firewire: rename CSR access driver methods
[linux-flexiantxendom0-natty.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/gfp.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/pci_ids.h>
39 #include <linux/spinlock.h>
40 #include <linux/string.h>
41
42 #include <asm/byteorder.h>
43 #include <asm/page.h>
44 #include <asm/system.h>
45
46 #ifdef CONFIG_PPC_PMAC
47 #include <asm/pmac_feature.h>
48 #endif
49
50 #include "core.h"
51 #include "ohci.h"
52
53 #define DESCRIPTOR_OUTPUT_MORE          0
54 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
55 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
56 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
57 #define DESCRIPTOR_STATUS               (1 << 11)
58 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
59 #define DESCRIPTOR_PING                 (1 << 7)
60 #define DESCRIPTOR_YY                   (1 << 6)
61 #define DESCRIPTOR_NO_IRQ               (0 << 4)
62 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
63 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
64 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
65 #define DESCRIPTOR_WAIT                 (3 << 0)
66
67 struct descriptor {
68         __le16 req_count;
69         __le16 control;
70         __le32 data_address;
71         __le32 branch_address;
72         __le16 res_count;
73         __le16 transfer_status;
74 } __attribute__((aligned(16)));
75
76 #define CONTROL_SET(regs)       (regs)
77 #define CONTROL_CLEAR(regs)     ((regs) + 4)
78 #define COMMAND_PTR(regs)       ((regs) + 12)
79 #define CONTEXT_MATCH(regs)     ((regs) + 16)
80
81 struct ar_buffer {
82         struct descriptor descriptor;
83         struct ar_buffer *next;
84         __le32 data[0];
85 };
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct ar_buffer *current_buffer;
90         struct ar_buffer *last_buffer;
91         void *pointer;
92         u32 regs;
93         struct tasklet_struct tasklet;
94 };
95
96 struct context;
97
98 typedef int (*descriptor_callback_t)(struct context *ctx,
99                                      struct descriptor *d,
100                                      struct descriptor *last);
101
102 /*
103  * A buffer that contains a block of DMA-able coherent memory used for
104  * storing a portion of a DMA descriptor program.
105  */
106 struct descriptor_buffer {
107         struct list_head list;
108         dma_addr_t buffer_bus;
109         size_t buffer_size;
110         size_t used;
111         struct descriptor buffer[0];
112 };
113
114 struct context {
115         struct fw_ohci *ohci;
116         u32 regs;
117         int total_allocation;
118
119         /*
120          * List of page-sized buffers for storing DMA descriptors.
121          * Head of list contains buffers in use and tail of list contains
122          * free buffers.
123          */
124         struct list_head buffer_list;
125
126         /*
127          * Pointer to a buffer inside buffer_list that contains the tail
128          * end of the current DMA program.
129          */
130         struct descriptor_buffer *buffer_tail;
131
132         /*
133          * The descriptor containing the branch address of the first
134          * descriptor that has not yet been filled by the device.
135          */
136         struct descriptor *last;
137
138         /*
139          * The last descriptor in the DMA program.  It contains the branch
140          * address that must be updated upon appending a new descriptor.
141          */
142         struct descriptor *prev;
143
144         descriptor_callback_t callback;
145
146         struct tasklet_struct tasklet;
147 };
148
149 #define IT_HEADER_SY(v)          ((v) <<  0)
150 #define IT_HEADER_TCODE(v)       ((v) <<  4)
151 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
152 #define IT_HEADER_TAG(v)         ((v) << 14)
153 #define IT_HEADER_SPEED(v)       ((v) << 16)
154 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
155
156 struct iso_context {
157         struct fw_iso_context base;
158         struct context context;
159         int excess_bytes;
160         void *header;
161         size_t header_length;
162 };
163
164 #define CONFIG_ROM_SIZE 1024
165
166 struct fw_ohci {
167         struct fw_card card;
168
169         __iomem char *registers;
170         int node_id;
171         int generation;
172         int request_generation; /* for timestamping incoming requests */
173         unsigned quirks;
174         unsigned int pri_req_max;
175         u32 bus_time;
176         bool is_root;
177         bool csr_state_setclear_abdicate;
178
179         /*
180          * Spinlock for accessing fw_ohci data.  Never call out of
181          * this driver with this lock held.
182          */
183         spinlock_t lock;
184
185         struct ar_context ar_request_ctx;
186         struct ar_context ar_response_ctx;
187         struct context at_request_ctx;
188         struct context at_response_ctx;
189
190         u32 it_context_mask;
191         struct iso_context *it_context_list;
192         u64 ir_context_channels;
193         u32 ir_context_mask;
194         struct iso_context *ir_context_list;
195
196         __be32    *config_rom;
197         dma_addr_t config_rom_bus;
198         __be32    *next_config_rom;
199         dma_addr_t next_config_rom_bus;
200         __be32     next_header;
201
202         __le32    *self_id_cpu;
203         dma_addr_t self_id_bus;
204         struct tasklet_struct bus_reset_tasklet;
205
206         u32 self_id_buffer[512];
207 };
208
209 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
210 {
211         return container_of(card, struct fw_ohci, card);
212 }
213
214 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
215 #define IR_CONTEXT_BUFFER_FILL          0x80000000
216 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
217 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
218 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
219 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
220
221 #define CONTEXT_RUN     0x8000
222 #define CONTEXT_WAKE    0x1000
223 #define CONTEXT_DEAD    0x0800
224 #define CONTEXT_ACTIVE  0x0400
225
226 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
227 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
228 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
229
230 #define OHCI1394_REGISTER_SIZE          0x800
231 #define OHCI_LOOP_COUNT                 500
232 #define OHCI1394_PCI_HCI_Control        0x40
233 #define SELF_ID_BUF_SIZE                0x800
234 #define OHCI_TCODE_PHY_PACKET           0x0e
235 #define OHCI_VERSION_1_1                0x010010
236
237 static char ohci_driver_name[] = KBUILD_MODNAME;
238
239 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
240 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
241
242 #define QUIRK_CYCLE_TIMER               1
243 #define QUIRK_RESET_PACKET              2
244 #define QUIRK_BE_HEADERS                4
245 #define QUIRK_NO_1394A                  8
246 #define QUIRK_NO_MSI                    16
247
248 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
249 static const struct {
250         unsigned short vendor, device, flags;
251 } ohci_quirks[] = {
252         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
253                                                             QUIRK_RESET_PACKET |
254                                                             QUIRK_NO_1394A},
255         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
256         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
257         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
258         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
259         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
260         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
261 };
262
263 /* This overrides anything that was found in ohci_quirks[]. */
264 static int param_quirks;
265 module_param_named(quirks, param_quirks, int, 0644);
266 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
267         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
268         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
269         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
270         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
271         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
272         ")");
273
274 #define OHCI_PARAM_DEBUG_AT_AR          1
275 #define OHCI_PARAM_DEBUG_SELFIDS        2
276 #define OHCI_PARAM_DEBUG_IRQS           4
277 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
278
279 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
280
281 static int param_debug;
282 module_param_named(debug, param_debug, int, 0644);
283 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
284         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
285         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
286         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
287         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
288         ", or a combination, or all = -1)");
289
290 static void log_irqs(u32 evt)
291 {
292         if (likely(!(param_debug &
293                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
294                 return;
295
296         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
297             !(evt & OHCI1394_busReset))
298                 return;
299
300         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
301             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
302             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
303             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
304             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
305             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
306             evt & OHCI1394_isochRx              ? " IR"                 : "",
307             evt & OHCI1394_isochTx              ? " IT"                 : "",
308             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
309             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
310             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
311             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
312             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
313             evt & OHCI1394_busReset             ? " busReset"           : "",
314             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
315                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
316                     OHCI1394_respTxComplete | OHCI1394_isochRx |
317                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
318                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
319                     OHCI1394_cycleInconsistent |
320                     OHCI1394_regAccessFail | OHCI1394_busReset)
321                                                 ? " ?"                  : "");
322 }
323
324 static const char *speed[] = {
325         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
326 };
327 static const char *power[] = {
328         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
329         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
330 };
331 static const char port[] = { '.', '-', 'p', 'c', };
332
333 static char _p(u32 *s, int shift)
334 {
335         return port[*s >> shift & 3];
336 }
337
338 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
339 {
340         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
341                 return;
342
343         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
344                   self_id_count, generation, node_id);
345
346         for (; self_id_count--; ++s)
347                 if ((*s & 1 << 23) == 0)
348                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
349                             "%s gc=%d %s %s%s%s\n",
350                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
351                             speed[*s >> 14 & 3], *s >> 16 & 63,
352                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
353                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
354                 else
355                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
356                             *s, *s >> 24 & 63,
357                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
358                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
359 }
360
361 static const char *evts[] = {
362         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
363         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
364         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
365         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
366         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
367         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
368         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
369         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
370         [0x10] = "-reserved-",          [0x11] = "ack_complete",
371         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
372         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
373         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
374         [0x18] = "-reserved-",          [0x19] = "-reserved-",
375         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
376         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
377         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
378         [0x20] = "pending/cancelled",
379 };
380 static const char *tcodes[] = {
381         [0x0] = "QW req",               [0x1] = "BW req",
382         [0x2] = "W resp",               [0x3] = "-reserved-",
383         [0x4] = "QR req",               [0x5] = "BR req",
384         [0x6] = "QR resp",              [0x7] = "BR resp",
385         [0x8] = "cycle start",          [0x9] = "Lk req",
386         [0xa] = "async stream packet",  [0xb] = "Lk resp",
387         [0xc] = "-reserved-",           [0xd] = "-reserved-",
388         [0xe] = "link internal",        [0xf] = "-reserved-",
389 };
390 static const char *phys[] = {
391         [0x0] = "phy config packet",    [0x1] = "link-on packet",
392         [0x2] = "self-id packet",       [0x3] = "-reserved-",
393 };
394
395 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
396 {
397         int tcode = header[0] >> 4 & 0xf;
398         char specific[12];
399
400         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
401                 return;
402
403         if (unlikely(evt >= ARRAY_SIZE(evts)))
404                         evt = 0x1f;
405
406         if (evt == OHCI1394_evt_bus_reset) {
407                 fw_notify("A%c evt_bus_reset, generation %d\n",
408                     dir, (header[2] >> 16) & 0xff);
409                 return;
410         }
411
412         if (header[0] == ~header[1]) {
413                 fw_notify("A%c %s, %s, %08x\n",
414                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
415                 return;
416         }
417
418         switch (tcode) {
419         case 0x0: case 0x6: case 0x8:
420                 snprintf(specific, sizeof(specific), " = %08x",
421                          be32_to_cpu((__force __be32)header[3]));
422                 break;
423         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
424                 snprintf(specific, sizeof(specific), " %x,%x",
425                          header[3] >> 16, header[3] & 0xffff);
426                 break;
427         default:
428                 specific[0] = '\0';
429         }
430
431         switch (tcode) {
432         case 0xe: case 0xa:
433                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
434                 break;
435         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
436                 fw_notify("A%c spd %x tl %02x, "
437                     "%04x -> %04x, %s, "
438                     "%s, %04x%08x%s\n",
439                     dir, speed, header[0] >> 10 & 0x3f,
440                     header[1] >> 16, header[0] >> 16, evts[evt],
441                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
442                 break;
443         default:
444                 fw_notify("A%c spd %x tl %02x, "
445                     "%04x -> %04x, %s, "
446                     "%s%s\n",
447                     dir, speed, header[0] >> 10 & 0x3f,
448                     header[1] >> 16, header[0] >> 16, evts[evt],
449                     tcodes[tcode], specific);
450         }
451 }
452
453 #else
454
455 #define param_debug 0
456 static inline void log_irqs(u32 evt) {}
457 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
458 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
459
460 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
461
462 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
463 {
464         writel(data, ohci->registers + offset);
465 }
466
467 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
468 {
469         return readl(ohci->registers + offset);
470 }
471
472 static inline void flush_writes(const struct fw_ohci *ohci)
473 {
474         /* Do a dummy read to flush writes. */
475         reg_read(ohci, OHCI1394_Version);
476 }
477
478 static int read_phy_reg(struct fw_ohci *ohci, int addr)
479 {
480         u32 val;
481         int i;
482
483         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
484         for (i = 0; i < 3 + 100; i++) {
485                 val = reg_read(ohci, OHCI1394_PhyControl);
486                 if (val & OHCI1394_PhyControl_ReadDone)
487                         return OHCI1394_PhyControl_ReadData(val);
488
489                 /*
490                  * Try a few times without waiting.  Sleeping is necessary
491                  * only when the link/PHY interface is busy.
