NAND flash driver updates.
authorDavid Woodhouse <dwmw2@shinybook.infradead.org>
Thu, 15 Jul 2004 19:11:45 +0000 (20:11 +0100)
committerDavid Woodhouse <dwmw2@shinybook.infradead.org>
Thu, 15 Jul 2004 19:11:45 +0000 (20:11 +0100)
Update the core NAND code:
 - support multiple chips
 - support bad block tables
 - improved generic ECC support and 'spare area' usage.
 - 16-bit NAND
 - Large-block NAND devices
 - Renesas AG-AND devices
 - M-Systems DiskOnChip devices
 - Other new board support wrappers

Most of the work was done by Thomas Gleixner.

Signed-Off-By: David Woodhouse <dwmw2@infradead.org>

20 files changed:
CREDITS
drivers/mtd/mtdpart.c
drivers/mtd/nand/Kconfig
drivers/mtd/nand/Makefile
drivers/mtd/nand/au1550nd.c [new file with mode: 0644]
drivers/mtd/nand/autcpu12.c
drivers/mtd/nand/diskonchip.c [new file with mode: 0644]
drivers/mtd/nand/edb7312.c
drivers/mtd/nand/nand.c [deleted file]
drivers/mtd/nand/nand_base.c [new file with mode: 0644]
drivers/mtd/nand/nand_bbt.c [new file with mode: 0644]
drivers/mtd/nand/nand_ecc.c
drivers/mtd/nand/nand_ids.c
drivers/mtd/nand/ppchameleonevb.c [new file with mode: 0644]
drivers/mtd/nand/spia.c
drivers/mtd/nand/toto.c [new file with mode: 0644]
drivers/mtd/nand/tx4925ndfmc.c [new file with mode: 0644]
drivers/mtd/nand/tx4938ndfmc.c [new file with mode: 0644]
include/linux/mtd/nand.h
include/linux/mtd/nand_ecc.h

diff --git a/CREDITS b/CREDITS
index 518c5bd..cc0cffd 100644 (file)
--- a/CREDITS
+++ b/CREDITS
@@ -1090,6 +1090,10 @@ E: jbglaw@lug-owl.de
 D: SRM environment driver (for Alpha systems)
 P: 1024D/8399E1BB 250D 3BCF 7127 0D8C A444  A961 1DBD 5E75 8399 E1BB
 
+N: Thomas Gleixner
+E: tglx@linutronix.de
+D: NAND flash hardware support, JFFS2 on NAND flash
+
 N: Richard E. Gooch
 E: rgooch@atnf.csiro.au
 D: parent process death signal to children
index e90064e..f007d07 100644 (file)
@@ -5,7 +5,7 @@
  *
  * This code is GPL
  *
- * $Id: mtdpart.c,v 1.41 2003/06/18 14:53:02 dwmw2 Exp $
+ * $Id: mtdpart.c,v 1.46 2004/07/12 13:28:07 dwmw2 Exp $
  *
  *     02-21-2002      Thomas Gleixner <gleixner@autronix.de>
  *                     added support for read_oob, write_oob
@@ -239,12 +239,16 @@ static int part_readv_ecc (struct mtd_info *mtd,  struct kvec *vecs,
 static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
 {
        struct mtd_part *part = PART(mtd);
+       int ret;
        if (!(mtd->flags & MTD_WRITEABLE))
                return -EROFS;
        if (instr->addr >= mtd->size)
                return -EINVAL;
        instr->addr += part->offset;
-       return part->master->erase(part->master, instr);
+       ret = part->master->erase(part->master, instr);
+       if (instr->fail_addr != 0xffffffff)
+               instr->fail_addr -= part->offset;
+       return ret;
 }
 
 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
@@ -281,6 +285,26 @@ static void part_resume(struct mtd_info *mtd)
        part->master->resume(part->master);
 }
 
