remove inode_setattr
[linux-flexiantxendom0-natty.git] / fs / proc / base.c
1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include <linux/slab.h>
85 #include "internal.h"
86
87 /* NOTE:
88  *      Implementing inode permission operations in /proc is almost
89  *      certainly an error.  Permission checks need to happen during
90  *      each system call not at open time.  The reason is that most of
91  *      what we wish to check for permissions in /proc varies at runtime.
92  *
93  *      The classic example of a problem is opening file descriptors
94  *      in /proc for a task before it execs a suid executable.
95  */
96
97 struct pid_entry {
98         char *name;
99         int len;
100         mode_t mode;
101         const struct inode_operations *iop;
102         const struct file_operations *fop;
103         union proc_op op;
104 };
105
106 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
107         .name = (NAME),                                 \
108         .len  = sizeof(NAME) - 1,                       \
109         .mode = MODE,                                   \
110         .iop  = IOP,                                    \
111         .fop  = FOP,                                    \
112         .op   = OP,                                     \
113 }
114
115 #define DIR(NAME, MODE, iops, fops)     \
116         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
117 #define LNK(NAME, get_link)                                     \
118         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
119                 &proc_pid_link_inode_operations, NULL,          \
120                 { .proc_get_link = get_link } )
121 #define REG(NAME, MODE, fops)                           \
122         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
123 #define INF(NAME, MODE, read)                           \
124         NOD(NAME, (S_IFREG|(MODE)),                     \
125                 NULL, &proc_info_file_operations,       \
126                 { .proc_read = read } )
127 #define ONE(NAME, MODE, show)                           \
128         NOD(NAME, (S_IFREG|(MODE)),                     \
129                 NULL, &proc_single_file_operations,     \
130                 { .proc_show = show } )
131
132 /*
133  * Count the number of hardlinks for the pid_entry table, excluding the .
134  * and .. links.
135  */
136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
137         unsigned int n)
138 {
139         unsigned int i;
140         unsigned int count;
141
142         count = 0;
143         for (i = 0; i < n; ++i) {
144                 if (S_ISDIR(entries[i].mode))
145                         ++count;
146         }
147
148         return count;
149 }
150
151 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
152 {
153         struct fs_struct *fs;
154         int result = -ENOENT;
155
156         task_lock(task);
157         fs = task->fs;
158         if (fs) {
159                 read_lock(&fs->lock);
160                 *path = root ? fs->root : fs->pwd;
161                 path_get(path);
162                 read_unlock(&fs->lock);
163                 result = 0;
164         }
165         task_unlock(task);
166         return result;
167 }
168
169 static int proc_cwd_link(struct inode *inode, struct path *path)
170 {
171         struct task_struct *task = get_proc_task(inode);
172         int result = -ENOENT;
173
174         if (task) {
175                 result = get_fs_path(task, path, 0);
176                 put_task_struct(task);
177         }
178         return result;
179 }
180
181 static int proc_root_link(struct inode *inode, struct path *path)
182 {
183         struct task_struct *task = get_proc_task(inode);
184         int result = -ENOENT;
185
186         if (task) {
187                 result = get_fs_path(task, path, 1);
188                 put_task_struct(task);
189         }
190         return result;
191 }
192
193 /*
194  * Return zero if current may access user memory in @task, -error if not.
195  */
196 static int check_mem_permission(struct task_struct *task)
197 {
198         /*
199          * A task can always look at itself, in case it chooses
200          * to use system calls instead of load instructions.
201          */
202         if (task == current)
203                 return 0;
204
205         /*
206          * If current is actively ptrace'ing, and would also be
207          * permitted to freshly attach with ptrace now, permit it.
208          */
209         if (task_is_stopped_or_traced(task)) {
210                 int match;
211                 rcu_read_lock();
212                 match = (tracehook_tracer_task(task) == current);
213                 rcu_read_unlock();
214                 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
215                         return 0;
216         }
217
218         /*
219          * Noone else is allowed.
220          */
221         return -EPERM;
222 }
223
224 struct mm_struct *mm_for_maps(struct task_struct *task)
225 {
226         struct mm_struct *mm;
227
228         if (mutex_lock_killable(&task->cred_guard_mutex))
229                 return NULL;
230
231         mm = get_task_mm(task);
232         if (mm && mm != current->mm &&
233                         !ptrace_may_access(task, PTRACE_MODE_READ)) {
234                 mmput(mm);
235                 mm = NULL;
236         }
237         mutex_unlock(&task->cred_guard_mutex);
238
239         return mm;
240 }
241
242 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
243 {
244         int res = 0;
245         unsigned int len;
246         struct mm_struct *mm = get_task_mm(task);
247         if (!mm)
248                 goto out;
249         if (!mm->arg_end)
250                 goto out_mm;    /* Shh! No looking before we're done */
251
252         len = mm->arg_end - mm->arg_start;
253  
254         if (len > PAGE_SIZE)
255                 len = PAGE_SIZE;
256  
257         res = access_process_vm(task, mm->arg_start, buffer, len, 0);
258
259         // If the nul at the end of args has been overwritten, then
260         // assume application is using setproctitle(3).
261         if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
262                 len = strnlen(buffer, res);
263                 if (len < res) {
264                     res = len;
265                 } else {
266                         len = mm->env_end - mm->env_start;
267                         if (len > PAGE_SIZE - res)
268                                 len = PAGE_SIZE - res;
269                         res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
270                         res = strnlen(buffer, res);
271                 }
272         }
273 out_mm:
274         mmput(mm);
275 out:
276         return res;
277 }
278
279 static int proc_pid_auxv(struct task_struct *task, char *buffer)
280 {
281         int res = 0;
282         struct mm_struct *mm = get_task_mm(task);
283         if (mm) {
284                 unsigned int nwords = 0;
285                 do {
286                         nwords += 2;
287                 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
288                 res = nwords * sizeof(mm->saved_auxv[0]);
289                 if (res > PAGE_SIZE)
290                         res = PAGE_SIZE;
291                 memcpy(buffer, mm->saved_auxv, res);
292                 mmput(mm);
293         }
294         return res;
295 }
296
297
298 #ifdef CONFIG_KALLSYMS
299 /*
300  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
301  * Returns the resolved symbol.  If that fails, simply return the address.
302  */
303 static int proc_pid_wchan(struct task_struct *task, char *buffer)
304 {
305         unsigned long wchan;
306         char symname[KSYM_NAME_LEN];
307
308         wchan = get_wchan(task);
309
310         if (lookup_symbol_name(wchan, symname) < 0)
311                 if (!ptrace_may_access(task, PTRACE_MODE_READ))
312                         return 0;
313                 else
314                         return sprintf(buffer, "%lu", wchan);
315         else
316                 return sprintf(buffer, "%s", symname);
317 }
318 #endif /* CONFIG_KALLSYMS */
319
320 #ifdef CONFIG_STACKTRACE
321
322 #define MAX_STACK_TRACE_DEPTH   64
323
324 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
325                           struct pid *pid, struct task_struct *task)
326 {
327         struct stack_trace trace;
328         unsigned long *entries;
329         int i;
330
331         entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
332         if (!entries)
333                 return -ENOMEM;
334
335         trace.nr_entries        = 0;
336         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
337         trace.entries           = entries;
338         trace.skip              = 0;
339         save_stack_trace_tsk(task, &trace);
340
341         for (i = 0; i < trace.nr_entries; i++) {
342                 seq_printf(m, "[<%p>] %pS\n",
343                            (void *)entries[i], (void *)entries[i]);
344         }
345         kfree(entries);
346
347         return 0;
348 }
349 #endif
350
351 #ifdef CONFIG_SCHEDSTATS
352 /*
353  * Provides /proc/PID/schedstat
354  */
355 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
356 {
357         return sprintf(buffer, "%llu %llu %lu\n",
358                         (unsigned long long)task->se.sum_exec_runtime,
359                         (unsigned long long)task->sched_info.run_delay,
360                         task->sched_info.pcount);
361 }
362 #endif
363
364 #ifdef CONFIG_LATENCYTOP
365 static int lstats_show_proc(struct seq_file *m, void *v)
366 {
367         int i;
368         struct inode *inode = m->private;
369         struct task_struct *task = get_proc_task(inode);
370
371         if (!task)
372                 return -ESRCH;
373         seq_puts(m, "Latency Top version : v0.1\n");
374         for (i = 0; i < 32; i++) {
375                 if (task->latency_record[i].backtrace[0]) {
376                         int q;
377                         seq_printf(m, "%i %li %li ",
378                                 task->latency_record[i].count,
379                                 task->latency_record[i].time,
380                                 task->latency_record[i].max);
381                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
382                                 char sym[KSYM_SYMBOL_LEN];
383                                 char *c;
384                                 if (!task->latency_record[i].backtrace[q])
385                                         break;
386                                 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
387                                         break;
388                                 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
389                                 c = strchr(sym, '+');
390                                 if (c)
391                                         *c = 0;
392                                 seq_printf(m, "%s ", sym);
393                         }
394                         seq_printf(m, "\n");
395                 }
396
397         }
398         put_task_struct(task);
399         return 0;
400 }
401
402 static int lstats_open(struct inode *inode, struct file *file)
403 {
404         return single_open(file, lstats_show_proc, inode);
405 }
406
407 static ssize_t lstats_write(struct file *file, const char __user *buf,
408                             size_t count, loff_t *offs)
409 {
410         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
411
412         if (!task)
413                 return -ESRCH;
414         clear_all_latency_tracing(task);
415         put_task_struct(task);
416
417         return count;
418 }
419
420 static const struct file_operations proc_lstats_operations = {
421         .open           = lstats_open,
422         .read           = seq_read,
423         .write          = lstats_write,
424         .llseek         = seq_lseek,
425         .release        = single_release,
426 };
427
428 #endif
429
430 /* The badness from the OOM killer */
431 unsigned long badness(struct task_struct *p, unsigned long uptime);
432 static int proc_oom_score(struct task_struct *task, char *buffer)
433 {
434         unsigned long points = 0;
435         struct timespec uptime;
436
437         do_posix_clock_monotonic_gettime(&uptime);
438         read_lock(&tasklist_lock);
439         if (pid_alive(task))
440                 points = badness(task, uptime.tv_sec);
441         read_unlock(&tasklist_lock);
442         return sprintf(buffer, "%lu\n", points);
443 }
444
445 struct limit_names {
446         char *name;
447         char *unit;
448 };
449
450 static const struct limit_names lnames[RLIM_NLIMITS] = {
451         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
452         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
453         [RLIMIT_DATA] = {"Max data size", "bytes"},
454         [RLIMIT_STACK] = {"Max stack size", "bytes"},
455         [RLIMIT_CORE] = {"Max core file size", "bytes"},
456         [RLIMIT_RSS] = {"Max resident set", "bytes"},
457         [RLIMIT_NPROC] = {"Max processes", "processes"},
458         [RLIMIT_NOFILE] = {"Max open files", "files"},
459         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
460         [RLIMIT_AS] = {"Max address space", "bytes"},
461         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
462         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
463         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
464         [RLIMIT_NICE] = {"Max nice priority", NULL},
465         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
466         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
467 };
468
469 /* Display limits for a process */
470 static int proc_pid_limits(struct task_struct *task, char *buffer)
471 {
472         unsigned int i;
473         int count = 0;
474         unsigned long flags;
475         char *bufptr = buffer;
476
477         struct rlimit rlim[RLIM_NLIMITS];
478
479         if (!lock_task_sighand(task, &flags))
480                 return 0;
481         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
482         unlock_task_sighand(task, &flags);
483
484         /*
485          * print the file header
486          */
487         count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
488                         "Limit", "Soft Limit", "Hard Limit", "Units");
489
490         for (i = 0; i < RLIM_NLIMITS; i++) {
491                 if (rlim[i].rlim_cur == RLIM_INFINITY)
492                         count += sprintf(&bufptr[count], "%-25s %-20s ",
493                                          lnames[i].name, "unlimited");
494                 else
495                         count += sprintf(&bufptr[count], "%-25s %-20lu ",
496                                          lnames[i].name, rlim[i].rlim_cur);
497
498                 if (rlim[i].rlim_max == RLIM_INFINITY)
499                         count += sprintf(&bufptr[count], "%-20s ", "unlimited");
500                 else
501                         count += sprintf(&bufptr[count], "%-20lu ",
502                                          rlim[i].rlim_max);
503
504                 if (lnames[i].unit)
505                         count += sprintf(&bufptr[count], "%-10s\n",
506                                          lnames[i].unit);
507                 else
508                         count += sprintf(&bufptr[count], "\n");
509         }
510
511         return count;
512 }
513
514 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
515 static int proc_pid_syscall(struct task_struct *task, char *buffer)
516 {
517         long nr;
518         unsigned long args[6], sp, pc;
519
520         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
521                 return sprintf(buffer, "running\n");
522
523         if (nr < 0)
524                 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
525
526         return sprintf(buffer,
527                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
528                        nr,
529                        args[0], args[1], args[2], args[3], args[4], args[5],
530                        sp, pc);
531 }
532 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
533
534 /************************************************************************/
535 /*                       Here the fs part begins                        */
536 /************************************************************************/
537
538 /* permission checks */
539 static int proc_fd_access_allowed(struct inode *inode)
540 {
541         struct task_struct *task;
542         int allowed = 0;
543         /* Allow access to a task's file descriptors if it is us or we
544          * may use ptrace attach to the process and find out that
545          * information.
