perf: Fix free_event()
[linux-flexiantxendom0-natty.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 void perf_pmu_disable(struct pmu *pmu)
67 {
68         int *count = this_cpu_ptr(pmu->pmu_disable_count);
69         if (!(*count)++)
70                 pmu->pmu_disable(pmu);
71 }
72
73 void perf_pmu_enable(struct pmu *pmu)
74 {
75         int *count = this_cpu_ptr(pmu->pmu_disable_count);
76         if (!--(*count))
77                 pmu->pmu_enable(pmu);
78 }
79
80 static void perf_pmu_rotate_start(struct pmu *pmu)
81 {
82         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83
84         if (hrtimer_active(&cpuctx->timer))
85                 return;
86
87         __hrtimer_start_range_ns(&cpuctx->timer,
88                         ns_to_ktime(cpuctx->timer_interval), 0,
89                         HRTIMER_MODE_REL_PINNED, 0);
90 }
91
92 static void perf_pmu_rotate_stop(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
96         hrtimer_cancel(&cpuctx->timer);
97 }
98
99 static void get_ctx(struct perf_event_context *ctx)
100 {
101         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 }
103
104 static void free_ctx(struct rcu_head *head)
105 {
106         struct perf_event_context *ctx;
107
108         ctx = container_of(head, struct perf_event_context, rcu_head);
109         kfree(ctx);
110 }
111
112 static void put_ctx(struct perf_event_context *ctx)
113 {
114         if (atomic_dec_and_test(&ctx->refcount)) {
115                 if (ctx->parent_ctx)
116                         put_ctx(ctx->parent_ctx);
117                 if (ctx->task)
118                         put_task_struct(ctx->task);
119                 call_rcu(&ctx->rcu_head, free_ctx);
120         }
121 }
122
123 static void unclone_ctx(struct perf_event_context *ctx)
124 {
125         if (ctx->parent_ctx) {
126                 put_ctx(ctx->parent_ctx);
127                 ctx->parent_ctx = NULL;
128         }
129 }
130
131 /*
132  * If we inherit events we want to return the parent event id
133  * to userspace.
134  */
135 static u64 primary_event_id(struct perf_event *event)
136 {
137         u64 id = event->id;
138
139         if (event->parent)
140                 id = event->parent->id;
141
142         return id;
143 }
144
145 /*
146  * Get the perf_event_context for a task and lock it.
147  * This has to cope with with the fact that until it is locked,
148  * the context could get moved to another task.
149  */
150 static struct perf_event_context *
151 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152 {
153         struct perf_event_context *ctx;
154
155         rcu_read_lock();
156 retry:
157         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158         if (ctx) {
159                 /*
160                  * If this context is a clone of another, it might
161                  * get swapped for another underneath us by
162                  * perf_event_task_sched_out, though the
163                  * rcu_read_lock() protects us from any context
164                  * getting freed.  Lock the context and check if it
165                  * got swapped before we could get the lock, and retry
166                  * if so.  If we locked the right context, then it
167                  * can't get swapped on us any more.
168                  */
169                 raw_spin_lock_irqsave(&ctx->lock, *flags);
170                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172                         goto retry;
173                 }
174
175                 if (!atomic_inc_not_zero(&ctx->refcount)) {
176                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177                         ctx = NULL;
178                 }
179         }
180         rcu_read_unlock();
181         return ctx;
182 }
183
184 /*
185  * Get the context for a task and increment its pin_count so it
186  * can't get swapped to another task.  This also increments its
187  * reference count so that the context can't get freed.
188  */
189 static struct perf_event_context *
190 perf_pin_task_context(struct task_struct *task, int ctxn)
191 {
192         struct perf_event_context *ctx;
193         unsigned long flags;
194
195         ctx = perf_lock_task_context(task, ctxn, &flags);
196         if (ctx) {
197                 ++ctx->pin_count;
198                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
199         }
200         return ctx;
201 }
202
203 static void perf_unpin_context(struct perf_event_context *ctx)
204 {
205         unsigned long flags;
206
207         raw_spin_lock_irqsave(&ctx->lock, flags);
208         --ctx->pin_count;
209         raw_spin_unlock_irqrestore(&ctx->lock, flags);
210         put_ctx(ctx);
211 }
212
213 static inline u64 perf_clock(void)
214 {
215         return local_clock();
216 }
217
218 /*
219  * Update the record of the current time in a context.
220  */
221 static void update_context_time(struct perf_event_context *ctx)
222 {
223         u64 now = perf_clock();
224
225         ctx->time += now - ctx->timestamp;
226         ctx->timestamp = now;
227 }
228
229 /*
230  * Update the total_time_enabled and total_time_running fields for a event.
231  */
232 static void update_event_times(struct perf_event *event)
233 {
234         struct perf_event_context *ctx = event->ctx;
235         u64 run_end;
236
237         if (event->state < PERF_EVENT_STATE_INACTIVE ||
238             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
239                 return;
240
241         if (ctx->is_active)
242                 run_end = ctx->time;
243         else
244                 run_end = event->tstamp_stopped;
245
246         event->total_time_enabled = run_end - event->tstamp_enabled;
247
248         if (event->state == PERF_EVENT_STATE_INACTIVE)
249                 run_end = event->tstamp_stopped;
250         else
251                 run_end = ctx->time;
252
253         event->total_time_running = run_end - event->tstamp_running;
254 }
255
256 /*
257  * Update total_time_enabled and total_time_running for all events in a group.
258  */
259 static void update_group_times(struct perf_event *leader)
260 {
261         struct perf_event *event;
262
263         update_event_times(leader);
264         list_for_each_entry(event, &leader->sibling_list, group_entry)
265                 update_event_times(event);
266 }
267
268 static struct list_head *
269 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
270 {
271         if (event->attr.pinned)
272                 return &ctx->pinned_groups;
273         else
274                 return &ctx->flexible_groups;
275 }
276
277 /*
278  * Add a event from the lists for its context.
279  * Must be called with ctx->mutex and ctx->lock held.
280  */
281 static void
282 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283 {
284         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
285         event->attach_state |= PERF_ATTACH_CONTEXT;
286
287         /*
288          * If we're a stand alone event or group leader, we go to the context
289          * list, group events are kept attached to the group so that
290          * perf_group_detach can, at all times, locate all siblings.
291          */
292         if (event->group_leader == event) {
293                 struct list_head *list;
294
295                 if (is_software_event(event))
296                         event->group_flags |= PERF_GROUP_SOFTWARE;
297
298                 list = ctx_group_list(event, ctx);
299                 list_add_tail(&event->group_entry, list);
300         }
301
302         list_add_rcu(&event->event_entry, &ctx->event_list);
303         if (!ctx->nr_events)
304                 perf_pmu_rotate_start(ctx->pmu);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408         return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413                   struct perf_cpu_context *cpuctx,
414                   struct perf_event_context *ctx)
415 {
416         u64 delta;
417         /*
418          * An event which could not be activated because of
419          * filter mismatch still needs to have its timings
420          * maintained, otherwise bogus information is return
421          * via read() for time_enabled, time_running:
422          */
423         if (event->state == PERF_EVENT_STATE_INACTIVE
424             && !event_filter_match(event)) {
425                 delta = ctx->time - event->tstamp_stopped;
426                 event->tstamp_running += delta;
427                 event->tstamp_stopped = ctx->time;
428         }
429
430         if (event->state != PERF_EVENT_STATE_ACTIVE)
431                 return;
432
433         event->state = PERF_EVENT_STATE_INACTIVE;
434         if (event->pending_disable) {
435                 event->pending_disable = 0;
436                 event->state = PERF_EVENT_STATE_OFF;
437         }
438         event->tstamp_stopped = ctx->time;
439         event->pmu->del(event, 0);
440         event->oncpu = -1;
441
442         if (!is_software_event(event))
443                 cpuctx->active_oncpu--;
444         ctx->nr_active--;
445         if (event->attr.exclusive || !cpuctx->active_oncpu)
446                 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451                 struct perf_cpu_context *cpuctx,
452                 struct perf_event_context *ctx)
453 {
454         struct perf_event *event;
455         int state = group_event->state;
456
457         event_sched_out(group_event, cpuctx, ctx);
458
459         /*
460          * Schedule out siblings (if any):
461          */
462         list_for_each_entry(event, &group_event->sibling_list, group_entry)
463                 event_sched_out(event, cpuctx, ctx);
464
465         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466                 cpuctx->exclusive = 0;
467 }
468
469 static inline struct perf_cpu_context *
470 __get_cpu_context(struct perf_event_context *ctx)
471 {
472         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
473 }
474
475 /*
476  * Cross CPU call to remove a performance event
477  *
478  * We disable the event on the hardware level first. After that we
479  * remove it from the context list.
480  */
481 static void __perf_event_remove_from_context(void *info)
482 {
483         struct perf_event *event = info;
484         struct perf_event_context *ctx = event->ctx;
485         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
486
487         /*
488          * If this is a task context, we need to check whether it is
489          * the current task context of this cpu. If not it has been
490          * scheduled out before the smp call arrived.
491          */
492         if (ctx->task && cpuctx->task_ctx != ctx)
493                 return;
494
495         raw_spin_lock(&ctx->lock);
496
497         event_sched_out(event, cpuctx, ctx);
498
499         list_del_event(event, ctx);
500
501         raw_spin_unlock(&ctx->lock);
502 }
503
504
505 /*
506  * Remove the event from a task's (or a CPU's) list of events.
507  *
508  * Must be called with ctx->mutex held.
509  *
510  * CPU events are removed with a smp call. For task events we only
511  * call when the task is on a CPU.
512  *
513  * If event->ctx is a cloned context, callers must make sure that
514  * every task struct that event->ctx->task could possibly point to
515  * remains valid.  This is OK when called from perf_release since
516  * that only calls us on the top-level context, which can't be a clone.
517  * When called from perf_event_exit_task, it's OK because the
518  * context has been detached from its task.
519  */
520 static void perf_event_remove_from_context(struct perf_event *event)
521 {
522         struct perf_event_context *ctx = event->ctx;
523         struct task_struct *task = ctx->task;
524
525         if (!task) {
526                 /*
527                  * Per cpu events are removed via an smp call and
528                  * the removal is always successful.
529                  */
530                 smp_call_function_single(event->cpu,
531                                          __perf_event_remove_from_context,
532                                          event, 1);
533                 return;
534         }
535
536 retry:
537         task_oncpu_function_call(task, __perf_event_remove_from_context,
538                                  event);
539
540         raw_spin_lock_irq(&ctx->lock);
541         /*
542          * If the context is active we need to retry the smp call.
543          */
544         if (ctx->nr_active && !list_empty(&event->group_entry)) {
545                 raw_spin_unlock_irq(&ctx->lock);
546                 goto retry;
547         }
548
549         /*
550          * The lock prevents that this context is scheduled in so we
551          * can remove the event safely, if the call above did not
552          * succeed.
553          */
554         if (!list_empty(&event->group_entry))
555                 list_del_event(event, ctx);
556         raw_spin_unlock_irq(&ctx->lock);
557 }
558
559 /*
560  * Cross CPU call to disable a performance event
561  */
562 static void __perf_event_disable(void *info)
563 {
564         struct perf_event *event = info;
565         struct perf_event_context *ctx = event->ctx;
566         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567
568         /*
569          * If this is a per-task event, need to check whether this
570          * event's task is the current task on this cpu.
571          */
572         if (ctx->task && cpuctx->task_ctx != ctx)
573                 return;
574
575         raw_spin_lock(&ctx->lock);
576
577         /*
578          * If the event is on, turn it off.
579          * If it is in error state, leave it in error state.
580          */
581         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582                 update_context_time(ctx);
583                 update_group_times(event);
584                 if (event == event->group_leader)
585                         group_sched_out(event, cpuctx, ctx);
586                 else
587                         event_sched_out(event, cpuctx, ctx);
588                 event->state = PERF_EVENT_STATE_OFF;
589         }
590
591         raw_spin_unlock(&ctx->lock);
592 }
593
594 /*
595  * Disable a event.
596  *
597  * If event->ctx is a cloned context, callers must make sure that
598  * every task struct that event->ctx->task could possibly point to
599  * remains valid.  This condition is satisifed when called through
600  * perf_event_for_each_child or perf_event_for_each because they
601  * hold the top-level event's child_mutex, so any descendant that
602  * goes to exit will block in sync_child_event.
603  * When called from perf_pending_event it's OK because event->ctx
604  * is the current context on this CPU and preemption is disabled,
605  * hence we can't get into perf_event_task_sched_out for this context.
606  */
607 void perf_event_disable(struct perf_event *event)
608 {
609         struct perf_event_context *ctx = event->ctx;
610         struct task_struct *task = ctx->task;
611
612         if (!task) {
613                 /*
614                  * Disable the event on the cpu that it's on
615                  */
616                 smp_call_function_single(event->cpu, __perf_event_disable,
617                                          event, 1);
618                 return;
619         }
620
621 retry:
622         task_oncpu_function_call(task, __perf_event_disable, event);
623
624         raw_spin_lock_irq(&ctx->lock);
625         /*
626          * If the event is still active, we need to retry the cross-call.
627          */
628         if (event->state == PERF_EVENT_STATE_ACTIVE) {
629                 raw_spin_unlock_irq(&ctx->lock);
630                 goto retry;
631         }
632
633         /*
634          * Since we have the lock this context can't be scheduled
635          * in, so we can change the state safely.
636          */
637         if (event->state == PERF_EVENT_STATE_INACTIVE) {
638                 update_group_times(event);
639                 event->state = PERF_EVENT_STATE_OFF;
640         }
641
642         raw_spin_unlock_irq(&ctx->lock);
643 }
644
645 static int
646 event_sched_in(struct perf_event *event,
647                  struct perf_cpu_context *cpuctx,
648                  struct perf_event_context *ctx)
649 {
650         if (event->state <= PERF_EVENT_STATE_OFF)
651                 return 0;
652
653         event->state = PERF_EVENT_STATE_ACTIVE;
654         event->oncpu = smp_processor_id();
655         /*
656          * The new state must be visible before we turn it on in the hardware:
657          */
658         smp_wmb();
659
660         if (event->pmu->add(event, PERF_EF_START)) {
661                 event->state = PERF_EVENT_STATE_INACTIVE;
662                 event->oncpu = -1;
663                 return -EAGAIN;
664         }
665
666         event->tstamp_running += ctx->time - event->tstamp_stopped;
667
668         if (!is_software_event(event))
669                 cpuctx->active_oncpu++;
670         ctx->nr_active++;
671
672         if (event->attr.exclusive)
673                 cpuctx->exclusive = 1;
674
675         return 0;
676 }
677
678 static int
679 group_sched_in(struct perf_event *group_event,
680                struct perf_cpu_context *cpuctx,
681                struct perf_event_context *ctx)
682 {
683         struct perf_event *event, *partial_group = NULL;
684         struct pmu *pmu = group_event->pmu;
685
686         if (group_event->state == PERF_EVENT_STATE_OFF)
687                 return 0;
688
689         pmu->start_txn(pmu);
690
691         if (event_sched_in(group_event, cpuctx, ctx)) {
692                 pmu->cancel_txn(pmu);
693                 return -EAGAIN;
694         }
695
696         /*
697          * Schedule in siblings as one group (if any):
698          */
699         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700                 if (event_sched_in(event, cpuctx, ctx)) {
701                         partial_group = event;
702                         goto group_error;
703                 }
704         }
705
706         if (!pmu->commit_txn(pmu))
707                 return 0;
708
709 group_error:
710         /*
711          * Groups can be scheduled in as one unit only, so undo any
712          * partial group before returning:
713          */
714         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
715                 if (event == partial_group)
716                         break;
717                 event_sched_out(event, cpuctx, ctx);
718         }
719         event_sched_out(group_event, cpuctx, ctx);
720
721         pmu->cancel_txn(pmu);
722
723         return -EAGAIN;
724 }
725
726 /*
727  * Work out whether we can put this event group on the CPU now.
728  */
729 static int group_can_go_on(struct perf_event *event,
730                            struct perf_cpu_context *cpuctx,
731                            int can_add_hw)
732 {
733         /*
734          * Groups consisting entirely of software events can always go on.
735          */
736         if (event->group_flags & PERF_GROUP_SOFTWARE)
737                 return 1;
738         /*
739          * If an exclusive group is already on, no other hardware
740          * events can go on.
741          */
742         if (cpuctx->exclusive)
743                 return 0;
744         /*
745          * If this group is exclusive and there are already
746          * events on the CPU, it can't go on.
747          */
748         if (event->attr.exclusive && cpuctx->active_oncpu)
749                 return 0;
750         /*
751          * Otherwise, try to add it if all previous groups were able
752          * to go on.
753          */
754         return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758                                struct perf_event_context *ctx)
759 {
760         list_add_event(event, ctx);
761         perf_group_attach(event);
762         event->tstamp_enabled = ctx->time;
763         event->tstamp_running = ctx->time;
764         event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768  * Cross CPU call to install and enable a performance event
769  *
770  * Must be called with ctx->mutex held
771  */
772 static void __perf_install_in_context(void *info)
773 {
774         struct perf_event *event = info;
775         struct perf_event_context *ctx = event->ctx;
776         struct perf_event *leader = event->group_leader;
777         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778         int err;
779
780         /*
781          * If this is a task context, we need to check whether it is
782          * the current task context of this cpu. If not it has been
783          * scheduled out before the smp call arrived.
784          * Or possibly this is the right context but it isn't
785          * on this cpu because it had no events.
786          */
787         if (ctx->task && cpuctx->task_ctx != ctx) {
788                 if (cpuctx->task_ctx || ctx->task != current)
789                         return;
790                 cpuctx->task_ctx = ctx;
791         }
792
793         raw_spin_lock(&ctx->lock);
794         ctx->is_active = 1;
795         update_context_time(ctx);
796
797         add_event_to_ctx(event, ctx);
798
799         if (event->cpu != -1 && event->cpu != smp_processor_id())
800                 goto unlock;
801
802         /*
803          * Don't put the event on if it is disabled or if
804          * it is in a group and the group isn't on.
805          */
806         if (event->state != PERF_EVENT_STATE_INACTIVE ||
807             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808                 goto unlock;
809
810         /*
811          * An exclusive event can't go on if there are already active
812          * hardware events, and no hardware event can go on if there
813          * is already an exclusive event on.
814          */
815         if (!group_can_go_on(event, cpuctx, 1))
816                 err = -EEXIST;
817         else
818                 err = event_sched_in(event, cpuctx, ctx);
819
820         if (err) {
821                 /*
822                  * This event couldn't go on.  If it is in a group
823                  * then we have to pull the whole group off.
824                  * If the event group is pinned then put it in error state.
825                  */
826                 if (leader != event)
827                         group_sched_out(leader, cpuctx, ctx);
828                 if (leader->attr.pinned) {
829                         update_group_times(leader);
830                         leader->state = PERF_EVENT_STATE_ERROR;
831                 }
832         }
833
834 unlock:
835         raw_spin_unlock(&ctx->lock);
836 }
837
838 /*
839  * Attach a performance event to a context
840  *
841  * First we add the event to the list with the hardware enable bit
842  * in event->hw_config cleared.
843  *
844  * If the event is attached to a task which is on a CPU we use a smp
845  * call to enable it in the task context. The task might have been
846  * scheduled away, but we check this in the smp call again.
847  *
848  * Must be called with ctx->mutex held.
849  */
850 static void
851 perf_install_in_context(struct perf_event_context *ctx,
852                         struct perf_event *event,
853                         int cpu)
854 {
855         struct task_struct *task = ctx->task;
856
857         event->ctx = ctx;
858
859         if (!task) {
860                 /*
861                  * Per cpu events are installed via an smp call and
862                  * the install is always successful.
863                  */
864                 smp_call_function_single(cpu, __perf_install_in_context,
865                                          event, 1);
866                 return;
867         }
868
869 retry:
870         task_oncpu_function_call(task, __perf_install_in_context,
871                                  event);
872
873         raw_spin_lock_irq(&ctx->lock);
874         /*
875          * we need to retry the smp call.
876          */
877         if (ctx->is_active && list_empty(&event->group_entry)) {
878                 raw_spin_unlock_irq(&ctx->lock);
879                 goto retry;
880         }
881
882         /*
883          * The lock prevents that this context is scheduled in so we
884          * can add the event safely, if it the call above did not
885          * succeed.
886          */
887         if (list_empty(&event->group_entry))
888                 add_event_to_ctx(event, ctx);
889         raw_spin_unlock_irq(&ctx->lock);
890 }
891
892 /*
893  * Put a event into inactive state and update time fields.
894  * Enabling the leader of a group effectively enables all
895  * the group members that aren't explicitly disabled, so we
896  * have to update their ->tstamp_enabled also.
897  * Note: this works for group members as well as group leaders
898  * since the non-leader members' sibling_lists will be empty.
899  */
900 static void __perf_event_mark_enabled(struct perf_event *event,
901                                         struct perf_event_context *ctx)
902 {
903         struct perf_event *sub;
904
905         event->state = PERF_EVENT_STATE_INACTIVE;
906         event->tstamp_enabled = ctx->time - event->total_time_enabled;
907         list_for_each_entry(sub, &event->sibling_list, group_entry) {
908                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909                         sub->tstamp_enabled =
910                                 ctx->time - sub->total_time_enabled;
911                 }
912         }
913 }
914
915 /*
916  * Cross CPU call to enable a performance event
917  */
918 static void __perf_event_enable(void *info)
919 {
920         struct perf_event *event = info;
921         struct perf_event_context *ctx = event->ctx;
922         struct perf_event *leader = event->group_leader;
923         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924         int err;
925
926         /*
927          * If this is a per-task event, need to check whether this
928          * event's task is the current task on this cpu.