+static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
+{
+       struct mtd_part *part = PART(mtd);
+       if (ofs >= mtd->size)
+               return -EINVAL;
+       ofs += part->offset;
+       return part->master->block_isbad(part->master, ofs);
+}
+
+static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
+{
+       struct mtd_part *part = PART(mtd);
+       if (!(mtd->flags & MTD_WRITEABLE))
+               return -EROFS;
+       if (ofs >= mtd->size)
+               return -EINVAL;
+       ofs += part->offset;
+       return part->master->block_markbad(part->master, ofs);
+}
+
 /* 
  * This function unregisters and destroy all slave MTD objects which are 
  * attached to the given master MTD object.
@@ -316,7 +340,7 @@ int del_mtd_partitions(struct mtd_info *master)
  */
 
 int add_mtd_partitions(struct mtd_info *master, 
-                      struct mtd_partition *parts,
+                      const struct mtd_partition *parts,
                       int nbparts)
 {
        struct mtd_part *slave;
@@ -391,6 +415,10 @@ int add_mtd_partitions(struct mtd_info *master,
                        slave->mtd.lock = part_lock;
                if (master->unlock)
                        slave->mtd.unlock = part_unlock;
+               if (master->block_isbad)
+                       slave->mtd.block_isbad = part_block_isbad;
+               if (master->block_markbad)
+                       slave->mtd.block_markbad = part_block_markbad;
                slave->mtd.erase = part_erase;
                slave->master = master;
                slave->offset = parts[i].offset;
@@ -461,6 +489,9 @@ int add_mtd_partitions(struct mtd_info *master,
                                parts[i].name);
                }
 
+               /* copy oobinfo from master */ 
+               memcpy(&slave->mtd.oobinfo, &master->oobinfo, sizeof(slave->mtd.oobinfo));
+
                if(parts[i].mtdp)
                {       /* store the object pointer (caller may or may not register it */
                        *parts[i].mtdp = &slave->mtd;
index f6ab472..ddd2930 100644 (file)
@@ -1,5 +1,5 @@
 # drivers/mtd/nand/Kconfig
-# $Id: Kconfig,v 1.4 2003/05/28 10:04:23 dwmw2 Exp $
+# $Id: Kconfig,v 1.14 2004/07/13 00:14:35 dbrown Exp $
 
 menu "NAND Flash Device Drivers"
        depends on MTD!=n
@@ -9,7 +9,7 @@ config MTD_NAND
        depends on MTD
        help
          This enables support for accessing all type of NAND flash
-         devices with an 8-bit data bus interface. For further information see
+         devices. For further information see
          <http://www.linux-mtd.infradead.org/tech/nand.html>.
 
 config MTD_NAND_VERIFY_WRITE
@@ -42,10 +42,73 @@ config MTD_NAND_SPIA
        help
          If you had to ask, you don't have one. Say 'N'.
 
+config MTD_NAND_TOTO
+       tristate "NAND Flash device on TOTO board"
+       depends on ARM && ARCH_OMAP && MTD_NAND
+       help
+         Support for NAND flash on Texas Instruments Toto platform.
+
 config MTD_NAND_IDS
        tristate
        default y if MTD_NAND = y || MTD_DOC2000 = y || MTD_DOC2001 = y || MTD_DOC2001PLUS = y
        default m if MTD_NAND = m || MTD_DOC2000 = m || MTD_DOC2001 = m || MTD_DOC2001PLUS = m
-       
-endmenu
 