546          */
547         task = get_proc_task(inode);
548         if (task) {
549                 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
550                 put_task_struct(task);
551         }
552         return allowed;
553 }
554
555 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
556 {
557         int error;
558         struct inode *inode = dentry->d_inode;
559
560         if (attr->ia_valid & ATTR_MODE)
561                 return -EPERM;
562
563         error = inode_change_ok(inode, attr);
564         if (error)
565                 return error;
566
567         if ((attr->ia_valid & ATTR_SIZE) &&
568             attr->ia_size != i_size_read(inode)) {
569                 error = vmtruncate(inode, attr->ia_size);
570                 if (error)
571                         return error;
572         }
573
574         setattr_copy(inode, attr);
575         mark_inode_dirty(inode);
576         return 0;
577 }
578
579 static const struct inode_operations proc_def_inode_operations = {
580         .setattr        = proc_setattr,
581 };
582
583 static int mounts_open_common(struct inode *inode, struct file *file,
584                               const struct seq_operations *op)
585 {
586         struct task_struct *task = get_proc_task(inode);
587         struct nsproxy *nsp;
588         struct mnt_namespace *ns = NULL;
589         struct path root;
590         struct proc_mounts *p;
591         int ret = -EINVAL;
592
593         if (task) {
594                 rcu_read_lock();
595                 nsp = task_nsproxy(task);
596                 if (nsp) {
597                         ns = nsp->mnt_ns;
598                         if (ns)
599                                 get_mnt_ns(ns);
600                 }
601                 rcu_read_unlock();
602                 if (ns && get_fs_path(task, &root, 1) == 0)
603                         ret = 0;
604                 put_task_struct(task);
605         }
606
607         if (!ns)
608                 goto err;
609         if (ret)
610                 goto err_put_ns;
611
612         ret = -ENOMEM;
613         p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
614         if (!p)
615                 goto err_put_path;
616
617         file->private_data = &p->m;
618         ret = seq_open(file, op);
619         if (ret)
620                 goto err_free;
621
622         p->m.private = p;
623         p->ns = ns;
624         p->root = root;
625         p->event = ns->event;
626
627         return 0;
628
629  err_free:
630         kfree(p);
631  err_put_path:
632         path_put(&root);
633  err_put_ns:
634         put_mnt_ns(ns);
635  err:
636         return ret;
637 }
638
639 static int mounts_release(struct inode *inode, struct file *file)
640 {
641         struct proc_mounts *p = file->private_data;
642         path_put(&p->root);
643         put_mnt_ns(p->ns);
644         return seq_release(inode, file);
645 }
646
647 static unsigned mounts_poll(struct file *file, poll_table *wait)
648 {
649         struct proc_mounts *p = file->private_data;
650         unsigned res = POLLIN | POLLRDNORM;
651
652         poll_wait(file, &p->ns->poll, wait);
653         if (mnt_had_events(p))
654                 res |= POLLERR | POLLPRI;
655
656         return res;
657 }
658
659 static int mounts_open(struct inode *inode, struct file *file)
660 {
661         return mounts_open_common(inode, file, &mounts_op);
662 }
663
664 static const struct file_operations proc_mounts_operations = {
665         .open           = mounts_open,
666         .read           = seq_read,
667         .llseek         = seq_lseek,
668         .release        = mounts_release,
669         .poll           = mounts_poll,
670 };
671
672 static int mountinfo_open(struct inode *inode, struct file *file)
673 {
674         return mounts_open_common(inode, file, &mountinfo_op);
675 }
676
677 static const struct file_operations proc_mountinfo_operations = {
678         .open           = mountinfo_open,
679         .read           = seq_read,
680         .llseek         = seq_lseek,
681         .release        = mounts_release,
682         .poll           = mounts_poll,
683 };
684
685 static int mountstats_open(struct inode *inode, struct file *file)
686 {
687         return mounts_open_common(inode, file, &mountstats_op);
688 }
689
690 static const struct file_operations proc_mountstats_operations = {
691         .open           = mountstats_open,
692         .read           = seq_read,
693         .llseek         = seq_lseek,
694         .release        = mounts_release,
695 };
696
697 #define PROC_BLOCK_SIZE (3*1024)                /* 4K page size but our output routines use some slack for overruns */
698
699 static ssize_t proc_info_read(struct file * file, char __user * buf,
700                           size_t count, loff_t *ppos)
701 {
702         struct inode * inode = file->f_path.dentry->d_inode;
703         unsigned long page;
704         ssize_t length;
705         struct task_struct *task = get_proc_task(inode);
706
707         length = -ESRCH;
708         if (!task)
709                 goto out_no_task;
710
711         if (count > PROC_BLOCK_SIZE)
712                 count = PROC_BLOCK_SIZE;
713
714         length = -ENOMEM;
715         if (!(page = __get_free_page(GFP_TEMPORARY)))
716                 goto out;
717
718         length = PROC_I(inode)->op.proc_read(task, (char*)page);
719
720         if (length >= 0)
721                 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
722         free_page(page);
723 out:
724         put_task_struct(task);
725 out_no_task:
726         return length;
727 }
728
729 static const struct file_operations proc_info_file_operations = {
730         .read           = proc_info_read,
731         .llseek         = generic_file_llseek,
732 };
733
734 static int proc_single_show(struct seq_file *m, void *v)
735 {
736         struct inode *inode = m->private;
737         struct pid_namespace *ns;
738         struct pid *pid;
739         struct task_struct *task;
740         int ret;
741
742         ns = inode->i_sb->s_fs_info;
743         pid = proc_pid(inode);
744         task = get_pid_task(pid, PIDTYPE_PID);
745         if (!task)
746                 return -ESRCH;
747
748         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
749
750         put_task_struct(task);
751         return ret;
752 }
753
754 static int proc_single_open(struct inode *inode, struct file *filp)
755 {
756         int ret;
757         ret = single_open(filp, proc_single_show, NULL);
758         if (!ret) {
759                 struct seq_file *m = filp->private_data;
760
761                 m->private = inode;
762         }
763         return ret;
764 }
765
766 static const struct file_operations proc_single_file_operations = {
767         .open           = proc_single_open,
768         .read           = seq_read,
769         .llseek         = seq_lseek,
770         .release        = single_release,
771 };
772
773 static int mem_open(struct inode* inode, struct file* file)
774 {
775         file->private_data = (void*)((long)current->self_exec_id);
776         return 0;
777 }
778
779 static ssize_t mem_read(struct file * file, char __user * buf,
780                         size_t count, loff_t *ppos)
781 {
782         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
783         char *page;
784         unsigned long src = *ppos;
785         int ret = -ESRCH;
786         struct mm_struct *mm;
787
788         if (!task)
789                 goto out_no_task;
790
791         if (check_mem_permission(task))
792                 goto out;
793
794         ret = -ENOMEM;
795         page = (char *)__get_free_page(GFP_TEMPORARY);
796         if (!page)
797                 goto out;
798
799         ret = 0;
800  
801         mm = get_task_mm(task);
802         if (!mm)
803                 goto out_free;
804
805         ret = -EIO;
806  
807         if (file->private_data != (void*)((long)current->self_exec_id))
808                 goto out_put;
809
810         ret = 0;
811  
812         while (count > 0) {
813                 int this_len, retval;
814
815                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
816                 retval = access_process_vm(task, src, page, this_len, 0);
817                 if (!retval || check_mem_permission(task)) {
818                         if (!ret)
819                                 ret = -EIO;
820                         break;
821                 }
822
823                 if (copy_to_user(buf, page, retval)) {
824                         ret = -EFAULT;
825                         break;
826                 }
827  
828                 ret += retval;
829                 src += retval;
830                 buf += retval;
831                 count -= retval;
832         }
833         *ppos = src;
834
835 out_put:
836         mmput(mm);
837 out_free:
838         free_page((unsigned long) page);
839 out:
840         put_task_struct(task);
841 out_no_task:
842         return ret;
843 }
844
845 #define mem_write NULL
846
847 #ifndef mem_write
848 /* This is a security hazard */
849 static ssize_t mem_write(struct file * file, const char __user *buf,
850                          size_t count, loff_t *ppos)
851 {
852         int copied;
853         char *page;
854         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
855         unsigned long dst = *ppos;
856
857         copied = -ESRCH;
858         if (!task)
859                 goto out_no_task;
860
861         if (check_mem_permission(task))
862                 goto out;
863
864         copied = -ENOMEM;
865         page = (char *)__get_free_page(GFP_TEMPORARY);
866         if (!page)
867                 goto out;
868
869         copied = 0;
870         while (count > 0) {
871                 int this_len, retval;
872
873                 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
874                 if (copy_from_user(page, buf, this_len)) {
875                         copied = -EFAULT;
876                         break;
877                 }
878                 retval = access_process_vm(task, dst, page, this_len, 1);
879                 if (!retval) {
880                         if (!copied)
881                                 copied = -EIO;
882                         break;
883                 }
884                 copied += retval;
885                 buf += retval;
886                 dst += retval;
887                 count -= retval;                        
888         }
889         *ppos = dst;
890         free_page((unsigned long) page);
891 out:
892         put_task_struct(task);
893 out_no_task:
894         return copied;
895 }
896 #endif
897
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
899 {
900         switch (orig) {
901         case 0:
902                 file->f_pos = offset;
903                 break;
904         case 1:
905                 file->f_pos += offset;
906                 break;
907         default:
908                 return -EINVAL;
909         }
910         force_successful_syscall_return();
911         return file->f_pos;
912 }
913
914 static const struct file_operations proc_mem_operations = {
915         .llseek         = mem_lseek,
916         .read           = mem_read,
917         .write          = mem_write,
918         .open           = mem_open,
919 };
920
921 static ssize_t environ_read(struct file *file, char __user *buf,
922                         size_t count, loff_t *ppos)
923 {
924         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
925         char *page;
926         unsigned long src = *ppos;
927         int ret = -ESRCH;
928         struct mm_struct *mm;
929
930         if (!task)
931                 goto out_no_task;
932
933         if (!ptrace_may_access(task, PTRACE_MODE_READ))
934                 goto out;
935
936         ret = -ENOMEM;
937         page = (char *)__get_free_page(GFP_TEMPORARY);
938         if (!page)
939                 goto out;
940
941         ret = 0;
942
943         mm = get_task_mm(task);
944         if (!mm)
945                 goto out_free;
946
947         while (count > 0) {
948                 int this_len, retval, max_len;
949
950                 this_len = mm->env_end - (mm->env_start + src);
951
952                 if (this_len <= 0)
953                         break;
954
955                 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