929          */
930         if (ctx->task && cpuctx->task_ctx != ctx) {
931                 if (cpuctx->task_ctx || ctx->task != current)
932                         return;
933                 cpuctx->task_ctx = ctx;
934         }
935
936         raw_spin_lock(&ctx->lock);
937         ctx->is_active = 1;
938         update_context_time(ctx);
939
940         if (event->state >= PERF_EVENT_STATE_INACTIVE)
941                 goto unlock;
942         __perf_event_mark_enabled(event, ctx);
943
944         if (event->cpu != -1 && event->cpu != smp_processor_id())
945                 goto unlock;
946
947         /*
948          * If the event is in a group and isn't the group leader,
949          * then don't put it on unless the group is on.
950          */
951         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952                 goto unlock;
953
954         if (!group_can_go_on(event, cpuctx, 1)) {
955                 err = -EEXIST;
956         } else {
957                 if (event == leader)
958                         err = group_sched_in(event, cpuctx, ctx);
959                 else
960                         err = event_sched_in(event, cpuctx, ctx);
961         }
962
963         if (err) {
964                 /*
965                  * If this event can't go on and it's part of a
966                  * group, then the whole group has to come off.
967                  */
968                 if (leader != event)
969                         group_sched_out(leader, cpuctx, ctx);
970                 if (leader->attr.pinned) {
971                         update_group_times(leader);
972                         leader->state = PERF_EVENT_STATE_ERROR;
973                 }
974         }
975
976 unlock:
977         raw_spin_unlock(&ctx->lock);
978 }
979
980 /*
981  * Enable a event.
982  *
983  * If event->ctx is a cloned context, callers must make sure that
984  * every task struct that event->ctx->task could possibly point to
985  * remains valid.  This condition is satisfied when called through
986  * perf_event_for_each_child or perf_event_for_each as described
987  * for perf_event_disable.
988  */
989 void perf_event_enable(struct perf_event *event)
990 {
991         struct perf_event_context *ctx = event->ctx;
992         struct task_struct *task = ctx->task;
993
994         if (!task) {
995                 /*
996                  * Enable the event on the cpu that it's on
997                  */
998                 smp_call_function_single(event->cpu, __perf_event_enable,
999                                          event, 1);
1000                 return;
1001         }
1002
1003         raw_spin_lock_irq(&ctx->lock);
1004         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005                 goto out;
1006
1007         /*
1008          * If the event is in error state, clear that first.
1009          * That way, if we see the event in error state below, we
1010          * know that it has gone back into error state, as distinct
1011          * from the task having been scheduled away before the
1012          * cross-call arrived.
1013          */
1014         if (event->state == PERF_EVENT_STATE_ERROR)
1015                 event->state = PERF_EVENT_STATE_OFF;
1016
1017 retry:
1018         raw_spin_unlock_irq(&ctx->lock);
1019         task_oncpu_function_call(task, __perf_event_enable, event);
1020
1021         raw_spin_lock_irq(&ctx->lock);
1022
1023         /*
1024          * If the context is active and the event is still off,
1025          * we need to retry the cross-call.
1026          */
1027         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028                 goto retry;
1029
1030         /*
1031          * Since we have the lock this context can't be scheduled
1032          * in, so we can change the state safely.
1033          */
1034         if (event->state == PERF_EVENT_STATE_OFF)
1035                 __perf_event_mark_enabled(event, ctx);
1036
1037 out:
1038         raw_spin_unlock_irq(&ctx->lock);
1039 }
1040
1041 static int perf_event_refresh(struct perf_event *event, int refresh)
1042 {
1043         /*
1044          * not supported on inherited events
1045          */
1046         if (event->attr.inherit)
1047                 return -EINVAL;
1048
1049         atomic_add(refresh, &event->event_limit);
1050         perf_event_enable(event);
1051
1052         return 0;
1053 }
1054
1055 enum event_type_t {
1056         EVENT_FLEXIBLE = 0x1,
1057         EVENT_PINNED = 0x2,
1058         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1059 };
1060
1061 static void ctx_sched_out(struct perf_event_context *ctx,
1062                           struct perf_cpu_context *cpuctx,
1063                           enum event_type_t event_type)
1064 {
1065         struct perf_event *event;
1066
1067         raw_spin_lock(&ctx->lock);
1068         perf_pmu_disable(ctx->pmu);
1069         ctx->is_active = 0;
1070         if (likely(!ctx->nr_events))
1071                 goto out;
1072         update_context_time(ctx);
1073
1074         if (!ctx->nr_active)
1075                 goto out;
1076
1077         if (event_type & EVENT_PINNED) {
1078                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1079                         group_sched_out(event, cpuctx, ctx);
1080         }
1081
1082         if (event_type & EVENT_FLEXIBLE) {
1083                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084                         group_sched_out(event, cpuctx, ctx);
1085         }
1086 out:
1087         perf_pmu_enable(ctx->pmu);
1088         raw_spin_unlock(&ctx->lock);
1089 }
1090
1091 /*
1092  * Test whether two contexts are equivalent, i.e. whether they
1093  * have both been cloned from the same version of the same context
1094  * and they both have the same number of enabled events.
1095  * If the number of enabled events is the same, then the set
1096  * of enabled events should be the same, because these are both
1097  * inherited contexts, therefore we can't access individual events
1098  * in them directly with an fd; we can only enable/disable all
1099  * events via prctl, or enable/disable all events in a family
1100  * via ioctl, which will have the same effect on both contexts.
1101  */
1102 static int context_equiv(struct perf_event_context *ctx1,
1103                          struct perf_event_context *ctx2)
1104 {
1105         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1106                 && ctx1->parent_gen == ctx2->parent_gen
1107                 && !ctx1->pin_count && !ctx2->pin_count;
1108 }
1109
1110 static void __perf_event_sync_stat(struct perf_event *event,
1111                                      struct perf_event *next_event)
1112 {
1113         u64 value;
1114
1115         if (!event->attr.inherit_stat)
1116                 return;
1117
1118         /*
1119          * Update the event value, we cannot use perf_event_read()
1120          * because we're in the middle of a context switch and have IRQs
1121          * disabled, which upsets smp_call_function_single(), however
1122          * we know the event must be on the current CPU, therefore we
1123          * don't need to use it.
1124          */
1125         switch (event->state) {
1126         case PERF_EVENT_STATE_ACTIVE:
1127                 event->pmu->read(event);
1128                 /* fall-through */
1129
1130         case PERF_EVENT_STATE_INACTIVE:
1131                 update_event_times(event);
1132                 break;
1133
1134         default:
1135                 break;
1136         }
1137
1138         /*
1139          * In order to keep per-task stats reliable we need to flip the event
1140          * values when we flip the contexts.
1141          */
1142         value = local64_read(&next_event->count);
1143         value = local64_xchg(&event->count, value);
1144         local64_set(&next_event->count, value);
1145
1146         swap(event->total_time_enabled, next_event->total_time_enabled);
1147         swap(event->total_time_running, next_event->total_time_running);
1148
1149         /*
1150          * Since we swizzled the values, update the user visible data too.
1151          */
1152         perf_event_update_userpage(event);
1153         perf_event_update_userpage(next_event);
1154 }
1155
1156 #define list_next_entry(pos, member) \
1157         list_entry(pos->member.next, typeof(*pos), member)
1158
1159 static void perf_event_sync_stat(struct perf_event_context *ctx,
1160                                    struct perf_event_context *next_ctx)
1161 {
1162         struct perf_event *event, *next_event;
1163
1164         if (!ctx->nr_stat)
1165                 return;
1166
1167         update_context_time(ctx);
1168
1169         event = list_first_entry(&ctx->event_list,
1170                                    struct perf_event, event_entry);
1171
1172         next_event = list_first_entry(&next_ctx->event_list,
1173                                         struct perf_event, event_entry);
1174
1175         while (&event->event_entry != &ctx->event_list &&
1176                &next_event->event_entry != &next_ctx->event_list) {
1177
1178                 __perf_event_sync_stat(event, next_event);
1179
1180                 event = list_next_entry(event, event_entry);
1181                 next_event = list_next_entry(next_event, event_entry);
1182         }
1183 }
1184
1185 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1186                                   struct task_struct *next)
1187 {
1188         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1189         struct perf_event_context *next_ctx;
1190         struct perf_event_context *parent;
1191         struct perf_cpu_context *cpuctx;
1192         int do_switch = 1;
1193
1194         if (likely(!ctx))
1195                 return;
1196
1197         cpuctx = __get_cpu_context(ctx);
1198         if (!cpuctx->task_ctx)
1199                 return;
1200
1201         rcu_read_lock();
1202         parent = rcu_dereference(ctx->parent_ctx);
1203         next_ctx = next->perf_event_ctxp[ctxn];
1204         if (parent && next_ctx &&
1205             rcu_dereference(next_ctx->parent_ctx) == parent) {
1206                 /*
1207                  * Looks like the two contexts are clones, so we might be
1208                  * able to optimize the context switch.  We lock both
1209                  * contexts and check that they are clones under the
1210                  * lock (including re-checking that neither has been
1211                  * uncloned in the meantime).  It doesn't matter which
1212                  * order we take the locks because no other cpu could
1213                  * be trying to lock both of these tasks.
1214                  */
1215                 raw_spin_lock(&ctx->lock);
1216                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1217                 if (context_equiv(ctx, next_ctx)) {
1218                         /*
1219                          * XXX do we need a memory barrier of sorts
1220                          * wrt to rcu_dereference() of perf_event_ctxp
1221                          */
1222                         task->perf_event_ctxp[ctxn] = next_ctx;
1223                         next->perf_event_ctxp[ctxn] = ctx;
1224                         ctx->task = next;
1225                         next_ctx->task = task;
1226                         do_switch = 0;
1227
1228                         perf_event_sync_stat(ctx, next_ctx);
1229                 }
1230                 raw_spin_unlock(&next_ctx->lock);
1231                 raw_spin_unlock(&ctx->lock);
1232         }
1233         rcu_read_unlock();
1234
1235         if (do_switch) {
1236                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1237                 cpuctx->task_ctx = NULL;
1238         }
1239 }
1240
1241 #define for_each_task_context_nr(ctxn)                                  \
1242         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1243
1244 /*
1245  * Called from scheduler to remove the events of the current task,
1246  * with interrupts disabled.
1247  *
1248  * We stop each event and update the event value in event->count.
1249  *
1250  * This does not protect us against NMI, but disable()
1251  * sets the disabled bit in the control field of event _before_
1252  * accessing the event control register. If a NMI hits, then it will
1253  * not restart the event.
1254  */
1255 void perf_event_task_sched_out(struct task_struct *task,
1256                                struct task_struct *next)
1257 {
1258         int ctxn;
1259
1260         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1261
1262         for_each_task_context_nr(ctxn)
1263                 perf_event_context_sched_out(task, ctxn, next);
1264 }
1265
1266 static void task_ctx_sched_out(struct perf_event_context *ctx,
1267                                enum event_type_t event_type)
1268 {
1269         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1270
1271         if (!cpuctx->task_ctx)
1272                 return;
1273
1274         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1275                 return;
1276
1277         ctx_sched_out(ctx, cpuctx, event_type);
1278         cpuctx->task_ctx = NULL;
1279 }
1280
1281 /*
1282  * Called with IRQs disabled
1283  */
1284 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285 {
1286         task_ctx_sched_out(ctx, EVENT_ALL);
1287 }
1288
1289 /*
1290  * Called with IRQs disabled
1291  */
1292 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1293                               enum event_type_t event_type)
1294 {
1295         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 }
1297
1298 static void
1299 ctx_pinned_sched_in(struct perf_event_context *ctx,
1300                     struct perf_cpu_context *cpuctx)
1301 {
1302         struct perf_event *event;
1303
1304         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1305                 if (event->state <= PERF_EVENT_STATE_OFF)
1306                         continue;
1307                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1308                         continue;
1309
1310                 if (group_can_go_on(event, cpuctx, 1))
1311                         group_sched_in(event, cpuctx, ctx);
1312
1313                 /*
1314                  * If this pinned group hasn't been scheduled,
1315                  * put it in error state.
1316                  */
1317                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1318                         update_group_times(event);
1319                         event->state = PERF_EVENT_STATE_ERROR;
1320                 }
1321         }
1322 }
1323
1324 static void
1325 ctx_flexible_sched_in(struct perf_event_context *ctx,
1326                       struct perf_cpu_context *cpuctx)
1327 {
1328         struct perf_event *event;
1329         int can_add_hw = 1;
1330
1331         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1332                 /* Ignore events in OFF or ERROR state */
1333                 if (event->state <= PERF_EVENT_STATE_OFF)
1334                         continue;
1335                 /*
1336                  * Listen to the 'cpu' scheduling filter constraint
1337                  * of events:
1338                  */
1339                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1340                         continue;
1341
1342                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1343                         if (group_sched_in(event, cpuctx, ctx))
1344                                 can_add_hw = 0;
1345                 }
1346         }
1347 }
1348
1349 static void
1350 ctx_sched_in(struct perf_event_context *ctx,
1351              struct perf_cpu_context *cpuctx,
1352              enum event_type_t event_type)
1353 {
1354         raw_spin_lock(&ctx->lock);
1355         ctx->is_active = 1;
1356         if (likely(!ctx->nr_events))
1357                 goto out;
1358
1359         ctx->timestamp = perf_clock();
1360
1361         /*
1362          * First go through the list and put on any pinned groups
1363          * in order to give them the best chance of going on.
1364          */
1365         if (event_type & EVENT_PINNED)
1366                 ctx_pinned_sched_in(ctx, cpuctx);
1367
1368         /* Then walk through the lower prio flexible groups */
1369         if (event_type & EVENT_FLEXIBLE)
1370                 ctx_flexible_sched_in(ctx, cpuctx);
1371
1372 out:
1373         raw_spin_unlock(&ctx->lock);
1374 }
1375
1376 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1377                              enum event_type_t event_type)
1378 {
1379         struct perf_event_context *ctx = &cpuctx->ctx;
1380
1381         ctx_sched_in(ctx, cpuctx, event_type);
1382 }
1383
1384 static void task_ctx_sched_in(struct perf_event_context *ctx,
1385                               enum event_type_t event_type)
1386 {
1387         struct perf_cpu_context *cpuctx;
1388
1389         cpuctx = __get_cpu_context(ctx);
1390         if (cpuctx->task_ctx == ctx)
1391                 return;
1392
1393         ctx_sched_in(ctx, cpuctx, event_type);
1394         cpuctx->task_ctx = ctx;
1395 }
1396
1397 void perf_event_context_sched_in(struct perf_event_context *ctx)
1398 {
1399         struct perf_cpu_context *cpuctx;
1400
1401         cpuctx = __get_cpu_context(ctx);
1402         if (cpuctx->task_ctx == ctx)
1403                 return;
1404
1405         perf_pmu_disable(ctx->pmu);
1406         /*
1407          * We want to keep the following priority order:
1408          * cpu pinned (that don't need to move), task pinned,
1409          * cpu flexible, task flexible.
1410          */
1411         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1412
1413         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1414         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1415         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1416
1417         cpuctx->task_ctx = ctx;
1418
1419         /*
1420          * Since these rotations are per-cpu, we need to ensure the
1421          * cpu-context we got scheduled on is actually rotating.
1422          */
1423         perf_pmu_rotate_start(ctx->pmu);
1424         perf_pmu_enable(ctx->pmu);
1425 }
1426
1427 /*
1428  * Called from scheduler to add the events of the current task
1429  * with interrupts disabled.
1430  *
1431  * We restore the event value and then enable it.
1432  *
1433  * This does not protect us against NMI, but enable()
1434  * sets the enabled bit in the control field of event _before_
1435  * accessing the event control register. If a NMI hits, then it will
1436  * keep the event running.
1437  */
1438 void perf_event_task_sched_in(struct task_struct *task)
1439 {
1440         struct perf_event_context *ctx;
1441         int ctxn;
1442
1443         for_each_task_context_nr(ctxn) {
1444                 ctx = task->perf_event_ctxp[ctxn];
1445                 if (likely(!ctx))
1446                         continue;
1447
1448                 perf_event_context_sched_in(ctx);
1449         }
1450 }
1451
1452 #define MAX_INTERRUPTS (~0ULL)
1453
1454 static void perf_log_throttle(struct perf_event *event, int enable);
1455
1456 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1457 {
1458         u64 frequency = event->attr.sample_freq;
1459         u64 sec = NSEC_PER_SEC;
1460         u64 divisor, dividend;
1461
1462         int count_fls, nsec_fls, frequency_fls, sec_fls;
1463
1464         count_fls = fls64(count);
1465         nsec_fls = fls64(nsec);
1466         frequency_fls = fls64(frequency);
1467         sec_fls = 30;
1468
1469         /*
1470          * We got @count in @nsec, with a target of sample_freq HZ
1471          * the target period becomes:
1472          *
1473          *             @count * 10^9
1474          * period = -------------------
1475          *          @nsec * sample_freq
1476          *
1477          */
1478
1479         /*
1480          * Reduce accuracy by one bit such that @a and @b converge
1481          * to a similar magnitude.
1482          */
1483 #define REDUCE_FLS(a, b)                \
1484 do {                                    \
1485         if (a##_fls > b##_fls) {        \
1486                 a >>= 1;                \
1487                 a##_fls--;              \
1488         } else {                        \
1489                 b >>= 1;                \
1490                 b##_fls--;              \
1491         }                               \
1492 } while (0)
1493
1494         /*
1495          * Reduce accuracy until either term fits in a u64, then proceed with
1496          * the other, so that finally we can do a u64/u64 division.
1497          */
1498         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1499                 REDUCE_FLS(nsec, frequency);
1500                 REDUCE_FLS(sec, count);
1501         }
1502
1503         if (count_fls + sec_fls > 64) {
1504                 divisor = nsec * frequency;
1505
1506                 while (count_fls + sec_fls > 64) {
1507                         REDUCE_FLS(count, sec);
1508                         divisor >>= 1;
1509                 }
1510
1511                 dividend = count * sec;
1512         } else {
1513                 dividend = count * sec;
1514
1515                 while (nsec_fls + frequency_fls > 64) {
1516                         REDUCE_FLS(nsec, frequency);
1517                         dividend >>= 1;
1518                 }
1519
1520                 divisor = nsec * frequency;
1521         }
1522
1523         if (!divisor)
1524                 return dividend;
1525
1526         return div64_u64(dividend, divisor);
1527 }
1528
1529 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530 {
1531         struct hw_perf_event *hwc = &event->hw;
1532         s64 period, sample_period;
1533         s64 delta;
1534
1535         period = perf_calculate_period(event, nsec, count);
1536
1537         delta = (s64)(period - hwc->sample_period);
1538         delta = (delta + 7) / 8; /* low pass filter */
1539
1540         sample_period = hwc->sample_period + delta;
1541
1542         if (!sample_period)
1543                 sample_period = 1;
1544
1545         hwc->sample_period = sample_period;
1546
1547         if (local64_read(&hwc->period_left) > 8*sample_period) {
1548                 event->pmu->stop(event, PERF_EF_UPDATE);
1549                 local64_set(&hwc->period_left, 0);
1550                 event->pmu->start(event, PERF_EF_RELOAD);
1551         }
1552 }
1553
1554 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1555 {
1556         struct perf_event *event;
1557         struct hw_perf_event *hwc;
1558         u64 interrupts, now;
1559         s64 delta;
1560
1561         raw_spin_lock(&ctx->lock);
1562         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1563                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1564                         continue;
1565
1566                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1567                         continue;
1568
1569                 hwc = &event->hw;
1570
1571                 interrupts = hwc->interrupts;
1572                 hwc->interrupts = 0;
1573
1574                 /*
1575                  * unthrottle events on the tick
1576                  */
1577                 if (interrupts == MAX_INTERRUPTS) {
1578                         perf_log_throttle(event, 1);
1579                         event->pmu->start(event, 0);
1580                 }
1581
1582                 if (!event->attr.freq || !event->attr.sample_freq)
1583                         continue;
1584
1585                 event->pmu->read(event);
1586                 now = local64_read(&event->count);
1587                 delta = now - hwc->freq_count_stamp;
1588                 hwc->freq_count_stamp = now;
1589
1590                 if (delta > 0)
1591                         perf_adjust_period(event, period, delta);
1592         }
1593         raw_spin_unlock(&ctx->lock);
1594 }
1595
1596 /*
1597  * Round-robin a context's events:
1598  */
1599 static void rotate_ctx(struct perf_event_context *ctx)
1600 {
1601         raw_spin_lock(&ctx->lock);
1602
1603         /* Rotate the first entry last of non-pinned groups */
1604         list_rotate_left(&ctx->flexible_groups);
1605
1606         raw_spin_unlock(&ctx->lock);
1607 }
1608
1609 /*
1610  * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
1611  * context, and ->pmu_rotate_start() is called with irqs disabled (both are
1612  * cpu affine, so there are no SMP races).
1613  */
1614 static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1615 {
1616         enum hrtimer_restart restart = HRTIMER_NORESTART;
1617         struct perf_cpu_context *cpuctx;
1618         struct perf_event_context *ctx = NULL;
1619         int rotate = 0;
1620
1621         cpuctx = container_of(timer, struct perf_cpu_context, timer);
1622
1623         if (cpuctx->ctx.nr_events) {
1624                 restart = HRTIMER_RESTART;
1625                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1626                         rotate = 1;
1627         }
1628
1629         ctx = cpuctx->task_ctx;
1630         if (ctx && ctx->nr_events) {
1631                 restart = HRTIMER_RESTART;
1632                 if (ctx->nr_events != ctx->nr_active)
1633                         rotate = 1;
1634         }
1635
1636         perf_pmu_disable(cpuctx->ctx.pmu);
1637         perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1638         if (ctx)
1639                 perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1640
1641         if (!rotate)
1642                 goto done;
1643
1644         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1645         if (ctx)
1646                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1647
1648         rotate_ctx(&cpuctx->ctx);
1649         if (ctx)
1650                 rotate_ctx(ctx);
1651
1652         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1653         if (ctx)
1654                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1655
1656 done:
1657         perf_pmu_enable(cpuctx->ctx.pmu);
1658         hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));
1659
1660         return restart;
1661 }
1662
1663 static int event_enable_on_exec(struct perf_event *event,
1664                                 struct perf_event_context *ctx)
1665 {
1666         if (!event->attr.enable_on_exec)
1667                 return 0;
1668
1669         event->attr.enable_on_exec = 0;
1670         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1671                 return 0;
1672
1673         __perf_event_mark_enabled(event, ctx);
1674
1675         return 1;
1676 }
1677
1678 /*
1679  * Enable all of a task's events that have been marked enable-on-exec.