492                  */
493                 if (i >= 3)
494                         msleep(1);
495         }
496         fw_error("failed to read phy reg\n");
497
498         return -EBUSY;
499 }
500
501 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
502 {
503         int i;
504
505         reg_write(ohci, OHCI1394_PhyControl,
506                   OHCI1394_PhyControl_Write(addr, val));
507         for (i = 0; i < 3 + 100; i++) {
508                 val = reg_read(ohci, OHCI1394_PhyControl);
509                 if (!(val & OHCI1394_PhyControl_WritePending))
510                         return 0;
511
512                 if (i >= 3)
513                         msleep(1);
514         }
515         fw_error("failed to write phy reg\n");
516
517         return -EBUSY;
518 }
519
520 static int ohci_update_phy_reg(struct fw_card *card, int addr,
521                                int clear_bits, int set_bits)
522 {
523         struct fw_ohci *ohci = fw_ohci(card);
524         int ret;
525
526         ret = read_phy_reg(ohci, addr);
527         if (ret < 0)
528                 return ret;
529
530         /*
531          * The interrupt status bits are cleared by writing a one bit.
532          * Avoid clearing them unless explicitly requested in set_bits.
533          */
534         if (addr == 5)
535                 clear_bits |= PHY_INT_STATUS_BITS;
536
537         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
538 }
539
540 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
541 {
542         int ret;
543
544         ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
545         if (ret < 0)
546                 return ret;
547
548         return read_phy_reg(ohci, addr);
549 }
550
551 static int ar_context_add_page(struct ar_context *ctx)
552 {
553         struct device *dev = ctx->ohci->card.device;
554         struct ar_buffer *ab;
555         dma_addr_t uninitialized_var(ab_bus);
556         size_t offset;
557
558         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
559         if (ab == NULL)
560                 return -ENOMEM;
561
562         ab->next = NULL;
563         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
564         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
565                                                     DESCRIPTOR_STATUS |
566                                                     DESCRIPTOR_BRANCH_ALWAYS);
567         offset = offsetof(struct ar_buffer, data);
568         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
569         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
570         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
571         ab->descriptor.branch_address = 0;
572
573         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
574         ctx->last_buffer->next = ab;
575         ctx->last_buffer = ab;
576
577         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
578         flush_writes(ctx->ohci);
579
580         return 0;
581 }
582
583 static void ar_context_release(struct ar_context *ctx)
584 {
585         struct ar_buffer *ab, *ab_next;
586         size_t offset;
587         dma_addr_t ab_bus;
588
589         for (ab = ctx->current_buffer; ab; ab = ab_next) {
590                 ab_next = ab->next;
591                 offset = offsetof(struct ar_buffer, data);
592                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
593                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
594                                   ab, ab_bus);
595         }
596 }
597
598 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
599 #define cond_le32_to_cpu(v) \
600         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
601 #else
602 #define cond_le32_to_cpu(v) le32_to_cpu(v)
603 #endif
604
605 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
606 {
607         struct fw_ohci *ohci = ctx->ohci;
608         struct fw_packet p;
609         u32 status, length, tcode;
610         int evt;
611
612         p.header[0] = cond_le32_to_cpu(buffer[0]);
613         p.header[1] = cond_le32_to_cpu(buffer[1]);
614         p.header[2] = cond_le32_to_cpu(buffer[2]);
615
616         tcode = (p.header[0] >> 4) & 0x0f;
617         switch (tcode) {
618         case TCODE_WRITE_QUADLET_REQUEST:
619         case TCODE_READ_QUADLET_RESPONSE:
620                 p.header[3] = (__force __u32) buffer[3];
621                 p.header_length = 16;
622                 p.payload_length = 0;
623                 break;
624
625         case TCODE_READ_BLOCK_REQUEST :
626                 p.header[3] = cond_le32_to_cpu(buffer[3]);
627                 p.header_length = 16;
628                 p.payload_length = 0;
629                 break;
630
631         case TCODE_WRITE_BLOCK_REQUEST:
632         case TCODE_READ_BLOCK_RESPONSE:
633         case TCODE_LOCK_REQUEST:
634         case TCODE_LOCK_RESPONSE:
635                 p.header[3] = cond_le32_to_cpu(buffer[3]);
636                 p.header_length = 16;
637                 p.payload_length = p.header[3] >> 16;
638                 break;
639
640         case TCODE_WRITE_RESPONSE:
641         case TCODE_READ_QUADLET_REQUEST:
642         case OHCI_TCODE_PHY_PACKET:
643                 p.header_length = 12;
644                 p.payload_length = 0;
645                 break;
646
647         default:
648                 /* FIXME: Stop context, discard everything, and restart? */
649                 p.header_length = 0;
650                 p.payload_length = 0;
651         }
652
653         p.payload = (void *) buffer + p.header_length;
654
655         /* FIXME: What to do about evt_* errors? */
656         length = (p.header_length + p.payload_length + 3) / 4;
657         status = cond_le32_to_cpu(buffer[length]);
658         evt    = (status >> 16) & 0x1f;
659
660         p.ack        = evt - 16;
661         p.speed      = (status >> 21) & 0x7;
662         p.timestamp  = status & 0xffff;
663         p.generation = ohci->request_generation;
664
665         log_ar_at_event('R', p.speed, p.header, evt);
666
667         /*
668          * The OHCI bus reset handler synthesizes a phy packet with
669          * the new generation number when a bus reset happens (see
670          * section 8.4.2.3).  This helps us determine when a request
671          * was received and make sure we send the response in the same
672          * generation.  We only need this for requests; for responses
673          * we use the unique tlabel for finding the matching
674          * request.
675          *
676          * Alas some chips sometimes emit bus reset packets with a
677          * wrong generation.  We set the correct generation for these
678          * at a slightly incorrect time (in bus_reset_tasklet).
679          */
680         if (evt == OHCI1394_evt_bus_reset) {
681                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
682                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
683         } else if (ctx == &ohci->ar_request_ctx) {
684                 fw_core_handle_request(&ohci->card, &p);
685         } else {
686                 fw_core_handle_response(&ohci->card, &p);
687         }
688
689         return buffer + length + 1;
690 }
691
692 static void ar_context_tasklet(unsigned long data)
693 {
694         struct ar_context *ctx = (struct ar_context *)data;
695         struct fw_ohci *ohci = ctx->ohci;
696         struct ar_buffer *ab;
697         struct descriptor *d;
698         void *buffer, *end;
699
700         ab = ctx->current_buffer;
701         d = &ab->descriptor;
702
703         if (d->res_count == 0) {
704                 size_t size, rest, offset;
705                 dma_addr_t start_bus;
706                 void *start;
707
708                 /*
709                  * This descriptor is finished and we may have a
710                  * packet split across this and the next buffer. We
711                  * reuse the page for reassembling the split packet.
712                  */
713
714                 offset = offsetof(struct ar_buffer, data);
715                 start = buffer = ab;
716                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
717
718                 ab = ab->next;
719                 d = &ab->descriptor;
720                 size = buffer + PAGE_SIZE - ctx->pointer;
721                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
722                 memmove(buffer, ctx->pointer, size);
723                 memcpy(buffer + size, ab->data, rest);
724                 ctx->current_buffer = ab;
725                 ctx->pointer = (void *) ab->data + rest;
726                 end = buffer + size + rest;
727
728                 while (buffer < end)
729                         buffer = handle_ar_packet(ctx, buffer);
730
731                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
732                                   start, start_bus);
733                 ar_context_add_page(ctx);
734         } else {
735                 buffer = ctx->pointer;
736                 ctx->pointer = end =
737                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
738
739                 while (buffer < end)
740                         buffer = handle_ar_packet(ctx, buffer);
741         }
742 }
743
744 static int ar_context_init(struct ar_context *ctx,
745                            struct fw_ohci *ohci, u32 regs)
746 {
747         struct ar_buffer ab;
748
749         ctx->regs        = regs;
750         ctx->ohci        = ohci;
751         ctx->last_buffer = &ab;
752         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
753
754         ar_context_add_page(ctx);
755         ar_context_add_page(ctx);
756         ctx->current_buffer = ab.next;
757         ctx->pointer = ctx->current_buffer->data;
758
759         return 0;
760 }
761
762 static void ar_context_run(struct ar_context *ctx)
763 {
764         struct ar_buffer *ab = ctx->current_buffer;
765         dma_addr_t ab_bus;
766         size_t offset;
767
768         offset = offsetof(struct ar_buffer, data);
769         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
770
771         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
772         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
773         flush_writes(ctx->ohci);
774 }
775
776 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
777 {
778         int b, key;
779
780         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
781         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
782
783         /* figure out which descriptor the branch address goes in */
784         if (z == 2 && (b == 3 || key == 2))
785                 return d;
786         else
787                 return d + z - 1;
788 }
789
790 static void context_tasklet(unsigned long data)
791 {
792         struct context *ctx = (struct context *) data;
793         struct descriptor *d, *last;
794         u32 address;
795         int z;
796         struct descriptor_buffer *desc;
797
798         desc = list_entry(ctx->buffer_list.next,
799                         struct descriptor_buffer, list);
800         last = ctx->last;
801         while (last->branch_address != 0) {
802                 struct descriptor_buffer *old_desc = desc;
803                 address = le32_to_cpu(last->branch_address);
804                 z = address & 0xf;
805                 address &= ~0xf;
806
807                 /* If the branch address points to a buffer outside of the
808                  * current buffer, advance to the next buffer. */
809                 if (address < desc->buffer_bus ||
810                                 address >= desc->buffer_bus + desc->used)
811                         desc = list_entry(desc->list.next,
812                                         struct descriptor_buffer, list);
813                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
814                 last = find_branch_descriptor(d, z);
815
816                 if (!ctx->callback(ctx, d, last))
817                         break;
818
819                 if (old_desc != desc) {
820                         /* If we've advanced to the next buffer, move the
821                          * previous buffer to the free list. */
822                         unsigned long flags;
823                         old_desc->used = 0;
824                         spin_lock_irqsave(&ctx->ohci->lock, flags);
825                         list_move_tail(&old_desc->list, &ctx->buffer_list);
826                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
827                 }
828                 ctx->last = last;
829         }
830 }
831
832 /*
833  * Allocate a new buffer and add it to the list of free buffers for this
834  * context.  Must be called with ohci->lock held.