956                 this_len = (this_len > max_len) ? max_len : this_len;
957
958                 retval = access_process_vm(task, (mm->env_start + src),
959                         page, this_len, 0);
960
961                 if (retval <= 0) {
962                         ret = retval;
963                         break;
964                 }
965
966                 if (copy_to_user(buf, page, retval)) {
967                         ret = -EFAULT;
968                         break;
969                 }
970
971                 ret += retval;
972                 src += retval;
973                 buf += retval;
974                 count -= retval;
975         }
976         *ppos = src;
977
978         mmput(mm);
979 out_free:
980         free_page((unsigned long) page);
981 out:
982         put_task_struct(task);
983 out_no_task:
984         return ret;
985 }
986
987 static const struct file_operations proc_environ_operations = {
988         .read           = environ_read,
989         .llseek         = generic_file_llseek,
990 };
991
992 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
993                                 size_t count, loff_t *ppos)
994 {
995         struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
996         char buffer[PROC_NUMBUF];
997         size_t len;
998         int oom_adjust = OOM_DISABLE;
999         unsigned long flags;
1000
1001         if (!task)
1002                 return -ESRCH;
1003
1004         if (lock_task_sighand(task, &flags)) {
1005                 oom_adjust = task->signal->oom_adj;
1006                 unlock_task_sighand(task, &flags);
1007         }
1008
1009         put_task_struct(task);
1010
1011         len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1012
1013         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1014 }
1015
1016 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1017                                 size_t count, loff_t *ppos)
1018 {
1019         struct task_struct *task;
1020         char buffer[PROC_NUMBUF];
1021         long oom_adjust;
1022         unsigned long flags;
1023         int err;
1024
1025         memset(buffer, 0, sizeof(buffer));
1026         if (count > sizeof(buffer) - 1)
1027                 count = sizeof(buffer) - 1;
1028         if (copy_from_user(buffer, buf, count))
1029                 return -EFAULT;
1030
1031         err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1032         if (err)
1033                 return -EINVAL;
1034         if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1035              oom_adjust != OOM_DISABLE)
1036                 return -EINVAL;
1037
1038         task = get_proc_task(file->f_path.dentry->d_inode);
1039         if (!task)
1040                 return -ESRCH;
1041         if (!lock_task_sighand(task, &flags)) {
1042                 put_task_struct(task);
1043                 return -ESRCH;
1044         }
1045
1046         if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1047                 unlock_task_sighand(task, &flags);
1048                 put_task_struct(task);
1049                 return -EACCES;
1050         }
1051
1052         task->signal->oom_adj = oom_adjust;
1053
1054         unlock_task_sighand(task, &flags);
1055         put_task_struct(task);
1056
1057         return count;
1058 }
1059
1060 static const struct file_operations proc_oom_adjust_operations = {
1061         .read           = oom_adjust_read,
1062         .write          = oom_adjust_write,
1063         .llseek         = generic_file_llseek,
1064 };
1065
1066 #ifdef CONFIG_AUDITSYSCALL
1067 #define TMPBUFLEN 21
1068 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1069                                   size_t count, loff_t *ppos)
1070 {
1071         struct inode * inode = file->f_path.dentry->d_inode;
1072         struct task_struct *task = get_proc_task(inode);
1073         ssize_t length;
1074         char tmpbuf[TMPBUFLEN];
1075
1076         if (!task)
1077                 return -ESRCH;
1078         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1079                                 audit_get_loginuid(task));
1080         put_task_struct(task);
1081         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1082 }
1083
1084 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1085                                    size_t count, loff_t *ppos)
1086 {
1087         struct inode * inode = file->f_path.dentry->d_inode;
1088         char *page, *tmp;
1089         ssize_t length;
1090         uid_t loginuid;
1091
1092         if (!capable(CAP_AUDIT_CONTROL))
1093                 return -EPERM;
1094
1095         rcu_read_lock();
1096         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1097                 rcu_read_unlock();
1098                 return -EPERM;
1099         }
1100         rcu_read_unlock();
1101
1102         if (count >= PAGE_SIZE)
1103                 count = PAGE_SIZE - 1;
1104
1105         if (*ppos != 0) {
1106                 /* No partial writes. */
1107                 return -EINVAL;
1108         }
1109         page = (char*)__get_free_page(GFP_TEMPORARY);
1110         if (!page)
1111                 return -ENOMEM;
1112         length = -EFAULT;
1113         if (copy_from_user(page, buf, count))
1114                 goto out_free_page;
1115
1116         page[count] = '\0';
1117         loginuid = simple_strtoul(page, &tmp, 10);
1118         if (tmp == page) {
1119                 length = -EINVAL;
1120                 goto out_free_page;
1121
1122         }
1123         length = audit_set_loginuid(current, loginuid);
1124         if (likely(length == 0))
1125                 length = count;
1126
1127 out_free_page:
1128         free_page((unsigned long) page);
1129         return length;
1130 }
1131
1132 static const struct file_operations proc_loginuid_operations = {
1133         .read           = proc_loginuid_read,
1134         .write          = proc_loginuid_write,
1135         .llseek         = generic_file_llseek,
1136 };
1137
1138 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1139                                   size_t count, loff_t *ppos)
1140 {
1141         struct inode * inode = file->f_path.dentry->d_inode;
1142         struct task_struct *task = get_proc_task(inode);
1143         ssize_t length;
1144         char tmpbuf[TMPBUFLEN];
1145
1146         if (!task)
1147                 return -ESRCH;
1148         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1149                                 audit_get_sessionid(task));
1150         put_task_struct(task);
1151         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1152 }
1153
1154 static const struct file_operations proc_sessionid_operations = {
1155         .read           = proc_sessionid_read,
1156         .llseek         = generic_file_llseek,
1157 };
1158 #endif
1159
1160 #ifdef CONFIG_FAULT_INJECTION
1161 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1162                                       size_t count, loff_t *ppos)
1163 {
1164         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1165         char buffer[PROC_NUMBUF];
1166         size_t len;
1167         int make_it_fail;
1168
1169         if (!task)
1170                 return -ESRCH;
1171         make_it_fail = task->make_it_fail;
1172         put_task_struct(task);
1173
1174         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1175
1176         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1177 }
1178
1179 static ssize_t proc_fault_inject_write(struct file * file,
1180                         const char __user * buf, size_t count, loff_t *ppos)
1181 {
1182         struct task_struct *task;
1183         char buffer[PROC_NUMBUF], *end;
1184         int make_it_fail;
1185
1186         if (!capable(CAP_SYS_RESOURCE))
1187                 return -EPERM;
1188         memset(buffer, 0, sizeof(buffer));
1189         if (count > sizeof(buffer) - 1)
1190                 count = sizeof(buffer) - 1;
1191         if (copy_from_user(buffer, buf, count))
1192                 return -EFAULT;
1193         make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1194         if (*end)
1195                 return -EINVAL;
1196         task = get_proc_task(file->f_dentry->d_inode);
1197         if (!task)
1198                 return -ESRCH;
1199         task->make_it_fail = make_it_fail;
1200         put_task_struct(task);
1201
1202         return count;
1203 }
1204
1205 static const struct file_operations proc_fault_inject_operations = {
1206         .read           = proc_fault_inject_read,
1207         .write          = proc_fault_inject_write,
1208         .llseek         = generic_file_llseek,
1209 };
1210 #endif
1211
1212
1213 #ifdef CONFIG_SCHED_DEBUG
1214 /*
1215  * Print out various scheduling related per-task fields:
1216  */
1217 static int sched_show(struct seq_file *m, void *v)
1218 {
1219         struct inode *inode = m->private;
1220         struct task_struct *p;
1221
1222         p = get_proc_task(inode);
1223         if (!p)
1224                 return -ESRCH;
1225         proc_sched_show_task(p, m);
1226
1227         put_task_struct(p);
1228
1229         return 0;
1230 }
1231
1232 static ssize_t
1233 sched_write(struct file *file, const char __user *buf,
1234             size_t count, loff_t *offset)
1235 {
1236         struct inode *inode = file->f_path.dentry->d_inode;
1237         struct task_struct *p;
1238
1239         p = get_proc_task(inode);
1240         if (!p)
1241                 return -ESRCH;
1242         proc_sched_set_task(p);
1243
1244         put_task_struct(p);
1245
1246         return count;
1247 }
1248
1249 static int sched_open(struct inode *inode, struct file *filp)
1250 {
1251         int ret;
1252
1253         ret = single_open(filp, sched_show, NULL);
1254         if (!ret) {
1255                 struct seq_file *m = filp->private_data;
1256
1257                 m->private = inode;
1258         }
1259         return ret;
1260 }
1261
1262 static const struct file_operations proc_pid_sched_operations = {
1263         .open           = sched_open,
1264         .read           = seq_read,
1265         .write          = sched_write,
1266         .llseek         = seq_lseek,
1267         .release        = single_release,
1268 };
1269
1270 #endif
1271
1272 static ssize_t comm_write(struct file *file, const char __user *buf,
1273                                 size_t count, loff_t *offset)
1274 {
1275         struct inode *inode = file->f_path.dentry->d_inode;
1276         struct task_struct *p;
1277         char buffer[TASK_COMM_LEN];
1278
1279         memset(buffer, 0, sizeof(buffer));
1280         if (count > sizeof(buffer) - 1)
1281                 count = sizeof(buffer) - 1;
1282         if (copy_from_user(buffer, buf, count))
1283                 return -EFAULT;
1284
1285         p = get_proc_task(inode);
1286         if (!p)
1287                 return -ESRCH;
1288
1289         if (same_thread_group(current, p))
1290                 set_task_comm(p, buffer);
1291         else
1292                 count = -EINVAL;
1293
1294         put_task_struct(p);
1295
1296         return count;
1297 }
1298
1299 static int comm_show(struct seq_file *m, void *v)
1300 {
1301         struct inode *inode = m->private;
1302         struct task_struct *p;
1303
1304         p = get_proc_task(inode);
1305         if (!p)
1306                 return -ESRCH;
1307
1308         task_lock(p);
1309         seq_printf(m, "%s\n", p->comm);
1310         task_unlock(p);
1311
1312         put_task_struct(p);
1313
1314         return 0;
1315 }
1316
1317 static int comm_open(struct inode *inode, struct file *filp)
1318 {
1319         int ret;
1320
1321         ret = single_open(filp, comm_show, NULL);
1322         if (!ret) {
1323                 struct seq_file *m = filp->private_data;
1324
1325                 m->private = inode;
1326         }
1327         return ret;
1328 }
1329
1330 static const struct file_operations proc_pid_set_comm_operations = {
1331         .open           = comm_open,
1332         .read           = seq_read,
1333         .write          = comm_write,
1334         .llseek         = seq_lseek,
1335         .release        = single_release,
1336 };
1337
1338 /*
1339  * We added or removed a vma mapping the executable. The vmas are only mapped
1340  * during exec and are not mapped with the mmap system call.