+config MTD_NAND_TX4925NDFMC
+       tristate "SmartMedia Card on Toshiba RBTX4925 reference board"
+       depends on TOSHIBA_RBTX4925 && MTD_NAND && TOSHIBA_RBTX4925_MPLEX_NAND
+       help
+         This enables the driver for the NAND flash device found on the
+         Toshiba RBTX4925 reference board, which is a SmartMediaCard.
+
+config MTD_NAND_TX4938NDFMC
+       tristate "NAND Flash device on Toshiba RBTX4938 reference board"
+       depends on TOSHIBA_RBTX4938 && MTD_NAND && TOSHIBA_RBTX4938_MPLEX_NAND 
+       help
+         This enables the driver for the NAND flash device found on the
+         Toshiba RBTX4938 reference board.
+
+config MTD_NAND_AU1550
+       tristate "Au1550 NAND support"
+       depends on SOC_AU1550 && MTD_NAND
+       help
+         This enables the driver for the NAND flash controller on the
+         AMD/Alchemy 1550 SOC.
+
+config MTD_NAND_PPCHAMELEONEVB
+       tristate "NAND Flash device on PPChameleonEVB board"
+       depends on PPCHAMELEONEVB && MTD_NAND
+       help
+         This enables the NAND flash driver on the PPChameleon EVB Board.      
+
+config MTD_NAND_DISKONCHIP
+       tristate "DiskOnChip 2000 and Millennium (NAND reimplementation) (EXPERIMENTAL)"
+       depends on MTD_NAND && EXPERIMENTAL
+       help
+         This is a reimplementation of M-Systems DiskOnChip 2000 and
+         Millennium as a standard NAND device driver, as opposed to the
+         earlier self-contained MTD device drivers.
+         This should enable, among other things, proper JFFS2 operation on
+         these devices.
+
+config MTD_NAND_DISKONCHIP_BBTWRITE
+       bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
+       depends on MTD_NAND_DISKONCHIP
+       help
+         On DiskOnChip devices shipped with the INFTL filesystem (Millennium
+         and 2000 TSOP/Alon), Linux reserves some space at the end of the
+         device for the Bad Block Table (BBT).  If you have existing INFTL
+         data on your device (created by non-Linux tools such as M-Systems'
+         DOS drivers), your data might overlap the area Linux wants to use for
+         the BBT.  If this is a concern for you, leave this option disabled and
+         Linux will not write BBT data into this area.
+         The downside of leaving this option disabled is that if bad blocks
+         are detected by Linux, they will not be recorded in the BBT, which
+         could cause future problems.
+         Once you enable this option, new filesystems (INFTL or others, created
+         in Linux or other operating systems) will not use the reserved area.
+         The only reason not to enable this option is to prevent damage to
+         preexisting filesystems.
+         Even if you leave this disabled, you can enable BBT writes at module
+         load time (assuming you build diskonchip as a module) with the module
+         parameter "inftl_bbt_write=1".
+endmenu
index dfc4c1f..db19399 100644 (file)
@@ -1,10 +1,19 @@
 #
 # linux/drivers/nand/Makefile
 #
-# $Id: Makefile.common,v 1.2 2003/05/28 11:38:54 dwmw2 Exp $
+# $Id: Makefile.common,v 1.9 2004/07/12 16:07:31 dwmw2 Exp $
 