835  */
836 static int context_add_buffer(struct context *ctx)
837 {
838         struct descriptor_buffer *desc;
839         dma_addr_t uninitialized_var(bus_addr);
840         int offset;
841
842         /*
843          * 16MB of descriptors should be far more than enough for any DMA
844          * program.  This will catch run-away userspace or DoS attacks.
845          */
846         if (ctx->total_allocation >= 16*1024*1024)
847                 return -ENOMEM;
848
849         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
850                         &bus_addr, GFP_ATOMIC);
851         if (!desc)
852                 return -ENOMEM;
853
854         offset = (void *)&desc->buffer - (void *)desc;
855         desc->buffer_size = PAGE_SIZE - offset;
856         desc->buffer_bus = bus_addr + offset;
857         desc->used = 0;
858
859         list_add_tail(&desc->list, &ctx->buffer_list);
860         ctx->total_allocation += PAGE_SIZE;
861
862         return 0;
863 }
864
865 static int context_init(struct context *ctx, struct fw_ohci *ohci,
866                         u32 regs, descriptor_callback_t callback)
867 {
868         ctx->ohci = ohci;
869         ctx->regs = regs;
870         ctx->total_allocation = 0;
871
872         INIT_LIST_HEAD(&ctx->buffer_list);
873         if (context_add_buffer(ctx) < 0)
874                 return -ENOMEM;
875
876         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
877                         struct descriptor_buffer, list);
878
879         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
880         ctx->callback = callback;
881
882         /*
883          * We put a dummy descriptor in the buffer that has a NULL
884          * branch address and looks like it's been sent.  That way we
885          * have a descriptor to append DMA programs to.
886          */
887         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
888         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
889         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
890         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
891         ctx->last = ctx->buffer_tail->buffer;
892         ctx->prev = ctx->buffer_tail->buffer;
893
894         return 0;
895 }
896
897 static void context_release(struct context *ctx)
898 {
899         struct fw_card *card = &ctx->ohci->card;
900         struct descriptor_buffer *desc, *tmp;
901
902         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
903                 dma_free_coherent(card->device, PAGE_SIZE, desc,
904                         desc->buffer_bus -
905                         ((void *)&desc->buffer - (void *)desc));
906 }
907
908 /* Must be called with ohci->lock held */
909 static struct descriptor *context_get_descriptors(struct context *ctx,
910                                                   int z, dma_addr_t *d_bus)
911 {
912         struct descriptor *d = NULL;
913         struct descriptor_buffer *desc = ctx->buffer_tail;
914
915         if (z * sizeof(*d) > desc->buffer_size)
916                 return NULL;
917
918         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
919                 /* No room for the descriptor in this buffer, so advance to the
920                  * next one. */
921
922                 if (desc->list.next == &ctx->buffer_list) {
923                         /* If there is no free buffer next in the list,
924                          * allocate one. */
925                         if (context_add_buffer(ctx) < 0)
926                                 return NULL;
927                 }
928                 desc = list_entry(desc->list.next,
929                                 struct descriptor_buffer, list);
930                 ctx->buffer_tail = desc;
931         }
932
933         d = desc->buffer + desc->used / sizeof(*d);
934         memset(d, 0, z * sizeof(*d));
935         *d_bus = desc->buffer_bus + desc->used;
936
937         return d;
938 }
939
940 static void context_run(struct context *ctx, u32 extra)
941 {
942         struct fw_ohci *ohci = ctx->ohci;
943
944         reg_write(ohci, COMMAND_PTR(ctx->regs),
945                   le32_to_cpu(ctx->last->branch_address));
946         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
947         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
948         flush_writes(ohci);
949 }
950
951 static void context_append(struct context *ctx,
952                            struct descriptor *d, int z, int extra)
953 {
954         dma_addr_t d_bus;
955         struct descriptor_buffer *desc = ctx->buffer_tail;
956
957         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
958
959         desc->used += (z + extra) * sizeof(*d);
960         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
961         ctx->prev = find_branch_descriptor(d, z);
962
963         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
964         flush_writes(ctx->ohci);
965 }
966
967 static void context_stop(struct context *ctx)
968 {
969         u32 reg;
970         int i;
971
972         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
973         flush_writes(ctx->ohci);
974
975         for (i = 0; i < 10; i++) {
976                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
977                 if ((reg & CONTEXT_ACTIVE) == 0)
978                         return;
979
980                 mdelay(1);
981         }
982         fw_error("Error: DMA context still active (0x%08x)\n", reg);
983 }
984
985 struct driver_data {
986         struct fw_packet *packet;
987 };
988
989 /*
990  * This function apppends a packet to the DMA queue for transmission.
991  * Must always be called with the ochi->lock held to ensure proper
992  * generation handling and locking around packet queue manipulation.
993  */
994 static int at_context_queue_packet(struct context *ctx,
995                                    struct fw_packet *packet)
996 {
997         struct fw_ohci *ohci = ctx->ohci;
998         dma_addr_t d_bus, uninitialized_var(payload_bus);
999         struct driver_data *driver_data;
1000         struct descriptor *d, *last;
1001         __le32 *header;
1002         int z, tcode;
1003         u32 reg;
1004
1005         d = context_get_descriptors(ctx, 4, &d_bus);
1006         if (d == NULL) {
1007                 packet->ack = RCODE_SEND_ERROR;
1008                 return -1;
1009         }
1010
1011         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1012         d[0].res_count = cpu_to_le16(packet->timestamp);
1013
1014         /*
1015          * The DMA format for asyncronous link packets is different
1016          * from the IEEE1394 layout, so shift the fields around
1017          * accordingly.  If header_length is 8, it's a PHY packet, to
1018          * which we need to prepend an extra quadlet.
1019          */
1020
1021         header = (__le32 *) &d[1];
1022         switch (packet->header_length) {
1023         case 16:
1024         case 12:
1025                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1026                                         (packet->speed << 16));
1027                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1028                                         (packet->header[0] & 0xffff0000));
1029                 header[2] = cpu_to_le32(packet->header[2]);
1030
1031                 tcode = (packet->header[0] >> 4) & 0x0f;
1032                 if (TCODE_IS_BLOCK_PACKET(tcode))
1033                         header[3] = cpu_to_le32(packet->header[3]);
1034                 else
1035                         header[3] = (__force __le32) packet->header[3];
1036
1037                 d[0].req_count = cpu_to_le16(packet->header_length);
1038                 break;
1039
1040         case 8:
1041                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1042                                         (packet->speed << 16));
1043                 header[1] = cpu_to_le32(packet->header[0]);
1044                 header[2] = cpu_to_le32(packet->header[1]);
1045                 d[0].req_count = cpu_to_le16(12);
1046                 break;
1047
1048         case 4:
1049                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1050                                         (packet->speed << 16));
1051                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1052                 d[0].req_count = cpu_to_le16(8);
1053                 break;
1054
1055         default:
1056                 /* BUG(); */
1057                 packet->ack = RCODE_SEND_ERROR;
1058                 return -1;
1059         }
1060
1061         driver_data = (struct driver_data *) &d[3];
1062         driver_data->packet = packet;
1063         packet->driver_data = driver_data;
1064
1065         if (packet->payload_length > 0) {
1066                 payload_bus =
1067                         dma_map_single(ohci->card.device, packet->payload,
1068                                        packet->payload_length, DMA_TO_DEVICE);
1069                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1070                         packet->ack = RCODE_SEND_ERROR;
1071                         return -1;
1072                 }
1073                 packet->payload_bus     = payload_bus;
1074                 packet->payload_mapped  = true;
1075
1076                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1077                 d[2].data_address = cpu_to_le32(payload_bus);
1078                 last = &d[2];
1079                 z = 3;
1080         } else {
1081                 last = &d[0];
1082                 z = 2;
1083         }
1084
1085         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1086                                      DESCRIPTOR_IRQ_ALWAYS |
1087                                      DESCRIPTOR_BRANCH_ALWAYS);
1088
1089         /*
1090          * If the controller and packet generations don't match, we need to
1091          * bail out and try again.  If IntEvent.busReset is set, the AT context
1092          * is halted, so appending to the context and trying to run it is
1093          * futile.  Most controllers do the right thing and just flush the AT
1094          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1095          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1096          * up stalling out.  So we just bail out in software and try again
1097          * later, and everyone is happy.
1098          * FIXME: Document how the locking works.
1099          */
1100         if (ohci->generation != packet->generation ||
1101             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1102                 if (packet->payload_mapped)
1103                         dma_unmap_single(ohci->card.device, payload_bus,
1104                                          packet->payload_length, DMA_TO_DEVICE);
1105                 packet->ack = RCODE_GENERATION;
1106                 return -1;
1107         }
1108
1109         context_append(ctx, d, z, 4 - z);
1110
1111         /* If the context isn't already running, start it up. */
1112         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1113         if ((reg & CONTEXT_RUN) == 0)
1114                 context_run(ctx, 0);
1115
1116         return 0;
1117 }
1118
1119 static int handle_at_packet(struct context *context,
1120                             struct descriptor *d,
1121                             struct descriptor *last)
1122 {
1123         struct driver_data *driver_data;
1124         struct fw_packet *packet;
1125         struct fw_ohci *ohci = context->ohci;
1126         int evt;
1127
1128         if (last->transfer_status == 0)
1129                 /* This descriptor isn't done yet, stop iteration. */
1130                 return 0;
1131
1132         driver_data = (struct driver_data *) &d[3];
1133         packet = driver_data->packet;
1134         if (packet == NULL)
1135                 /* This packet was cancelled, just continue. */
1136                 return 1;
1137
1138         if (packet->payload_mapped)
1139                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1140                                  packet->payload_length, DMA_TO_DEVICE);
1141
1142         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1143         packet->timestamp = le16_to_cpu(last->res_count);
1144
1145         log_ar_at_event('T', packet->speed, packet->header, evt);
1146
1147         switch (evt) {
1148         case OHCI1394_evt_timeout:
1149                 /* Async response transmit timed out. */
1150                 packet->ack = RCODE_CANCELLED;
1151                 break;
1152
1153         case OHCI1394_evt_flushed:
1154                 /*
1155                  * The packet was flushed should give same error as
1156                  * when we try to use a stale generation count.