1341  * Callers must hold down_write() on the mm's mmap_sem for these
1342  */
1343 void added_exe_file_vma(struct mm_struct *mm)
1344 {
1345         mm->num_exe_file_vmas++;
1346 }
1347
1348 void removed_exe_file_vma(struct mm_struct *mm)
1349 {
1350         mm->num_exe_file_vmas--;
1351         if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1352                 fput(mm->exe_file);
1353                 mm->exe_file = NULL;
1354         }
1355
1356 }
1357
1358 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1359 {
1360         if (new_exe_file)
1361                 get_file(new_exe_file);
1362         if (mm->exe_file)
1363                 fput(mm->exe_file);
1364         mm->exe_file = new_exe_file;
1365         mm->num_exe_file_vmas = 0;
1366 }
1367
1368 struct file *get_mm_exe_file(struct mm_struct *mm)
1369 {
1370         struct file *exe_file;
1371
1372         /* We need mmap_sem to protect against races with removal of
1373          * VM_EXECUTABLE vmas */
1374         down_read(&mm->mmap_sem);
1375         exe_file = mm->exe_file;
1376         if (exe_file)
1377                 get_file(exe_file);
1378         up_read(&mm->mmap_sem);
1379         return exe_file;
1380 }
1381
1382 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1383 {
1384         /* It's safe to write the exe_file pointer without exe_file_lock because
1385          * this is called during fork when the task is not yet in /proc */
1386         newmm->exe_file = get_mm_exe_file(oldmm);
1387 }
1388
1389 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1390 {
1391         struct task_struct *task;
1392         struct mm_struct *mm;
1393         struct file *exe_file;
1394
1395         task = get_proc_task(inode);
1396         if (!task)
1397                 return -ENOENT;
1398         mm = get_task_mm(task);
1399         put_task_struct(task);
1400         if (!mm)
1401                 return -ENOENT;
1402         exe_file = get_mm_exe_file(mm);
1403         mmput(mm);
1404         if (exe_file) {
1405                 *exe_path = exe_file->f_path;
1406                 path_get(&exe_file->f_path);
1407                 fput(exe_file);
1408                 return 0;
1409         } else
1410                 return -ENOENT;
1411 }
1412
1413 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1414 {
1415         struct inode *inode = dentry->d_inode;
1416         int error = -EACCES;
1417
1418         /* We don't need a base pointer in the /proc filesystem */
1419         path_put(&nd->path);
1420
1421         /* Are we allowed to snoop on the tasks file descriptors? */
1422         if (!proc_fd_access_allowed(inode))
1423                 goto out;
1424
1425         error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1426 out:
1427         return ERR_PTR(error);
1428 }
1429
1430 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1431 {
1432         char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1433         char *pathname;
1434         int len;
1435
1436         if (!tmp)
1437                 return -ENOMEM;
1438
1439         pathname = d_path(path, tmp, PAGE_SIZE);
1440         len = PTR_ERR(pathname);
1441         if (IS_ERR(pathname))
1442                 goto out;
1443         len = tmp + PAGE_SIZE - 1 - pathname;
1444
1445         if (len > buflen)
1446                 len = buflen;
1447         if (copy_to_user(buffer, pathname, len))
1448                 len = -EFAULT;
1449  out:
1450         free_page((unsigned long)tmp);
1451         return len;
1452 }
1453
1454 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1455 {
1456         int error = -EACCES;
1457         struct inode *inode = dentry->d_inode;
1458         struct path path;
1459
1460         /* Are we allowed to snoop on the tasks file descriptors? */
1461         if (!proc_fd_access_allowed(inode))
1462                 goto out;
1463
1464         error = PROC_I(inode)->op.proc_get_link(inode, &path);
1465         if (error)
1466                 goto out;
1467
1468         error = do_proc_readlink(&path, buffer, buflen);
1469         path_put(&path);
1470 out:
1471         return error;
1472 }
1473
1474 static const struct inode_operations proc_pid_link_inode_operations = {
1475         .readlink       = proc_pid_readlink,
1476         .follow_link    = proc_pid_follow_link,
1477         .setattr        = proc_setattr,
1478 };
1479
1480
1481 /* building an inode */
1482
1483 static int task_dumpable(struct task_struct *task)
1484 {
1485         int dumpable = 0;
1486         struct mm_struct *mm;
1487
1488         task_lock(task);
1489         mm = task->mm;
1490         if (mm)
1491                 dumpable = get_dumpable(mm);
1492         task_unlock(task);
1493         if(dumpable == 1)
1494                 return 1;
1495         return 0;
1496 }
1497
1498
1499 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1500 {
1501         struct inode * inode;
1502         struct proc_inode *ei;
1503         const struct cred *cred;
1504
1505         /* We need a new inode */
1506
1507         inode = new_inode(sb);
1508         if (!inode)
1509                 goto out;
1510
1511         /* Common stuff */
1512         ei = PROC_I(inode);
1513         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1514         inode->i_op = &proc_def_inode_operations;
1515
1516         /*
1517          * grab the reference to task.
1518          */
1519         ei->pid = get_task_pid(task, PIDTYPE_PID);
1520         if (!ei->pid)
1521                 goto out_unlock;
1522
1523         if (task_dumpable(task)) {
1524                 rcu_read_lock();
1525                 cred = __task_cred(task);
1526                 inode->i_uid = cred->euid;
1527                 inode->i_gid = cred->egid;
1528                 rcu_read_unlock();
1529         }
1530         security_task_to_inode(task, inode);
1531
1532 out:
1533         return inode;
1534
1535 out_unlock:
1536         iput(inode);
1537         return NULL;
1538 }
1539
1540 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1541 {
1542         struct inode *inode = dentry->d_inode;
1543         struct task_struct *task;
1544         const struct cred *cred;
1545
1546         generic_fillattr(inode, stat);
1547
1548         rcu_read_lock();
1549         stat->uid = 0;
1550         stat->gid = 0;
1551         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1552         if (task) {
1553                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1554                     task_dumpable(task)) {
1555                         cred = __task_cred(task);
1556                         stat->uid = cred->euid;
1557                         stat->gid = cred->egid;
1558                 }
1559         }
1560         rcu_read_unlock();
1561         return 0;
1562 }
1563
1564 /* dentry stuff */
1565
1566 /*
1567  *      Exceptional case: normally we are not allowed to unhash a busy
1568  * directory. In this case, however, we can do it - no aliasing problems
1569  * due to the way we treat inodes.
1570  *
1571  * Rewrite the inode's ownerships here because the owning task may have
1572  * performed a setuid(), etc.
1573  *
1574  * Before the /proc/pid/status file was created the only way to read
1575  * the effective uid of a /process was to stat /proc/pid.  Reading
1576  * /proc/pid/status is slow enough that procps and other packages
1577  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1578  * made this apply to all per process world readable and executable
1579  * directories.
1580  */
1581 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1582 {
1583         struct inode *inode = dentry->d_inode;
1584         struct task_struct *task = get_proc_task(inode);
1585         const struct cred *cred;
1586
1587         if (task) {
1588                 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1589                     task_dumpable(task)) {
1590                         rcu_read_lock();
1591                         cred = __task_cred(task);
1592                         inode->i_uid = cred->euid;
1593                         inode->i_gid = cred->egid;
1594                         rcu_read_unlock();
1595                 } else {
1596                         inode->i_uid = 0;
1597                         inode->i_gid = 0;
1598                 }
1599                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1600                 security_task_to_inode(task, inode);
1601                 put_task_struct(task);
1602                 return 1;
1603         }
1604         d_drop(dentry);
1605         return 0;
1606 }
1607
1608 static int pid_delete_dentry(struct dentry * dentry)
1609 {
1610         /* Is the task we represent dead?
1611          * If so, then don't put the dentry on the lru list,
1612          * kill it immediately.
1613          */
1614         return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1615 }
1616
1617 static const struct dentry_operations pid_dentry_operations =
1618 {
1619         .d_revalidate   = pid_revalidate,
1620         .d_delete       = pid_delete_dentry,
1621 };
1622
1623 /* Lookups */
1624
1625 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1626                                 struct task_struct *, const void *);
1627
1628 /*
1629  * Fill a directory entry.
1630  *
1631  * If possible create the dcache entry and derive our inode number and
1632  * file type from dcache entry.
1633  *
1634  * Since all of the proc inode numbers are dynamically generated, the inode
1635  * numbers do not exist until the inode is cache.  This means creating the
1636  * the dcache entry in readdir is necessary to keep the inode numbers
1637  * reported by readdir in sync with the inode numbers reported
1638  * by stat.
1639  */
1640 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1641         char *name, int len,
1642         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1643 {
1644         struct dentry *child, *dir = filp->f_path.dentry;
1645         struct inode *inode;
1646         struct qstr qname;
1647         ino_t ino = 0;
1648         unsigned type = DT_UNKNOWN;
1649
1650         qname.name = name;
1651         qname.len  = len;
1652         qname.hash = full_name_hash(name, len);
1653
1654         child = d_lookup(dir, &qname);
1655         if (!child) {
1656                 struct dentry *new;
1657                 new = d_alloc(dir, &qname);
1658                 if (new) {
1659                         child = instantiate(dir->d_inode, new, task, ptr);
1660                         if (child)
1661                                 dput(new);
1662                         else
1663                                 child = new;
1664                 }
1665         }
1666         if (!child || IS_ERR(child) || !child->d_inode)
1667                 goto end_instantiate;
1668         inode = child->d_inode;
1669         if (inode) {
1670                 ino = inode->i_ino;
1671                 type = inode->i_mode >> 12;
1672         }
1673         dput(child);
1674 end_instantiate:
1675         if (!ino)
1676                 ino = find_inode_number(dir, &qname);
1677         if (!ino)
1678                 ino = 1;
1679         return filldir(dirent, name, len, filp->f_pos, ino, type);
1680 }
1681
1682 static unsigned name_to_int(struct dentry *dentry)
1683 {
1684         const char *name = dentry->d_name.name;
1685         int len = dentry->d_name.len;
1686         unsigned n = 0;
1687
1688         if (len > 1 && *name == '0')
1689                 goto out;
1690         while (len-- > 0) {
1691                 unsigned c = *name++ - '0';
1692                 if (c > 9)
1693                         goto out;
1694                 if (n >= (~0U-9)/10)
1695                         goto out;
1696                 n *= 10;
1697                 n += c;
1698         }
1699         return n;
1700 out:
1701         return ~0U;
1702 }
1703
1704 #define PROC_FDINFO_MAX 64
1705
1706 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1707 {
1708         struct task_struct *task = get_proc_task(inode);
1709         struct files_struct *files = NULL;
1710         struct file *file;
1711         int fd = proc_fd(inode);
1712
1713         if (task) {
1714                 files = get_files_struct(task);
1715                 put_task_struct(task);
1716         }
1717         if (files) {
1718                 /*
1719                  * We are not taking a ref to the file structure, so we must
1720                  * hold ->file_lock.
