(pdev, ioaddr);
2305 err_release_regions_2:
2306         pci_release_regions(pdev);
2307 err_free_dev_1:
2308         free_netdev(dev);
2309 err_disable_0:
2310         pci_disable_device(pdev);
2311         goto out;
2312 }
2313
2314 static struct pci_driver ipg_pci_driver = {
2315         .name           = IPG_DRIVER_NAME,
2316         .id_table       = ipg_pci_tbl,
2317         .probe          = ipg_probe,
2318         .remove         = __devexit_p(ipg_remove),
2319 };
2320
2321 static int __init ipg_init_module(void)
2322 {
2323         return pci_register_driver(&ipg_pci_driver);
2324 }
2325
2326 static void __exit ipg_exit_module(void)
2327 {
2328         pci_unregister_driver(&ipg_pci_driver);
2329 }
2330
2331 module_init(ipg_init_module);
2332 module_exit(ipg_exit_module);