-obj-$(CONFIG_MTD_NAND)         += nand.o nand_ecc.o
-obj-$(CONFIG_MTD_NAND_SPIA)    += spia.o
-obj-$(CONFIG_MTD_NAND_AUTCPU12)        += autcpu12.o
-obj-$(CONFIG_MTD_NAND_EDB7312)  += edb7312.o
-obj-$(CONFIG_MTD_NAND_IDS)     += nand_ids.o
+obj-$(CONFIG_MTD_NAND)                 += nand.o nand_ecc.o
+obj-$(CONFIG_MTD_NAND_IDS)             += nand_ids.o
+
+obj-$(CONFIG_MTD_NAND_SPIA)            += spia.o
+obj-$(CONFIG_MTD_NAND_TOTO)            += toto.o
+obj-$(CONFIG_MTD_NAND_AUTCPU12)                += autcpu12.o
+obj-$(CONFIG_MTD_NAND_EDB7312)         += edb7312.o
+obj-$(CONFIG_MTD_NAND_TX4925NDFMC)     += tx4925ndfmc.o
+obj-$(CONFIG_MTD_NAND_TX4938NDFMC)     += tx4938ndfmc.o
+obj-$(CONFIG_MTD_NAND_AU1550)          += au1550nd.o
+obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB)  += ppchameleonevb.o
+obj-$(CONFIG_MTD_NAND_DISKONCHIP)      += diskonchip.o
+
+nand-objs = nand_base.o nand_bbt.o
diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c
new file mode 100644 (file)
index 0000000..8e4da65
--- /dev/null
@@ -0,0 +1,394 @@
+/*
+ *  drivers/mtd/nand/au1550nd.c
+ *
+ *  Copyright (C) 2004 Embedded Edge, LLC
+ *
+ * $Id: au1550nd.c,v 1.5 2004/05/17 07:19:35 ppopov Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/au1000.h>
+#ifdef CONFIG_MIPS_PB1550
+#include <asm/pb1550.h> 
+#endif
+#ifdef CONFIG_MIPS_DB1550
+#include <asm/db1x00.h> 
+#endif
+
+
+/*
+ * MTD structure for NAND controller
+ */
+static struct mtd_info *au1550_mtd = NULL;
+static volatile u32 p_nand;
+static int nand_width = 1; /* default, only x8 supported for now */
+
+/* Internal buffers. Page buffer and oob buffer for one block*/
+static u_char data_buf[512 + 16];
+static u_char oob_buf[16 * 32];
+
+/*
+ * Define partitions for flash device
+ */
+const static struct mtd_partition partition_info[] = {
+#ifdef CONFIG_MIPS_PB1550
+#define NUM_PARTITIONS            2
+       { 
+               .name = "Pb1550 NAND FS 0",
+               .offset = 0,
+               .size = 8*1024*1024 
+       },
+       { 
+               .name = "Pb1550 NAND FS 1",
+               .offset =  MTDPART_OFS_APPEND,
+               .size =    MTDPART_SIZ_FULL
+       }
+#endif
+#ifdef CONFIG_MIPS_DB1550
+#define NUM_PARTITIONS            2
+       { 
+               .name = "Db1550 NAND FS 0",
+               .offset = 0,
+               .size = 8*1024*1024 
+       },
+       { 
+               .name = "Db1550 NAND FS 1",
+               .offset =  MTDPART_OFS_APPEND,
+               .size =    MTDPART_SIZ_FULL
+       }
+#endif
+};
+
+static inline void write_cmd_reg(u8 cmd)
+{
+       if (nand_width)
+               *((volatile u8 *)(p_nand + MEM_STNAND_CMD)) = cmd;
+       else
+               *((volatile u16 *)(p_nand + MEM_STNAND_CMD)) = cmd;
+       au_sync();
+}
+
+static inline void write_addr_reg(u8 addr)
+{
+       if (nand_width)
+               *((volatile u8 *)(p_nand + MEM_STNAND_ADDR)) = addr;
+       else
+               *((volatile u16 *)(p_nand + MEM_STNAND_ADDR)) = addr;
+       au_sync();
+}
+
+static inline void write_data_reg(u8 data)
+{
+       if (nand_width)
+               *((volatile u8 *)(p_nand + MEM_STNAND_DATA)) = data;
+       else
+               *((volatile u16 *)(p_nand + MEM_STNAND_DATA)) = data;
+       au_sync();
+}
+
+static inline u32 read_data_reg(void)
+{
+       u32 data;
+       if (nand_width) {
+               data = *((volatile u8 *)(p_nand + MEM_STNAND_DATA));
+               au_sync();
+       }
+       else {
+               data = *((volatile u16 *)(p_nand + MEM_STNAND_DATA));
+               au_sync();
+       }
+       return data;
+}
+
+void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+}
+
+int au1550_device_ready(struct mtd_info *mtd)
+{
+       int ready;
+       ready = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;
+       return ready;
+}
+
+static u_char au1550_nand_read_byte(struct mtd_info *mtd)
+{
+       u_char ret;
+       ret = read_data_reg();
+       return ret;
+}
+