1721                  */
1722                 spin_lock(&files->file_lock);
1723                 file = fcheck_files(files, fd);
1724                 if (file) {
1725                         if (path) {
1726                                 *path = file->f_path;
1727                                 path_get(&file->f_path);
1728                         }
1729                         if (info)
1730                                 snprintf(info, PROC_FDINFO_MAX,
1731                                          "pos:\t%lli\n"
1732                                          "flags:\t0%o\n",
1733                                          (long long) file->f_pos,
1734                                          file->f_flags);
1735                         spin_unlock(&files->file_lock);
1736                         put_files_struct(files);
1737                         return 0;
1738                 }
1739                 spin_unlock(&files->file_lock);
1740                 put_files_struct(files);
1741         }
1742         return -ENOENT;
1743 }
1744
1745 static int proc_fd_link(struct inode *inode, struct path *path)
1746 {
1747         return proc_fd_info(inode, path, NULL);
1748 }
1749
1750 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1751 {
1752         struct inode *inode = dentry->d_inode;
1753         struct task_struct *task = get_proc_task(inode);
1754         int fd = proc_fd(inode);
1755         struct files_struct *files;
1756         const struct cred *cred;
1757
1758         if (task) {
1759                 files = get_files_struct(task);
1760                 if (files) {
1761                         rcu_read_lock();
1762                         if (fcheck_files(files, fd)) {
1763                                 rcu_read_unlock();
1764                                 put_files_struct(files);
1765                                 if (task_dumpable(task)) {
1766                                         rcu_read_lock();
1767                                         cred = __task_cred(task);
1768                                         inode->i_uid = cred->euid;
1769                                         inode->i_gid = cred->egid;
1770                                         rcu_read_unlock();
1771                                 } else {
1772                                         inode->i_uid = 0;
1773                                         inode->i_gid = 0;
1774                                 }
1775                                 inode->i_mode &= ~(S_ISUID | S_ISGID);
1776                                 security_task_to_inode(task, inode);
1777                                 put_task_struct(task);
1778                                 return 1;
1779                         }
1780                         rcu_read_unlock();
1781                         put_files_struct(files);
1782                 }
1783                 put_task_struct(task);
1784         }
1785         d_drop(dentry);
1786         return 0;
1787 }
1788
1789 static const struct dentry_operations tid_fd_dentry_operations =
1790 {
1791         .d_revalidate   = tid_fd_revalidate,
1792         .d_delete       = pid_delete_dentry,
1793 };
1794
1795 static struct dentry *proc_fd_instantiate(struct inode *dir,
1796         struct dentry *dentry, struct task_struct *task, const void *ptr)
1797 {
1798         unsigned fd = *(const unsigned *)ptr;
1799         struct file *file;
1800         struct files_struct *files;
1801         struct inode *inode;
1802         struct proc_inode *ei;
1803         struct dentry *error = ERR_PTR(-ENOENT);
1804
1805         inode = proc_pid_make_inode(dir->i_sb, task);
1806         if (!inode)
1807                 goto out;
1808         ei = PROC_I(inode);
1809         ei->fd = fd;
1810         files = get_files_struct(task);
1811         if (!files)
1812                 goto out_iput;
1813         inode->i_mode = S_IFLNK;
1814
1815         /*
1816          * We are not taking a ref to the file structure, so we must
1817          * hold ->file_lock.
1818          */
1819         spin_lock(&files->file_lock);
1820         file = fcheck_files(files, fd);
1821         if (!file)
1822                 goto out_unlock;
1823         if (file->f_mode & FMODE_READ)
1824                 inode->i_mode |= S_IRUSR | S_IXUSR;
1825         if (file->f_mode & FMODE_WRITE)
1826                 inode->i_mode |= S_IWUSR | S_IXUSR;
1827         spin_unlock(&files->file_lock);
1828         put_files_struct(files);
1829
1830         inode->i_op = &proc_pid_link_inode_operations;
1831         inode->i_size = 64;
1832         ei->op.proc_get_link = proc_fd_link;
1833         dentry->d_op = &tid_fd_dentry_operations;
1834         d_add(dentry, inode);
1835         /* Close the race of the process dying before we return the dentry */
1836         if (tid_fd_revalidate(dentry, NULL))
1837                 error = NULL;
1838
1839  out:
1840         return error;
1841 out_unlock:
1842         spin_unlock(&files->file_lock);
1843         put_files_struct(files);
1844 out_iput:
1845         iput(inode);
1846         goto out;
1847 }
1848
1849 static struct dentry *proc_lookupfd_common(struct inode *dir,
1850                                            struct dentry *dentry,
1851                                            instantiate_t instantiate)
1852 {
1853         struct task_struct *task = get_proc_task(dir);
1854         unsigned fd = name_to_int(dentry);
1855         struct dentry *result = ERR_PTR(-ENOENT);
1856
1857         if (!task)
1858                 goto out_no_task;
1859         if (fd == ~0U)
1860                 goto out;
1861
1862         result = instantiate(dir, dentry, task, &fd);
1863 out:
1864         put_task_struct(task);
1865 out_no_task:
1866         return result;
1867 }
1868
1869 static int proc_readfd_common(struct file * filp, void * dirent,
1870                               filldir_t filldir, instantiate_t instantiate)
1871 {
1872         struct dentry *dentry = filp->f_path.dentry;
1873         struct inode *inode = dentry->d_inode;
1874         struct task_struct *p = get_proc_task(inode);
1875         unsigned int fd, ino;
1876         int retval;
1877         struct files_struct * files;
1878
1879         retval = -ENOENT;
1880         if (!p)
1881                 goto out_no_task;
1882         retval = 0;
1883
1884         fd = filp->f_pos;
1885         switch (fd) {
1886                 case 0:
1887                         if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1888                                 goto out;
1889                         filp->f_pos++;
1890                 case 1:
1891                         ino = parent_ino(dentry);
1892                         if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1893                                 goto out;
1894                         filp->f_pos++;
1895                 default:
1896                         files = get_files_struct(p);
1897                         if (!files)
1898                                 goto out;
1899                         rcu_read_lock();
1900                         for (fd = filp->f_pos-2;
1901                              fd < files_fdtable(files)->max_fds;
1902                              fd++, filp->f_pos++) {
1903                                 char name[PROC_NUMBUF];
1904                                 int len;
1905
1906                                 if (!fcheck_files(files, fd))
1907                                         continue;
1908                                 rcu_read_unlock();
1909
1910                                 len = snprintf(name, sizeof(name), "%d", fd);
1911                                 if (proc_fill_cache(filp, dirent, filldir,
1912                                                     name, len, instantiate,
1913                                                     p, &fd) < 0) {
1914                                         rcu_read_lock();
1915                                         break;
1916                                 }
1917                                 rcu_read_lock();
1918                         }
1919                         rcu_read_unlock();
1920                         put_files_struct(files);
1921         }
1922 out:
1923         put_task_struct(p);
1924 out_no_task:
1925         return retval;
1926 }
1927
1928 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1929                                     struct nameidata *nd)
1930 {
1931         return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1932 }
1933
1934 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1935 {
1936         return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1937 }
1938
1939 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1940                                       size_t len, loff_t *ppos)
1941 {
1942         char tmp[PROC_FDINFO_MAX];
1943         int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1944         if (!err)
1945                 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1946         return err;
1947 }
1948
1949 static const struct file_operations proc_fdinfo_file_operations = {
1950         .open           = nonseekable_open,
1951         .read           = proc_fdinfo_read,
1952 };
1953
1954 static const struct file_operations proc_fd_operations = {
1955         .read           = generic_read_dir,
1956         .readdir        = proc_readfd,
1957 };
1958
1959 /*
1960  * /proc/pid/fd needs a special permission handler so that a process can still
1961  * access /proc/self/fd after it has executed a setuid().
1962  */
1963 static int proc_fd_permission(struct inode *inode, int mask)
1964 {
1965         int rv;
1966
1967         rv = generic_permission(inode, mask, NULL);
1968         if (rv == 0)
1969                 return 0;
1970         if (task_pid(current) == proc_pid(inode))
1971                 rv = 0;
1972         return rv;
1973 }
1974
1975 /*
1976  * proc directories can do almost nothing..
1977  */
1978 static const struct inode_operations proc_fd_inode_operations = {
1979         .lookup         = proc_lookupfd,
1980         .permission     = proc_fd_permission,
1981         .setattr        = proc_setattr,
1982 };
1983
1984 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1985         struct dentry *dentry, struct task_struct *task, const void *ptr)
1986 {
1987         unsigned fd = *(unsigned *)ptr;
1988         struct inode *inode;
1989         struct proc_inode *ei;
1990         struct dentry *error = ERR_PTR(-ENOENT);
1991
1992         inode = proc_pid_make_inode(dir->i_sb, task);
1993         if (!inode)
1994                 goto out;
1995         ei = PROC_I(inode);
1996         ei->fd = fd;
1997         inode->i_mode = S_IFREG | S_IRUSR;
1998         inode->i_fop = &proc_fdinfo_file_operations;
1999         dentry->d_op = &tid_fd_dentry_operations;
2000         d_add(dentry, inode);
2001         /* Close the race of the process dying before we return the dentry */
2002         if (tid_fd_revalidate(dentry, NULL))
2003                 error = NULL;
2004
2005  out:
2006         return error;
2007 }
2008
2009 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2010                                         struct dentry *dentry,
2011                                         struct nameidata *nd)
2012 {
2013         return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2014 }
2015
2016 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2017 {
2018         return proc_readfd_common(filp, dirent, filldir,
2019                                   proc_fdinfo_instantiate);
2020 }
2021
2022 static const struct file_operations proc_fdinfo_operations = {
2023         .read           = generic_read_dir,
2024         .readdir        = proc_readfdinfo,
2025 };
2026
2027 /*
2028  * proc directories can do almost nothing..
2029  */
2030 static const struct inode_operations proc_fdinfo_inode_operations = {
2031         .lookup         = proc_lookupfdinfo,
2032         .setattr        = proc_setattr,
2033 };
2034
2035
2036 static struct dentry *proc_pident_instantiate(struct inode *dir,
2037         struct dentry *dentry, struct task_struct *task, const void *ptr)
2038 {
2039         const struct pid_entry *p = ptr;
2040         struct inode *inode;
2041         struct proc_inode *ei;
2042         struct dentry *error = ERR_PTR(-ENOENT);
2043
2044         inode = proc_pid_make_inode(dir->i_sb, task);
2045         if (!inode)
2046                 goto out;
2047
2048         ei = PROC_I(inode);
2049         inode->i_mode = p->mode;
2050         if (S_ISDIR(inode->i_mode))
2051                 inode->i_nlink = 2;     /* Use getattr to fix if necessary */
2052         if (p->iop)
2053                 inode->i_op = p->iop;
2054         if (p->fop)
2055                 inode->i_fop = p->fop;
2056         ei->op = p->op;
2057         dentry->d_op = &pid_dentry_operations;
2058         d_add(dentry, inode);
2059         /* Close the race of the process dying before we return the dentry */
2060         if (pid_revalidate(dentry, NULL))
2061                 error = NULL;
2062 out:
2063         return error;
2064 }
2065
2066 static struct dentry *proc_pident_lookup(struct inode *dir, 
2067                                          struct dentry *dentry,
2068                                          const struct pid_entry *ents,
2069                                          unsigned int nents)
2070 {
2071         struct dentry *error;
2072         struct task_struct *task = get_proc_task(dir);
2073         const struct pid_entry *p, *last;
2074
2075         error = ERR_PTR(-ENOENT);
2076
2077         if (!task)
2078                 goto out_no_task;
2079
2080         /*
2081          * Yes, it does not scale. And it should not. Don't add
2082          * new entries into /proc/<tgid>/ without very good reasons.