1157                  */
1158                 packet->ack = RCODE_GENERATION;
1159                 break;
1160
1161         case OHCI1394_evt_missing_ack:
1162                 /*
1163                  * Using a valid (current) generation count, but the
1164                  * node is not on the bus or not sending acks.
1165                  */
1166                 packet->ack = RCODE_NO_ACK;
1167                 break;
1168
1169         case ACK_COMPLETE + 0x10:
1170         case ACK_PENDING + 0x10:
1171         case ACK_BUSY_X + 0x10:
1172         case ACK_BUSY_A + 0x10:
1173         case ACK_BUSY_B + 0x10:
1174         case ACK_DATA_ERROR + 0x10:
1175         case ACK_TYPE_ERROR + 0x10:
1176                 packet->ack = evt - 0x10;
1177                 break;
1178
1179         default:
1180                 packet->ack = RCODE_SEND_ERROR;
1181                 break;
1182         }
1183
1184         packet->callback(packet, &ohci->card, packet->ack);
1185
1186         return 1;
1187 }
1188
1189 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1190 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1191 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1192 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1193 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1194
1195 static void handle_local_rom(struct fw_ohci *ohci,
1196                              struct fw_packet *packet, u32 csr)
1197 {
1198         struct fw_packet response;
1199         int tcode, length, i;
1200
1201         tcode = HEADER_GET_TCODE(packet->header[0]);
1202         if (TCODE_IS_BLOCK_PACKET(tcode))
1203                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1204         else
1205                 length = 4;
1206
1207         i = csr - CSR_CONFIG_ROM;
1208         if (i + length > CONFIG_ROM_SIZE) {
1209                 fw_fill_response(&response, packet->header,
1210                                  RCODE_ADDRESS_ERROR, NULL, 0);
1211         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1212                 fw_fill_response(&response, packet->header,
1213                                  RCODE_TYPE_ERROR, NULL, 0);
1214         } else {
1215                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1216                                  (void *) ohci->config_rom + i, length);
1217         }
1218
1219         fw_core_handle_response(&ohci->card, &response);
1220 }
1221
1222 static void handle_local_lock(struct fw_ohci *ohci,
1223                               struct fw_packet *packet, u32 csr)
1224 {
1225         struct fw_packet response;
1226         int tcode, length, ext_tcode, sel;
1227         __be32 *payload, lock_old;
1228         u32 lock_arg, lock_data;
1229
1230         tcode = HEADER_GET_TCODE(packet->header[0]);
1231         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1232         payload = packet->payload;
1233         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1234
1235         if (tcode == TCODE_LOCK_REQUEST &&
1236             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1237                 lock_arg = be32_to_cpu(payload[0]);
1238                 lock_data = be32_to_cpu(payload[1]);
1239         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1240                 lock_arg = 0;
1241                 lock_data = 0;
1242         } else {
1243                 fw_fill_response(&response, packet->header,
1244                                  RCODE_TYPE_ERROR, NULL, 0);
1245                 goto out;
1246         }
1247
1248         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1249         reg_write(ohci, OHCI1394_CSRData, lock_data);
1250         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1251         reg_write(ohci, OHCI1394_CSRControl, sel);
1252
1253         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1254                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1255         else
1256                 fw_notify("swap not done yet\n");
1257
1258         fw_fill_response(&response, packet->header,
1259                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1260  out:
1261         fw_core_handle_response(&ohci->card, &response);
1262 }
1263
1264 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1265 {
1266         u64 offset;
1267         u32 csr;
1268
1269         if (ctx == &ctx->ohci->at_request_ctx) {
1270                 packet->ack = ACK_PENDING;
1271                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1272         }
1273
1274         offset =
1275                 ((unsigned long long)
1276                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1277                 packet->header[2];
1278         csr = offset - CSR_REGISTER_BASE;
1279
1280         /* Handle config rom reads. */
1281         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1282                 handle_local_rom(ctx->ohci, packet, csr);
1283         else switch (csr) {
1284         case CSR_BUS_MANAGER_ID:
1285         case CSR_BANDWIDTH_AVAILABLE:
1286         case CSR_CHANNELS_AVAILABLE_HI:
1287         case CSR_CHANNELS_AVAILABLE_LO:
1288                 handle_local_lock(ctx->ohci, packet, csr);
1289                 break;
1290         default:
1291                 if (ctx == &ctx->ohci->at_request_ctx)
1292                         fw_core_handle_request(&ctx->ohci->card, packet);
1293                 else
1294                         fw_core_handle_response(&ctx->ohci->card, packet);
1295                 break;
1296         }
1297
1298         if (ctx == &ctx->ohci->at_response_ctx) {
1299                 packet->ack = ACK_COMPLETE;
1300                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1301         }
1302 }
1303
1304 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1305 {
1306         unsigned long flags;
1307         int ret;
1308
1309         spin_lock_irqsave(&ctx->ohci->lock, flags);
1310
1311         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1312             ctx->ohci->generation == packet->generation) {
1313                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1314                 handle_local_request(ctx, packet);
1315                 return;
1316         }
1317
1318         ret = at_context_queue_packet(ctx, packet);
1319         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1320
1321         if (ret < 0)
1322                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1323
1324 }
1325
1326 static u32 cycle_timer_ticks(u32 cycle_timer)
1327 {
1328         u32 ticks;
1329
1330         ticks = cycle_timer & 0xfff;
1331         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1332         ticks += (3072 * 8000) * (cycle_timer >> 25);
1333
1334         return ticks;
1335 }
1336
1337 /*
1338  * Some controllers exhibit one or more of the following bugs when updating the
1339  * iso cycle timer register:
1340  *  - When the lowest six bits are wrapping around to zero, a read that happens
1341  *    at the same time will return garbage in the lowest ten bits.
1342  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1343  *    not incremented for about 60 ns.
1344  *  - Occasionally, the entire register reads zero.
1345  *
1346  * To catch these, we read the register three times and ensure that the
1347  * difference between each two consecutive reads is approximately the same, i.e.
1348  * less than twice the other.  Furthermore, any negative difference indicates an
1349  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1350  * execute, so we have enough precision to compute the ratio of the differences.)
1351  */
1352 static u32 get_cycle_time(struct fw_ohci *ohci)
1353 {
1354         u32 c0, c1, c2;
1355         u32 t0, t1, t2;
1356         s32 diff01, diff12;
1357         int i;
1358
1359         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1360
1361         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1362                 i = 0;
1363                 c1 = c2;
1364                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1365                 do {
1366                         c0 = c1;
1367                         c1 = c2;
1368                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1369                         t0 = cycle_timer_ticks(c0);
1370                         t1 = cycle_timer_ticks(c1);
1371                         t2 = cycle_timer_ticks(c2);
1372                         diff01 = t1 - t0;
1373                         diff12 = t2 - t1;
1374                 } while ((diff01 <= 0 || diff12 <= 0 ||
1375                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1376                          && i++ < 20);
1377         }
1378
1379         return c2;
1380 }
1381
1382 /*
1383  * This function has to be called at least every 64 seconds.  The bus_time
1384  * field stores not only the upper 25 bits of the BUS_TIME register but also
1385  * the most significant bit of the cycle timer in bit 6 so that we can detect
1386  * changes in this bit.
1387  */
1388 static u32 update_bus_time(struct fw_ohci *ohci)
1389 {
1390         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1391
1392         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1393                 ohci->bus_time += 0x40;
1394
1395         return ohci->bus_time | cycle_time_seconds;
1396 }
1397
1398 static void bus_reset_tasklet(unsigned long data)
1399 {
1400         struct fw_ohci *ohci = (struct fw_ohci *)data;
1401         int self_id_count, i, j, reg;
1402         int generation, new_generation;
1403         unsigned long flags;
1404         void *free_rom = NULL;
1405         dma_addr_t free_rom_bus = 0;
1406         bool is_new_root;
1407
1408         reg = reg_read(ohci, OHCI1394_NodeID);
1409         if (!(reg & OHCI1394_NodeID_idValid)) {
1410                 fw_notify("node ID not valid, new bus reset in progress\n");
1411                 return;
1412         }
1413         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1414                 fw_notify("malconfigured bus\n");
1415                 return;
1416         }
1417         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1418                                OHCI1394_NodeID_nodeNumber);
1419
1420         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1421         if (!(ohci->is_root && is_new_root))
1422                 reg_write(ohci, OHCI1394_LinkControlSet,
1423                           OHCI1394_LinkControl_cycleMaster);
1424         ohci->is_root = is_new_root;
1425
1426         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1427         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1428                 fw_notify("inconsistent self IDs\n");
1429                 return;
1430         }
1431         /*
1432          * The count in the SelfIDCount register is the number of
1433          * bytes in the self ID receive buffer.  Since we also receive
1434          * the inverted quadlets and a header quadlet, we shift one
1435          * bit extra to get the actual number of self IDs.
1436          */
1437         self_id_count = (reg >> 3) & 0xff;
1438         if (self_id_count == 0 || self_id_count > 252) {
1439                 fw_notify("inconsistent self IDs\n");
1440                 return;
1441         }
1442         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1443         rmb();
1444
1445         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1446                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1447                         fw_notify("inconsistent self IDs\n");
1448                         return;
1449                 }
1450                 ohci->self_id_buffer[j] =
1451                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1452         }
1453         rmb();
1454
1455         /*
1456          * Check the consistency of the self IDs we just read.  The
1457          * problem we face is that a new bus reset can start while we
1458          * read out the self IDs from the DMA buffer. If this happens,
1459          * the DMA buffer will be overwritten with new self IDs and we
1460          * will read out inconsistent data.  The OHCI specification
1461          * (section 11.2) recommends a technique similar to
1462          * linux/seqlock.h, where we remember the generation of the
1463          * self IDs in the buffer before reading them out and compare
1464          * it to the current generation after reading them out.  If
1465          * the two generations match we know we have a consistent set
1466          * of self IDs.
1467          */
1468
1469         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1470         if (new_generation != generation) {
1471                 fw_notify("recursive bus reset detected, "
1472                           "discarding self ids\n");
1473                 return;
1474         }
1475
1476         /* FIXME: Document how the locking works. */
1477         spin_lock_irqsave(&ohci->lock, flags);
1478
1479         ohci->generation = generation;
1480         context_stop(&ohci->at_request_ctx);
1481         context_stop(&ohci->at_response_ctx);
1482         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1483
1484         if (ohci->quirks & QUIRK_RESET_PACKET)
1485                 ohci->request_generation = generation;
1486
1487         /*
1488          * This next bit is unrelated to the AT context stuff but we
1489          * have to do it under the spinlock also.  If a new config rom
1490          * was set up before this reset, the old one is now no longer
1491          * in use and we can free it. Update the config rom pointers
1492          * to point to the current config rom and clear the
1493          * next_config_rom pointer so a new udpate can take place.
1494          */
1495
1496         if (ohci->next_config_rom != NULL) {
1497                 if (ohci->next_config_rom != ohci->config_rom) {
1498                         free_rom      = ohci->config_rom;
1499                         free_rom_bus  = ohci->config_rom_bus;
1500                 }
1501                 ohci->config_rom      = ohci->next_config_rom;
1502                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1503                 ohci->next_config_rom = NULL;
1504
1505                 /*
1506                  * Restore config_rom image and manually update
1507                  * config_rom registers.  Writing the header quadlet
1508                  * will indicate that the config rom is ready, so we
1509                  * do that last.