1680  * This expects task == current.
1681  */
1682 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1683 {
1684         struct perf_event *event;
1685         unsigned long flags;
1686         int enabled = 0;
1687         int ret;
1688
1689         local_irq_save(flags);
1690         if (!ctx || !ctx->nr_events)
1691                 goto out;
1692
1693         task_ctx_sched_out(ctx, EVENT_ALL);
1694
1695         raw_spin_lock(&ctx->lock);
1696
1697         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1698                 ret = event_enable_on_exec(event, ctx);
1699                 if (ret)
1700                         enabled = 1;
1701         }
1702
1703         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1704                 ret = event_enable_on_exec(event, ctx);
1705                 if (ret)
1706                         enabled = 1;
1707         }
1708
1709         /*
1710          * Unclone this context if we enabled any event.
1711          */
1712         if (enabled)
1713                 unclone_ctx(ctx);
1714
1715         raw_spin_unlock(&ctx->lock);
1716
1717         perf_event_context_sched_in(ctx);
1718 out:
1719         local_irq_restore(flags);
1720 }
1721
1722 /*
1723  * Cross CPU call to read the hardware event
1724  */
1725 static void __perf_event_read(void *info)
1726 {
1727         struct perf_event *event = info;
1728         struct perf_event_context *ctx = event->ctx;
1729         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1730
1731         /*
1732          * If this is a task context, we need to check whether it is
1733          * the current task context of this cpu.  If not it has been
1734          * scheduled out before the smp call arrived.  In that case
1735          * event->count would have been updated to a recent sample
1736          * when the event was scheduled out.
1737          */
1738         if (ctx->task && cpuctx->task_ctx != ctx)
1739                 return;
1740
1741         raw_spin_lock(&ctx->lock);
1742         update_context_time(ctx);
1743         update_event_times(event);
1744         raw_spin_unlock(&ctx->lock);
1745
1746         event->pmu->read(event);
1747 }
1748
1749 static inline u64 perf_event_count(struct perf_event *event)
1750 {
1751         return local64_read(&event->count) + atomic64_read(&event->child_count);
1752 }
1753
1754 static u64 perf_event_read(struct perf_event *event)
1755 {
1756         /*
1757          * If event is enabled and currently active on a CPU, update the
1758          * value in the event structure:
1759          */
1760         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1761                 smp_call_function_single(event->oncpu,
1762                                          __perf_event_read, event, 1);
1763         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1764                 struct perf_event_context *ctx = event->ctx;
1765                 unsigned long flags;
1766
1767                 raw_spin_lock_irqsave(&ctx->lock, flags);
1768                 update_context_time(ctx);
1769                 update_event_times(event);
1770                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1771         }
1772
1773         return perf_event_count(event);
1774 }
1775
1776 /*
1777  * Callchain support
1778  */
1779
1780 struct callchain_cpus_entries {
1781         struct rcu_head                 rcu_head;
1782         struct perf_callchain_entry     *cpu_entries[0];
1783 };
1784
1785 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1786 static atomic_t nr_callchain_events;
1787 static DEFINE_MUTEX(callchain_mutex);
1788 struct callchain_cpus_entries *callchain_cpus_entries;
1789
1790
1791 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1792                                   struct pt_regs *regs)
1793 {
1794 }
1795
1796 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1797                                 struct pt_regs *regs)
1798 {
1799 }
1800
1801 static void release_callchain_buffers_rcu(struct rcu_head *head)
1802 {
1803         struct callchain_cpus_entries *entries;
1804         int cpu;
1805
1806         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1807
1808         for_each_possible_cpu(cpu)
1809                 kfree(entries->cpu_entries[cpu]);
1810
1811         kfree(entries);
1812 }
1813
1814 static void release_callchain_buffers(void)
1815 {
1816         struct callchain_cpus_entries *entries;
1817
1818         entries = callchain_cpus_entries;
1819         rcu_assign_pointer(callchain_cpus_entries, NULL);
1820         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1821 }
1822
1823 static int alloc_callchain_buffers(void)
1824 {
1825         int cpu;
1826         int size;
1827         struct callchain_cpus_entries *entries;
1828
1829         /*
1830          * We can't use the percpu allocation API for data that can be
1831          * accessed from NMI. Use a temporary manual per cpu allocation
1832          * until that gets sorted out.
1833          */
1834         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1835                 num_possible_cpus();
1836
1837         entries = kzalloc(size, GFP_KERNEL);
1838         if (!entries)
1839                 return -ENOMEM;
1840
1841         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1842
1843         for_each_possible_cpu(cpu) {
1844                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1845                                                          cpu_to_node(cpu));
1846                 if (!entries->cpu_entries[cpu])
1847                         goto fail;
1848         }
1849
1850         rcu_assign_pointer(callchain_cpus_entries, entries);
1851
1852         return 0;
1853
1854 fail:
1855         for_each_possible_cpu(cpu)
1856                 kfree(entries->cpu_entries[cpu]);
1857         kfree(entries);
1858
1859         return -ENOMEM;
1860 }
1861
1862 static int get_callchain_buffers(void)
1863 {
1864         int err = 0;
1865         int count;
1866
1867         mutex_lock(&callchain_mutex);
1868
1869         count = atomic_inc_return(&nr_callchain_events);
1870         if (WARN_ON_ONCE(count < 1)) {
1871                 err = -EINVAL;
1872                 goto exit;
1873         }
1874
1875         if (count > 1) {
1876                 /* If the allocation failed, give up */
1877                 if (!callchain_cpus_entries)
1878                         err = -ENOMEM;
1879                 goto exit;
1880         }
1881
1882         err = alloc_callchain_buffers();
1883         if (err)
1884                 release_callchain_buffers();
1885 exit:
1886         mutex_unlock(&callchain_mutex);
1887
1888         return err;
1889 }
1890
1891 static void put_callchain_buffers(void)
1892 {
1893         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1894                 release_callchain_buffers();
1895                 mutex_unlock(&callchain_mutex);
1896         }
1897 }
1898
1899 static int get_recursion_context(int *recursion)
1900 {
1901         int rctx;
1902
1903         if (in_nmi())
1904                 rctx = 3;
1905         else if (in_irq())
1906                 rctx = 2;
1907         else if (in_softirq())
1908                 rctx = 1;
1909         else
1910                 rctx = 0;
1911
1912         if (recursion[rctx])
1913                 return -1;
1914
1915         recursion[rctx]++;
1916         barrier();
1917
1918         return rctx;
1919 }
1920
1921 static inline void put_recursion_context(int *recursion, int rctx)
1922 {
1923         barrier();
1924         recursion[rctx]--;
1925 }
1926
1927 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1928 {
1929         int cpu;
1930         struct callchain_cpus_entries *entries;
1931
1932         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1933         if (*rctx == -1)
1934                 return NULL;
1935
1936         entries = rcu_dereference(callchain_cpus_entries);
1937         if (!entries)
1938                 return NULL;
1939
1940         cpu = smp_processor_id();
1941
1942         return &entries->cpu_entries[cpu][*rctx];
1943 }
1944
1945 static void
1946 put_callchain_entry(int rctx)
1947 {
1948         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1949 }
1950
1951 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 {
1953         int rctx;
1954         struct perf_callchain_entry *entry;
1955
1956
1957         entry = get_callchain_entry(&rctx);
1958         if (rctx == -1)
1959                 return NULL;
1960
1961         if (!entry)
1962                 goto exit_put;
1963
1964         entry->nr = 0;
1965
1966         if (!user_mode(regs)) {
1967                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1968                 perf_callchain_kernel(entry, regs);
1969                 if (current->mm)
1970                         regs = task_pt_regs(current);
1971                 else
1972                         regs = NULL;
1973         }
1974
1975         if (regs) {
1976                 perf_callchain_store(entry, PERF_CONTEXT_USER);
1977                 perf_callchain_user(entry, regs);
1978         }
1979
1980 exit_put:
1981         put_callchain_entry(rctx);
1982
1983         return entry;
1984 }
1985
1986 /*
1987  * Initialize the perf_event context in a task_struct:
1988  */
1989 static void __perf_event_init_context(struct perf_event_context *ctx)
1990 {
1991         raw_spin_lock_init(&ctx->lock);
1992         mutex_init(&ctx->mutex);
1993         INIT_LIST_HEAD(&ctx->pinned_groups);
1994         INIT_LIST_HEAD(&ctx->flexible_groups);
1995         INIT_LIST_HEAD(&ctx->event_list);
1996         atomic_set(&ctx->refcount, 1);
1997 }
1998
1999 static struct perf_event_context *
2000 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2001 {
2002         struct perf_event_context *ctx;
2003
2004         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2005         if (!ctx)
2006                 return NULL;
2007
2008         __perf_event_init_context(ctx);
2009         if (task) {
2010                 ctx->task = task;
2011                 get_task_struct(task);
2012         }
2013         ctx->pmu = pmu;
2014
2015         return ctx;
2016 }
2017
2018 static struct perf_event_context *
2019 find_get_context(struct pmu *pmu, pid_t pid, int cpu)
2020 {
2021         struct perf_event_context *ctx;
2022         struct perf_cpu_context *cpuctx;
2023         struct task_struct *task;
2024         unsigned long flags;
2025         int ctxn, err;
2026
2027         if (pid == -1 && cpu != -1) {
2028                 /* Must be root to operate on a CPU event: */
2029                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2030                         return ERR_PTR(-EACCES);
2031
2032                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2033                         return ERR_PTR(-EINVAL);
2034
2035                 /*
2036                  * We could be clever and allow to attach a event to an
2037                  * offline CPU and activate it when the CPU comes up, but
2038                  * that's for later.
2039                  */
2040                 if (!cpu_online(cpu))
2041                         return ERR_PTR(-ENODEV);
2042
2043                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2044                 ctx = &cpuctx->ctx;
2045                 get_ctx(ctx);
2046
2047                 return ctx;
2048         }
2049
2050         rcu_read_lock();
2051         if (!pid)
2052                 task = current;
2053         else
2054                 task = find_task_by_vpid(pid);
2055         if (task)
2056                 get_task_struct(task);
2057         rcu_read_unlock();
2058
2059         if (!task)
2060                 return ERR_PTR(-ESRCH);
2061
2062         /*
2063          * Can't attach events to a dying task.
2064          */
2065         err = -ESRCH;
2066         if (task->flags & PF_EXITING)
2067                 goto errout;
2068
2069         /* Reuse ptrace permission checks for now. */
2070         err = -EACCES;
2071         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2072                 goto errout;
2073
2074         err = -EINVAL;
2075         ctxn = pmu->task_ctx_nr;
2076         if (ctxn < 0)
2077                 goto errout;
2078
2079 retry:
2080         ctx = perf_lock_task_context(task, ctxn, &flags);
2081         if (ctx) {
2082                 unclone_ctx(ctx);
2083                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2084         }
2085
2086         if (!ctx) {
2087                 ctx = alloc_perf_context(pmu, task);
2088                 err = -ENOMEM;
2089                 if (!ctx)
2090                         goto errout;
2091
2092                 get_ctx(ctx);
2093
2094                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2095                         /*
2096                          * We raced with some other task; use
2097                          * the context they set.
2098                          */
2099                         put_task_struct(task);
2100                         kfree(ctx);
2101                         goto retry;
2102                 }
2103         }
2104
2105         put_task_struct(task);
2106         return ctx;
2107
2108 errout:
2109         put_task_struct(task);
2110         return ERR_PTR(err);
2111 }
2112
2113 static void perf_event_free_filter(struct perf_event *event);
2114
2115 static void free_event_rcu(struct rcu_head *head)
2116 {
2117         struct perf_event *event;
2118
2119         event = container_of(head, struct perf_event, rcu_head);
2120         if (event->ns)
2121                 put_pid_ns(event->ns);
2122         perf_event_free_filter(event);
2123         kfree(event);
2124 }
2125
2126 static void perf_pending_sync(struct perf_event *event);
2127 static void perf_buffer_put(struct perf_buffer *buffer);
2128
2129 static void free_event(struct perf_event *event)
2130 {
2131         perf_pending_sync(event);
2132
2133         if (!event->parent) {
2134                 atomic_dec(&nr_events);
2135                 if (event->attr.mmap || event->attr.mmap_data)
2136                         atomic_dec(&nr_mmap_events);
2137                 if (event->attr.comm)
2138                         atomic_dec(&nr_comm_events);
2139                 if (event->attr.task)
2140                         atomic_dec(&nr_task_events);
2141                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2142                         put_callchain_buffers();
2143         }
2144
2145         if (event->buffer) {
2146                 perf_buffer_put(event->buffer);
2147                 event->buffer = NULL;
2148         }
2149
2150         if (event->destroy)
2151                 event->destroy(event);
2152
2153         if (event->ctx)
2154                 put_ctx(event->ctx);
2155
2156         call_rcu(&event->rcu_head, free_event_rcu);
2157 }
2158
2159 int perf_event_release_kernel(struct perf_event *event)
2160 {
2161         struct perf_event_context *ctx = event->ctx;
2162
2163         /*
2164          * Remove from the PMU, can't get re-enabled since we got
2165          * here because the last ref went.
2166          */
2167         perf_event_disable(event);
2168
2169         WARN_ON_ONCE(ctx->parent_ctx);
2170         /*
2171          * There are two ways this annotation is useful:
2172          *
2173          *  1) there is a lock recursion from perf_event_exit_task
2174          *     see the comment there.
2175          *
2176          *  2) there is a lock-inversion with mmap_sem through
2177          *     perf_event_read_group(), which takes faults while
2178          *     holding ctx->mutex, however this is called after
2179          *     the last filedesc died, so there is no possibility
2180          *     to trigger the AB-BA case.
2181          */
2182         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2183         raw_spin_lock_irq(&ctx->lock);
2184         perf_group_detach(event);
2185         list_del_event(event, ctx);
2186         raw_spin_unlock_irq(&ctx->lock);
2187         mutex_unlock(&ctx->mutex);
2188
2189         mutex_lock(&event->owner->perf_event_mutex);
2190         list_del_init(&event->owner_entry);
2191         mutex_unlock(&event->owner->perf_event_mutex);
2192         put_task_struct(event->owner);
2193
2194         free_event(event);
2195
2196         return 0;
2197 }
2198 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2199
2200 /*
2201  * Called when the last reference to the file is gone.
2202  */
2203 static int perf_release(struct inode *inode, struct file *file)
2204 {
2205         struct perf_event *event = file->private_data;
2206
2207         file->private_data = NULL;
2208
2209         return perf_event_release_kernel(event);
2210 }
2211
2212 static int perf_event_read_size(struct perf_event *event)
2213 {
2214         int entry = sizeof(u64); /* value */
2215         int size = 0;
2216         int nr = 1;
2217
2218         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2219                 size += sizeof(u64);
2220
2221         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2222                 size += sizeof(u64);
2223
2224         if (event->attr.read_format & PERF_FORMAT_ID)
2225                 entry += sizeof(u64);
2226
2227         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2228                 nr += event->group_leader->nr_siblings;
2229                 size += sizeof(u64);
2230         }
2231
2232         size += entry * nr;
2233
2234         return size;
2235 }
2236
2237 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2238 {
2239         struct perf_event *child;
2240         u64 total = 0;
2241
2242         *enabled = 0;
2243         *running = 0;
2244
2245         mutex_lock(&event->child_mutex);
2246         total += perf_event_read(event);
2247         *enabled += event->total_time_enabled +
2248                         atomic64_read(&event->child_total_time_enabled);
2249         *running += event->total_time_running +
2250                         atomic64_read(&event->child_total_time_running);
2251
2252         list_for_each_entry(child, &event->child_list, child_list) {
2253                 total += perf_event_read(child);
2254                 *enabled += child->total_time_enabled;
2255                 *running += child->total_time_running;
2256         }
2257         mutex_unlock(&event->child_mutex);
2258
2259         return total;
2260 }
2261 EXPORT_SYMBOL_GPL(perf_event_read_value);
2262
2263 static int perf_event_read_group(struct perf_event *event,
2264                                    u64 read_format, char __user *buf)
2265 {
2266         struct perf_event *leader = event->group_leader, *sub;
2267         int n = 0, size = 0, ret = -EFAULT;
2268         struct perf_event_context *ctx = leader->ctx;
2269         u64 values[5];
2270         u64 count, enabled, running;
2271
2272         mutex_lock(&ctx->mutex);
2273         count = perf_event_read_value(leader, &enabled, &running);
2274
2275         values[n++] = 1 + leader->nr_siblings;
2276         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2277                 values[n++] = enabled;
2278         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2279                 values[n++] = running;
2280         values[n++] = count;
2281         if (read_format & PERF_FORMAT_ID)
2282                 values[n++] = primary_event_id(leader);
2283
2284         size = n * sizeof(u64);
2285
2286         if (copy_to_user(buf, values, size))
2287                 goto unlock;
2288
2289         ret = size;
2290
2291         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2292                 n = 0;
2293
2294                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2295                 if (read_format & PERF_FORMAT_ID)
2296                         values[n++] = primary_event_id(sub);
2297
2298                 size = n * sizeof(u64);
2299
2300                 if (copy_to_user(buf + ret, values, size)) {
2301                         ret = -EFAULT;
2302                         goto unlock;
2303                 }
2304
2305                 ret += size;
2306         }
2307 unlock:
2308         mutex_unlock(&ctx->mutex);
2309
2310         return ret;
2311 }
2312
2313 static int perf_event_read_one(struct perf_event *event,
2314                                  u64 read_format, char __user *buf)
2315 {
2316         u64 enabled, running;
2317         u64 values[4];
2318         int n = 0;
2319
2320         values[n++] = perf_event_read_value(event, &enabled, &running);
2321         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2322                 values[n++] = enabled;
2323         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2324                 values[n++] = running;
2325         if (read_format & PERF_FORMAT_ID)
2326                 values[n++] = primary_event_id(event);
2327
2328         if (copy_to_user(buf, values, n * sizeof(u64)))
2329                 return -EFAULT;
2330
2331         return n * sizeof(u64);
2332 }
2333
2334 /*
2335  * Read the performance event - simple non blocking version for now
2336  */
2337 static ssize_t
2338 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2339 {
2340         u64 read_format = event->attr.read_format;
2341         int ret;
2342
2343         /*
2344          * Return end-of-file for a read on a event that is in
2345          * error state (i.e. because it was pinned but it couldn't be
2346          * scheduled on to the CPU at some point).
2347          */
2348         if (event->state == PERF_EVENT_STATE_ERROR)
2349                 return 0;
2350
2351         if (count < perf_event_read_size(event))
2352                 return -ENOSPC;
2353
2354         WARN_ON_ONCE(event->ctx->parent_ctx);
2355         if (read_format & PERF_FORMAT_GROUP)
2356                 ret = perf_event_read_group(event, read_format, buf);
2357         else
2358                 ret = perf_event_read_one(event, read_format, buf);
2359
2360         return ret;
2361 }
2362
2363 static ssize_t
2364 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2365 {
2366         struct perf_event *event = file->private_data;
2367
2368         return perf_read_hw(event, buf, count);
2369 }
2370
2371 static unsigned int perf_poll(struct file *file, poll_table *wait)
2372 {
2373         struct perf_event *event = file->private_data;
2374         struct perf_buffer *buffer;
2375         unsigned int events = POLL_HUP;
2376
2377         rcu_read_lock();
2378         buffer = rcu_dereference(event->buffer);
2379         if (buffer)
2380                 events = atomic_xchg(&buffer->poll, 0);
2381         rcu_read_unlock();
2382
2383         poll_wait(file, &event->waitq, wait);
2384
2385         return events;
2386 }
2387
2388 static void perf_event_reset(struct perf_event *event)
2389 {
2390         (void)perf_event_read(event);
2391         local64_set(&event->count, 0);
2392         perf_event_update_userpage(event);
2393 }
2394
2395 /*
2396  * Holding the top-level event's child_mutex means that any
2397  * descendant process that has inherited this event will block
2398  * in sync_child_event if it goes to exit, thus satisfying the
2399  * task existence requirements of perf_event_enable/disable.