2083          */
2084         last = &ents[nents - 1];
2085         for (p = ents; p <= last; p++) {
2086                 if (p->len != dentry->d_name.len)
2087                         continue;
2088                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2089                         break;
2090         }
2091         if (p > last)
2092                 goto out;
2093
2094         error = proc_pident_instantiate(dir, dentry, task, p);
2095 out:
2096         put_task_struct(task);
2097 out_no_task:
2098         return error;
2099 }
2100
2101 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2102         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2103 {
2104         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2105                                 proc_pident_instantiate, task, p);
2106 }
2107
2108 static int proc_pident_readdir(struct file *filp,
2109                 void *dirent, filldir_t filldir,
2110                 const struct pid_entry *ents, unsigned int nents)
2111 {
2112         int i;
2113         struct dentry *dentry = filp->f_path.dentry;
2114         struct inode *inode = dentry->d_inode;
2115         struct task_struct *task = get_proc_task(inode);
2116         const struct pid_entry *p, *last;
2117         ino_t ino;
2118         int ret;
2119
2120         ret = -ENOENT;
2121         if (!task)
2122                 goto out_no_task;
2123
2124         ret = 0;
2125         i = filp->f_pos;
2126         switch (i) {
2127         case 0:
2128                 ino = inode->i_ino;
2129                 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2130                         goto out;
2131                 i++;
2132                 filp->f_pos++;
2133                 /* fall through */
2134         case 1:
2135                 ino = parent_ino(dentry);
2136                 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2137                         goto out;
2138                 i++;
2139                 filp->f_pos++;
2140                 /* fall through */
2141         default:
2142                 i -= 2;
2143                 if (i >= nents) {
2144                         ret = 1;
2145                         goto out;
2146                 }
2147                 p = ents + i;
2148                 last = &ents[nents - 1];
2149                 while (p <= last) {
2150                         if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2151                                 goto out;
2152                         filp->f_pos++;
2153                         p++;
2154                 }
2155         }
2156
2157         ret = 1;
2158 out:
2159         put_task_struct(task);
2160 out_no_task:
2161         return ret;
2162 }
2163
2164 #ifdef CONFIG_SECURITY
2165 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2166                                   size_t count, loff_t *ppos)
2167 {
2168         struct inode * inode = file->f_path.dentry->d_inode;
2169         char *p = NULL;
2170         ssize_t length;
2171         struct task_struct *task = get_proc_task(inode);
2172
2173         if (!task)
2174                 return -ESRCH;
2175
2176         length = security_getprocattr(task,
2177                                       (char*)file->f_path.dentry->d_name.name,
2178                                       &p);
2179         put_task_struct(task);
2180         if (length > 0)
2181                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2182         kfree(p);
2183         return length;
2184 }
2185
2186 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2187                                    size_t count, loff_t *ppos)
2188 {
2189         struct inode * inode = file->f_path.dentry->d_inode;
2190         char *page;
2191         ssize_t length;
2192         struct task_struct *task = get_proc_task(inode);
2193
2194         length = -ESRCH;
2195         if (!task)
2196                 goto out_no_task;
2197         if (count > PAGE_SIZE)
2198                 count = PAGE_SIZE;
2199
2200         /* No partial writes. */
2201         length = -EINVAL;
2202         if (*ppos != 0)
2203                 goto out;
2204
2205         length = -ENOMEM;
2206         page = (char*)__get_free_page(GFP_TEMPORARY);
2207         if (!page)
2208                 goto out;
2209
2210         length = -EFAULT;
2211         if (copy_from_user(page, buf, count))
2212                 goto out_free;
2213
2214         /* Guard against adverse ptrace interaction */
2215         length = mutex_lock_interruptible(&task->cred_guard_mutex);
2216         if (length < 0)
2217                 goto out_free;
2218
2219         length = security_setprocattr(task,
2220                                       (char*)file->f_path.dentry->d_name.name,
2221                                       (void*)page, count);
2222         mutex_unlock(&task->cred_guard_mutex);
2223 out_free:
2224         free_page((unsigned long) page);
2225 out:
2226         put_task_struct(task);
2227 out_no_task:
2228         return length;
2229 }
2230
2231 static const struct file_operations proc_pid_attr_operations = {
2232         .read           = proc_pid_attr_read,
2233         .write          = proc_pid_attr_write,
2234         .llseek         = generic_file_llseek,
2235 };
2236
2237 static const struct pid_entry attr_dir_stuff[] = {
2238         REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2239         REG("prev",       S_IRUGO,         proc_pid_attr_operations),
2240         REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2241         REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2242         REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2243         REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2244 };
2245
2246 static int proc_attr_dir_readdir(struct file * filp,
2247                              void * dirent, filldir_t filldir)
2248 {
2249         return proc_pident_readdir(filp,dirent,filldir,
2250                                    attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2251 }
2252
2253 static const struct file_operations proc_attr_dir_operations = {
2254         .read           = generic_read_dir,
2255         .readdir        = proc_attr_dir_readdir,
2256 };
2257
2258 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2259                                 struct dentry *dentry, struct nameidata *nd)
2260 {
2261         return proc_pident_lookup(dir, dentry,
2262                                   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2263 }
2264
2265 static const struct inode_operations proc_attr_dir_inode_operations = {
2266         .lookup         = proc_attr_dir_lookup,
2267         .getattr        = pid_getattr,
2268         .setattr        = proc_setattr,
2269 };
2270
2271 #endif
2272
2273 #ifdef CONFIG_ELF_CORE
2274 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2275                                          size_t count, loff_t *ppos)
2276 {
2277         struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2278         struct mm_struct *mm;
2279         char buffer[PROC_NUMBUF];
2280         size_t len;
2281         int ret;
2282
2283         if (!task)
2284                 return -ESRCH;
2285
2286         ret = 0;
2287         mm = get_task_mm(task);
2288         if (mm) {
2289                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2290                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2291                                 MMF_DUMP_FILTER_SHIFT));
2292                 mmput(mm);
2293                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2294         }
2295
2296         put_task_struct(task);
2297
2298         return ret;
2299 }
2300
2301 static ssize_t proc_coredump_filter_write(struct file *file,
2302                                           const char __user *buf,
2303                                           size_t count,
2304                                           loff_t *ppos)
2305 {
2306         struct task_struct *task;
2307         struct mm_struct *mm;
2308         char buffer[PROC_NUMBUF], *end;
2309         unsigned int val;
2310         int ret;
2311         int i;
2312         unsigned long mask;
2313
2314         ret = -EFAULT;
2315         memset(buffer, 0, sizeof(buffer));
2316         if (count > sizeof(buffer) - 1)
2317                 count = sizeof(buffer) - 1;
2318         if (copy_from_user(buffer, buf, count))
2319                 goto out_no_task;
2320
2321         ret = -EINVAL;
2322         val = (unsigned int)simple_strtoul(buffer, &end, 0);
2323         if (*end == '\n')
2324                 end++;
2325         if (end - buffer == 0)
2326                 goto out_no_task;
2327
2328         ret = -ESRCH;
2329         task = get_proc_task(file->f_dentry->d_inode);
2330         if (!task)
2331                 goto out_no_task;
2332
2333         ret = end - buffer;
2334         mm = get_task_mm(task);
2335         if (!mm)
2336                 goto out_no_mm;
2337
2338         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2339                 if (val & mask)
2340                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2341                 else
2342                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2343         }
2344
2345         mmput(mm);
2346  out_no_mm:
2347         put_task_struct(task);
2348  out_no_task:
2349         return ret;
2350 }
2351
2352 static const struct file_operations proc_coredump_filter_operations = {
2353         .read           = proc_coredump_filter_read,
2354         .write          = proc_coredump_filter_write,
2355         .llseek         = generic_file_llseek,
2356 };
2357 #endif
2358
2359 /*
2360  * /proc/self:
2361  */
2362 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2363                               int buflen)
2364 {
2365         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2366         pid_t tgid = task_tgid_nr_ns(current, ns);
2367         char tmp[PROC_NUMBUF];
2368         if (!tgid)
2369                 return -ENOENT;
2370         sprintf(tmp, "%d", tgid);
2371         return vfs_readlink(dentry,buffer,buflen,tmp);
2372 }
2373
2374 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2375 {
2376         struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2377         pid_t tgid = task_tgid_nr_ns(current, ns);
2378         char *name = ERR_PTR(-ENOENT);
2379         if (tgid) {
2380                 name = __getname();
2381                 if (!name)
2382                         name = ERR_PTR(-ENOMEM);
2383                 else
2384                         sprintf(name, "%d", tgid);
2385         }
2386         nd_set_link(nd, name);
2387         return NULL;
2388 }
2389
2390 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2391                                 void *cookie)
2392 {
2393         char *s = nd_get_link(nd);
2394         if (!IS_ERR(s))
2395                 __putname(s);
2396 }
2397
2398 static const struct inode_operations proc_self_inode_operations = {
2399         .readlink       = proc_self_readlink,
2400         .follow_link    = proc_self_follow_link,
2401         .put_link       = proc_self_put_link,
2402 };
2403
2404 /*
2405  * proc base
2406  *
2407  * These are the directory entries in the root directory of /proc
2408  * that properly belong to the /proc filesystem, as they describe
2409  * describe something that is process related.
2410  */
2411 static const struct pid_entry proc_base_stuff[] = {
2412         NOD("self", S_IFLNK|S_IRWXUGO,
2413                 &proc_self_inode_operations, NULL, {}),
2414 };
2415
2416 /*
2417  *      Exceptional case: normally we are not allowed to unhash a busy
2418  * directory. In this case, however, we can do it - no aliasing problems
2419  * due to the way we treat inodes.
2420  */
2421 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2422 {
2423         struct inode *inode = dentry->d_inode;
2424         struct task_struct *task = get_proc_task(inode);
2425         if (task) {
2426                 put_task_struct(task);
2427                 return 1;
2428         }
2429         d_drop(dentry);
2430         return 0;
2431 }
2432
2433 static const struct dentry_operations proc_base_dentry_operations =
2434 {
2435         .d_revalidate   = proc_base_revalidate,
2436         .d_delete       = pid_delete_dentry,
2437 };
2438
2439 static struct dentry *proc_base_instantiate(struct inode *dir,
2440         struct dentry *dentry, struct task_struct *task, const void *ptr)
2441 {
2442         const struct pid_entry *p = ptr;
2443         struct inode *inode;
2444         struct proc_inode *ei;
2445         struct dentry *error;
2446
2447         /* Allocate the inode */
2448         error = ERR_PTR(-ENOMEM);
2449         inode = new_inode(dir->i_sb);
2450         if (!inode)
2451                 goto out;
2452
2453         /* Initialize the inode */
2454         ei = PROC_I(inode);
2455         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2456
2457         /*
2458          * grab the reference to the task.