+static void au1550_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+       write_data_reg((u8)byte);
+}
+
+static void 
+au1550_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+
+       for (i=0; i<len; i++)
+               write_data_reg(buf[i]);
+}
+
+static void 
+au1550_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       int i;
+
+       for (i=0; i<len; i++)
+               buf[i] = (u_char)read_data_reg();
+}
+
+static int 
+au1550_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+
+       for (i=0; i<len; i++)
+               if (buf[i] != (u_char)read_data_reg())
+                       return -EFAULT;
+
+       return 0;
+}
+
+static void au1550_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+       switch(chip) {
+       case -1:
+               /* deassert chip enable */
+               au_writel(au_readl(MEM_STNDCTL) & ~0x20 , MEM_STNDCTL);
+               break;
+       case 0:
+               /* assert (force assert) chip enable */
+               au_writel(au_readl(MEM_STNDCTL) | 0x20 , MEM_STNDCTL);
+               break;
+
+       default:
+               BUG();
+       }
+}
+
+static void au1550_nand_command (struct mtd_info *mtd, unsigned command, 
+               int column, int page_addr)
+{
+       register struct nand_chip *this = mtd->priv;
+
+       /*
+        * Write out the command to the device.
+        */
+       if (command == NAND_CMD_SEQIN) {
+               int readcmd;
+
+               if (column >= mtd->oobblock) {
+                       /* OOB area */
+                       column -= mtd->oobblock;
+                       readcmd = NAND_CMD_READOOB;
+               } else if (column < 256) {
+                       /* First 256 bytes --> READ0 */
+                       readcmd = NAND_CMD_READ0;
+               } else {
+                       column -= 256;
+                       readcmd = NAND_CMD_READ1;
+               }
+               write_cmd_reg(readcmd);
+       }
+       write_cmd_reg(command);
+
+       if (column != -1 || page_addr != -1) {
+
+               /* Serially input address */
+               if (column != -1)
+                       write_addr_reg(column);
+               if (page_addr != -1) {
+                       write_addr_reg((unsigned char) (page_addr & 0xff));
+                       write_addr_reg(((page_addr >> 8) & 0xff));
+                       /* One more address cycle for higher density devices */
+                       if (mtd->size & 0x0c000000) 
+                               write_addr_reg((unsigned char) ((page_addr >> 16) & 0x0f));
+               }
+       }
+       
+       switch (command) {
+                       
+       case NAND_CMD_PAGEPROG:
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+       case NAND_CMD_SEQIN:
+       case NAND_CMD_STATUS:
+               break;
+
+       case NAND_CMD_RESET:
+               if (this->dev_ready)    
+                       break;
+               udelay(this->chip_delay);
+               write_cmd_reg(NAND_CMD_STATUS);
+               while ( !(read_data_reg() & 0x40));
+               return;
+
+       /* This applies to read commands */     
+       default:
+               udelay (this->chip_delay);
+       }
+       
+       /* wait until command is processed */
+       while (!this->dev_ready(mtd));
+}
+
+
+/*
+ * Main initialization routine
+ */
+int __init au1550_init (void)
+{
+       struct nand_chip *this;
+       u16 boot_swapboot = 0; /* default value */
+       u32 mem_time;
+
+       /* Allocate memory for MTD device structure and private data */
+       au1550_mtd = kmalloc (sizeof(struct mtd_info) + 
+                       sizeof (struct nand_chip), GFP_KERNEL);
+       if (!au1550_mtd) {
+               printk ("Unable to allocate NAND MTD dev structure.\n");
+               return -ENOMEM;
+       }
+
+       /* Get pointer to private data */
+       this = (struct nand_chip *) (&au1550_mtd[1]);
+
+       /* Initialize structures */