1510                  */
1511                 reg_write(ohci, OHCI1394_BusOptions,
1512                           be32_to_cpu(ohci->config_rom[2]));
1513                 ohci->config_rom[0] = ohci->next_header;
1514                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1515                           be32_to_cpu(ohci->next_header));
1516         }
1517
1518 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1519         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1520         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1521 #endif
1522
1523         spin_unlock_irqrestore(&ohci->lock, flags);
1524
1525         if (free_rom)
1526                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1527                                   free_rom, free_rom_bus);
1528
1529         log_selfids(ohci->node_id, generation,
1530                     self_id_count, ohci->self_id_buffer);
1531
1532         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1533                                  self_id_count, ohci->self_id_buffer,
1534                                  ohci->csr_state_setclear_abdicate);
1535         ohci->csr_state_setclear_abdicate = false;
1536 }
1537
1538 static irqreturn_t irq_handler(int irq, void *data)
1539 {
1540         struct fw_ohci *ohci = data;
1541         u32 event, iso_event;
1542         int i;
1543
1544         event = reg_read(ohci, OHCI1394_IntEventClear);
1545
1546         if (!event || !~event)
1547                 return IRQ_NONE;
1548
1549         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1550         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1551         log_irqs(event);
1552
1553         if (event & OHCI1394_selfIDComplete)
1554                 tasklet_schedule(&ohci->bus_reset_tasklet);
1555
1556         if (event & OHCI1394_RQPkt)
1557                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1558
1559         if (event & OHCI1394_RSPkt)
1560                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1561
1562         if (event & OHCI1394_reqTxComplete)
1563                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1564
1565         if (event & OHCI1394_respTxComplete)
1566                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1567
1568         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1569         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1570
1571         while (iso_event) {
1572                 i = ffs(iso_event) - 1;
1573                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1574                 iso_event &= ~(1 << i);
1575         }
1576
1577         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1578         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1579
1580         while (iso_event) {
1581                 i = ffs(iso_event) - 1;
1582                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1583                 iso_event &= ~(1 << i);
1584         }
1585
1586         if (unlikely(event & OHCI1394_regAccessFail))
1587                 fw_error("Register access failure - "
1588                          "please notify linux1394-devel@lists.sf.net\n");
1589
1590         if (unlikely(event & OHCI1394_postedWriteErr))
1591                 fw_error("PCI posted write error\n");
1592
1593         if (unlikely(event & OHCI1394_cycleTooLong)) {
1594                 if (printk_ratelimit())
1595                         fw_notify("isochronous cycle too long\n");
1596                 reg_write(ohci, OHCI1394_LinkControlSet,
1597                           OHCI1394_LinkControl_cycleMaster);
1598         }
1599
1600         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1601                 /*
1602                  * We need to clear this event bit in order to make
1603                  * cycleMatch isochronous I/O work.  In theory we should
1604                  * stop active cycleMatch iso contexts now and restart
1605                  * them at least two cycles later.  (FIXME?)
1606                  */
1607                 if (printk_ratelimit())
1608                         fw_notify("isochronous cycle inconsistent\n");
1609         }
1610
1611         if (event & OHCI1394_cycle64Seconds) {
1612                 spin_lock(&ohci->lock);
1613                 update_bus_time(ohci);
1614                 spin_unlock(&ohci->lock);
1615         }
1616
1617         return IRQ_HANDLED;
1618 }
1619
1620 static int software_reset(struct fw_ohci *ohci)
1621 {
1622         int i;
1623
1624         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1625
1626         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1627                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1628                      OHCI1394_HCControl_softReset) == 0)
1629                         return 0;
1630                 msleep(1);
1631         }
1632
1633         return -EBUSY;
1634 }
1635
1636 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1637 {
1638         size_t size = length * 4;
1639
1640         memcpy(dest, src, size);
1641         if (size < CONFIG_ROM_SIZE)
1642                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1643 }
1644
1645 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1646 {
1647         bool enable_1394a;
1648         int ret, clear, set, offset;
1649
1650         /* Check if the driver should configure link and PHY. */
1651         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1652               OHCI1394_HCControl_programPhyEnable))
1653                 return 0;
1654
1655         /* Paranoia: check whether the PHY supports 1394a, too. */
1656         enable_1394a = false;
1657         ret = read_phy_reg(ohci, 2);
1658         if (ret < 0)
1659                 return ret;
1660         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1661                 ret = read_paged_phy_reg(ohci, 1, 8);
1662                 if (ret < 0)
1663                         return ret;
1664                 if (ret >= 1)
1665                         enable_1394a = true;
1666         }
1667
1668         if (ohci->quirks & QUIRK_NO_1394A)
1669                 enable_1394a = false;
1670
1671         /* Configure PHY and link consistently. */
1672         if (enable_1394a) {
1673                 clear = 0;
1674                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1675         } else {
1676                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1677                 set = 0;
1678         }
1679         ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1680         if (ret < 0)
1681                 return ret;
1682
1683         if (enable_1394a)
1684                 offset = OHCI1394_HCControlSet;
1685         else
1686                 offset = OHCI1394_HCControlClear;
1687         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1688
1689         /* Clean up: configuration has been taken care of. */
1690         reg_write(ohci, OHCI1394_HCControlClear,
1691                   OHCI1394_HCControl_programPhyEnable);
1692
1693         return 0;
1694 }
1695
1696 static int ohci_enable(struct fw_card *card,
1697                        const __be32 *config_rom, size_t length)
1698 {
1699         struct fw_ohci *ohci = fw_ohci(card);
1700         struct pci_dev *dev = to_pci_dev(card->device);
1701         u32 lps, seconds, version, irqs;
1702         int i, ret;
1703
1704         if (software_reset(ohci)) {
1705                 fw_error("Failed to reset ohci card.\n");
1706                 return -EBUSY;
1707         }
1708
1709         /*
1710          * Now enable LPS, which we need in order to start accessing
1711          * most of the registers.  In fact, on some cards (ALI M5251),
1712          * accessing registers in the SClk domain without LPS enabled
1713          * will lock up the machine.  Wait 50msec to make sure we have
1714          * full link enabled.  However, with some cards (well, at least
1715          * a JMicron PCIe card), we have to try again sometimes.
1716          */
1717         reg_write(ohci, OHCI1394_HCControlSet,
1718                   OHCI1394_HCControl_LPS |
1719                   OHCI1394_HCControl_postedWriteEnable);
1720         flush_writes(ohci);
1721
1722         for (lps = 0, i = 0; !lps && i < 3; i++) {
1723                 msleep(50);
1724                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1725                       OHCI1394_HCControl_LPS;
1726         }
1727
1728         if (!lps) {
1729                 fw_error("Failed to set Link Power Status\n");
1730                 return -EIO;
1731         }
1732
1733         reg_write(ohci, OHCI1394_HCControlClear,
1734                   OHCI1394_HCControl_noByteSwapData);
1735
1736         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1737         reg_write(ohci, OHCI1394_LinkControlClear,
1738                   OHCI1394_LinkControl_rcvPhyPkt);
1739         reg_write(ohci, OHCI1394_LinkControlSet,
1740                   OHCI1394_LinkControl_rcvSelfID |
1741                   OHCI1394_LinkControl_cycleTimerEnable |
1742                   OHCI1394_LinkControl_cycleMaster);
1743
1744         reg_write(ohci, OHCI1394_ATRetries,
1745                   OHCI1394_MAX_AT_REQ_RETRIES |
1746                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1747                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1748                   (200 << 16));
1749
1750         seconds = lower_32_bits(get_seconds());
1751         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1752         ohci->bus_time = seconds & ~0x3f;
1753
1754         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1755         if (version >= OHCI_VERSION_1_1) {
1756                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1757                           0xfffffffe);
1758                 card->broadcast_channel_auto_allocated = true;
1759         }
1760
1761         /* Get implemented bits of the priority arbitration request counter. */
1762         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1763         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1764         reg_write(ohci, OHCI1394_FairnessControl, 0);
1765         card->priority_budget_implemented = ohci->pri_req_max != 0;
1766
1767         ar_context_run(&ohci->ar_request_ctx);
1768         ar_context_run(&ohci->ar_response_ctx);
1769
1770         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1771         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1772         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1773
1774         ret = configure_1394a_enhancements(ohci);
1775         if (ret < 0)
1776                 return ret;
1777
1778         /* Activate link_on bit and contender bit in our self ID packets.*/
1779         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1780         if (ret < 0)
1781                 return ret;
1782
1783         /*
1784          * When the link is not yet enabled, the atomic config rom
1785          * update mechanism described below in ohci_set_config_rom()
1786          * is not active.  We have to update ConfigRomHeader and
1787          * BusOptions manually, and the write to ConfigROMmap takes
1788          * effect immediately.  We tie this to the enabling of the
1789          * link, so we have a valid config rom before enabling - the
1790          * OHCI requires that ConfigROMhdr and BusOptions have valid
1791          * values before enabling.
1792          *
1793          * However, when the ConfigROMmap is written, some controllers
1794          * always read back quadlets 0 and 2 from the config rom to
1795          * the ConfigRomHeader and BusOptions registers on bus reset.
1796          * They shouldn't do that in this initial case where the link
1797          * isn't enabled.  This means we have to use the same
1798          * workaround here, setting the bus header to 0 and then write
1799          * the right values in the bus reset tasklet.
1800          */
1801
1802         if (config_rom) {
1803                 ohci->next_config_rom =
1804                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1805                                            &ohci->next_config_rom_bus,
1806                                            GFP_KERNEL);
1807                 if (ohci->next_config_rom == NULL)
1808                         return -ENOMEM;
1809
1810                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1811         } else {
1812                 /*
1813                  * In the suspend case, config_rom is NULL, which
1814                  * means that we just reuse the old config rom.
1815                  */
1816                 ohci->next_config_rom = ohci->config_rom;
1817                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1818         }
1819
1820         ohci->next_header = ohci->next_config_rom[0];
1821         ohci->next_config_rom[0] = 0;
1822         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1823         reg_write(ohci, OHCI1394_BusOptions,
1824                   be32_to_cpu(ohci->next_config_rom[2]));
1825         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1826
1827         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1828
1829         if (!(ohci->quirks & QUIRK_NO_MSI))
1830                 pci_enable_msi(dev);
1831         if (request_irq(dev->irq, irq_handler,
1832                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1833                         ohci_driver_name, ohci)) {
1834                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1835                 pci_disable_msi(dev);
1836                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1837                                   ohci->config_rom, ohci->config_rom_bus);
1838                 return -EIO;
1839         }
1840
1841         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1842                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1843                 OHCI1394_isochTx | OHCI1394_isochRx |
1844                 OHCI1394_postedWriteErr |
1845                 OHCI1394_selfIDComplete |
1846                 OHCI1394_regAccessFail |
1847                 OHCI1394_cycle64Seconds |
1848                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1849                 OHCI1394_masterIntEnable;
1850         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1851                 irqs |= OHCI1394_busReset;
1852         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1853
1854         reg_write(ohci, OHCI1394_HCControlSet,
1855                   OHCI1394_HCControl_linkEnable |
1856                   OHCI1394_HCControl_BIBimageValid);
1857         flush_writes(ohci);
1858
1859         /*
1860          * We are ready to go, initiate bus reset to finish the
1861          * initialization.