2400  */
2401 static void perf_event_for_each_child(struct perf_event *event,
2402                                         void (*func)(struct perf_event *))
2403 {
2404         struct perf_event *child;
2405
2406         WARN_ON_ONCE(event->ctx->parent_ctx);
2407         mutex_lock(&event->child_mutex);
2408         func(event);
2409         list_for_each_entry(child, &event->child_list, child_list)
2410                 func(child);
2411         mutex_unlock(&event->child_mutex);
2412 }
2413
2414 static void perf_event_for_each(struct perf_event *event,
2415                                   void (*func)(struct perf_event *))
2416 {
2417         struct perf_event_context *ctx = event->ctx;
2418         struct perf_event *sibling;
2419
2420         WARN_ON_ONCE(ctx->parent_ctx);
2421         mutex_lock(&ctx->mutex);
2422         event = event->group_leader;
2423
2424         perf_event_for_each_child(event, func);
2425         func(event);
2426         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2427                 perf_event_for_each_child(event, func);
2428         mutex_unlock(&ctx->mutex);
2429 }
2430
2431 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2432 {
2433         struct perf_event_context *ctx = event->ctx;
2434         unsigned long size;
2435         int ret = 0;
2436         u64 value;
2437
2438         if (!event->attr.sample_period)
2439                 return -EINVAL;
2440
2441         size = copy_from_user(&value, arg, sizeof(value));
2442         if (size != sizeof(value))
2443                 return -EFAULT;
2444
2445         if (!value)
2446                 return -EINVAL;
2447
2448         raw_spin_lock_irq(&ctx->lock);
2449         if (event->attr.freq) {
2450                 if (value > sysctl_perf_event_sample_rate) {
2451                         ret = -EINVAL;
2452                         goto unlock;
2453                 }
2454
2455                 event->attr.sample_freq = value;
2456         } else {
2457                 event->attr.sample_period = value;
2458                 event->hw.sample_period = value;
2459         }
2460 unlock:
2461         raw_spin_unlock_irq(&ctx->lock);
2462
2463         return ret;
2464 }
2465
2466 static const struct file_operations perf_fops;
2467
2468 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2469 {
2470         struct file *file;
2471
2472         file = fget_light(fd, fput_needed);
2473         if (!file)
2474                 return ERR_PTR(-EBADF);
2475
2476         if (file->f_op != &perf_fops) {
2477                 fput_light(file, *fput_needed);
2478                 *fput_needed = 0;
2479                 return ERR_PTR(-EBADF);
2480         }
2481
2482         return file->private_data;
2483 }
2484
2485 static int perf_event_set_output(struct perf_event *event,
2486                                  struct perf_event *output_event);
2487 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2488
2489 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2490 {
2491         struct perf_event *event = file->private_data;
2492         void (*func)(struct perf_event *);
2493         u32 flags = arg;
2494
2495         switch (cmd) {
2496         case PERF_EVENT_IOC_ENABLE:
2497                 func = perf_event_enable;
2498                 break;
2499         case PERF_EVENT_IOC_DISABLE:
2500                 func = perf_event_disable;
2501                 break;
2502         case PERF_EVENT_IOC_RESET:
2503                 func = perf_event_reset;
2504                 break;
2505
2506         case PERF_EVENT_IOC_REFRESH:
2507                 return perf_event_refresh(event, arg);
2508
2509         case PERF_EVENT_IOC_PERIOD:
2510                 return perf_event_period(event, (u64 __user *)arg);
2511
2512         case PERF_EVENT_IOC_SET_OUTPUT:
2513         {
2514                 struct perf_event *output_event = NULL;
2515                 int fput_needed = 0;
2516                 int ret;
2517
2518                 if (arg != -1) {
2519                         output_event = perf_fget_light(arg, &fput_needed);
2520                         if (IS_ERR(output_event))
2521                                 return PTR_ERR(output_event);
2522                 }
2523
2524                 ret = perf_event_set_output(event, output_event);
2525                 if (output_event)
2526                         fput_light(output_event->filp, fput_needed);
2527
2528                 return ret;
2529         }
2530
2531         case PERF_EVENT_IOC_SET_FILTER:
2532                 return perf_event_set_filter(event, (void __user *)arg);
2533
2534         default:
2535                 return -ENOTTY;
2536         }
2537
2538         if (flags & PERF_IOC_FLAG_GROUP)
2539                 perf_event_for_each(event, func);
2540         else
2541                 perf_event_for_each_child(event, func);
2542
2543         return 0;
2544 }
2545
2546 int perf_event_task_enable(void)
2547 {
2548         struct perf_event *event;
2549
2550         mutex_lock(&current->perf_event_mutex);
2551         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2552                 perf_event_for_each_child(event, perf_event_enable);
2553         mutex_unlock(&current->perf_event_mutex);
2554
2555         return 0;
2556 }
2557
2558 int perf_event_task_disable(void)
2559 {
2560         struct perf_event *event;
2561
2562         mutex_lock(&current->perf_event_mutex);
2563         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2564                 perf_event_for_each_child(event, perf_event_disable);
2565         mutex_unlock(&current->perf_event_mutex);
2566
2567         return 0;
2568 }
2569
2570 #ifndef PERF_EVENT_INDEX_OFFSET
2571 # define PERF_EVENT_INDEX_OFFSET 0
2572 #endif
2573
2574 static int perf_event_index(struct perf_event *event)
2575 {
2576         if (event->hw.state & PERF_HES_STOPPED)
2577                 return 0;
2578
2579         if (event->state != PERF_EVENT_STATE_ACTIVE)
2580                 return 0;
2581
2582         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2583 }
2584
2585 /*
2586  * Callers need to ensure there can be no nesting of this function, otherwise
2587  * the seqlock logic goes bad. We can not serialize this because the arch
2588  * code calls this from NMI context.
2589  */
2590 void perf_event_update_userpage(struct perf_event *event)
2591 {
2592         struct perf_event_mmap_page *userpg;
2593         struct perf_buffer *buffer;
2594
2595         rcu_read_lock();
2596         buffer = rcu_dereference(event->buffer);
2597         if (!buffer)
2598                 goto unlock;
2599
2600         userpg = buffer->user_page;
2601
2602         /*
2603          * Disable preemption so as to not let the corresponding user-space
2604          * spin too long if we get preempted.
2605          */
2606         preempt_disable();
2607         ++userpg->lock;
2608         barrier();
2609         userpg->index = perf_event_index(event);
2610         userpg->offset = perf_event_count(event);
2611         if (event->state == PERF_EVENT_STATE_ACTIVE)
2612                 userpg->offset -= local64_read(&event->hw.prev_count);
2613
2614         userpg->time_enabled = event->total_time_enabled +
2615                         atomic64_read(&event->child_total_time_enabled);
2616
2617         userpg->time_running = event->total_time_running +
2618                         atomic64_read(&event->child_total_time_running);
2619
2620         barrier();
2621         ++userpg->lock;
2622         preempt_enable();
2623 unlock:
2624         rcu_read_unlock();
2625 }
2626
2627 static unsigned long perf_data_size(struct perf_buffer *buffer);
2628
2629 static void
2630 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2631 {
2632         long max_size = perf_data_size(buffer);
2633
2634         if (watermark)
2635                 buffer->watermark = min(max_size, watermark);
2636
2637         if (!buffer->watermark)
2638                 buffer->watermark = max_size / 2;
2639
2640         if (flags & PERF_BUFFER_WRITABLE)
2641                 buffer->writable = 1;
2642
2643         atomic_set(&buffer->refcount, 1);
2644 }
2645
2646 #ifndef CONFIG_PERF_USE_VMALLOC
2647
2648 /*
2649  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2650  */
2651
2652 static struct page *
2653 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2654 {
2655         if (pgoff > buffer->nr_pages)
2656                 return NULL;
2657
2658         if (pgoff == 0)
2659                 return virt_to_page(buffer->user_page);
2660
2661         return virt_to_page(buffer->data_pages[pgoff - 1]);
2662 }
2663
2664 static void *perf_mmap_alloc_page(int cpu)
2665 {
2666         struct page *page;
2667         int node;
2668
2669         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2670         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2671         if (!page)
2672                 return NULL;
2673
2674         return page_address(page);
2675 }
2676
2677 static struct perf_buffer *
2678 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2679 {
2680         struct perf_buffer *buffer;
2681         unsigned long size;
2682         int i;
2683
2684         size = sizeof(struct perf_buffer);
2685         size += nr_pages * sizeof(void *);
2686
2687         buffer = kzalloc(size, GFP_KERNEL);
2688         if (!buffer)
2689                 goto fail;
2690
2691         buffer->user_page = perf_mmap_alloc_page(cpu);
2692         if (!buffer->user_page)
2693                 goto fail_user_page;
2694
2695         for (i = 0; i < nr_pages; i++) {
2696                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2697                 if (!buffer->data_pages[i])
2698                         goto fail_data_pages;
2699         }
2700
2701         buffer->nr_pages = nr_pages;
2702
2703         perf_buffer_init(buffer, watermark, flags);
2704
2705         return buffer;
2706
2707 fail_data_pages:
2708         for (i--; i >= 0; i--)
2709                 free_page((unsigned long)buffer->data_pages[i]);
2710
2711         free_page((unsigned long)buffer->user_page);
2712
2713 fail_user_page:
2714         kfree(buffer);
2715
2716 fail:
2717         return NULL;
2718 }
2719
2720 static void perf_mmap_free_page(unsigned long addr)
2721 {
2722         struct page *page = virt_to_page((void *)addr);
2723
2724         page->mapping = NULL;
2725         __free_page(page);
2726 }
2727
2728 static void perf_buffer_free(struct perf_buffer *buffer)
2729 {
2730         int i;
2731
2732         perf_mmap_free_page((unsigned long)buffer->user_page);
2733         for (i = 0; i < buffer->nr_pages; i++)
2734                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2735         kfree(buffer);
2736 }
2737
2738 static inline int page_order(struct perf_buffer *buffer)
2739 {
2740         return 0;
2741 }
2742
2743 #else
2744
2745 /*
2746  * Back perf_mmap() with vmalloc memory.
2747  *
2748  * Required for architectures that have d-cache aliasing issues.
2749  */
2750
2751 static inline int page_order(struct perf_buffer *buffer)
2752 {
2753         return buffer->page_order;
2754 }
2755
2756 static struct page *
2757 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2758 {
2759         if (pgoff > (1UL << page_order(buffer)))
2760                 return NULL;
2761
2762         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2763 }
2764
2765 static void perf_mmap_unmark_page(void *addr)
2766 {
2767         struct page *page = vmalloc_to_page(addr);
2768
2769         page->mapping = NULL;
2770 }
2771
2772 static void perf_buffer_free_work(struct work_struct *work)
2773 {
2774         struct perf_buffer *buffer;
2775         void *base;
2776         int i, nr;
2777
2778         buffer = container_of(work, struct perf_buffer, work);
2779         nr = 1 << page_order(buffer);
2780
2781         base = buffer->user_page;
2782         for (i = 0; i < nr + 1; i++)
2783                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2784
2785         vfree(base);
2786         kfree(buffer);
2787 }
2788
2789 static void perf_buffer_free(struct perf_buffer *buffer)
2790 {
2791         schedule_work(&buffer->work);
2792 }
2793
2794 static struct perf_buffer *
2795 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2796 {
2797         struct perf_buffer *buffer;
2798         unsigned long size;
2799         void *all_buf;
2800
2801         size = sizeof(struct perf_buffer);
2802         size += sizeof(void *);
2803
2804         buffer = kzalloc(size, GFP_KERNEL);
2805         if (!buffer)
2806                 goto fail;
2807
2808         INIT_WORK(&buffer->work, perf_buffer_free_work);
2809
2810         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2811         if (!all_buf)
2812                 goto fail_all_buf;
2813
2814         buffer->user_page = all_buf;
2815         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2816         buffer->page_order = ilog2(nr_pages);
2817         buffer->nr_pages = 1;
2818
2819         perf_buffer_init(buffer, watermark, flags);
2820
2821         return buffer;
2822
2823 fail_all_buf:
2824         kfree(buffer);
2825
2826 fail:
2827         return NULL;
2828 }
2829
2830 #endif
2831
2832 static unsigned long perf_data_size(struct perf_buffer *buffer)
2833 {
2834         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2835 }
2836
2837 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2838 {
2839         struct perf_event *event = vma->vm_file->private_data;
2840         struct perf_buffer *buffer;
2841         int ret = VM_FAULT_SIGBUS;
2842
2843         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2844                 if (vmf->pgoff == 0)
2845                         ret = 0;
2846                 return ret;
2847         }
2848
2849         rcu_read_lock();
2850         buffer = rcu_dereference(event->buffer);
2851         if (!buffer)
2852                 goto unlock;
2853
2854         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2855                 goto unlock;
2856
2857         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2858         if (!vmf->page)
2859                 goto unlock;
2860
2861         get_page(vmf->page);
2862         vmf->page->mapping = vma->vm_file->f_mapping;
2863         vmf->page->index   = vmf->pgoff;
2864
2865         ret = 0;
2866 unlock:
2867         rcu_read_unlock();
2868
2869         return ret;
2870 }
2871
2872 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2873 {
2874         struct perf_buffer *buffer;
2875
2876         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2877         perf_buffer_free(buffer);
2878 }
2879
2880 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2881 {
2882         struct perf_buffer *buffer;
2883
2884         rcu_read_lock();
2885         buffer = rcu_dereference(event->buffer);
2886         if (buffer) {
2887                 if (!atomic_inc_not_zero(&buffer->refcount))
2888                         buffer = NULL;
2889         }
2890         rcu_read_unlock();
2891
2892         return buffer;
2893 }
2894
2895 static void perf_buffer_put(struct perf_buffer *buffer)
2896 {
2897         if (!atomic_dec_and_test(&buffer->refcount))
2898                 return;
2899
2900         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2901 }
2902
2903 static void perf_mmap_open(struct vm_area_struct *vma)
2904 {
2905         struct perf_event *event = vma->vm_file->private_data;
2906
2907         atomic_inc(&event->mmap_count);
2908 }
2909
2910 static void perf_mmap_close(struct vm_area_struct *vma)
2911 {
2912         struct perf_event *event = vma->vm_file->private_data;
2913
2914         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2915                 unsigned long size = perf_data_size(event->buffer);
2916                 struct user_struct *user = event->mmap_user;
2917                 struct perf_buffer *buffer = event->buffer;
2918
2919                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2920                 vma->vm_mm->locked_vm -= event->mmap_locked;
2921                 rcu_assign_pointer(event->buffer, NULL);
2922                 mutex_unlock(&event->mmap_mutex);
2923
2924                 perf_buffer_put(buffer);
2925                 free_uid(user);
2926         }
2927 }
2928
2929 static const struct vm_operations_struct perf_mmap_vmops = {
2930         .open           = perf_mmap_open,
2931         .close          = perf_mmap_close,
2932         .fault          = perf_mmap_fault,
2933         .page_mkwrite   = perf_mmap_fault,
2934 };
2935
2936 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2937 {
2938         struct perf_event *event = file->private_data;
2939         unsigned long user_locked, user_lock_limit;
2940         struct user_struct *user = current_user();
2941         unsigned long locked, lock_limit;
2942         struct perf_buffer *buffer;
2943         unsigned long vma_size;
2944         unsigned long nr_pages;
2945         long user_extra, extra;
2946         int ret = 0, flags = 0;
2947
2948         /*
2949          * Don't allow mmap() of inherited per-task counters. This would
2950          * create a performance issue due to all children writing to the
2951          * same buffer.
2952          */
2953         if (event->cpu == -1 && event->attr.inherit)
2954                 return -EINVAL;
2955
2956         if (!(vma->vm_flags & VM_SHARED))
2957                 return -EINVAL;
2958
2959         vma_size = vma->vm_end - vma->vm_start;
2960         nr_pages = (vma_size / PAGE_SIZE) - 1;
2961
2962         /*
2963          * If we have buffer pages ensure they're a power-of-two number, so we
2964          * can do bitmasks instead of modulo.
2965          */
2966         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2967                 return -EINVAL;
2968
2969         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2970                 return -EINVAL;
2971
2972         if (vma->vm_pgoff != 0)
2973                 return -EINVAL;
2974
2975         WARN_ON_ONCE(event->ctx->parent_ctx);
2976         mutex_lock(&event->mmap_mutex);
2977         if (event->buffer) {
2978                 if (event->buffer->nr_pages == nr_pages)
2979                         atomic_inc(&event->buffer->refcount);
2980                 else
2981                         ret = -EINVAL;
2982                 goto unlock;
2983         }
2984
2985         user_extra = nr_pages + 1;
2986         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2987
2988         /*
2989          * Increase the limit linearly with more CPUs:
2990          */
2991         user_lock_limit *= num_online_cpus();
2992
2993         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2994
2995         extra = 0;
2996         if (user_locked > user_lock_limit)
2997                 extra = user_locked - user_lock_limit;
2998
2999         lock_limit = rlimit(RLIMIT_MEMLOCK);
3000         lock_limit >>= PAGE_SHIFT;
3001         locked = vma->vm_mm->locked_vm + extra;
3002
3003         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3004                 !capable(CAP_IPC_LOCK)) {
3005                 ret = -EPERM;
3006                 goto unlock;
3007         }
3008
3009         WARN_ON(event->buffer);
3010
3011         if (vma->vm_flags & VM_WRITE)
3012                 flags |= PERF_BUFFER_WRITABLE;
3013
3014         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3015                                    event->cpu, flags);
3016         if (!buffer) {
3017                 ret = -ENOMEM;
3018                 goto unlock;
3019         }
3020         rcu_assign_pointer(event->buffer, buffer);
3021
3022         atomic_long_add(user_extra, &user->locked_vm);
3023         event->mmap_locked = extra;
3024         event->mmap_user = get_current_user();
3025         vma->vm_mm->locked_vm += event->mmap_locked;
3026
3027 unlock:
3028         if (!ret)
3029                 atomic_inc(&event->mmap_count);
3030         mutex_unlock(&event->mmap_mutex);
3031
3032         vma->vm_flags |= VM_RESERVED;
3033         vma->vm_ops = &perf_mmap_vmops;
3034
3035         return ret;
3036 }
3037
3038 static int perf_fasync(int fd, struct file *filp, int on)
3039 {
3040         struct inode *inode = filp->f_path.dentry->d_inode;
3041         struct perf_event *event = filp->private_data;
3042         int retval;
3043
3044         mutex_lock(&inode->i_mutex);
3045         retval = fasync_helper(fd, filp, on, &event->fasync);
3046         mutex_unlock(&inode->i_mutex);
3047
3048         if (retval < 0)
3049                 return retval;
3050
3051         return 0;
3052 }
3053
3054 static const struct file_operations perf_fops = {
3055         .llseek                 = no_llseek,
3056         .release                = perf_release,
3057         .read                   = perf_read,
3058         .poll                   = perf_poll,
3059         .unlocked_ioctl         = perf_ioctl,
3060         .compat_ioctl           = perf_ioctl,
3061         .mmap                   = perf_mmap,
3062         .fasync                 = perf_fasync,
3063 };
3064
3065 /*
3066  * Perf event wakeup
3067  *
3068  * If there's data, ensure we set the poll() state and publish everything
3069  * to user-space before waking everybody up.
3070  */
3071
3072 void perf_event_wakeup(struct perf_event *event)
3073 {
3074         wake_up_all(&event->waitq);
3075
3076         if (event->pending_kill) {
3077                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3078                 event->pending_kill = 0;
3079         }
3080 }
3081
3082 /*
3083  * Pending wakeups
3084  *
3085  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3086  *
3087  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3088  * single linked list and use cmpxchg() to add entries lockless.
3089  */
3090
3091 static void perf_pending_event(struct perf_pending_entry *entry)
3092 {
3093         struct perf_event *event = container_of(entry,
3094                         struct perf_event, pending);
3095
3096         if (event->pending_disable) {
3097                 event->pending_disable = 0;
3098                 __perf_event_disable(event);
3099         }
3100
3101         if (event->pending_wakeup) {
3102                 event->pending_wakeup = 0;
3103                 perf_event_wakeup(event);
3104         }
3105 }
3106
3107 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3108
3109 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3110         PENDING_TAIL,
3111 };
3112
3113 static void perf_pending_queue(struct perf_pending_entry *entry,
3114                                void (*func)(struct perf_pending_entry *))
3115 {
3116         struct perf_pending_entry **head;
3117
3118         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3119                 return;
3120
3121         entry->func = func;
3122
3123         head = &get_cpu_var(perf_pending_head);
3124
3125         do {
3126                 entry->next = *head;
3127         } while (cmpxchg(head, entry->next, entry) != entry->next);
3128
3129         set_perf_event_pending();
3130
3131         put_cpu_var(perf_pending_head);
3132 }
3133
3134 static int __perf_pending_run(void)
3135 {
3136         struct perf_pending_entry *list;
3137         int nr = 0;
3138
3139         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3140         while (list != PENDING_TAIL) {
3141                 void (*func)(struct perf_pending_entry *);
3142                 struct perf_pending_entry *entry = list;
3143
3144                 list = list->next;
3145
3146                 func = entry->func;
3147                 entry->next = NULL;
3148                 /*
3149                  * Ensure we observe the unqueue before we issue the wakeup,
3150                  * so that we won't be waiting forever.
3151                  * -- see perf_not_pending().
3152                  */
3153                 smp_wmb();
3154
3155                 func(entry);
3156                 nr++;
3157         }
3158
3159         return nr;
3160 }
3161
3162 static inline int perf_not_pending(struct perf_event *event)
3163 {
3164         /*
3165          * If we flush on whatever cpu we run, there is a chance we don't
3166          * need to wait.
3167          */
3168         get_cpu();
3169         __perf_pending_run();
3170         put_cpu();
3171
3172         /*
3173          * Ensure we see the proper queue state before going to sleep
3174          * so that we do not miss the wakeup. -- see perf_pending_handle()
3175          */
3176         smp_rmb();
3177         return event->pending.next == NULL;
3178 }
3179
3180 static void perf_pending_sync(struct perf_event *event)
3181 {
3182         wait_event(event->waitq, perf_not_pending(event));
3183 }
3184
3185 void perf_event_do_pending(void)
3186 {
3187         __perf_pending_run();
3188 }
3189
3190 /*
3191  * We assume there is only KVM supporting the callbacks.
3192  * Later on, we might change it to a list if there is
3193  * another virtualization implementation supporting the callbacks.
3194  */
3195 struct perf_guest_info_callbacks *perf_guest_cbs;
3196
3197 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3198 {
3199         perf_guest_cbs = cbs;
3200         return 0;
3201 }
3202 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3203
3204 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3205 {
3206         perf_guest_cbs = NULL;
3207         return 0;
3208 }
3209 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3210
3211 /*
3212  * Output
3213  */
3214 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3215                               unsigned long offset, unsigned long head)
3216 {
3217         unsigned long mask;
3218
3219         if (!buffer->writable)
3220                 return true;
3221
3222         mask = perf_data_size(buffer) - 1;
3223
3224         offset = (offset - tail) & mask;
3225         head   = (head   - tail) & mask;
3226
3227         if ((int)(head - offset) < 0)
3228                 return false;
3229
3230         return true;
3231 }
3232
3233 static void perf_output_wakeup(struct perf_output_handle *handle)
3234 {
3235         atomic_set(&handle->buffer->poll, POLL_IN);
3236
3237         if (handle->nmi) {
3238                 handle->event->pending_wakeup = 1;
3239                 perf_pending_queue(&handle->event->pending,
3240                                    perf_pending_event);
3241         } else
3242                 perf_event_wakeup(handle->event);
3243 }
3244
3245 /*
3246  * We need to ensure a later event_id doesn't publish a head when a former
3247  * event isn't done writing. However since we need to deal with NMIs we
3248  * cannot fully serialize things.