2459          */
2460         ei->pid = get_task_pid(task, PIDTYPE_PID);
2461         if (!ei->pid)
2462                 goto out_iput;
2463
2464         inode->i_mode = p->mode;
2465         if (S_ISDIR(inode->i_mode))
2466                 inode->i_nlink = 2;
2467         if (S_ISLNK(inode->i_mode))
2468                 inode->i_size = 64;
2469         if (p->iop)
2470                 inode->i_op = p->iop;
2471         if (p->fop)
2472                 inode->i_fop = p->fop;
2473         ei->op = p->op;
2474         dentry->d_op = &proc_base_dentry_operations;
2475         d_add(dentry, inode);
2476         error = NULL;
2477 out:
2478         return error;
2479 out_iput:
2480         iput(inode);
2481         goto out;
2482 }
2483
2484 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2485 {
2486         struct dentry *error;
2487         struct task_struct *task = get_proc_task(dir);
2488         const struct pid_entry *p, *last;
2489
2490         error = ERR_PTR(-ENOENT);
2491
2492         if (!task)
2493                 goto out_no_task;
2494
2495         /* Lookup the directory entry */
2496         last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2497         for (p = proc_base_stuff; p <= last; p++) {
2498                 if (p->len != dentry->d_name.len)
2499                         continue;
2500                 if (!memcmp(dentry->d_name.name, p->name, p->len))
2501                         break;
2502         }
2503         if (p > last)
2504                 goto out;
2505
2506         error = proc_base_instantiate(dir, dentry, task, p);
2507
2508 out:
2509         put_task_struct(task);
2510 out_no_task:
2511         return error;
2512 }
2513
2514 static int proc_base_fill_cache(struct file *filp, void *dirent,
2515         filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2516 {
2517         return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2518                                 proc_base_instantiate, task, p);
2519 }
2520
2521 #ifdef CONFIG_TASK_IO_ACCOUNTING
2522 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2523 {
2524         struct task_io_accounting acct = task->ioac;
2525         unsigned long flags;
2526
2527         if (whole && lock_task_sighand(task, &flags)) {
2528                 struct task_struct *t = task;
2529
2530                 task_io_accounting_add(&acct, &task->signal->ioac);
2531                 while_each_thread(task, t)
2532                         task_io_accounting_add(&acct, &t->ioac);
2533
2534                 unlock_task_sighand(task, &flags);
2535         }
2536         return sprintf(buffer,
2537                         "rchar: %llu\n"
2538                         "wchar: %llu\n"
2539                         "syscr: %llu\n"
2540                         "syscw: %llu\n"
2541                         "read_bytes: %llu\n"
2542                         "write_bytes: %llu\n"
2543                         "cancelled_write_bytes: %llu\n",
2544                         (unsigned long long)acct.rchar,
2545                         (unsigned long long)acct.wchar,
2546                         (unsigned long long)acct.syscr,
2547                         (unsigned long long)acct.syscw,
2548                         (unsigned long long)acct.read_bytes,
2549                         (unsigned long long)acct.write_bytes,
2550                         (unsigned long long)acct.cancelled_write_bytes);
2551 }
2552
2553 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2554 {
2555         return do_io_accounting(task, buffer, 0);
2556 }
2557
2558 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2559 {
2560         return do_io_accounting(task, buffer, 1);
2561 }
2562 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2563
2564 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2565                                 struct pid *pid, struct task_struct *task)
2566 {
2567         seq_printf(m, "%08x\n", task->personality);
2568         return 0;
2569 }
2570
2571 /*
2572  * Thread groups
2573  */
2574 static const struct file_operations proc_task_operations;
2575 static const struct inode_operations proc_task_inode_operations;
2576
2577 static const struct pid_entry tgid_base_stuff[] = {
2578         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2579         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2580         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2581 #ifdef CONFIG_NET
2582         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2583 #endif
2584         REG("environ",    S_IRUSR, proc_environ_operations),
2585         INF("auxv",       S_IRUSR, proc_pid_auxv),
2586         ONE("status",     S_IRUGO, proc_pid_status),
2587         ONE("personality", S_IRUSR, proc_pid_personality),
2588         INF("limits",     S_IRUSR, proc_pid_limits),
2589 #ifdef CONFIG_SCHED_DEBUG
2590         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2591 #endif
2592         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2593 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2594         INF("syscall",    S_IRUSR, proc_pid_syscall),
2595 #endif
2596         INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2597         ONE("stat",       S_IRUGO, proc_tgid_stat),
2598         ONE("statm",      S_IRUGO, proc_pid_statm),
2599         REG("maps",       S_IRUGO, proc_maps_operations),
2600 #ifdef CONFIG_NUMA
2601         REG("numa_maps",  S_IRUGO, proc_numa_maps_operations),
2602 #endif
2603         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2604         LNK("cwd",        proc_cwd_link),
2605         LNK("root",       proc_root_link),
2606         LNK("exe",        proc_exe_link),
2607         REG("mounts",     S_IRUGO, proc_mounts_operations),
2608         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2609         REG("mountstats", S_IRUSR, proc_mountstats_operations),
2610 #ifdef CONFIG_PROC_PAGE_MONITOR
2611         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2612         REG("smaps",      S_IRUGO, proc_smaps_operations),
2613         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2614 #endif
2615 #ifdef CONFIG_SECURITY
2616         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2617 #endif
2618 #ifdef CONFIG_KALLSYMS
2619         INF("wchan",      S_IRUGO, proc_pid_wchan),
2620 #endif
2621 #ifdef CONFIG_STACKTRACE
2622         ONE("stack",      S_IRUSR, proc_pid_stack),
2623 #endif
2624 #ifdef CONFIG_SCHEDSTATS
2625         INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2626 #endif
2627 #ifdef CONFIG_LATENCYTOP
2628         REG("latency",  S_IRUGO, proc_lstats_operations),
2629 #endif
2630 #ifdef CONFIG_PROC_PID_CPUSET
2631         REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2632 #endif
2633 #ifdef CONFIG_CGROUPS
2634         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2635 #endif
2636         INF("oom_score",  S_IRUGO, proc_oom_score),
2637         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2638 #ifdef CONFIG_AUDITSYSCALL
2639         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2640         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2641 #endif
2642 #ifdef CONFIG_FAULT_INJECTION
2643         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2644 #endif
2645 #ifdef CONFIG_ELF_CORE
2646         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2647 #endif
2648 #ifdef CONFIG_TASK_IO_ACCOUNTING
2649         INF("io",       S_IRUGO, proc_tgid_io_accounting),
2650 #endif
2651 };
2652
2653 static int proc_tgid_base_readdir(struct file * filp,
2654                              void * dirent, filldir_t filldir)
2655 {
2656         return proc_pident_readdir(filp,dirent,filldir,
2657                                    tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2658 }
2659
2660 static const struct file_operations proc_tgid_base_operations = {
2661         .read           = generic_read_dir,
2662         .readdir        = proc_tgid_base_readdir,
2663 };
2664
2665 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2666         return proc_pident_lookup(dir, dentry,
2667                                   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2668 }
2669
2670 static const struct inode_operations proc_tgid_base_inode_operations = {
2671         .lookup         = proc_tgid_base_lookup,
2672         .getattr        = pid_getattr,
2673         .setattr        = proc_setattr,
2674 };
2675
2676 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2677 {
2678         struct dentry *dentry, *leader, *dir;
2679         char buf[PROC_NUMBUF];
2680         struct qstr name;
2681
2682         name.name = buf;
2683         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2684         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2685         if (dentry) {
2686                 shrink_dcache_parent(dentry);
2687                 d_drop(dentry);
2688                 dput(dentry);
2689         }
2690
2691         name.name = buf;
2692         name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2693         leader = d_hash_and_lookup(mnt->mnt_root, &name);
2694         if (!leader)
2695                 goto out;
2696
2697         name.name = "task";
2698         name.len = strlen(name.name);
2699         dir = d_hash_and_lookup(leader, &name);
2700         if (!dir)
2701                 goto out_put_leader;
2702
2703         name.name = buf;
2704         name.len = snprintf(buf, sizeof(buf), "%d", pid);
2705         dentry = d_hash_and_lookup(dir, &name);
2706         if (dentry) {
2707                 shrink_dcache_parent(dentry);
2708                 d_drop(dentry);
2709                 dput(dentry);
2710         }
2711
2712         dput(dir);
2713 out_put_leader:
2714         dput(leader);
2715 out:
2716         return;
2717 }
2718
2719 /**
2720  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2721  * @task: task that should be flushed.
2722  *
2723  * When flushing dentries from proc, one needs to flush them from global
2724  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2725  * in. This call is supposed to do all of this job.
2726  *
2727  * Looks in the dcache for
2728  * /proc/@pid
2729  * /proc/@tgid/task/@pid
2730  * if either directory is present flushes it and all of it'ts children
2731  * from the dcache.
2732  *
2733  * It is safe and reasonable to cache /proc entries for a task until
2734  * that task exits.  After that they just clog up the dcache with
2735  * useless entries, possibly causing useful dcache entries to be
2736  * flushed instead.  This routine is proved to flush those useless
2737  * dcache entries at process exit time.
2738  *
2739  * NOTE: This routine is just an optimization so it does not guarantee
2740  *       that no dcache entries will exist at process exit time it
2741  *       just makes it very unlikely that any will persist.
2742  */
2743
2744 void proc_flush_task(struct task_struct *task)
2745 {
2746         int i;
2747         struct pid *pid, *tgid;
2748         struct upid *upid;
2749
2750         pid = task_pid(task);
2751         tgid = task_tgid(task);
2752
2753         for (i = 0; i <= pid->level; i++) {
2754                 upid = &pid->numbers[i];
2755                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2756                                         tgid->numbers[i].nr);
2757         }
2758
2759         upid = &pid->numbers[pid->level];
2760         if (upid->nr == 1)
2761                 pid_ns_release_proc(upid->ns);
2762 }
2763
2764 static struct dentry *proc_pid_instantiate(struct inode *dir,
2765                                            struct dentry * dentry,
2766                                            struct task_struct *task, const void *ptr)
2767 {
2768         struct dentry *error = ERR_PTR(-ENOENT);
2769         struct inode *inode;
2770
2771         inode = proc_pid_make_inode(dir->i_sb, task);
2772         if (!inode)
2773                 goto out;
2774
2775         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2776         inode->i_op = &proc_tgid_base_inode_operations;
2777         inode->i_fop = &proc_tgid_base_operations;
2778         inode->i_flags|=S_IMMUTABLE;
2779
2780         inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2781                 ARRAY_SIZE(tgid_base_stuff));
2782
2783         dentry->d_op = &pid_dentry_operations;
2784
2785         d_add(dentry, inode);
2786         /* Close the race of the process dying before we return the dentry */
2787         if (pid_revalidate(dentry, NULL))
2788                 error = NULL;
2789 out:
2790         return error;
2791 }
2792
2793 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2794 {
2795         struct dentry *result;
2796         struct task_struct *task;
2797         unsigned tgid;
2798         struct pid_namespace *ns;
2799
2800         result = proc_base_lookup(dir, dentry);
2801         if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2802                 goto out;
2803
2804         tgid = name_to_int(dentry);
2805         if (tgid == ~0U)
2806                 goto out;
2807
2808         ns = dentry->d_sb->s_fs_info;
2809         rcu_read_lock();
2810         task = find_task_by_pid_ns(tgid, ns);
2811         if (task)
2812                 get_task_struct(task);
2813         rcu_read_unlock();
2814         if (!task)
2815                 goto out;
2816
2817         result = proc_pid_instantiate(dir, dentry, task, NULL);
2818         put_task_struct(task);
2819 out:
2820         return result;
2821 }
2822
2823 /*
2824  * Find the first task with tgid >= tgid
2825  *
2826  */
2827 struct tgid_iter {
2828         unsigned int tgid;
2829         struct task_struct *task;
2830 };
2831 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2832 {
2833         struct pid *pid;
2834
2835         if (iter.task)
2836                 put_task_struct(iter.task);
2837         rcu_read_lock();
2838 retry:
2839         iter.task = NULL;
2840         pid = find_ge_pid(iter.tgid, ns);
2841         if (pid) {
2842                 iter.tgid = pid_nr_ns(pid, ns);
2843                 iter.task = pid_task(pid, PIDTYPE_PID);
2844                 /* What we to know is if the pid we have find is the
2845                  * pid of a thread_group_leader.  Testing for task
2846                  * being a thread_group_leader is the obvious thing
2847                  * todo but there is a window when it fails, due to
2848                  * the pid transfer logic in de_thread.
2849                  *
2850                  * So we perform the straight forward test of seeing
2851                  * if the pid we have found is the pid of a thread
2852                  * group leader, and don't worry if the task we have
2853                  * found doesn't happen to be a thread group leader.
2854                  * As we don't care in the case of readdir.