1862          */
1863
1864         fw_core_initiate_bus_reset(&ohci->card, 1);
1865
1866         return 0;
1867 }
1868
1869 static int ohci_set_config_rom(struct fw_card *card,
1870                                const __be32 *config_rom, size_t length)
1871 {
1872         struct fw_ohci *ohci;
1873         unsigned long flags;
1874         int ret = -EBUSY;
1875         __be32 *next_config_rom;
1876         dma_addr_t uninitialized_var(next_config_rom_bus);
1877
1878         ohci = fw_ohci(card);
1879
1880         /*
1881          * When the OHCI controller is enabled, the config rom update
1882          * mechanism is a bit tricky, but easy enough to use.  See
1883          * section 5.5.6 in the OHCI specification.
1884          *
1885          * The OHCI controller caches the new config rom address in a
1886          * shadow register (ConfigROMmapNext) and needs a bus reset
1887          * for the changes to take place.  When the bus reset is
1888          * detected, the controller loads the new values for the
1889          * ConfigRomHeader and BusOptions registers from the specified
1890          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1891          * shadow register. All automatically and atomically.
1892          *
1893          * Now, there's a twist to this story.  The automatic load of
1894          * ConfigRomHeader and BusOptions doesn't honor the
1895          * noByteSwapData bit, so with a be32 config rom, the
1896          * controller will load be32 values in to these registers
1897          * during the atomic update, even on litte endian
1898          * architectures.  The workaround we use is to put a 0 in the
1899          * header quadlet; 0 is endian agnostic and means that the
1900          * config rom isn't ready yet.  In the bus reset tasklet we
1901          * then set up the real values for the two registers.
1902          *
1903          * We use ohci->lock to avoid racing with the code that sets
1904          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1905          */
1906
1907         next_config_rom =
1908                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1909                                    &next_config_rom_bus, GFP_KERNEL);
1910         if (next_config_rom == NULL)
1911                 return -ENOMEM;
1912
1913         spin_lock_irqsave(&ohci->lock, flags);
1914
1915         if (ohci->next_config_rom == NULL) {
1916                 ohci->next_config_rom = next_config_rom;
1917                 ohci->next_config_rom_bus = next_config_rom_bus;
1918
1919                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1920
1921                 ohci->next_header = config_rom[0];
1922                 ohci->next_config_rom[0] = 0;
1923
1924                 reg_write(ohci, OHCI1394_ConfigROMmap,
1925                           ohci->next_config_rom_bus);
1926                 ret = 0;
1927         }
1928
1929         spin_unlock_irqrestore(&ohci->lock, flags);
1930
1931         /*
1932          * Now initiate a bus reset to have the changes take
1933          * effect. We clean up the old config rom memory and DMA
1934          * mappings in the bus reset tasklet, since the OHCI
1935          * controller could need to access it before the bus reset
1936          * takes effect.
1937          */
1938         if (ret == 0)
1939                 fw_core_initiate_bus_reset(&ohci->card, 1);
1940         else
1941                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1942                                   next_config_rom, next_config_rom_bus);
1943
1944         return ret;
1945 }
1946
1947 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1948 {
1949         struct fw_ohci *ohci = fw_ohci(card);
1950
1951         at_context_transmit(&ohci->at_request_ctx, packet);
1952 }
1953
1954 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1955 {
1956         struct fw_ohci *ohci = fw_ohci(card);
1957
1958         at_context_transmit(&ohci->at_response_ctx, packet);
1959 }
1960
1961 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1962 {
1963         struct fw_ohci *ohci = fw_ohci(card);
1964         struct context *ctx = &ohci->at_request_ctx;
1965         struct driver_data *driver_data = packet->driver_data;
1966         int ret = -ENOENT;
1967
1968         tasklet_disable(&ctx->tasklet);
1969
1970         if (packet->ack != 0)
1971                 goto out;
1972
1973         if (packet->payload_mapped)
1974                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1975                                  packet->payload_length, DMA_TO_DEVICE);
1976
1977         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1978         driver_data->packet = NULL;
1979         packet->ack = RCODE_CANCELLED;
1980         packet->callback(packet, &ohci->card, packet->ack);
1981         ret = 0;
1982  out:
1983         tasklet_enable(&ctx->tasklet);
1984
1985         return ret;
1986 }
1987
1988 static int ohci_enable_phys_dma(struct fw_card *card,
1989                                 int node_id, int generation)
1990 {
1991 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1992         return 0;
1993 #else
1994         struct fw_ohci *ohci = fw_ohci(card);
1995         unsigned long flags;
1996         int n, ret = 0;
1997
1998         /*
1999          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2000          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2001          */
2002
2003         spin_lock_irqsave(&ohci->lock, flags);
2004
2005         if (ohci->generation != generation) {
2006                 ret = -ESTALE;
2007                 goto out;
2008         }
2009
2010         /*
2011          * Note, if the node ID contains a non-local bus ID, physical DMA is
2012          * enabled for _all_ nodes on remote buses.
2013          */
2014
2015         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2016         if (n < 32)
2017                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2018         else
2019                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2020
2021         flush_writes(ohci);
2022  out:
2023         spin_unlock_irqrestore(&ohci->lock, flags);
2024
2025         return ret;
2026 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2027 }
2028
2029 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2030 {
2031         struct fw_ohci *ohci = fw_ohci(card);
2032         unsigned long flags;
2033         u32 value;
2034
2035         switch (csr_offset) {
2036         case CSR_STATE_CLEAR:
2037         case CSR_STATE_SET:
2038                 if (ohci->is_root &&
2039                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2040                      OHCI1394_LinkControl_cycleMaster))
2041                         value = CSR_STATE_BIT_CMSTR;
2042                 else
2043                         value = 0;
2044                 if (ohci->csr_state_setclear_abdicate)
2045                         value |= CSR_STATE_BIT_ABDICATE;
2046
2047                 return value;
2048
2049         case CSR_NODE_IDS:
2050                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2051
2052         case CSR_CYCLE_TIME:
2053                 return get_cycle_time(ohci);
2054
2055         case CSR_BUS_TIME:
2056                 /*
2057                  * We might be called just after the cycle timer has wrapped
2058                  * around but just before the cycle64Seconds handler, so we
2059                  * better check here, too, if the bus time needs to be updated.
2060                  */
2061                 spin_lock_irqsave(&ohci->lock, flags);
2062                 value = update_bus_time(ohci);
2063                 spin_unlock_irqrestore(&ohci->lock, flags);
2064                 return value;
2065
2066         case CSR_BUSY_TIMEOUT:
2067                 value = reg_read(ohci, OHCI1394_ATRetries);
2068                 return (value >> 4) & 0x0ffff00f;
2069
2070         case CSR_PRIORITY_BUDGET:
2071                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2072                         (ohci->pri_req_max << 8);
2073
2074         default:
2075                 WARN_ON(1);
2076                 return 0;
2077         }
2078 }
2079
2080 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2081 {
2082         struct fw_ohci *ohci = fw_ohci(card);
2083         unsigned long flags;
2084
2085         switch (csr_offset) {
2086         case CSR_STATE_CLEAR:
2087                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2088                         reg_write(ohci, OHCI1394_LinkControlClear,
2089                                   OHCI1394_LinkControl_cycleMaster);
2090                         flush_writes(ohci);
2091                 }
2092                 if (value & CSR_STATE_BIT_ABDICATE)
2093                         ohci->csr_state_setclear_abdicate = false;
2094                 break;
2095
2096         case CSR_STATE_SET:
2097                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2098                         reg_write(ohci, OHCI1394_LinkControlSet,
2099                                   OHCI1394_LinkControl_cycleMaster);
2100                         flush_writes(ohci);
2101                 }
2102                 if (value & CSR_STATE_BIT_ABDICATE)
2103                         ohci->csr_state_setclear_abdicate = true;
2104                 break;
2105
2106         case CSR_NODE_IDS:
2107                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2108                 flush_writes(ohci);
2109                 break;
2110
2111         case CSR_CYCLE_TIME:
2112                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2113                 reg_write(ohci, OHCI1394_IntEventSet,
2114                           OHCI1394_cycleInconsistent);
2115                 flush_writes(ohci);
2116                 break;
2117
2118         case CSR_BUS_TIME:
2119                 spin_lock_irqsave(&ohci->lock, flags);
2120                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2121                 spin_unlock_irqrestore(&ohci->lock, flags);
2122                 break;
2123
2124         case CSR_BUSY_TIMEOUT:
2125                 value = (value & 0xf) | ((value & 0xf) << 4) |
2126                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2127                 reg_write(ohci, OHCI1394_ATRetries, value);
2128                 flush_writes(ohci);
2129                 break;
2130
2131         case CSR_PRIORITY_BUDGET:
2132                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2133                 flush_writes(ohci);
2134                 break;
2135
2136         default:
2137                 WARN_ON(1);
2138                 break;
2139         }
2140 }
2141
2142 static void copy_iso_headers(struct iso_context *ctx, void *p)
2143 {
2144         int i = ctx->header_length;
2145
2146         if (i + ctx->base.header_size > PAGE_SIZE)
2147                 return;
2148
2149         /*
2150          * The iso header is byteswapped to little endian by
2151          * the controller, but the remaining header quadlets
2152          * are big endian.  We want to present all the headers
2153          * as big endian, so we have to swap the first quadlet.