3249  *
3250  * We only publish the head (and generate a wakeup) when the outer-most
3251  * event completes.
3252  */
3253 static void perf_output_get_handle(struct perf_output_handle *handle)
3254 {
3255         struct perf_buffer *buffer = handle->buffer;
3256
3257         preempt_disable();
3258         local_inc(&buffer->nest);
3259         handle->wakeup = local_read(&buffer->wakeup);
3260 }
3261
3262 static void perf_output_put_handle(struct perf_output_handle *handle)
3263 {
3264         struct perf_buffer *buffer = handle->buffer;
3265         unsigned long head;
3266
3267 again:
3268         head = local_read(&buffer->head);
3269
3270         /*
3271          * IRQ/NMI can happen here, which means we can miss a head update.
3272          */
3273
3274         if (!local_dec_and_test(&buffer->nest))
3275                 goto out;
3276
3277         /*
3278          * Publish the known good head. Rely on the full barrier implied
3279          * by atomic_dec_and_test() order the buffer->head read and this
3280          * write.
3281          */
3282         buffer->user_page->data_head = head;
3283
3284         /*
3285          * Now check if we missed an update, rely on the (compiler)
3286          * barrier in atomic_dec_and_test() to re-read buffer->head.
3287          */
3288         if (unlikely(head != local_read(&buffer->head))) {
3289                 local_inc(&buffer->nest);
3290                 goto again;
3291         }
3292
3293         if (handle->wakeup != local_read(&buffer->wakeup))
3294                 perf_output_wakeup(handle);
3295
3296 out:
3297         preempt_enable();
3298 }
3299
3300 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3301                       const void *buf, unsigned int len)
3302 {
3303         do {
3304                 unsigned long size = min_t(unsigned long, handle->size, len);
3305
3306                 memcpy(handle->addr, buf, size);
3307
3308                 len -= size;
3309                 handle->addr += size;
3310                 buf += size;
3311                 handle->size -= size;
3312                 if (!handle->size) {
3313                         struct perf_buffer *buffer = handle->buffer;
3314
3315                         handle->page++;
3316                         handle->page &= buffer->nr_pages - 1;
3317                         handle->addr = buffer->data_pages[handle->page];
3318                         handle->size = PAGE_SIZE << page_order(buffer);
3319                 }
3320         } while (len);
3321 }
3322
3323 int perf_output_begin(struct perf_output_handle *handle,
3324                       struct perf_event *event, unsigned int size,
3325                       int nmi, int sample)
3326 {
3327         struct perf_buffer *buffer;
3328         unsigned long tail, offset, head;
3329         int have_lost;
3330         struct {
3331                 struct perf_event_header header;
3332                 u64                      id;
3333                 u64                      lost;
3334         } lost_event;
3335
3336         rcu_read_lock();
3337         /*
3338          * For inherited events we send all the output towards the parent.
3339          */
3340         if (event->parent)
3341                 event = event->parent;
3342
3343         buffer = rcu_dereference(event->buffer);
3344         if (!buffer)
3345                 goto out;
3346
3347         handle->buffer  = buffer;
3348         handle->event   = event;
3349         handle->nmi     = nmi;
3350         handle->sample  = sample;
3351
3352         if (!buffer->nr_pages)
3353                 goto out;
3354
3355         have_lost = local_read(&buffer->lost);
3356         if (have_lost)
3357                 size += sizeof(lost_event);
3358
3359         perf_output_get_handle(handle);
3360
3361         do {
3362                 /*
3363                  * Userspace could choose to issue a mb() before updating the
3364                  * tail pointer. So that all reads will be completed before the
3365                  * write is issued.
3366                  */
3367                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3368                 smp_rmb();
3369                 offset = head = local_read(&buffer->head);
3370                 head += size;
3371                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3372                         goto fail;
3373         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3374
3375         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3376                 local_add(buffer->watermark, &buffer->wakeup);
3377
3378         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3379         handle->page &= buffer->nr_pages - 1;
3380         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3381         handle->addr = buffer->data_pages[handle->page];
3382         handle->addr += handle->size;
3383         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3384
3385         if (have_lost) {
3386                 lost_event.header.type = PERF_RECORD_LOST;
3387                 lost_event.header.misc = 0;
3388                 lost_event.header.size = sizeof(lost_event);
3389                 lost_event.id          = event->id;
3390                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3391
3392                 perf_output_put(handle, lost_event);
3393         }
3394
3395         return 0;
3396
3397 fail:
3398         local_inc(&buffer->lost);
3399         perf_output_put_handle(handle);
3400 out:
3401         rcu_read_unlock();
3402
3403         return -ENOSPC;
3404 }
3405
3406 void perf_output_end(struct perf_output_handle *handle)
3407 {
3408         struct perf_event *event = handle->event;
3409         struct perf_buffer *buffer = handle->buffer;
3410
3411         int wakeup_events = event->attr.wakeup_events;
3412
3413         if (handle->sample && wakeup_events) {
3414                 int events = local_inc_return(&buffer->events);
3415                 if (events >= wakeup_events) {
3416                         local_sub(wakeup_events, &buffer->events);
3417                         local_inc(&buffer->wakeup);
3418                 }
3419         }
3420
3421         perf_output_put_handle(handle);
3422         rcu_read_unlock();
3423 }
3424
3425 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3426 {
3427         /*
3428          * only top level events have the pid namespace they were created in
3429          */
3430         if (event->parent)
3431                 event = event->parent;
3432
3433         return task_tgid_nr_ns(p, event->ns);
3434 }
3435
3436 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3437 {
3438         /*
3439          * only top level events have the pid namespace they were created in
3440          */
3441         if (event->parent)
3442                 event = event->parent;
3443
3444         return task_pid_nr_ns(p, event->ns);
3445 }
3446
3447 static void perf_output_read_one(struct perf_output_handle *handle,
3448                                  struct perf_event *event)
3449 {
3450         u64 read_format = event->attr.read_format;
3451         u64 values[4];
3452         int n = 0;
3453
3454         values[n++] = perf_event_count(event);
3455         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3456                 values[n++] = event->total_time_enabled +
3457                         atomic64_read(&event->child_total_time_enabled);
3458         }
3459         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3460                 values[n++] = event->total_time_running +
3461                         atomic64_read(&event->child_total_time_running);
3462         }
3463         if (read_format & PERF_FORMAT_ID)
3464                 values[n++] = primary_event_id(event);
3465
3466         perf_output_copy(handle, values, n * sizeof(u64));
3467 }
3468
3469 /*
3470  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3471  */
3472 static void perf_output_read_group(struct perf_output_handle *handle,
3473                             struct perf_event *event)
3474 {
3475         struct perf_event *leader = event->group_leader, *sub;
3476         u64 read_format = event->attr.read_format;
3477         u64 values[5];
3478         int n = 0;
3479
3480         values[n++] = 1 + leader->nr_siblings;
3481
3482         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3483                 values[n++] = leader->total_time_enabled;
3484
3485         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3486                 values[n++] = leader->total_time_running;
3487
3488         if (leader != event)
3489                 leader->pmu->read(leader);
3490
3491         values[n++] = perf_event_count(leader);
3492         if (read_format & PERF_FORMAT_ID)
3493                 values[n++] = primary_event_id(leader);
3494
3495         perf_output_copy(handle, values, n * sizeof(u64));
3496
3497         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3498                 n = 0;
3499
3500                 if (sub != event)
3501                         sub->pmu->read(sub);
3502
3503                 values[n++] = perf_event_count(sub);
3504                 if (read_format & PERF_FORMAT_ID)
3505                         values[n++] = primary_event_id(sub);
3506
3507                 perf_output_copy(handle, values, n * sizeof(u64));
3508         }
3509 }
3510
3511 static void perf_output_read(struct perf_output_handle *handle,
3512                              struct perf_event *event)
3513 {
3514         if (event->attr.read_format & PERF_FORMAT_GROUP)
3515                 perf_output_read_group(handle, event);
3516         else
3517                 perf_output_read_one(handle, event);
3518 }
3519
3520 void perf_output_sample(struct perf_output_handle *handle,
3521                         struct perf_event_header *header,
3522                         struct perf_sample_data *data,
3523                         struct perf_event *event)
3524 {
3525         u64 sample_type = data->type;
3526
3527         perf_output_put(handle, *header);
3528
3529         if (sample_type & PERF_SAMPLE_IP)
3530                 perf_output_put(handle, data->ip);
3531
3532         if (sample_type & PERF_SAMPLE_TID)
3533                 perf_output_put(handle, data->tid_entry);
3534
3535         if (sample_type & PERF_SAMPLE_TIME)
3536                 perf_output_put(handle, data->time);
3537
3538         if (sample_type & PERF_SAMPLE_ADDR)
3539                 perf_output_put(handle, data->addr);
3540
3541         if (sample_type & PERF_SAMPLE_ID)
3542                 perf_output_put(handle, data->id);
3543
3544         if (sample_type & PERF_SAMPLE_STREAM_ID)
3545                 perf_output_put(handle, data->stream_id);
3546
3547         if (sample_type & PERF_SAMPLE_CPU)
3548                 perf_output_put(handle, data->cpu_entry);
3549
3550         if (sample_type & PERF_SAMPLE_PERIOD)
3551                 perf_output_put(handle, data->period);
3552
3553         if (sample_type & PERF_SAMPLE_READ)
3554                 perf_output_read(handle, event);
3555
3556         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3557                 if (data->callchain) {
3558                         int size = 1;
3559
3560                         if (data->callchain)
3561                                 size += data->callchain->nr;
3562
3563                         size *= sizeof(u64);
3564
3565                         perf_output_copy(handle, data->callchain, size);
3566                 } else {
3567                         u64 nr = 0;
3568                         perf_output_put(handle, nr);
3569                 }
3570         }
3571
3572         if (sample_type & PERF_SAMPLE_RAW) {
3573                 if (data->raw) {
3574                         perf_output_put(handle, data->raw->size);
3575                         perf_output_copy(handle, data->raw->data,
3576                                          data->raw->size);
3577                 } else {
3578                         struct {
3579                                 u32     size;
3580                                 u32     data;
3581                         } raw = {
3582                                 .size = sizeof(u32),
3583                                 .data = 0,
3584                         };
3585                         perf_output_put(handle, raw);
3586                 }
3587         }
3588 }
3589
3590 void perf_prepare_sample(struct perf_event_header *header,
3591                          struct perf_sample_data *data,
3592                          struct perf_event *event,
3593                          struct pt_regs *regs)
3594 {
3595         u64 sample_type = event->attr.sample_type;
3596
3597         data->type = sample_type;
3598
3599         header->type = PERF_RECORD_SAMPLE;
3600         header->size = sizeof(*header);
3601
3602         header->misc = 0;
3603         header->misc |= perf_misc_flags(regs);
3604
3605         if (sample_type & PERF_SAMPLE_IP) {
3606                 data->ip = perf_instruction_pointer(regs);
3607
3608                 header->size += sizeof(data->ip);
3609         }
3610
3611         if (sample_type & PERF_SAMPLE_TID) {
3612                 /* namespace issues */
3613                 data->tid_entry.pid = perf_event_pid(event, current);
3614                 data->tid_entry.tid = perf_event_tid(event, current);
3615
3616                 header->size += sizeof(data->tid_entry);
3617         }
3618
3619         if (sample_type & PERF_SAMPLE_TIME) {
3620                 data->time = perf_clock();
3621
3622                 header->size += sizeof(data->time);
3623         }
3624
3625         if (sample_type & PERF_SAMPLE_ADDR)
3626                 header->size += sizeof(data->addr);
3627
3628         if (sample_type & PERF_SAMPLE_ID) {
3629                 data->id = primary_event_id(event);
3630
3631                 header->size += sizeof(data->id);
3632         }
3633
3634         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3635                 data->stream_id = event->id;
3636
3637                 header->size += sizeof(data->stream_id);
3638         }
3639
3640         if (sample_type & PERF_SAMPLE_CPU) {
3641                 data->cpu_entry.cpu             = raw_smp_processor_id();
3642                 data->cpu_entry.reserved        = 0;
3643
3644                 header->size += sizeof(data->cpu_entry);
3645         }
3646
3647         if (sample_type & PERF_SAMPLE_PERIOD)
3648                 header->size += sizeof(data->period);
3649
3650         if (sample_type & PERF_SAMPLE_READ)
3651                 header->size += perf_event_read_size(event);
3652
3653         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3654                 int size = 1;
3655
3656                 data->callchain = perf_callchain(regs);
3657
3658                 if (data->callchain)
3659                         size += data->callchain->nr;
3660
3661                 header->size += size * sizeof(u64);
3662         }
3663
3664         if (sample_type & PERF_SAMPLE_RAW) {
3665                 int size = sizeof(u32);
3666
3667                 if (data->raw)
3668                         size += data->raw->size;
3669                 else
3670                         size += sizeof(u32);
3671
3672                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3673                 header->size += size;
3674         }
3675 }
3676
3677 static void perf_event_output(struct perf_event *event, int nmi,
3678                                 struct perf_sample_data *data,
3679                                 struct pt_regs *regs)
3680 {
3681         struct perf_output_handle handle;
3682         struct perf_event_header header;
3683
3684         /* protect the callchain buffers */
3685         rcu_read_lock();
3686
3687         perf_prepare_sample(&header, data, event, regs);
3688
3689         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3690                 goto exit;
3691
3692         perf_output_sample(&handle, &header, data, event);
3693
3694         perf_output_end(&handle);
3695
3696 exit:
3697         rcu_read_unlock();
3698 }
3699
3700 /*
3701  * read event_id
3702  */
3703
3704 struct perf_read_event {
3705         struct perf_event_header        header;
3706
3707         u32                             pid;
3708         u32                             tid;
3709 };
3710
3711 static void
3712 perf_event_read_event(struct perf_event *event,
3713                         struct task_struct *task)
3714 {
3715         struct perf_output_handle handle;
3716         struct perf_read_event read_event = {
3717                 .header = {
3718                         .type = PERF_RECORD_READ,
3719                         .misc = 0,
3720                         .size = sizeof(read_event) + perf_event_read_size(event),
3721                 },
3722                 .pid = perf_event_pid(event, task),
3723                 .tid = perf_event_tid(event, task),
3724         };
3725         int ret;
3726
3727         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3728         if (ret)
3729                 return;
3730
3731         perf_output_put(&handle, read_event);
3732         perf_output_read(&handle, event);
3733
3734         perf_output_end(&handle);
3735 }
3736
3737 /*
3738  * task tracking -- fork/exit
3739  *
3740  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3741  */
3742
3743 struct perf_task_event {
3744         struct task_struct              *task;
3745         struct perf_event_context       *task_ctx;
3746
3747         struct {
3748                 struct perf_event_header        header;
3749
3750                 u32                             pid;
3751                 u32                             ppid;
3752                 u32                             tid;
3753                 u32                             ptid;
3754                 u64                             time;
3755         } event_id;
3756 };
3757
3758 static void perf_event_task_output(struct perf_event *event,
3759                                      struct perf_task_event *task_event)
3760 {
3761         struct perf_output_handle handle;
3762         struct task_struct *task = task_event->task;
3763         int size, ret;
3764
3765         size  = task_event->event_id.header.size;
3766         ret = perf_output_begin(&handle, event, size, 0, 0);
3767
3768         if (ret)
3769                 return;
3770
3771         task_event->event_id.pid = perf_event_pid(event, task);
3772         task_event->event_id.ppid = perf_event_pid(event, current);
3773
3774         task_event->event_id.tid = perf_event_tid(event, task);
3775         task_event->event_id.ptid = perf_event_tid(event, current);
3776
3777         perf_output_put(&handle, task_event->event_id);
3778
3779         perf_output_end(&handle);
3780 }
3781
3782 static int perf_event_task_match(struct perf_event *event)
3783 {
3784         if (event->state < PERF_EVENT_STATE_INACTIVE)
3785                 return 0;
3786
3787         if (event->cpu != -1 && event->cpu != smp_processor_id())
3788                 return 0;
3789
3790         if (event->attr.comm || event->attr.mmap ||
3791             event->attr.mmap_data || event->attr.task)
3792                 return 1;
3793
3794         return 0;
3795 }
3796
3797 static void perf_event_task_ctx(struct perf_event_context *ctx,
3798                                   struct perf_task_event *task_event)
3799 {
3800         struct perf_event *event;
3801
3802         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3803                 if (perf_event_task_match(event))
3804                         perf_event_task_output(event, task_event);
3805         }
3806 }
3807
3808 static void perf_event_task_event(struct perf_task_event *task_event)
3809 {
3810         struct perf_cpu_context *cpuctx;
3811         struct perf_event_context *ctx;
3812         struct pmu *pmu;
3813         int ctxn;
3814
3815         rcu_read_lock();
3816         list_for_each_entry_rcu(pmu, &pmus, entry) {
3817                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3818                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3819
3820                 ctx = task_event->task_ctx;
3821                 if (!ctx) {
3822                         ctxn = pmu->task_ctx_nr;
3823                         if (ctxn < 0)
3824                                 continue;
3825                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3826                 }
3827                 if (ctx)
3828                         perf_event_task_ctx(ctx, task_event);
3829         }
3830         rcu_read_unlock();
3831 }
3832
3833 static void perf_event_task(struct task_struct *task,
3834                               struct perf_event_context *task_ctx,
3835                               int new)
3836 {
3837         struct perf_task_event task_event;
3838
3839         if (!atomic_read(&nr_comm_events) &&
3840             !atomic_read(&nr_mmap_events) &&
3841             !atomic_read(&nr_task_events))
3842                 return;
3843
3844         task_event = (struct perf_task_event){
3845                 .task     = task,
3846                 .task_ctx = task_ctx,
3847                 .event_id    = {
3848                         .header = {
3849                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3850                                 .misc = 0,
3851                                 .size = sizeof(task_event.event_id),
3852                         },
3853                         /* .pid  */
3854                         /* .ppid */
3855                         /* .tid  */
3856                         /* .ptid */
3857                         .time = perf_clock(),
3858                 },
3859         };
3860
3861         perf_event_task_event(&task_event);
3862 }
3863
3864 void perf_event_fork(struct task_struct *task)
3865 {
3866         perf_event_task(task, NULL, 1);
3867 }
3868
3869 /*
3870  * comm tracking
3871  */
3872
3873 struct perf_comm_event {
3874         struct task_struct      *task;
3875         char                    *comm;
3876         int                     comm_size;
3877
3878         struct {
3879                 struct perf_event_header        header;
3880
3881                 u32                             pid;
3882                 u32                             tid;
3883         } event_id;
3884 };
3885
3886 static void perf_event_comm_output(struct perf_event *event,
3887                                      struct perf_comm_event *comm_event)
3888 {
3889         struct perf_output_handle handle;
3890         int size = comm_event->event_id.header.size;
3891         int ret = perf_output_begin(&handle, event, size, 0, 0);
3892
3893         if (ret)
3894                 return;
3895
3896         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3897         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3898
3899         perf_output_put(&handle, comm_event->event_id);
3900         perf_output_copy(&handle, comm_event->comm,
3901                                    comm_event->comm_size);
3902         perf_output_end(&handle);
3903 }
3904
3905 static int perf_event_comm_match(struct perf_event *event)
3906 {
3907         if (event->state < PERF_EVENT_STATE_INACTIVE)
3908                 return 0;
3909
3910         if (event->cpu != -1 && event->cpu != smp_processor_id())
3911                 return 0;
3912
3913         if (event->attr.comm)
3914                 return 1;
3915
3916         return 0;
3917 }
3918
3919 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3920                                   struct perf_comm_event *comm_event)
3921 {
3922         struct perf_event *event;
3923
3924         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3925                 if (perf_event_comm_match(event))
3926                         perf_event_comm_output(event, comm_event);
3927         }
3928 }
3929
3930 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3931 {
3932         struct perf_cpu_context *cpuctx;
3933         struct perf_event_context *ctx;
3934         char comm[TASK_COMM_LEN];
3935         unsigned int size;
3936         struct pmu *pmu;
3937         int ctxn;
3938
3939         memset(comm, 0, sizeof(comm));
3940         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3941         size = ALIGN(strlen(comm)+1, sizeof(u64));
3942
3943         comm_event->comm = comm;
3944         comm_event->comm_size = size;
3945
3946         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3947
3948         rcu_read_lock();
3949         list_for_each_entry_rcu(pmu, &pmus, entry) {
3950                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3951                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3952
3953                 ctxn = pmu->task_ctx_nr;
3954                 if (ctxn < 0)
3955                         continue;
3956
3957                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3958                 if (ctx)
3959                         perf_event_comm_ctx(ctx, comm_event);
3960         }
3961         rcu_read_unlock();
3962 }
3963
3964 void perf_event_comm(struct task_struct *task)
3965 {
3966         struct perf_comm_event comm_event;
3967         struct perf_event_context *ctx;
3968         int ctxn;
3969
3970         for_each_task_context_nr(ctxn) {
3971                 ctx = task->perf_event_ctxp[ctxn];
3972                 if (!ctx)
3973                         continue;
3974
3975                 perf_event_enable_on_exec(ctx);
3976         }
3977
3978         if (!atomic_read(&nr_comm_events))
3979                 return;
3980
3981         comm_event = (struct perf_comm_event){
3982                 .task   = task,
3983                 /* .comm      */
3984                 /* .comm_size */
3985                 .event_id  = {
3986                         .header = {
3987                                 .type = PERF_RECORD_COMM,
3988                                 .misc = 0,
3989                                 /* .size */
3990                         },
3991                         /* .pid */
3992                         /* .tid */
3993                 },
3994         };
3995
3996         perf_event_comm_event(&comm_event);
3997 }
3998
3999 /*
4000  * mmap tracking
4001  */
4002
4003 struct perf_mmap_event {
4004         struct vm_area_struct   *vma;
4005
4006         const char              *file_name;
4007         int                     file_size;
4008
4009         struct {
4010                 struct perf_event_header        header;
4011
4012                 u32                             pid;
4013                 u32                             tid;
4014                 u64                             start;
4015                 u64                             len;
4016                 u64                             pgoff;
4017         } event_id;
4018 };
4019
4020 static void perf_event_mmap_output(struct perf_event *event,
4021                                      struct perf_mmap_event *mmap_event)
4022 {
4023         struct perf_output_handle handle;
4024         int size = mmap_event->event_id.header.size;
4025         int ret = perf_output_begin(&handle, event, size, 0, 0);
4026
4027         if (ret)
4028                 return;
4029
4030         mmap_event->event_id.pid = perf_event_pid(event, current);
4031         mmap_event->event_id.tid = perf_event_tid(event, current);
4032
4033         perf_output_put(&handle, mmap_event->event_id);
4034         perf_output_copy(&handle, mmap_event->file_name,
4035                                    mmap_event->file_size);
4036         perf_output_end(&handle);
4037 }
4038
4039 static int perf_event_mmap_match(struct perf_event *event,
4040                                    struct perf_mmap_event *mmap_event,
4041                                    int executable)
4042 {
4043         if (event->state < PERF_EVENT_STATE_INACTIVE)
4044                 return 0;
4045
4046         if (event->cpu != -1 && event->cpu != smp_processor_id())
4047                 return 0;
4048
4049         if ((!executable && event->attr.mmap_data) ||
4050             (executable && event->attr.mmap))
4051                 return 1;
4052
4053         return 0;
4054 }
4055
4056 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4057                                   struct perf_mmap_event *mmap_event,
4058                                   int executable)
4059 {
4060         struct perf_event *event;
4061
4062         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4063                 if (perf_event_mmap_match(event, mmap_event, executable))
4064                         perf_event_mmap_output(event, mmap_event);
4065         }
4066 }
4067
4068 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4069 {
4070         struct perf_cpu_context *cpuctx;
4071         struct perf_event_context *ctx;
4072         struct vm_area_struct *vma = mmap_event->vma;
4073         struct file *file = vma->vm_file;
4074         unsigned int size;
4075         char tmp[16];
4076         char *buf = NULL;
4077         const char *name;
4078         struct pmu *pmu;
4079         int ctxn;
4080
4081         memset(tmp, 0, sizeof(tmp));
4082
4083         if (file) {
4084                 /*
4085                  * d_path works from the end of the buffer backwards, so we
4086                  * need to add enough zero bytes after the string to handle
4087                  * the 64bit alignment we do later.