2855                  */
2856                 if (!iter.task || !has_group_leader_pid(iter.task)) {
2857                         iter.tgid += 1;
2858                         goto retry;
2859                 }
2860                 get_task_struct(iter.task);
2861         }
2862         rcu_read_unlock();
2863         return iter;
2864 }
2865
2866 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2867
2868 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2869         struct tgid_iter iter)
2870 {
2871         char name[PROC_NUMBUF];
2872         int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2873         return proc_fill_cache(filp, dirent, filldir, name, len,
2874                                 proc_pid_instantiate, iter.task, NULL);
2875 }
2876
2877 /* for the /proc/ directory itself, after non-process stuff has been done */
2878 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2879 {
2880         unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2881         struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2882         struct tgid_iter iter;
2883         struct pid_namespace *ns;
2884
2885         if (!reaper)
2886                 goto out_no_task;
2887
2888         for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2889                 const struct pid_entry *p = &proc_base_stuff[nr];
2890                 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2891                         goto out;
2892         }
2893
2894         ns = filp->f_dentry->d_sb->s_fs_info;
2895         iter.task = NULL;
2896         iter.tgid = filp->f_pos - TGID_OFFSET;
2897         for (iter = next_tgid(ns, iter);
2898              iter.task;
2899              iter.tgid += 1, iter = next_tgid(ns, iter)) {
2900                 filp->f_pos = iter.tgid + TGID_OFFSET;
2901                 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2902                         put_task_struct(iter.task);
2903                         goto out;
2904                 }
2905         }
2906         filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2907 out:
2908         put_task_struct(reaper);
2909 out_no_task:
2910         return 0;
2911 }
2912
2913 /*
2914  * Tasks
2915  */
2916 static const struct pid_entry tid_base_stuff[] = {
2917         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2918         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2919         REG("environ",   S_IRUSR, proc_environ_operations),
2920         INF("auxv",      S_IRUSR, proc_pid_auxv),
2921         ONE("status",    S_IRUGO, proc_pid_status),
2922         ONE("personality", S_IRUSR, proc_pid_personality),
2923         INF("limits",    S_IRUSR, proc_pid_limits),
2924 #ifdef CONFIG_SCHED_DEBUG
2925         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2926 #endif
2927         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2928 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2929         INF("syscall",   S_IRUSR, proc_pid_syscall),
2930 #endif
2931         INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2932         ONE("stat",      S_IRUGO, proc_tid_stat),
2933         ONE("statm",     S_IRUGO, proc_pid_statm),
2934         REG("maps",      S_IRUGO, proc_maps_operations),
2935 #ifdef CONFIG_NUMA
2936         REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2937 #endif
2938         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2939         LNK("cwd",       proc_cwd_link),
2940         LNK("root",      proc_root_link),
2941         LNK("exe",       proc_exe_link),
2942         REG("mounts",    S_IRUGO, proc_mounts_operations),
2943         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2944 #ifdef CONFIG_PROC_PAGE_MONITOR
2945         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2946         REG("smaps",     S_IRUGO, proc_smaps_operations),
2947         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2948 #endif
2949 #ifdef CONFIG_SECURITY
2950         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2951 #endif
2952 #ifdef CONFIG_KALLSYMS
2953         INF("wchan",     S_IRUGO, proc_pid_wchan),
2954 #endif
2955 #ifdef CONFIG_STACKTRACE
2956         ONE("stack",      S_IRUSR, proc_pid_stack),
2957 #endif
2958 #ifdef CONFIG_SCHEDSTATS
2959         INF("schedstat", S_IRUGO, proc_pid_schedstat),
2960 #endif
2961 #ifdef CONFIG_LATENCYTOP
2962         REG("latency",  S_IRUGO, proc_lstats_operations),
2963 #endif
2964 #ifdef CONFIG_PROC_PID_CPUSET
2965         REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2966 #endif
2967 #ifdef CONFIG_CGROUPS
2968         REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2969 #endif
2970         INF("oom_score", S_IRUGO, proc_oom_score),
2971         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2972 #ifdef CONFIG_AUDITSYSCALL
2973         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2974         REG("sessionid",  S_IRUSR, proc_sessionid_operations),
2975 #endif
2976 #ifdef CONFIG_FAULT_INJECTION
2977         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2978 #endif
2979 #ifdef CONFIG_TASK_IO_ACCOUNTING
2980         INF("io",       S_IRUGO, proc_tid_io_accounting),
2981 #endif
2982 };
2983
2984 static int proc_tid_base_readdir(struct file * filp,
2985                              void * dirent, filldir_t filldir)
2986 {
2987         return proc_pident_readdir(filp,dirent,filldir,
2988                                    tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2989 }
2990
2991 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2992         return proc_pident_lookup(dir, dentry,
2993                                   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2994 }
2995
2996 static const struct file_operations proc_tid_base_operations = {
2997         .read           = generic_read_dir,
2998         .readdir        = proc_tid_base_readdir,
2999 };
3000
3001 static const struct inode_operations proc_tid_base_inode_operations = {
3002         .lookup         = proc_tid_base_lookup,
3003         .getattr        = pid_getattr,
3004         .setattr        = proc_setattr,
3005 };
3006
3007 static struct dentry *proc_task_instantiate(struct inode *dir,
3008         struct dentry *dentry, struct task_struct *task, const void *ptr)
3009 {
3010         struct dentry *error = ERR_PTR(-ENOENT);
3011         struct inode *inode;
3012         inode = proc_pid_make_inode(dir->i_sb, task);
3013
3014         if (!inode)
3015                 goto out;
3016         inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3017         inode->i_op = &proc_tid_base_inode_operations;
3018         inode->i_fop = &proc_tid_base_operations;
3019         inode->i_flags|=S_IMMUTABLE;
3020
3021         inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3022                 ARRAY_SIZE(tid_base_stuff));
3023
3024         dentry->d_op = &pid_dentry_operations;
3025
3026         d_add(dentry, inode);
3027         /* Close the race of the process dying before we return the dentry */
3028         if (pid_revalidate(dentry, NULL))
3029                 error = NULL;
3030 out:
3031         return error;
3032 }
3033
3034 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3035 {
3036         struct dentry *result = ERR_PTR(-ENOENT);
3037         struct task_struct *task;
3038         struct task_struct *leader = get_proc_task(dir);
3039         unsigned tid;
3040         struct pid_namespace *ns;
3041
3042         if (!leader)
3043                 goto out_no_task;
3044
3045         tid = name_to_int(dentry);
3046         if (tid == ~0U)
3047                 goto out;
3048
3049         ns = dentry->d_sb->s_fs_info;
3050         rcu_read_lock();
3051         task = find_task_by_pid_ns(tid, ns);
3052         if (task)
3053                 get_task_struct(task);
3054         rcu_read_unlock();
3055         if (!task)
3056                 goto out;
3057         if (!same_thread_group(leader, task))
3058                 goto out_drop_task;
3059
3060         result = proc_task_instantiate(dir, dentry, task, NULL);
3061 out_drop_task:
3062         put_task_struct(task);
3063 out:
3064         put_task_struct(leader);
3065 out_no_task:
3066         return result;
3067 }
3068
3069 /*
3070  * Find the first tid of a thread group to return to user space.
3071  *
3072  * Usually this is just the thread group leader, but if the users
3073  * buffer was too small or there was a seek into the middle of the
3074  * directory we have more work todo.
3075  *
3076  * In the case of a short read we start with find_task_by_pid.
3077  *
3078  * In the case of a seek we start with the leader and walk nr
3079  * threads past it.
3080  */
3081 static struct task_struct *first_tid(struct task_struct *leader,
3082                 int tid, int nr, struct pid_namespace *ns)
3083 {
3084         struct task_struct *pos;
3085
3086         rcu_read_lock();
3087         /* Attempt to start with the pid of a thread */
3088         if (tid && (nr > 0)) {
3089                 pos = find_task_by_pid_ns(tid, ns);
3090                 if (pos && (pos->group_leader == leader))
3091                         goto found;
3092         }
3093
3094         /* If nr exceeds the number of threads there is nothing todo */
3095         pos = NULL;
3096         if (nr && nr >= get_nr_threads(leader))
3097                 goto out;
3098
3099         /* If we haven't found our starting place yet start
3100          * with the leader and walk nr threads forward.
3101          */
3102         for (pos = leader; nr > 0; --nr) {
3103                 pos = next_thread(pos);
3104                 if (pos == leader) {
3105                         pos = NULL;
3106                         goto out;
3107                 }
3108         }
3109 found:
3110         get_task_struct(pos);
3111 out:
3112         rcu_read_unlock();
3113         return pos;
3114 }
3115
3116 /*
3117  * Find the next thread in the thread list.
3118  * Return NULL if there is an error or no next thread.
3119  *
3120  * The reference to the input task_struct is released.
3121  */
3122 static struct task_struct *next_tid(struct task_struct *start)
3123 {
3124         struct task_struct *pos = NULL;
3125         rcu_read_lock();
3126         if (pid_alive(start)) {
3127                 pos = next_thread(start);
3128                 if (thread_group_leader(pos))
3129                         pos = NULL;
3130                 else
3131                         get_task_struct(pos);
3132         }
3133         rcu_read_unlock();
3134         put_task_struct(start);
3135         return pos;
3136 }
3137
3138 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3139         struct task_struct *task, int tid)
3140 {
3141         char name[PROC_NUMBUF];
3142         int len = snprintf(name, sizeof(name), "%d", tid);
3143         return proc_fill_cache(filp, dirent, filldir, name, len,
3144                                 proc_task_instantiate, task, NULL);
3145 }
3146
3147 /* for the /proc/TGID/task/ directories */
3148 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3149 {
3150         struct dentry *dentry = filp->f_path.dentry;
3151         struct inode *inode = dentry->d_inode;
3152         struct task_struct *leader = NULL;
3153         struct task_struct *task;
3154         int retval = -ENOENT;
3155         ino_t ino;
3156         int tid;
3157         struct pid_namespace *ns;
3158
3159         task = get_proc_task(inode);
3160         if (!task)
3161                 goto out_no_task;
3162         rcu_read_lock();
3163         if (pid_alive(task)) {
3164                 leader = task->group_leader;
3165                 get_task_struct(leader);
3166         }
3167         rcu_read_unlock();
3168         put_task_struct(task);
3169         if (!leader)
3170                 goto out_no_task;
3171         retval = 0;
3172
3173         switch ((unsigned long)filp->f_pos) {
3174         case 0:
3175                 ino = inode->i_ino;
3176                 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3177                         goto out;
3178                 filp->f_pos++;
3179                 /* fall through */
3180         case 1:
3181                 ino = parent_ino(dentry);
3182                 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3183                         goto out;
3184                 filp->f_pos++;
3185                 /* fall through */
3186         }
3187
3188         /* f_version caches the tgid value that the last readdir call couldn't
3189          * return. lseek aka telldir automagically resets f_version to 0.
3190          */
3191         ns = filp->f_dentry->d_sb->s_fs_info;
3192         tid = (int)filp->f_version;
3193         filp->f_version = 0;
3194         for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3195              task;
3196              task = next_tid(task), filp->f_pos++) {
3197                 tid = task_pid_nr_ns(task, ns);
3198                 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3199                         /* returning this tgid failed, save it as the first
3200                          * pid for the next readir call */
3201                         filp->f_version = (u64)tid;
3202                         put_task_struct(task);
3203                         break;
3204                 }
3205         }
3206 out:
3207         put_task_struct(leader);
3208 out_no_task:
3209         return retval;
3210 }
3211
3212 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3213 {
3214         struct inode *inode = dentry->d_inode;
3215         struct task_struct *p = get_proc_task(inode);
3216         generic_fillattr(inode, stat);
3217
3218         if (p) {
3219                 stat->nlink += get_nr_threads(p);
3220                 put_task_struct(p);
3221         }
3222
3223         return 0;
3224 }
3225
3226 static const struct inode_operations proc_task_inode_operations = {
3227         .lookup         = proc_task_lookup,
3228         .getattr        = proc_task_getattr,
3229         .setattr        = proc_setattr,
3230 };
3231
3232 static const struct file_operations proc_task_operations = {
3233         .read           = generic_read_dir,
3234         .readdir        = proc_task_readdir,
3235 };