2154          */
2155         if (ctx->base.header_size > 0)
2156                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2157         if (ctx->base.header_size > 4)
2158                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2159         if (ctx->base.header_size > 8)
2160                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2161         ctx->header_length += ctx->base.header_size;
2162 }
2163
2164 static int handle_ir_packet_per_buffer(struct context *context,
2165                                        struct descriptor *d,
2166                                        struct descriptor *last)
2167 {
2168         struct iso_context *ctx =
2169                 container_of(context, struct iso_context, context);
2170         struct descriptor *pd;
2171         __le32 *ir_header;
2172         void *p;
2173
2174         for (pd = d; pd <= last; pd++) {
2175                 if (pd->transfer_status)
2176                         break;
2177         }
2178         if (pd > last)
2179                 /* Descriptor(s) not done yet, stop iteration */
2180                 return 0;
2181
2182         p = last + 1;
2183         copy_iso_headers(ctx, p);
2184
2185         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2186                 ir_header = (__le32 *) p;
2187                 ctx->base.callback(&ctx->base,
2188                                    le32_to_cpu(ir_header[0]) & 0xffff,
2189                                    ctx->header_length, ctx->header,
2190                                    ctx->base.callback_data);
2191                 ctx->header_length = 0;
2192         }
2193
2194         return 1;
2195 }
2196
2197 static int handle_it_packet(struct context *context,
2198                             struct descriptor *d,
2199                             struct descriptor *last)
2200 {
2201         struct iso_context *ctx =
2202                 container_of(context, struct iso_context, context);
2203         int i;
2204         struct descriptor *pd;
2205
2206         for (pd = d; pd <= last; pd++)
2207                 if (pd->transfer_status)
2208                         break;
2209         if (pd > last)
2210                 /* Descriptor(s) not done yet, stop iteration */
2211                 return 0;
2212
2213         i = ctx->header_length;
2214         if (i + 4 < PAGE_SIZE) {
2215                 /* Present this value as big-endian to match the receive code */
2216                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2217                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2218                                 le16_to_cpu(pd->res_count));
2219                 ctx->header_length += 4;
2220         }
2221         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2222                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2223                                    ctx->header_length, ctx->header,
2224                                    ctx->base.callback_data);
2225                 ctx->header_length = 0;
2226         }
2227         return 1;
2228 }
2229
2230 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2231                                 int type, int channel, size_t header_size)
2232 {
2233         struct fw_ohci *ohci = fw_ohci(card);
2234         struct iso_context *ctx, *list;
2235         descriptor_callback_t callback;
2236         u64 *channels, dont_care = ~0ULL;
2237         u32 *mask, regs;
2238         unsigned long flags;
2239         int index, ret = -ENOMEM;
2240
2241         if (type == FW_ISO_CONTEXT_TRANSMIT) {
2242                 channels = &dont_care;
2243                 mask = &ohci->it_context_mask;
2244                 list = ohci->it_context_list;
2245                 callback = handle_it_packet;
2246         } else {
2247                 channels = &ohci->ir_context_channels;
2248                 mask = &ohci->ir_context_mask;
2249                 list = ohci->ir_context_list;
2250                 callback = handle_ir_packet_per_buffer;
2251         }
2252
2253         spin_lock_irqsave(&ohci->lock, flags);
2254         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2255         if (index >= 0) {
2256                 *channels &= ~(1ULL << channel);
2257                 *mask &= ~(1 << index);
2258         }
2259         spin_unlock_irqrestore(&ohci->lock, flags);
2260
2261         if (index < 0)
2262                 return ERR_PTR(-EBUSY);
2263
2264         if (type == FW_ISO_CONTEXT_TRANSMIT)
2265                 regs = OHCI1394_IsoXmitContextBase(index);
2266         else
2267                 regs = OHCI1394_IsoRcvContextBase(index);
2268
2269         ctx = &list[index];
2270         memset(ctx, 0, sizeof(*ctx));
2271         ctx->header_length = 0;
2272         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2273         if (ctx->header == NULL)
2274                 goto out;
2275
2276         ret = context_init(&ctx->context, ohci, regs, callback);
2277         if (ret < 0)
2278                 goto out_with_header;
2279
2280         return &ctx->base;
2281
2282  out_with_header:
2283         free_page((unsigned long)ctx->header);
2284  out:
2285         spin_lock_irqsave(&ohci->lock, flags);
2286         *mask |= 1 << index;
2287         spin_unlock_irqrestore(&ohci->lock, flags);
2288
2289         return ERR_PTR(ret);
2290 }
2291
2292 static int ohci_start_iso(struct fw_iso_context *base,
2293                           s32 cycle, u32 sync, u32 tags)
2294 {
2295         struct iso_context *ctx = container_of(base, struct iso_context, base);
2296         struct fw_ohci *ohci = ctx->context.ohci;
2297         u32 control, match;
2298         int index;
2299
2300         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2301                 index = ctx - ohci->it_context_list;
2302                 match = 0;
2303                 if (cycle >= 0)
2304                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2305                                 (cycle & 0x7fff) << 16;
2306
2307                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2308                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2309                 context_run(&ctx->context, match);
2310         } else {
2311                 index = ctx - ohci->ir_context_list;
2312                 control = IR_CONTEXT_ISOCH_HEADER;
2313                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2314                 if (cycle >= 0) {
2315                         match |= (cycle & 0x07fff) << 12;
2316                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2317                 }
2318
2319                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2320                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2321                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2322                 context_run(&ctx->context, control);
2323         }
2324
2325         return 0;
2326 }
2327
2328 static int ohci_stop_iso(struct fw_iso_context *base)
2329 {
2330         struct fw_ohci *ohci = fw_ohci(base->card);
2331         struct iso_context *ctx = container_of(base, struct iso_context, base);
2332         int index;
2333
2334         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2335                 index = ctx - ohci->it_context_list;
2336                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2337         } else {
2338                 index = ctx - ohci->ir_context_list;
2339                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2340         }
2341         flush_writes(ohci);
2342         context_stop(&ctx->context);
2343
2344         return 0;
2345 }
2346
2347 static void ohci_free_iso_context(struct fw_iso_context *base)
2348 {
2349         struct fw_ohci *ohci = fw_ohci(base->card);
2350         struct iso_context *ctx = container_of(base, struct iso_context, base);
2351         unsigned long flags;
2352         int index;
2353
2354         ohci_stop_iso(base);
2355         context_release(&ctx->context);
2356         free_page((unsigned long)ctx->header);
2357
2358         spin_lock_irqsave(&ohci->lock, flags);
2359
2360         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2361                 index = ctx - ohci->it_context_list;
2362                 ohci->it_context_mask |= 1 << index;
2363         } else {
2364                 index = ctx - ohci->ir_context_list;
2365                 ohci->ir_context_mask |= 1 << index;
2366                 ohci->ir_context_channels |= 1ULL << base->channel;
2367         }
2368
2369         spin_unlock_irqrestore(&ohci->lock, flags);
2370 }
2371
2372 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2373                                    struct fw_iso_packet *packet,
2374                                    struct fw_iso_buffer *buffer,
2375                                    unsigned long payload)
2376 {
2377         struct iso_context *ctx = container_of(base, struct iso_context, base);
2378         struct descriptor *d, *last, *pd;
2379         struct fw_iso_packet *p;
2380         __le32 *header;
2381         dma_addr_t d_bus, page_bus;
2382         u32 z, header_z, payload_z, irq;
2383         u32 payload_index, payload_end_index, next_page_index;
2384         int page, end_page, i, length, offset;
2385
2386         p = packet;
2387         payload_index = payload;
2388
2389         if (p->skip)
2390                 z = 1;
2391         else
2392                 z = 2;
2393         if (p->header_length > 0)
2394                 z++;
2395
2396         /* Determine the first page the payload isn't contained in. */
2397         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2398         if (p->payload_length > 0)
2399                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2400         else
2401                 payload_z = 0;
2402
2403         z += payload_z;
2404
2405         /* Get header size in number of descriptors. */
2406         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2407
2408         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2409         if (d == NULL)
2410                 return -ENOMEM;
2411
2412         if (!p->skip) {
2413                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2414                 d[0].req_count = cpu_to_le16(8);
2415                 /*
2416                  * Link the skip address to this descriptor itself.  This causes
2417                  * a context to skip a cycle whenever lost cycles or FIFO
2418                  * overruns occur, without dropping the data.  The application
2419                  * should then decide whether this is an error condition or not.
2420                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2421                  */
2422                 d[0].branch_address = cpu_to_le32(d_bus | z);
2423
2424                 header = (__le32 *) &d[1];
2425                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2426                                         IT_HEADER_TAG(p->tag) |
2427                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2428                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2429                                         IT_HEADER_SPEED(ctx->base.speed));
2430                 header[1] =
2431                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2432                                                           p->payload_length));
2433         }
2434
2435         if (p->header_length > 0) {
2436                 d[2].req_count    = cpu_to_le16(p->header_length);
2437                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2438                 memcpy(&d[z], p->header, p->header_length);
2439         }
2440
2441         pd = d + z - payload_z;
2442         payload_end_index = payload_index + p->payload_length;
2443         for (i = 0; i < payload_z; i++) {
2444                 page               = payload_index >> PAGE_SHIFT;
2445                 offset             = payload_index & ~PAGE_MASK;
2446                 next_page_index    = (page + 1) << PAGE_SHIFT;
2447                 length             =
2448                         min(next_page_index, payload_end_index) - payload_index;
2449                 pd[i].req_count    = cpu_to_le16(length);
2450
2451                 page_bus = page_private(buffer->pages[page]);
2452                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2453
2454                 payload_index += length;
2455         }
2456
2457         if (p->interrupt)
2458                 irq = DESCRIPTOR_IRQ_ALWAYS;
2459         else
2460                 irq = DESCRIPTOR_NO_IRQ;
2461
2462         last = z == 2 ? d : d + z - 1;
2463         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2464                                      DESCRIPTOR_STATUS |
2465                                      DESCRIPTOR_BRANCH_ALWAYS |
2466                                      irq);
2467
2468         context_append(&ctx->context, d, z, header_z);
2469
2470         return 0;
2471 }
2472
2473 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2474                                         struct fw_iso_packet *packet,
2475                                         struct fw_iso_buffer *buffer,
2476                                         unsigned long payload)
2477 {
2478         struct iso_context *ctx = container_of(base, struct iso_context, base);
2479         struct descriptor *d, *pd;
2480         struct fw_iso_packet *p = packet;
2481         dma_addr_t d_bus, page_bus;
2482         u32 z, header_z, rest;
2483         int i, j, length;
2484         int page, offset, packet_count, header_size, payload_per_buffer;
2485
2486         /*
2487          * The OHCI controller puts the isochronous header and trailer in the
2488          * buffer, so we need at least 8 bytes.