4088                  */
4089                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4090                 if (!buf) {
4091                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4092                         goto got_name;
4093                 }
4094                 name = d_path(&file->f_path, buf, PATH_MAX);
4095                 if (IS_ERR(name)) {
4096                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4097                         goto got_name;
4098                 }
4099         } else {
4100                 if (arch_vma_name(mmap_event->vma)) {
4101                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4102                                        sizeof(tmp));
4103                         goto got_name;
4104                 }
4105
4106                 if (!vma->vm_mm) {
4107                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4108                         goto got_name;
4109                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4110                                 vma->vm_end >= vma->vm_mm->brk) {
4111                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4112                         goto got_name;
4113                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4114                                 vma->vm_end >= vma->vm_mm->start_stack) {
4115                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4116                         goto got_name;
4117                 }
4118
4119                 name = strncpy(tmp, "//anon", sizeof(tmp));
4120                 goto got_name;
4121         }
4122
4123 got_name:
4124         size = ALIGN(strlen(name)+1, sizeof(u64));
4125
4126         mmap_event->file_name = name;
4127         mmap_event->file_size = size;
4128
4129         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4130
4131         rcu_read_lock();
4132         list_for_each_entry_rcu(pmu, &pmus, entry) {
4133                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4134                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4135                                         vma->vm_flags & VM_EXEC);
4136
4137                 ctxn = pmu->task_ctx_nr;
4138                 if (ctxn < 0)
4139                         continue;
4140
4141                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4142                 if (ctx) {
4143                         perf_event_mmap_ctx(ctx, mmap_event,
4144                                         vma->vm_flags & VM_EXEC);
4145                 }
4146         }
4147         rcu_read_unlock();
4148
4149         kfree(buf);
4150 }
4151
4152 void perf_event_mmap(struct vm_area_struct *vma)
4153 {
4154         struct perf_mmap_event mmap_event;
4155
4156         if (!atomic_read(&nr_mmap_events))
4157                 return;
4158
4159         mmap_event = (struct perf_mmap_event){
4160                 .vma    = vma,
4161                 /* .file_name */
4162                 /* .file_size */
4163                 .event_id  = {
4164                         .header = {
4165                                 .type = PERF_RECORD_MMAP,
4166                                 .misc = PERF_RECORD_MISC_USER,
4167                                 /* .size */
4168                         },
4169                         /* .pid */
4170                         /* .tid */
4171                         .start  = vma->vm_start,
4172                         .len    = vma->vm_end - vma->vm_start,
4173                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4174                 },
4175         };
4176
4177         perf_event_mmap_event(&mmap_event);
4178 }
4179
4180 /*
4181  * IRQ throttle logging
4182  */
4183
4184 static void perf_log_throttle(struct perf_event *event, int enable)
4185 {
4186         struct perf_output_handle handle;
4187         int ret;
4188
4189         struct {
4190                 struct perf_event_header        header;
4191                 u64                             time;
4192                 u64                             id;
4193                 u64                             stream_id;
4194         } throttle_event = {
4195                 .header = {
4196                         .type = PERF_RECORD_THROTTLE,
4197                         .misc = 0,
4198                         .size = sizeof(throttle_event),
4199                 },
4200                 .time           = perf_clock(),
4201                 .id             = primary_event_id(event),
4202                 .stream_id      = event->id,
4203         };
4204
4205         if (enable)
4206                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4207
4208         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4209         if (ret)
4210                 return;
4211
4212         perf_output_put(&handle, throttle_event);
4213         perf_output_end(&handle);
4214 }
4215
4216 /*
4217  * Generic event overflow handling, sampling.
4218  */
4219
4220 static int __perf_event_overflow(struct perf_event *event, int nmi,
4221                                    int throttle, struct perf_sample_data *data,
4222                                    struct pt_regs *regs)
4223 {
4224         int events = atomic_read(&event->event_limit);
4225         struct hw_perf_event *hwc = &event->hw;
4226         int ret = 0;
4227
4228         if (!throttle) {
4229                 hwc->interrupts++;
4230         } else {
4231                 if (hwc->interrupts != MAX_INTERRUPTS) {
4232                         hwc->interrupts++;
4233                         if (HZ * hwc->interrupts >
4234                                         (u64)sysctl_perf_event_sample_rate) {
4235                                 hwc->interrupts = MAX_INTERRUPTS;
4236                                 perf_log_throttle(event, 0);
4237                                 ret = 1;
4238                         }
4239                 } else {
4240                         /*
4241                          * Keep re-disabling events even though on the previous
4242                          * pass we disabled it - just in case we raced with a
4243                          * sched-in and the event got enabled again:
4244                          */
4245                         ret = 1;
4246                 }
4247         }
4248
4249         if (event->attr.freq) {
4250                 u64 now = perf_clock();
4251                 s64 delta = now - hwc->freq_time_stamp;
4252
4253                 hwc->freq_time_stamp = now;
4254
4255                 if (delta > 0 && delta < 2*TICK_NSEC)
4256                         perf_adjust_period(event, delta, hwc->last_period);
4257         }
4258
4259         /*
4260          * XXX event_limit might not quite work as expected on inherited
4261          * events
4262          */
4263
4264         event->pending_kill = POLL_IN;
4265         if (events && atomic_dec_and_test(&event->event_limit)) {
4266                 ret = 1;
4267                 event->pending_kill = POLL_HUP;
4268                 if (nmi) {
4269                         event->pending_disable = 1;
4270                         perf_pending_queue(&event->pending,
4271                                            perf_pending_event);
4272                 } else
4273                         perf_event_disable(event);
4274         }
4275
4276         if (event->overflow_handler)
4277                 event->overflow_handler(event, nmi, data, regs);
4278         else
4279                 perf_event_output(event, nmi, data, regs);
4280
4281         return ret;
4282 }
4283
4284 int perf_event_overflow(struct perf_event *event, int nmi,
4285                           struct perf_sample_data *data,
4286                           struct pt_regs *regs)
4287 {
4288         return __perf_event_overflow(event, nmi, 1, data, regs);
4289 }
4290
4291 /*
4292  * Generic software event infrastructure
4293  */
4294
4295 struct swevent_htable {
4296         struct swevent_hlist            *swevent_hlist;
4297         struct mutex                    hlist_mutex;
4298         int                             hlist_refcount;
4299
4300         /* Recursion avoidance in each contexts */
4301         int                             recursion[PERF_NR_CONTEXTS];
4302 };
4303
4304 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4305
4306 /*
4307  * We directly increment event->count and keep a second value in
4308  * event->hw.period_left to count intervals. This period event
4309  * is kept in the range [-sample_period, 0] so that we can use the
4310  * sign as trigger.
4311  */
4312
4313 static u64 perf_swevent_set_period(struct perf_event *event)
4314 {
4315         struct hw_perf_event *hwc = &event->hw;
4316         u64 period = hwc->last_period;
4317         u64 nr, offset;
4318         s64 old, val;
4319
4320         hwc->last_period = hwc->sample_period;
4321
4322 again:
4323         old = val = local64_read(&hwc->period_left);
4324         if (val < 0)
4325                 return 0;
4326
4327         nr = div64_u64(period + val, period);
4328         offset = nr * period;
4329         val -= offset;
4330         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4331                 goto again;
4332
4333         return nr;
4334 }
4335
4336 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4337                                     int nmi, struct perf_sample_data *data,
4338                                     struct pt_regs *regs)
4339 {
4340         struct hw_perf_event *hwc = &event->hw;
4341         int throttle = 0;
4342
4343         data->period = event->hw.last_period;
4344         if (!overflow)
4345                 overflow = perf_swevent_set_period(event);
4346
4347         if (hwc->interrupts == MAX_INTERRUPTS)
4348                 return;
4349
4350         for (; overflow; overflow--) {
4351                 if (__perf_event_overflow(event, nmi, throttle,
4352                                             data, regs)) {
4353                         /*
4354                          * We inhibit the overflow from happening when
4355                          * hwc->interrupts == MAX_INTERRUPTS.
4356                          */
4357                         break;
4358                 }
4359                 throttle = 1;
4360         }
4361 }
4362
4363 static void perf_swevent_event(struct perf_event *event, u64 nr,
4364                                int nmi, struct perf_sample_data *data,
4365                                struct pt_regs *regs)
4366 {
4367         struct hw_perf_event *hwc = &event->hw;
4368
4369         local64_add(nr, &event->count);
4370
4371         if (!regs)
4372                 return;
4373
4374         if (!hwc->sample_period)
4375                 return;
4376
4377         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4378                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4379
4380         if (local64_add_negative(nr, &hwc->period_left))
4381                 return;
4382
4383         perf_swevent_overflow(event, 0, nmi, data, regs);
4384 }
4385
4386 static int perf_exclude_event(struct perf_event *event,
4387                               struct pt_regs *regs)
4388 {
4389         if (event->hw.state & PERF_HES_STOPPED)
4390                 return 0;
4391
4392         if (regs) {
4393                 if (event->attr.exclude_user && user_mode(regs))
4394                         return 1;
4395
4396                 if (event->attr.exclude_kernel && !user_mode(regs))
4397                         return 1;
4398         }
4399
4400         return 0;
4401 }
4402
4403 static int perf_swevent_match(struct perf_event *event,
4404                                 enum perf_type_id type,
4405                                 u32 event_id,
4406                                 struct perf_sample_data *data,
4407                                 struct pt_regs *regs)
4408 {
4409         if (event->attr.type != type)
4410                 return 0;
4411
4412         if (event->attr.config != event_id)
4413                 return 0;
4414
4415         if (perf_exclude_event(event, regs))
4416                 return 0;
4417
4418         return 1;
4419 }
4420
4421 static inline u64 swevent_hash(u64 type, u32 event_id)
4422 {
4423         u64 val = event_id | (type << 32);
4424
4425         return hash_64(val, SWEVENT_HLIST_BITS);
4426 }
4427
4428 static inline struct hlist_head *
4429 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4430 {
4431         u64 hash = swevent_hash(type, event_id);
4432
4433         return &hlist->heads[hash];
4434 }
4435
4436 /* For the read side: events when they trigger */
4437 static inline struct hlist_head *
4438 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4439 {
4440         struct swevent_hlist *hlist;
4441
4442         hlist = rcu_dereference(swhash->swevent_hlist);
4443         if (!hlist)
4444                 return NULL;
4445
4446         return __find_swevent_head(hlist, type, event_id);
4447 }
4448
4449 /* For the event head insertion and removal in the hlist */
4450 static inline struct hlist_head *
4451 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4452 {
4453         struct swevent_hlist *hlist;
4454         u32 event_id = event->attr.config;
4455         u64 type = event->attr.type;
4456
4457         /*
4458          * Event scheduling is always serialized against hlist allocation
4459          * and release. Which makes the protected version suitable here.
4460          * The context lock guarantees that.
4461          */
4462         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4463                                           lockdep_is_held(&event->ctx->lock));
4464         if (!hlist)
4465                 return NULL;
4466
4467         return __find_swevent_head(hlist, type, event_id);
4468 }
4469
4470 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4471                                     u64 nr, int nmi,
4472                                     struct perf_sample_data *data,
4473                                     struct pt_regs *regs)
4474 {
4475         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4476         struct perf_event *event;
4477         struct hlist_node *node;
4478         struct hlist_head *head;
4479
4480         rcu_read_lock();
4481         head = find_swevent_head_rcu(swhash, type, event_id);
4482         if (!head)
4483                 goto end;
4484
4485         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4486                 if (perf_swevent_match(event, type, event_id, data, regs))
4487                         perf_swevent_event(event, nr, nmi, data, regs);
4488         }
4489 end:
4490         rcu_read_unlock();
4491 }
4492
4493 int perf_swevent_get_recursion_context(void)
4494 {
4495         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4496
4497         return get_recursion_context(swhash->recursion);
4498 }
4499 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4500
4501 void inline perf_swevent_put_recursion_context(int rctx)
4502 {
4503         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4504
4505         put_recursion_context(swhash->recursion, rctx);
4506 }
4507
4508 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4509                             struct pt_regs *regs, u64 addr)
4510 {
4511         struct perf_sample_data data;
4512         int rctx;
4513
4514         preempt_disable_notrace();
4515         rctx = perf_swevent_get_recursion_context();
4516         if (rctx < 0)
4517                 return;
4518
4519         perf_sample_data_init(&data, addr);
4520
4521         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4522
4523         perf_swevent_put_recursion_context(rctx);
4524         preempt_enable_notrace();
4525 }
4526
4527 static void perf_swevent_read(struct perf_event *event)
4528 {
4529 }
4530
4531 static int perf_swevent_add(struct perf_event *event, int flags)
4532 {
4533         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4534         struct hw_perf_event *hwc = &event->hw;
4535         struct hlist_head *head;
4536
4537         if (hwc->sample_period) {
4538                 hwc->last_period = hwc->sample_period;
4539                 perf_swevent_set_period(event);
4540         }
4541
4542         hwc->state = !(flags & PERF_EF_START);
4543
4544         head = find_swevent_head(swhash, event);
4545         if (WARN_ON_ONCE(!head))
4546                 return -EINVAL;
4547
4548         hlist_add_head_rcu(&event->hlist_entry, head);
4549
4550         return 0;
4551 }
4552
4553 static void perf_swevent_del(struct perf_event *event, int flags)
4554 {
4555         hlist_del_rcu(&event->hlist_entry);
4556 }
4557
4558 static void perf_swevent_start(struct perf_event *event, int flags)
4559 {
4560         event->hw.state = 0;
4561 }
4562
4563 static void perf_swevent_stop(struct perf_event *event, int flags)
4564 {
4565         event->hw.state = PERF_HES_STOPPED;
4566 }
4567
4568 /* Deref the hlist from the update side */
4569 static inline struct swevent_hlist *
4570 swevent_hlist_deref(struct swevent_htable *swhash)
4571 {
4572         return rcu_dereference_protected(swhash->swevent_hlist,
4573                                          lockdep_is_held(&swhash->hlist_mutex));
4574 }
4575
4576 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4577 {
4578         struct swevent_hlist *hlist;
4579
4580         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4581         kfree(hlist);
4582 }
4583
4584 static void swevent_hlist_release(struct swevent_htable *swhash)
4585 {
4586         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4587
4588         if (!hlist)
4589                 return;
4590
4591         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4592         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4593 }
4594
4595 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4596 {
4597         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4598
4599         mutex_lock(&swhash->hlist_mutex);
4600
4601         if (!--swhash->hlist_refcount)
4602                 swevent_hlist_release(swhash);
4603
4604         mutex_unlock(&swhash->hlist_mutex);
4605 }
4606
4607 static void swevent_hlist_put(struct perf_event *event)
4608 {
4609         int cpu;
4610
4611         if (event->cpu != -1) {
4612                 swevent_hlist_put_cpu(event, event->cpu);
4613                 return;
4614         }
4615
4616         for_each_possible_cpu(cpu)
4617                 swevent_hlist_put_cpu(event, cpu);
4618 }
4619
4620 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4621 {
4622         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4623         int err = 0;
4624
4625         mutex_lock(&swhash->hlist_mutex);
4626
4627         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4628                 struct swevent_hlist *hlist;
4629
4630                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4631                 if (!hlist) {
4632                         err = -ENOMEM;
4633                         goto exit;
4634                 }
4635                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4636         }
4637         swhash->hlist_refcount++;
4638 exit:
4639         mutex_unlock(&swhash->hlist_mutex);
4640
4641         return err;
4642 }
4643
4644 static int swevent_hlist_get(struct perf_event *event)
4645 {
4646         int err;
4647         int cpu, failed_cpu;
4648
4649         if (event->cpu != -1)
4650                 return swevent_hlist_get_cpu(event, event->cpu);
4651
4652         get_online_cpus();
4653         for_each_possible_cpu(cpu) {
4654                 err = swevent_hlist_get_cpu(event, cpu);
4655                 if (err) {
4656                         failed_cpu = cpu;
4657                         goto fail;
4658                 }
4659         }
4660         put_online_cpus();
4661
4662         return 0;
4663 fail:
4664         for_each_possible_cpu(cpu) {
4665                 if (cpu == failed_cpu)
4666                         break;
4667                 swevent_hlist_put_cpu(event, cpu);
4668         }
4669
4670         put_online_cpus();
4671         return err;
4672 }
4673
4674 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4675
4676 static void sw_perf_event_destroy(struct perf_event *event)
4677 {
4678         u64 event_id = event->attr.config;
4679
4680         WARN_ON(event->parent);
4681
4682         atomic_dec(&perf_swevent_enabled[event_id]);
4683         swevent_hlist_put(event);
4684 }
4685
4686 static int perf_swevent_init(struct perf_event *event)
4687 {
4688         int event_id = event->attr.config;
4689
4690         if (event->attr.type != PERF_TYPE_SOFTWARE)
4691                 return -ENOENT;
4692
4693         switch (event_id) {
4694         case PERF_COUNT_SW_CPU_CLOCK:
4695         case PERF_COUNT_SW_TASK_CLOCK:
4696                 return -ENOENT;
4697
4698         default:
4699                 break;
4700         }
4701
4702         if (event_id > PERF_COUNT_SW_MAX)
4703                 return -ENOENT;
4704
4705         if (!event->parent) {
4706                 int err;
4707
4708                 err = swevent_hlist_get(event);
4709                 if (err)
4710                         return err;
4711
4712                 atomic_inc(&perf_swevent_enabled[event_id]);
4713                 event->destroy = sw_perf_event_destroy;
4714         }
4715
4716         return 0;
4717 }
4718
4719 static struct pmu perf_swevent = {
4720         .task_ctx_nr    = perf_sw_context,
4721
4722         .event_init     = perf_swevent_init,
4723         .add            = perf_swevent_add,
4724         .del            = perf_swevent_del,
4725         .start          = perf_swevent_start,
4726         .stop           = perf_swevent_stop,
4727         .read           = perf_swevent_read,
4728 };
4729
4730 #ifdef CONFIG_EVENT_TRACING
4731
4732 static int perf_tp_filter_match(struct perf_event *event,
4733                                 struct perf_sample_data *data)
4734 {
4735         void *record = data->raw->data;
4736
4737         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4738                 return 1;
4739         return 0;
4740 }
4741
4742 static int perf_tp_event_match(struct perf_event *event,
4743                                 struct perf_sample_data *data,
4744                                 struct pt_regs *regs)
4745 {
4746         /*
4747          * All tracepoints are from kernel-space.
4748          */
4749         if (event->attr.exclude_kernel)
4750                 return 0;
4751
4752         if (!perf_tp_filter_match(event, data))
4753                 return 0;
4754
4755         return 1;
4756 }
4757
4758 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4759                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4760 {
4761         struct perf_sample_data data;
4762         struct perf_event *event;
4763         struct hlist_node *node;
4764
4765         struct perf_raw_record raw = {
4766                 .size = entry_size,
4767                 .data = record,
4768         };
4769
4770         perf_sample_data_init(&data, addr);
4771         data.raw = &raw;
4772
4773         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4774                 if (perf_tp_event_match(event, &data, regs))
4775                         perf_swevent_event(event, count, 1, &data, regs);
4776         }
4777
4778         perf_swevent_put_recursion_context(rctx);
4779 }
4780 EXPORT_SYMBOL_GPL(perf_tp_event);
4781
4782 static void tp_perf_event_destroy(struct perf_event *event)
4783 {
4784         perf_trace_destroy(event);
4785 }
4786
4787 static int perf_tp_event_init(struct perf_event *event)
4788 {
4789         int err;
4790
4791         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4792                 return -ENOENT;
4793
4794         /*
4795          * Raw tracepoint data is a severe data leak, only allow root to
4796          * have these.