2489          */
2490         packet_count = p->header_length / ctx->base.header_size;
2491         header_size  = max(ctx->base.header_size, (size_t)8);
2492
2493         /* Get header size in number of descriptors. */
2494         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2495         page     = payload >> PAGE_SHIFT;
2496         offset   = payload & ~PAGE_MASK;
2497         payload_per_buffer = p->payload_length / packet_count;
2498
2499         for (i = 0; i < packet_count; i++) {
2500                 /* d points to the header descriptor */
2501                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2502                 d = context_get_descriptors(&ctx->context,
2503                                 z + header_z, &d_bus);
2504                 if (d == NULL)
2505                         return -ENOMEM;
2506
2507                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2508                                               DESCRIPTOR_INPUT_MORE);
2509                 if (p->skip && i == 0)
2510                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2511                 d->req_count    = cpu_to_le16(header_size);
2512                 d->res_count    = d->req_count;
2513                 d->transfer_status = 0;
2514                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2515
2516                 rest = payload_per_buffer;
2517                 pd = d;
2518                 for (j = 1; j < z; j++) {
2519                         pd++;
2520                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2521                                                   DESCRIPTOR_INPUT_MORE);
2522
2523                         if (offset + rest < PAGE_SIZE)
2524                                 length = rest;
2525                         else
2526                                 length = PAGE_SIZE - offset;
2527                         pd->req_count = cpu_to_le16(length);
2528                         pd->res_count = pd->req_count;
2529                         pd->transfer_status = 0;
2530
2531                         page_bus = page_private(buffer->pages[page]);
2532                         pd->data_address = cpu_to_le32(page_bus + offset);
2533
2534                         offset = (offset + length) & ~PAGE_MASK;
2535                         rest -= length;
2536                         if (offset == 0)
2537                                 page++;
2538                 }
2539                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2540                                           DESCRIPTOR_INPUT_LAST |
2541                                           DESCRIPTOR_BRANCH_ALWAYS);
2542                 if (p->interrupt && i == packet_count - 1)
2543                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2544
2545                 context_append(&ctx->context, d, z, header_z);
2546         }
2547
2548         return 0;
2549 }
2550
2551 static int ohci_queue_iso(struct fw_iso_context *base,
2552                           struct fw_iso_packet *packet,
2553                           struct fw_iso_buffer *buffer,
2554                           unsigned long payload)
2555 {
2556         struct iso_context *ctx = container_of(base, struct iso_context, base);
2557         unsigned long flags;
2558         int ret;
2559
2560         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2561         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2562                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2563         else
2564                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2565                                                         buffer, payload);
2566         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2567
2568         return ret;
2569 }
2570
2571 static const struct fw_card_driver ohci_driver = {
2572         .enable                 = ohci_enable,
2573         .update_phy_reg         = ohci_update_phy_reg,
2574         .set_config_rom         = ohci_set_config_rom,
2575         .send_request           = ohci_send_request,
2576         .send_response          = ohci_send_response,
2577         .cancel_packet          = ohci_cancel_packet,
2578         .enable_phys_dma        = ohci_enable_phys_dma,
2579         .read_csr               = ohci_read_csr,
2580         .write_csr              = ohci_write_csr,
2581
2582         .allocate_iso_context   = ohci_allocate_iso_context,
2583         .free_iso_context       = ohci_free_iso_context,
2584         .queue_iso              = ohci_queue_iso,
2585         .start_iso              = ohci_start_iso,
2586         .stop_iso               = ohci_stop_iso,
2587 };
2588
2589 #ifdef CONFIG_PPC_PMAC
2590 static void pmac_ohci_on(struct pci_dev *dev)
2591 {
2592         if (machine_is(powermac)) {
2593                 struct device_node *ofn = pci_device_to_OF_node(dev);
2594
2595                 if (ofn) {
2596                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2597                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2598                 }
2599         }
2600 }
2601
2602 static void pmac_ohci_off(struct pci_dev *dev)
2603 {
2604         if (machine_is(powermac)) {
2605                 struct device_node *ofn = pci_device_to_OF_node(dev);
2606
2607                 if (ofn) {
2608                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2609                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2610                 }
2611         }
2612 }
2613 #else
2614 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2615 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2616 #endif /* CONFIG_PPC_PMAC */
2617
2618 static int __devinit pci_probe(struct pci_dev *dev,
2619                                const struct pci_device_id *ent)
2620 {
2621         struct fw_ohci *ohci;
2622         u32 bus_options, max_receive, link_speed, version, link_enh;
2623         u64 guid;
2624         int i, err, n_ir, n_it;
2625         size_t size;
2626
2627         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2628         if (ohci == NULL) {
2629                 err = -ENOMEM;
2630                 goto fail;
2631         }
2632
2633         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2634
2635         pmac_ohci_on(dev);
2636
2637         err = pci_enable_device(dev);
2638         if (err) {
2639                 fw_error("Failed to enable OHCI hardware\n");
2640                 goto fail_free;
2641         }
2642
2643         pci_set_master(dev);
2644         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2645         pci_set_drvdata(dev, ohci);
2646
2647         spin_lock_init(&ohci->lock);
2648
2649         tasklet_init(&ohci->bus_reset_tasklet,
2650                      bus_reset_tasklet, (unsigned long)ohci);
2651
2652         err = pci_request_region(dev, 0, ohci_driver_name);
2653         if (err) {
2654                 fw_error("MMIO resource unavailable\n");
2655                 goto fail_disable;
2656         }
2657
2658         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2659         if (ohci->registers == NULL) {
2660                 fw_error("Failed to remap registers\n");
2661                 err = -ENXIO;
2662                 goto fail_iomem;
2663         }
2664
2665         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2666                 if (ohci_quirks[i].vendor == dev->vendor &&
2667                     (ohci_quirks[i].device == dev->device ||
2668                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2669                         ohci->quirks = ohci_quirks[i].flags;
2670                         break;
2671                 }
2672         if (param_quirks)
2673                 ohci->quirks = param_quirks;
2674
2675         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2676         if (dev->vendor == PCI_VENDOR_ID_TI) {
2677                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2678
2679                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2680                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2681                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2682
2683                 /* use priority arbitration for asynchronous responses */
2684                 link_enh |= TI_LinkEnh_enab_unfair;
2685
2686                 /* required for aPhyEnhanceEnable to work */
2687                 link_enh |= TI_LinkEnh_enab_accel;
2688
2689                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2690         }
2691
2692         ar_context_init(&ohci->ar_request_ctx, ohci,
2693                         OHCI1394_AsReqRcvContextControlSet);
2694
2695         ar_context_init(&ohci->ar_response_ctx, ohci,
2696                         OHCI1394_AsRspRcvContextControlSet);
2697
2698         context_init(&ohci->at_request_ctx, ohci,
2699                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2700
2701         context_init(&ohci->at_response_ctx, ohci,
2702                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2703
2704         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2705         ohci->ir_context_channels = ~0ULL;
2706         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2707         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2708         n_ir = hweight32(ohci->ir_context_mask);
2709         size = sizeof(struct iso_context) * n_ir;
2710         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2711
2712         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2713         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2714         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2715         n_it = hweight32(ohci->it_context_mask);
2716         size = sizeof(struct iso_context) * n_it;
2717         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2718
2719         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2720                 err = -ENOMEM;
2721                 goto fail_contexts;
2722         }
2723
2724         /* self-id dma buffer allocation */
2725         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2726                                                SELF_ID_BUF_SIZE,
2727                                                &ohci->self_id_bus,
2728                                                GFP_KERNEL);
2729         if (ohci->self_id_cpu == NULL) {
2730                 err = -ENOMEM;
2731                 goto fail_contexts;
2732         }
2733
2734         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2735         max_receive = (bus_options >> 12) & 0xf;
2736         link_speed = bus_options & 0x7;
2737         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2738                 reg_read(ohci, OHCI1394_GUIDLo);
2739
2740         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2741         if (err)
2742                 goto fail_self_id;
2743
2744         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2745         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2746                   "%d IR + %d IT contexts, quirks 0x%x\n",
2747                   dev_name(&dev->dev), version >> 16, version & 0xff,
2748                   n_ir, n_it, ohci->quirks);
2749
2750         return 0;
2751
2752  fail_self_id:
2753         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2754                           ohci->self_id_cpu, ohci->self_id_bus);
2755  fail_contexts:
2756         kfree(ohci->ir_context_list);
2757         kfree(ohci->it_context_list);
2758         context_release(&ohci->at_response_ctx);
2759         context_release(&ohci->at_request_ctx);
2760         ar_context_release(&ohci->ar_response_ctx);
2761         ar_context_release(&ohci->ar_request_ctx);
2762         pci_iounmap(dev, ohci->registers);
2763  fail_iomem:
2764         pci_release_region(dev, 0);
2765  fail_disable:
2766         pci_disable_device(dev);
2767  fail_free:
2768         kfree(&ohci->card);
2769         pmac_ohci_off(dev);
2770  fail:
2771         if (err == -ENOMEM)
2772                 fw_error("Out of memory\n");
2773
2774         return err;
2775 }
2776
2777 static void pci_remove(struct pci_dev *dev)
2778 {
2779         struct fw_ohci *ohci;
2780
2781         ohci = pci_get_drvdata(dev);
2782         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2783         flush_writes(ohci);
2784         fw_core_remove_card(&ohci->card);
2785
2786         /*
2787          * FIXME: Fail all pending packets here, now that the upper
2788          * layers can't queue any more.
2789          */
2790
2791         software_reset(ohci);
2792         free_irq(dev->irq, ohci);
2793
2794         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2795                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2796                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2797         if (ohci->config_rom)
2798                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2799                                   ohci->config_rom, ohci->config_rom_bus);
2800         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2801                           ohci->self_id_cpu, ohci->self_id_bus);
2802         ar_context_release(&ohci->ar_request_ctx);
2803         ar_context_release(&ohci->ar_response_ctx);
2804         context_release(&ohci->at_request_ctx);
2805         context_release(&ohci->at_response_ctx);
2806         kfree(ohci->it_context_list);
2807         kfree(ohci->ir_context_list);
2808         pci_disable_msi(dev);
2809         pci_iounmap(dev, ohci->registers);
2810         pci_release_region(dev, 0);
2811         pci_disable_device(dev);
2812         kfree(&ohci->card);
2813         pmac_ohci_off(dev);
2814
2815         fw_notify("Removed fw-ohci device.\n");
2816 }
2817
2818 #ifdef CONFIG_PM
2819 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2820 {
2821         struct fw_ohci *ohci = pci_get_drvdata(dev);
2822         int err;
2823
2824         software_reset(ohci);
2825         free_irq(dev->irq, ohci);
2826         pci_disable_msi(dev);
2827         err = pci_save_state(dev);
2828         if (err) {
2829                 fw_error("pci_save_state failed\n");
2830                 return err;
2831         }
2832         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2833         if (err)
2834                 fw_error("pci_set_power_state failed with %d\n", err);
2835         pmac_ohci_off(dev);
2836
2837         return 0;
2838 }
2839
2840 static int pci_resume(struct pci_dev *dev)
2841 {
2842         struct fw_ohci *ohci = pci_get_drvdata(dev);
2843         int err;
2844
2845         pmac_ohci_on(dev);
2846         pci_set_power_state(dev, PCI_D0);
2847         pci_restore_state(dev);
2848         err = pci_enable_device(dev);
2849         if (err) {
2850                 fw_error("pci_enable_device failed\n");
2851                 return err;
2852         }
2853
2854         return ohci_enable(&ohci->card, NULL, 0);
2855 }
2856 #endif
2857
2858 static const struct pci_device_id pci_table[] = {
2859         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2860         { }
2861 };
2862
2863 MODULE_DEVICE_TABLE(pci, pci_table);
2864
2865 static struct pci_driver fw_ohci_pci_driver = {
2866         .name           = ohci_driver_name,
2867         .id_table       = pci_table,
2868         .probe          = pci_probe,
2869         .remove         = pci_remove,
2870 #ifdef CONFIG_PM
2871         .resume         = pci_resume,
2872         .suspend        = pci_suspend,
2873 #endif
2874 };
2875
2876 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2877 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2878 MODULE_LICENSE("GPL");
2879
2880 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2881 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2882 MODULE_ALIAS("ohci1394");
2883 #endif
2884
2885 static int __init fw_ohci_init(void)
2886 {
2887         return pci_register_driver(&fw_ohci_pci_driver);
2888 }
2889
2890 static void __exit fw_ohci_cleanup(void)
2891 {
2892         pci_unregister_driver(&fw_ohci_pci_driver);
2893 }
2894
2895 module_init(fw_ohci_init);
2896 module_exit(fw_ohci_cleanup);