4797          */
4798         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4799                         perf_paranoid_tracepoint_raw() &&
4800                         !capable(CAP_SYS_ADMIN))
4801                 return -EPERM;
4802
4803         err = perf_trace_init(event);
4804         if (err)
4805                 return err;
4806
4807         event->destroy = tp_perf_event_destroy;
4808
4809         return 0;
4810 }
4811
4812 static struct pmu perf_tracepoint = {
4813         .task_ctx_nr    = perf_sw_context,
4814
4815         .event_init     = perf_tp_event_init,
4816         .add            = perf_trace_add,
4817         .del            = perf_trace_del,
4818         .start          = perf_swevent_start,
4819         .stop           = perf_swevent_stop,
4820         .read           = perf_swevent_read,
4821 };
4822
4823 static inline void perf_tp_register(void)
4824 {
4825         perf_pmu_register(&perf_tracepoint);
4826 }
4827
4828 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4829 {
4830         char *filter_str;
4831         int ret;
4832
4833         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4834                 return -EINVAL;
4835
4836         filter_str = strndup_user(arg, PAGE_SIZE);
4837         if (IS_ERR(filter_str))
4838                 return PTR_ERR(filter_str);
4839
4840         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4841
4842         kfree(filter_str);
4843         return ret;
4844 }
4845
4846 static void perf_event_free_filter(struct perf_event *event)
4847 {
4848         ftrace_profile_free_filter(event);
4849 }
4850
4851 #else
4852
4853 static inline void perf_tp_register(void)
4854 {
4855 }
4856
4857 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4858 {
4859         return -ENOENT;
4860 }
4861
4862 static void perf_event_free_filter(struct perf_event *event)
4863 {
4864 }
4865
4866 #endif /* CONFIG_EVENT_TRACING */
4867
4868 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4869 void perf_bp_event(struct perf_event *bp, void *data)
4870 {
4871         struct perf_sample_data sample;
4872         struct pt_regs *regs = data;
4873
4874         perf_sample_data_init(&sample, bp->attr.bp_addr);
4875
4876         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4877                 perf_swevent_event(bp, 1, 1, &sample, regs);
4878 }
4879 #endif
4880
4881 /*
4882  * hrtimer based swevent callback
4883  */
4884
4885 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4886 {
4887         enum hrtimer_restart ret = HRTIMER_RESTART;
4888         struct perf_sample_data data;
4889         struct pt_regs *regs;
4890         struct perf_event *event;
4891         u64 period;
4892
4893         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4894         event->pmu->read(event);
4895
4896         perf_sample_data_init(&data, 0);
4897         data.period = event->hw.last_period;
4898         regs = get_irq_regs();
4899
4900         if (regs && !perf_exclude_event(event, regs)) {
4901                 if (!(event->attr.exclude_idle && current->pid == 0))
4902                         if (perf_event_overflow(event, 0, &data, regs))
4903                                 ret = HRTIMER_NORESTART;
4904         }
4905
4906         period = max_t(u64, 10000, event->hw.sample_period);
4907         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4908
4909         return ret;
4910 }
4911
4912 static void perf_swevent_start_hrtimer(struct perf_event *event)
4913 {
4914         struct hw_perf_event *hwc = &event->hw;
4915
4916         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4917         hwc->hrtimer.function = perf_swevent_hrtimer;
4918         if (hwc->sample_period) {
4919                 s64 period = local64_read(&hwc->period_left);
4920
4921                 if (period) {
4922                         if (period < 0)
4923                                 period = 10000;
4924
4925                         local64_set(&hwc->period_left, 0);
4926                 } else {
4927                         period = max_t(u64, 10000, hwc->sample_period);
4928                 }
4929                 __hrtimer_start_range_ns(&hwc->hrtimer,
4930                                 ns_to_ktime(period), 0,
4931                                 HRTIMER_MODE_REL_PINNED, 0);
4932         }
4933 }
4934
4935 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4936 {
4937         struct hw_perf_event *hwc = &event->hw;
4938
4939         if (hwc->sample_period) {
4940                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4941                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4942
4943                 hrtimer_cancel(&hwc->hrtimer);
4944         }
4945 }
4946
4947 /*
4948  * Software event: cpu wall time clock
4949  */
4950
4951 static void cpu_clock_event_update(struct perf_event *event)
4952 {
4953         s64 prev;
4954         u64 now;
4955
4956         now = local_clock();
4957         prev = local64_xchg(&event->hw.prev_count, now);
4958         local64_add(now - prev, &event->count);
4959 }
4960
4961 static void cpu_clock_event_start(struct perf_event *event, int flags)
4962 {
4963         local64_set(&event->hw.prev_count, local_clock());
4964         perf_swevent_start_hrtimer(event);
4965 }
4966
4967 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4968 {
4969         perf_swevent_cancel_hrtimer(event);
4970         cpu_clock_event_update(event);
4971 }
4972
4973 static int cpu_clock_event_add(struct perf_event *event, int flags)
4974 {
4975         if (flags & PERF_EF_START)
4976                 cpu_clock_event_start(event, flags);
4977
4978         return 0;
4979 }
4980
4981 static void cpu_clock_event_del(struct perf_event *event, int flags)
4982 {
4983         cpu_clock_event_stop(event, flags);
4984 }
4985
4986 static void cpu_clock_event_read(struct perf_event *event)
4987 {
4988         cpu_clock_event_update(event);
4989 }
4990
4991 static int cpu_clock_event_init(struct perf_event *event)
4992 {
4993         if (event->attr.type != PERF_TYPE_SOFTWARE)
4994                 return -ENOENT;
4995
4996         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4997                 return -ENOENT;
4998
4999         return 0;
5000 }
5001
5002 static struct pmu perf_cpu_clock = {
5003         .task_ctx_nr    = perf_sw_context,
5004
5005         .event_init     = cpu_clock_event_init,
5006         .add            = cpu_clock_event_add,
5007         .del            = cpu_clock_event_del,
5008         .start          = cpu_clock_event_start,
5009         .stop           = cpu_clock_event_stop,
5010         .read           = cpu_clock_event_read,
5011 };
5012
5013 /*
5014  * Software event: task time clock
5015  */
5016
5017 static void task_clock_event_update(struct perf_event *event, u64 now)
5018 {
5019         u64 prev;
5020         s64 delta;
5021
5022         prev = local64_xchg(&event->hw.prev_count, now);
5023         delta = now - prev;
5024         local64_add(delta, &event->count);
5025 }
5026
5027 static void task_clock_event_start(struct perf_event *event, int flags)
5028 {
5029         local64_set(&event->hw.prev_count, event->ctx->time);
5030         perf_swevent_start_hrtimer(event);
5031 }
5032
5033 static void task_clock_event_stop(struct perf_event *event, int flags)
5034 {
5035         perf_swevent_cancel_hrtimer(event);
5036         task_clock_event_update(event, event->ctx->time);
5037 }
5038
5039 static int task_clock_event_add(struct perf_event *event, int flags)
5040 {
5041         if (flags & PERF_EF_START)
5042                 task_clock_event_start(event, flags);
5043
5044         return 0;
5045 }
5046
5047 static void task_clock_event_del(struct perf_event *event, int flags)
5048 {
5049         task_clock_event_stop(event, PERF_EF_UPDATE);
5050 }
5051
5052 static void task_clock_event_read(struct perf_event *event)
5053 {
5054         u64 time;
5055
5056         if (!in_nmi()) {
5057                 update_context_time(event->ctx);
5058                 time = event->ctx->time;
5059         } else {
5060                 u64 now = perf_clock();
5061                 u64 delta = now - event->ctx->timestamp;
5062                 time = event->ctx->time + delta;
5063         }
5064
5065         task_clock_event_update(event, time);
5066 }
5067
5068 static int task_clock_event_init(struct perf_event *event)
5069 {
5070         if (event->attr.type != PERF_TYPE_SOFTWARE)
5071                 return -ENOENT;
5072
5073         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5074                 return -ENOENT;
5075
5076         return 0;
5077 }
5078
5079 static struct pmu perf_task_clock = {
5080         .task_ctx_nr    = perf_sw_context,
5081
5082         .event_init     = task_clock_event_init,
5083         .add            = task_clock_event_add,
5084         .del            = task_clock_event_del,
5085         .start          = task_clock_event_start,
5086         .stop           = task_clock_event_stop,
5087         .read           = task_clock_event_read,
5088 };
5089
5090 static void perf_pmu_nop_void(struct pmu *pmu)
5091 {
5092 }
5093
5094 static int perf_pmu_nop_int(struct pmu *pmu)
5095 {
5096         return 0;
5097 }
5098
5099 static void perf_pmu_start_txn(struct pmu *pmu)
5100 {
5101         perf_pmu_disable(pmu);
5102 }
5103
5104 static int perf_pmu_commit_txn(struct pmu *pmu)
5105 {
5106         perf_pmu_enable(pmu);
5107         return 0;
5108 }
5109
5110 static void perf_pmu_cancel_txn(struct pmu *pmu)
5111 {
5112         perf_pmu_enable(pmu);
5113 }
5114
5115 /*
5116  * Ensures all contexts with the same task_ctx_nr have the same
5117  * pmu_cpu_context too.
5118  */
5119 static void *find_pmu_context(int ctxn)
5120 {
5121         struct pmu *pmu;
5122
5123         if (ctxn < 0)
5124                 return NULL;
5125
5126         list_for_each_entry(pmu, &pmus, entry) {
5127                 if (pmu->task_ctx_nr == ctxn)
5128                         return pmu->pmu_cpu_context;
5129         }
5130
5131         return NULL;
5132 }
5133
5134 static void free_pmu_context(void * __percpu cpu_context)
5135 {
5136         struct pmu *pmu;
5137
5138         mutex_lock(&pmus_lock);
5139         /*
5140          * Like a real lame refcount.
5141          */
5142         list_for_each_entry(pmu, &pmus, entry) {
5143                 if (pmu->pmu_cpu_context == cpu_context)
5144                         goto out;
5145         }
5146
5147         free_percpu(cpu_context);
5148 out:
5149         mutex_unlock(&pmus_lock);
5150 }
5151
5152 int perf_pmu_register(struct pmu *pmu)
5153 {
5154         int cpu, ret;
5155
5156         mutex_lock(&pmus_lock);
5157         ret = -ENOMEM;
5158         pmu->pmu_disable_count = alloc_percpu(int);
5159         if (!pmu->pmu_disable_count)
5160                 goto unlock;
5161
5162         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5163         if (pmu->pmu_cpu_context)
5164                 goto got_cpu_context;
5165
5166         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5167         if (!pmu->pmu_cpu_context)
5168                 goto free_pdc;
5169
5170         for_each_possible_cpu(cpu) {
5171                 struct perf_cpu_context *cpuctx;
5172
5173                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5174                 __perf_event_init_context(&cpuctx->ctx);
5175                 cpuctx->ctx.pmu = pmu;
5176                 cpuctx->timer_interval = TICK_NSEC;
5177                 hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5178                 cpuctx->timer.function = perf_event_context_tick;
5179         }
5180
5181 got_cpu_context:
5182         if (!pmu->start_txn) {
5183                 if (pmu->pmu_enable) {
5184                         /*
5185                          * If we have pmu_enable/pmu_disable calls, install
5186                          * transaction stubs that use that to try and batch
5187                          * hardware accesses.
5188                          */
5189                         pmu->start_txn  = perf_pmu_start_txn;
5190                         pmu->commit_txn = perf_pmu_commit_txn;
5191                         pmu->cancel_txn = perf_pmu_cancel_txn;
5192                 } else {
5193                         pmu->start_txn  = perf_pmu_nop_void;
5194                         pmu->commit_txn = perf_pmu_nop_int;
5195                         pmu->cancel_txn = perf_pmu_nop_void;
5196                 }
5197         }
5198
5199         if (!pmu->pmu_enable) {
5200                 pmu->pmu_enable  = perf_pmu_nop_void;
5201                 pmu->pmu_disable = perf_pmu_nop_void;
5202         }
5203
5204         list_add_rcu(&pmu->entry, &pmus);
5205         ret = 0;
5206 unlock:
5207         mutex_unlock(&pmus_lock);
5208
5209         return ret;
5210
5211 free_pdc:
5212         free_percpu(pmu->pmu_disable_count);
5213         goto unlock;
5214 }
5215
5216 void perf_pmu_unregister(struct pmu *pmu)
5217 {
5218         mutex_lock(&pmus_lock);
5219         list_del_rcu(&pmu->entry);
5220         mutex_unlock(&pmus_lock);
5221
5222         /*
5223          * We dereference the pmu list under both SRCU and regular RCU, so
5224          * synchronize against both of those.
5225          */
5226         synchronize_srcu(&pmus_srcu);
5227         synchronize_rcu();
5228
5229         free_percpu(pmu->pmu_disable_count);
5230         free_pmu_context(pmu->pmu_cpu_context);
5231 }
5232
5233 struct pmu *perf_init_event(struct perf_event *event)
5234 {
5235         struct pmu *pmu = NULL;
5236         int idx;
5237
5238         idx = srcu_read_lock(&pmus_srcu);
5239         list_for_each_entry_rcu(pmu, &pmus, entry) {
5240                 int ret = pmu->event_init(event);
5241                 if (!ret)
5242                         goto unlock;
5243
5244                 if (ret != -ENOENT) {
5245                         pmu = ERR_PTR(ret);
5246                         goto unlock;
5247                 }
5248         }
5249         pmu = ERR_PTR(-ENOENT);
5250 unlock:
5251         srcu_read_unlock(&pmus_srcu, idx);
5252
5253         return pmu;
5254 }
5255
5256 /*
5257  * Allocate and initialize a event structure
5258  */
5259 static struct perf_event *
5260 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5261                    struct perf_event *group_leader,
5262                    struct perf_event *parent_event,
5263                    perf_overflow_handler_t overflow_handler)
5264 {
5265         struct pmu *pmu;
5266         struct perf_event *event;
5267         struct hw_perf_event *hwc;
5268         long err;
5269
5270         event = kzalloc(sizeof(*event), GFP_KERNEL);
5271         if (!event)
5272                 return ERR_PTR(-ENOMEM);
5273
5274         /*
5275          * Single events are their own group leaders, with an
5276          * empty sibling list:
5277          */
5278         if (!group_leader)
5279                 group_leader = event;
5280
5281         mutex_init(&event->child_mutex);
5282         INIT_LIST_HEAD(&event->child_list);
5283
5284         INIT_LIST_HEAD(&event->group_entry);
5285         INIT_LIST_HEAD(&event->event_entry);
5286         INIT_LIST_HEAD(&event->sibling_list);
5287         init_waitqueue_head(&event->waitq);
5288
5289         mutex_init(&event->mmap_mutex);
5290
5291         event->cpu              = cpu;
5292         event->attr             = *attr;
5293         event->group_leader     = group_leader;
5294         event->pmu              = NULL;
5295         event->oncpu            = -1;
5296
5297         event->parent           = parent_event;
5298
5299         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5300         event->id               = atomic64_inc_return(&perf_event_id);
5301
5302         event->state            = PERF_EVENT_STATE_INACTIVE;
5303
5304         if (!overflow_handler && parent_event)
5305                 overflow_handler = parent_event->overflow_handler;
5306         
5307         event->overflow_handler = overflow_handler;
5308
5309         if (attr->disabled)
5310                 event->state = PERF_EVENT_STATE_OFF;
5311
5312         pmu = NULL;
5313
5314         hwc = &event->hw;
5315         hwc->sample_period = attr->sample_period;
5316         if (attr->freq && attr->sample_freq)
5317                 hwc->sample_period = 1;
5318         hwc->last_period = hwc->sample_period;
5319
5320         local64_set(&hwc->period_left, hwc->sample_period);
5321
5322         /*
5323          * we currently do not support PERF_FORMAT_GROUP on inherited events
5324          */
5325         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5326                 goto done;
5327
5328         pmu = perf_init_event(event);
5329
5330 done:
5331         err = 0;
5332         if (!pmu)
5333                 err = -EINVAL;
5334         else if (IS_ERR(pmu))
5335                 err = PTR_ERR(pmu);
5336
5337         if (err) {
5338                 if (event->ns)
5339                         put_pid_ns(event->ns);
5340                 kfree(event);
5341                 return ERR_PTR(err);
5342         }
5343
5344         event->pmu = pmu;
5345
5346         if (!event->parent) {
5347                 atomic_inc(&nr_events);
5348                 if (event->attr.mmap || event->attr.mmap_data)
5349                         atomic_inc(&nr_mmap_events);
5350                 if (event->attr.comm)
5351                         atomic_inc(&nr_comm_events);
5352                 if (event->attr.task)
5353                         atomic_inc(&nr_task_events);
5354                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5355                         err = get_callchain_buffers();
5356                         if (err) {
5357                                 free_event(event);
5358                                 return ERR_PTR(err);
5359                         }
5360                 }
5361         }
5362
5363         return event;
5364 }
5365
5366 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5367                           struct perf_event_attr *attr)
5368 {
5369         u32 size;
5370         int ret;
5371
5372         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5373                 return -EFAULT;
5374
5375         /*
5376          * zero the full structure, so that a short copy will be nice.
5377          */
5378         memset(attr, 0, sizeof(*attr));
5379
5380         ret = get_user(size, &uattr->size);
5381         if (ret)
5382                 return ret;
5383
5384         if (size > PAGE_SIZE)   /* silly large */
5385                 goto err_size;
5386
5387         if (!size)              /* abi compat */
5388                 size = PERF_ATTR_SIZE_VER0;
5389
5390         if (size < PERF_ATTR_SIZE_VER0)
5391                 goto err_size;
5392
5393         /*
5394          * If we're handed a bigger struct than we know of,
5395          * ensure all the unknown bits are 0 - i.e. new
5396          * user-space does not rely on any kernel feature
5397          * extensions we dont know about yet.
5398          */
5399         if (size > sizeof(*attr)) {
5400                 unsigned char __user *addr;
5401                 unsigned char __user *end;
5402                 unsigned char val;
5403
5404                 addr = (void __user *)uattr + sizeof(*attr);
5405                 end  = (void __user *)uattr + size;
5406
5407                 for (; addr < end; addr++) {
5408                         ret = get_user(val, addr);
5409                         if (ret)
5410                                 return ret;
5411                         if (val)
5412                                 goto err_size;
5413                 }
5414                 size = sizeof(*attr);
5415         }
5416
5417         ret = copy_from_user(attr, uattr, size);
5418         if (ret)
5419                 return -EFAULT;
5420
5421         /*
5422          * If the type exists, the corresponding creation will verify
5423          * the attr->config.
5424          */
5425         if (attr->type >= PERF_TYPE_MAX)
5426                 return -EINVAL;
5427
5428         if (attr->__reserved_1)
5429                 return -EINVAL;
5430
5431         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5432                 return -EINVAL;
5433
5434         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5435                 return -EINVAL;
5436
5437 out:
5438         return ret;
5439
5440 err_size:
5441         put_user(sizeof(*attr), &uattr->size);
5442         ret = -E2BIG;
5443         goto out;
5444 }
5445
5446 static int
5447 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5448 {
5449         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5450         int ret = -EINVAL;
5451
5452         if (!output_event)
5453                 goto set;
5454
5455         /* don't allow circular references */
5456         if (event == output_event)
5457                 goto out;
5458
5459         /*
5460          * Don't allow cross-cpu buffers
5461          */
5462         if (output_event->cpu != event->cpu)
5463                 goto out;
5464
5465         /*
5466          * If its not a per-cpu buffer, it must be the same task.
5467          */
5468         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5469                 goto out;
5470
5471 set:
5472         mutex_lock(&event->mmap_mutex);
5473         /* Can't redirect output if we've got an active mmap() */
5474         if (atomic_read(&event->mmap_count))
5475                 goto unlock;
5476
5477         if (output_event) {
5478                 /* get the buffer we want to redirect to */
5479                 buffer = perf_buffer_get(output_event);
5480                 if (!buffer)
5481                         goto unlock;
5482         }
5483
5484         old_buffer = event->buffer;
5485         rcu_assign_pointer(event->buffer, buffer);
5486         ret = 0;
5487 unlock:
5488         mutex_unlock(&event->mmap_mutex);
5489
5490         if (old_buffer)
5491                 perf_buffer_put(old_buffer);
5492 out:
5493         return ret;
5494 }
5495
5496 /**
5497  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5498  *
5499  * @attr_uptr:  event_id type attributes for monitoring/sampling
5500  * @pid:                target pid
5501  * @cpu:                target cpu
5502  * @group_fd:           group leader event fd
5503  */
5504 SYSCALL_DEFINE5(perf_event_open,
5505                 struct perf_event_attr __user *, attr_uptr,
5506                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5507 {
5508         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5509         struct perf_event_attr attr;
5510         struct perf_event_context *ctx;
5511         struct file *event_file = NULL;
5512         struct file *group_file = NULL;
5513         struct pmu *pmu;
5514         int event_fd;
5515         int fput_needed = 0;
5516         int err;
5517
5518         /* for future expandability... */
5519         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5520                 return -EINVAL;
5521
5522         err = perf_copy_attr(attr_uptr, &attr);
5523         if (err)
5524                 return err;
5525
5526         if (!attr.exclude_kernel) {
5527                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5528                         return -EACCES;
5529         }
5530
5531         if (attr.freq) {
5532                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5533                         return -EINVAL;
5534         }
5535
5536         event_fd = get_unused_fd_flags(O_RDWR);
5537         if (event_fd < 0)
5538                 return event_fd;
5539
5540         event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5541         if (IS_ERR(event)) {
5542                 err = PTR_ERR(event);
5543                 goto err_fd;
5544         }
5545
5546         if (group_fd != -1) {
5547                 group_leader = perf_fget_light(group_fd, &fput_needed);
5548                 if (IS_ERR(group_leader)) {
5549                         err = PTR_ERR(group_leader);
5550                         goto err_alloc;
5551                 }
5552                 group_file = group_leader->filp;
5553                 if (flags & PERF_FLAG_FD_OUTPUT)
5554                         output_event = group_leader;
5555                 if (flags & PERF_FLAG_FD_NO_GROUP)
5556                         group_leader = NULL;
5557         }
5558
5559         /*
5560          * Special case software events and allow them to be part of
5561          * any hardware group.
5562          */
5563         pmu = event->pmu;
5564         if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
5565                 pmu = group_leader->pmu;
5566
5567         /*
5568          * Get the target context (task or percpu):
5569          */
5570         ctx = find_get_context(pmu, pid, cpu);
5571         if (IS_ERR(ctx)) {
5572                 err = PTR_ERR(ctx);
5573                 goto err_group_fd;
5574         }
5575
5576         /*
5577          * Look up the group leader (we will attach this event to it):
5578          */
5579         if (group_leader) {
5580                 err = -EINVAL;
5581
5582                 /*
5583                  * Do not allow a recursive hierarchy (this new sibling
5584                  * becoming part of another group-sibling):
5585                  */
5586                 if (group_leader->group_leader != group_leader)
5587                         goto err_context;
5588                 /*
5589                  * Do not allow to attach to a group in a different
5590                  * task or CPU context:
5591                  */
5592                 if (group_leader->ctx != ctx)
5593                         goto err_context;
5594                 /*
5595                  * Only a group leader can be exclusive or pinned
5596                  */
5597                 if (attr.exclusive || attr.pinned)
5598                         goto err_context;
5599         }
5600
5601         if (output_event) {
5602                 err = perf_event_set_output(event, output_event);
5603                 if (err)
5604                         goto err_context;
5605         }
5606
5607         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5608         if (IS_ERR(event_file)) {
5609                 err = PTR_ERR(event_file);
5610                 goto err_context;
5611         }
5612
5613         event->filp = event_file;
5614         WARN_ON_ONCE(ctx->parent_ctx);
5615         mutex_lock(&ctx->mutex);
5616         perf_install_in_context(ctx, event, cpu);
5617         ++ctx->generation;
5618         mutex_unlock(&ctx->mutex);
5619
5620         event->owner = current;
5621         get_task_struct(current);
5622         mutex_lock(&current->perf_event_mutex);
5623         list_add_tail(&event->owner_entry, &current->perf_event_list);
5624         mutex_unlock(&current->perf_event_mutex);
5625
5626         /*
5627          * Drop the reference on the group_event after placing the
5628          * new event on the sibling_list. This ensures destruction
5629          * of the group leader will find the pointer to itself in
5630          * perf_group_detach().
5631          */
5632         fput_light(group_file, fput_needed);
5633         fd_install(event_fd, event_file);
5634         return event_fd;
5635
5636 err_context:
5637         put_ctx(ctx);
5638 err_group_fd:
5639         fput_light(group_file, fput_needed);
5640 err_alloc:
5641         free_event(event);
5642 err_fd:
5643         put_unused_fd(event_fd);
5644         return err;
5645 }
5646
5647 /**
5648  * perf_event_create_kernel_counter
5649  *
5650  * @attr: attributes of the counter to create
5651  * @cpu: cpu in which the counter is bound
5652  * @pid: task to profile
5653  */
5654 struct perf_event *
5655 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5656                                  pid_t pid,
5657                                  perf_overflow_handler_t overflow_handler)
5658 {
5659         struct perf_event_context *ctx;
5660         struct perf_event *event;
5661         int err;
5662
5663         /*
5664          * Get the target context (task or percpu):
5665          */
5666
5667         event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5668         if (IS_ERR(event)) {
5669                 err = PTR_ERR(event);
5670                 goto err;
5671         }
5672
5673         ctx = find_get_context(event->pmu, pid, cpu);
5674         if (IS_ERR(ctx)) {
5675                 err = PTR_ERR(ctx);
5676                 goto err_free;
5677         }
5678
5679         event->filp = NULL;
5680         WARN_ON_ONCE(ctx->parent_ctx);
5681         mutex_lock(&ctx->mutex);
5682         perf_install_in_context(ctx, event, cpu);
5683         ++ctx->generation;
5684         mutex_unlock(&ctx->mutex);
5685
5686         event->owner = current;
5687         get_task_struct(current);
5688         mutex_lock(&current->perf_event_mutex);
5689         list_add_tail(&event->owner_entry, &current->perf_event_list);
5690         mutex_unlock(&current->perf_event_mutex);
5691
5692         return event;
5693
5694 err_free:
5695         free_event(event);
5696 err:
5697         return ERR_PTR(err);
5698 }
5699 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5700
5701 static void sync_child_event(struct perf_event *child_event,
5702                                struct task_struct *child)
5703 {
5704         struct perf_event *parent_event = child_event->parent;
5705         u64 child_val;
5706
5707         if (child_event->attr.inherit_stat)
5708                 perf_event_read_event(child_event, child);
5709
5710         child_val = perf_event_count(child_event);
5711
5712         /*
5713          * Add back the child's count to the parent's count:
5714          */
5715         atomic64_add(child_val, &parent_event->child_count);
5716         atomic64_add(child_event->total_time_enabled,
5717                      &parent_event->child_total_time_enabled);
5718         atomic64_add(child_event->total_time_running,
5719                      &parent_event->child_total_time_running);
5720
5721         /*
5722          * Remove this event from the parent's list
5723          */
5724         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5725         mutex_lock(&parent_event->child_mutex);
5726         list_del_init(&child_event->child_list);
5727         mutex_unlock(&parent_event->child_mutex);
5728
5729         /*
5730          * Release the parent event, if this was the last
5731          * reference to it.
5732          */
5733         fput(parent_event->filp);
5734 }
5735
5736 static void
5737 __perf_event_exit_task(struct perf_event *child_event,
5738                          struct perf_event_context *child_ctx,
5739                          struct task_struct *child)
5740 {
5741         struct perf_event *parent_event;
5742
5743         perf_event_remove_from_context(child_event);
5744
5745         parent_event = child_event->parent;
5746         /*
5747          * It can happen that parent exits first, and has events
5748          * that are still around due to the child reference. These
5749          * events need to be zapped - but otherwise linger.
5750          */
5751         if (parent_event) {
5752                 sync_child_event(child_event, child);
5753                 free_event(child_event);
5754         }
5755 }
5756
5757 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5758 {
5759         struct perf_event *child_event, *tmp;
5760         struct perf_event_context *child_ctx;
5761         unsigned long flags;
5762
5763         if (likely(!child->perf_event_ctxp[ctxn])) {
5764                 perf_event_task(child, NULL, 0);
5765                 return;
5766         }
5767
5768         local_irq_save(flags);
5769         /*
5770          * We can't reschedule here because interrupts are disabled,
5771          * and either child is current or it is a task that can't be
5772          * scheduled, so we are now safe from rescheduling changing
5773          * our context.
5774          */
5775         child_ctx = child->perf_event_ctxp[ctxn];
5776         __perf_event_task_sched_out(child_ctx);
5777
5778         /*
5779          * Take the context lock here so that if find_get_context is
5780          * reading child->perf_event_ctxp, we wait until it has
5781          * incremented the context's refcount before we do put_ctx below.
5782          */
5783         raw_spin_lock(&child_ctx->lock);
5784         child->perf_event_ctxp[ctxn] = NULL;
5785         /*
5786          * If this context is a clone; unclone it so it can't get
5787          * swapped to another process while we're removing all
5788          * the events from it.
5789          */
5790         unclone_ctx(child_ctx);
5791         update_context_time(child_ctx);
5792         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5793
5794         /*
5795          * Report the task dead after unscheduling the events so that we
5796          * won't get any samples after PERF_RECORD_EXIT. We can however still
5797          * get a few PERF_RECORD_READ events.
5798          */
5799         perf_event_task(child, child_ctx, 0);
5800
5801         /*
5802          * We can recurse on the same lock type through:
5803          *
5804          *   __perf_event_exit_task()
5805          *     sync_child_event()
5806          *       fput(parent_event->filp)
5807          *         perf_release()
5808          *           mutex_lock(&ctx->mutex)
5809          *
5810          * But since its the parent context it won't be the same instance.
5811          */
5812         mutex_lock(&child_ctx->mutex);
5813
5814 again:
5815         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5816                                  group_entry)
5817                 __perf_event_exit_task(child_event, child_ctx, child);
5818
5819         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5820                                  group_entry)
5821                 __perf_event_exit_task(child_event, child_ctx, child);
5822
5823         /*
5824          * If the last event was a group event, it will have appended all
5825          * its siblings to the list, but we obtained 'tmp' before that which
5826          * will still point to the list head terminating the iteration.
5827          */
5828         if (!list_empty(&child_ctx->pinned_groups) ||
5829             !list_empty(&child_ctx->flexible_groups))
5830                 goto again;
5831
5832         mutex_unlock(&child_ctx->mutex);
5833
5834         put_ctx(child_ctx);
5835 }
5836
5837 /*
5838  * When a child task exits, feed back event values to parent events.
5839  */
5840 void perf_event_exit_task(struct task_struct *child)
5841 {
5842         int ctxn;
5843
5844         for_each_task_context_nr(ctxn)
5845                 perf_event_exit_task_context(child, ctxn);
5846 }
5847
5848 static void perf_free_event(struct perf_event *event,
5849                             struct perf_event_context *ctx)
5850 {
5851         struct perf_event *parent = event->parent;
5852
5853         if (WARN_ON_ONCE(!parent))
5854                 return;
5855
5856         mutex_lock(&parent->child_mutex);
5857         list_del_init(&event->child_list);
5858         mutex_unlock(&parent->child_mutex);
5859
5860         fput(parent->filp);
5861
5862         perf_group_detach(event);
5863         list_del_event(event, ctx);
5864         free_event(event);
5865 }
5866
5867 /*
5868  * free an unexposed, unused context as created by inheritance by
5869  * perf_event_init_task below, used by fork() in case of fail.
5870  */
5871 void perf_event_free_task(struct task_struct *task)
5872 {
5873         struct perf_event_context *ctx;
5874         struct perf_event *event, *tmp;
5875         int ctxn;
5876
5877         for_each_task_context_nr(ctxn) {
5878                 ctx = task->perf_event_ctxp[ctxn];
5879                 if (!ctx)
5880                         continue;
5881
5882                 mutex_lock(&ctx->mutex);
5883 again:
5884                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5885                                 group_entry)
5886                         perf_free_event(event, ctx);
5887
5888                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5889                                 group_entry)
5890                         perf_free_event(event, ctx);
5891
5892                 if (!list_empty(&ctx->pinned_groups) ||
5893                                 !list_empty(&ctx->flexible_groups))
5894                         goto again;
5895
5896                 mutex_unlock(&ctx->mutex);
5897
5898                 put_ctx(ctx);
5899         }
5900 }
5901
5902 void perf_event_delayed_put(struct task_struct *task)
5903 {
5904         int ctxn;
5905
5906         for_each_task_context_nr(ctxn)
5907                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5908 }
5909
5910 /*
5911  * inherit a event from parent task to child task:
5912  */
5913 static struct perf_event *
5914 inherit_event(struct perf_event *parent_event,
5915               struct task_struct *parent,
5916               struct perf_event_context *parent_ctx,
5917               struct task_struct *child,
5918               struct perf_event *group_leader,
5919               struct perf_event_context *child_ctx)
5920 {
5921         struct perf_event *child_event;
5922         unsigned long flags;
5923
5924         /*
5925          * Instead of creating recursive hierarchies of events,
5926          * we link inherited events back to the original parent,
5927          * which has a filp for sure, which we use as the reference
5928          * count:
5929          */
5930         if (parent_event->parent)
5931                 parent_event = parent_event->parent;
5932
5933         child_event = perf_event_alloc(&parent_event->attr,
5934                                            parent_event->cpu,
5935                                            group_leader, parent_event,
5936                                            NULL);
5937         if (IS_ERR(child_event))
5938                 return child_event;
5939         get_ctx(child_ctx);
5940
5941         /*
5942          * Make the child state follow the state of the parent event,
5943          * not its attr.disabled bit.  We hold the parent's mutex,
5944          * so we won't race with perf_event_{en, dis}able_family.
5945          */
5946         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5947                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5948         else
5949                 child_event->state = PERF_EVENT_STATE_OFF;
5950
5951         if (parent_event->attr.freq) {
5952                 u64 sample_period = parent_event->hw.sample_period;
5953                 struct hw_perf_event *hwc = &child_event->hw;
5954
5955                 hwc->sample_period = sample_period;
5956                 hwc->last_period   = sample_period;
5957
5958                 local64_set(&hwc->period_left, sample_period);
5959         }
5960
5961         child_event->ctx = child_ctx;
5962         child_event->overflow_handler = parent_event->overflow_handler;
5963
5964         /*
5965          * Link it up in the child's context:
5966          */
5967         raw_spin_lock_irqsave(&child_ctx->lock, flags);
5968         add_event_to_ctx(child_event, child_ctx);
5969         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5970
5971         /*
5972          * Get a reference to the parent filp - we will fput it
5973          * when the child event exits. This is safe to do because
5974          * we are in the parent and we know that the filp still
5975          * exists and has a nonzero count:
5976          */
5977         atomic_long_inc(&parent_event->filp->f_count);
5978
5979         /*
5980          * Link this into the parent event's child list
5981          */
5982         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5983         mutex_lock(&parent_event->child_mutex);
5984         list_add_tail(&child_event->child_list, &parent_event->child_list);
5985         mutex_unlock(&parent_event->child_mutex);
5986
5987         return child_event;
5988 }
5989
5990 static int inherit_group(struct perf_event *parent_event,
5991               struct task_struct *parent,
5992               struct perf_event_context *parent_ctx,
5993               struct task_struct *child,
5994               struct perf_event_context *child_ctx)
5995 {
5996         struct perf_event *leader;
5997         struct perf_event *sub;
5998         struct perf_event *child_ctr;
5999
6000         leader = inherit_event(parent_event, parent, parent_ctx,
6001                                  child, NULL, child_ctx);
6002         if (IS_ERR(leader))
6003                 return PTR_ERR(leader);
6004         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6005                 child_ctr = inherit_event(sub, parent, parent_ctx,
6006                                             child, leader, child_ctx);
6007                 if (IS_ERR(child_ctr))
6008                         return PTR_ERR(child_ctr);
6009         }
6010         return 0;
6011 }
6012
6013 static int
6014 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6015                    struct perf_event_context *parent_ctx,
6016                    struct task_struct *child, int ctxn,
6017                    int *inherited_all)
6018 {
6019         int ret;
6020         struct perf_event_context *child_ctx;
6021
6022         if (!event->attr.inherit) {
6023                 *inherited_all = 0;
6024                 return 0;
6025         }
6026
6027         child_ctx = child->perf_event_ctxp[ctxn];
6028         if (!child_ctx) {
6029                 /*
6030                  * This is executed from the parent task context, so
6031                  * inherit events that have been marked for cloning.
6032                  * First allocate and initialize a context for the
6033                  * child.
6034                  */
6035
6036                 child_ctx = alloc_perf_context(event->pmu, child);
6037                 if (!child_ctx)
6038                         return -ENOMEM;
6039
6040                 child->perf_event_ctxp[ctxn] = child_ctx;
6041         }
6042
6043         ret = inherit_group(event, parent, parent_ctx,
6044                             child, child_ctx);
6045
6046         if (ret)
6047                 *inherited_all = 0;
6048
6049         return ret;
6050 }
6051
6052 /*
6053  * Initialize the perf_event context in task_struct
6054  */
6055 int perf_event_init_context(struct task_struct *child, int ctxn)
6056 {
6057         struct perf_event_context *child_ctx, *parent_ctx;
6058         struct perf_event_context *cloned_ctx;
6059         struct perf_event *event;
6060         struct task_struct *parent = current;
6061         int inherited_all = 1;
6062         int ret = 0;
6063
6064         child->perf_event_ctxp[ctxn] = NULL;
6065
6066         mutex_init(&child->perf_event_mutex);
6067         INIT_LIST_HEAD(&child->perf_event_list);
6068
6069         if (likely(!parent->perf_event_ctxp[ctxn]))
6070                 return 0;
6071
6072         /*
6073          * If the parent's context is a clone, pin it so it won't get
6074          * swapped under us.
6075          */
6076         parent_ctx = perf_pin_task_context(parent, ctxn);
6077
6078         /*
6079          * No need to check if parent_ctx != NULL here; since we saw
6080          * it non-NULL earlier, the only reason for it to become NULL
6081          * is if we exit, and since we're currently in the middle of
6082          * a fork we can't be exiting at the same time.
6083          */
6084
6085         /*
6086          * Lock the parent list. No need to lock the child - not PID
6087          * hashed yet and not running, so nobody can access it.
6088          */
6089         mutex_lock(&parent_ctx->mutex);
6090
6091         /*
6092          * We dont have to disable NMIs - we are only looking at
6093          * the list, not manipulating it:
6094          */
6095         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6096                 ret = inherit_task_group(event, parent, parent_ctx,
6097                                          child, ctxn, &inherited_all);
6098                 if (ret)
6099                         break;
6100         }
6101
6102         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6103                 ret = inherit_task_group(event, parent, parent_ctx,
6104                                          child, ctxn, &inherited_all);
6105                 if (ret)
6106                         break;
6107         }
6108
6109         child_ctx = child->perf_event_ctxp[ctxn];
6110
6111         if (child_ctx && inherited_all) {
6112                 /*
6113                  * Mark the child context as a clone of the parent
6114                  * context, or of whatever the parent is a clone of.
6115                  * Note that if the parent is a clone, it could get
6116                  * uncloned at any point, but that doesn't matter
6117                  * because the list of events and the generation
6118                  * count can't have changed since we took the mutex.
6119                  */
6120                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6121                 if (cloned_ctx) {
6122                         child_ctx->parent_ctx = cloned_ctx;
6123                         child_ctx->parent_gen = parent_ctx->parent_gen;
6124                 } else {
6125                         child_ctx->parent_ctx = parent_ctx;
6126                         child_ctx->parent_gen = parent_ctx->generation;
6127                 }
6128                 get_ctx(child_ctx->parent_ctx);
6129         }
6130
6131         mutex_unlock(&parent_ctx->mutex);
6132
6133         perf_unpin_context(parent_ctx);
6134
6135         return ret;
6136 }
6137
6138 /*
6139  * Initialize the perf_event context in task_struct
6140  */
6141 int perf_event_init_task(struct task_struct *child)
6142 {
6143         int ctxn, ret;
6144
6145         for_each_task_context_nr(ctxn) {
6146                 ret = perf_event_init_context(child, ctxn);
6147                 if (ret)
6148                         return ret;
6149         }
6150
6151         return 0;
6152 }
6153
6154 static void __init perf_event_init_all_cpus(void)
6155 {
6156         struct swevent_htable *swhash;
6157         int cpu;
6158
6159         for_each_possible_cpu(cpu) {
6160                 swhash = &per_cpu(swevent_htable, cpu);
6161                 mutex_init(&swhash->hlist_mutex);
6162         }
6163 }
6164
6165 static void __cpuinit perf_event_init_cpu(int cpu)
6166 {
6167         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6168
6169         mutex_lock(&swhash->hlist_mutex);
6170         if (swhash->hlist_refcount > 0) {
6171                 struct swevent_hlist *hlist;
6172
6173                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6174                 WARN_ON(!hlist);
6175                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6176         }
6177         mutex_unlock(&swhash->hlist_mutex);
6178 }
6179
6180 #ifdef CONFIG_HOTPLUG_CPU
6181 static void __perf_event_exit_context(void *__info)
6182 {
6183         struct perf_event_context *ctx = __info;
6184         struct perf_event *event, *tmp;
6185
6186         perf_pmu_rotate_stop(ctx->pmu);
6187
6188         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6189                 __perf_event_remove_from_context(event);
6190         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6191                 __perf_event_remove_from_context(event);
6192 }
6193
6194 static void perf_event_exit_cpu_context(int cpu)
6195 {
6196         struct perf_event_context *ctx;
6197         struct pmu *pmu;
6198         int idx;
6199
6200         idx = srcu_read_lock(&pmus_srcu);
6201         list_for_each_entry_rcu(pmu, &pmus, entry) {
6202                 ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;
6203
6204                 mutex_lock(&ctx->mutex);
6205                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6206                 mutex_unlock(&ctx->mutex);
6207         }
6208         srcu_read_unlock(&pmus_srcu, idx);
6209
6210 }
6211
6212 static void perf_event_exit_cpu(int cpu)
6213 {
6214         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6215
6216         mutex_lock(&swhash->hlist_mutex);
6217         swevent_hlist_release(swhash);
6218         mutex_unlock(&swhash->hlist_mutex);
6219
6220         perf_event_exit_cpu_context(cpu);
6221 }
6222 #else
6223 static inline void perf_event_exit_cpu(int cpu) { }
6224 #endif
6225
6226 static int __cpuinit
6227 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6228 {
6229         unsigned int cpu = (long)hcpu;
6230
6231         switch (action & ~CPU_TASKS_FROZEN) {
6232
6233         case CPU_UP_PREPARE:
6234         case CPU_DOWN_FAILED:
6235                 perf_event_init_cpu(cpu);
6236                 break;
6237
6238         case CPU_UP_CANCELED:
6239         case CPU_DOWN_PREPARE:
6240                 perf_event_exit_cpu(cpu);
6241                 break;
6242
6243         default:
6244                 break;
6245         }
6246
6247         return NOTIFY_OK;
6248 }
6249
6250 void __init perf_event_init(void)
6251 {
6252         perf_event_init_all_cpus();
6253         init_srcu_struct(&pmus_srcu);
6254         perf_pmu_register(&perf_swevent);
6255         perf_pmu_register(&perf_cpu_clock);
6256         perf_pmu_register(&perf_task_clock);
6257         perf_tp_register();
6258         perf_cpu_notifier(perf_cpu_notify);
6259 }