+       memset((char *) au1550_mtd, 0, sizeof(struct mtd_info));
+       memset((char *) this, 0, sizeof(struct nand_chip));
+
+       /* Link the private data with the MTD structure */
+       au1550_mtd->priv = this;
+
+       /* disable interrupts */
+       au_writel(au_readl(MEM_STNDCTL) & ~(1<<8), MEM_STNDCTL);
+
+       /* disable NAND boot */
+       au_writel(au_readl(MEM_STNDCTL) & ~(1<<0), MEM_STNDCTL);
+
+#ifdef CONFIG_MIPS_PB1550
+       /* set gpio206 high */
+       au_writel(au_readl(GPIO2_DIR) & ~(1<<6), GPIO2_DIR);
+
+       boot_swapboot = (au_readl(MEM_STSTAT) & (0x7<<1)) | 
+               ((bcsr->status >> 6)  & 0x1);
+       switch (boot_swapboot) {
+               case 0:
+               case 2:
+               case 8:
+               case 0xC:
+               case 0xD:
+                       /* x16 NAND Flash */
+                       nand_width = 0;
+                       printk("Pb1550 NAND: 16-bit NAND not supported by MTD\n");
+                       break;
+               case 1:
+               case 9:
+               case 3:
+               case 0xE:
+               case 0xF:
+                       /* x8 NAND Flash */
+                       nand_width = 1;
+                       break;
+               default:
+                       printk("Pb1550 NAND: bad boot:swap\n");
+                       kfree(au1550_mtd);
+                       return 1;
+       }
+
+       /* Configure RCE1 - should be done by YAMON */
+       au_writel(0x5 | (nand_width << 22), MEM_STCFG1);
+       au_writel(NAND_TIMING, MEM_STTIME1);
+       mem_time = au_readl(MEM_STTIME1);
+       au_sync();
+
+       /* setup and enable chip select */
+       /* we really need to decode offsets only up till 0x20 */
+       au_writel((1<<28) | (NAND_PHYS_ADDR>>4) | 
+                       (((NAND_PHYS_ADDR + 0x1000)-1) & (0x3fff<<18)>>18), 
+                       MEM_STADDR1);
+       au_sync();
+#endif
+
+#ifdef CONFIG_MIPS_DB1550
+       /* Configure RCE1 - should be done by YAMON */
+       au_writel(0x00400005, MEM_STCFG1);
+       au_writel(0x00007774, MEM_STTIME1);
+       au_writel(0x12000FFF, MEM_STADDR1);
+#endif
+
+       p_nand = (volatile struct nand_regs *)ioremap(NAND_PHYS_ADDR, 0x1000);
+
+       /* Set address of hardware control function */
+       this->hwcontrol = au1550_hwcontrol;
+       this->dev_ready = au1550_device_ready;
+       /* 30 us command delay time */
+       this->chip_delay = 30;          
+
+       this->cmdfunc = au1550_nand_command;
+       this->select_chip = au1550_nand_select_chip;
+       this->write_byte = au1550_nand_write_byte;
+       this->read_byte = au1550_nand_read_byte;
+       this->write_buf = au1550_nand_write_buf;
+       this->read_buf = au1550_nand_read_buf;
+       this->verify_buf = au1550_nand_verify_buf;
+       this->eccmode = NAND_ECC_SOFT;
+
+       /* Set internal data buffer */
+       this->data_buf = data_buf;
+       this->oob_buf = oob_buf;
+
+       /* Scan to find existence of the device */
+       if (nand_scan (au1550_mtd, 1)) {
+               kfree (au1550_mtd);
+               return -ENXIO;
+       }
+
+       /* Register the partitions */
+       add_mtd_partitions(au1550_mtd, partition_info, NUM_PARTITIONS);
+
+       return 0;
+}
+
+module_init(au1550_init);
+
+/*
+ * Clean up routine
+ */
+#ifdef MODULE
+static void __exit au1550_cleanup (void)
+{
+       struct nand_chip *this = (struct nand_chip *) &au1550_mtd[1];
+
+       iounmap ((void *)p_nand);
+
+       /* Unregister partitions */
+       del_mtd_partitions(au1550_mtd);
+
+       /* Unregister the device */
+       del_mtd_device (au1550_mtd);
+
+       /* Free the MTD device structure */
+       kfree (au1550_mtd);
+}
+module_exit(au1550_cleanup);
+#endif
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Embedded Edge, LLC");
+MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
index dc6df46..6d8ecf6 100644 (file)
@@ -6,7 +6,7 @@
  *  Derived from drivers/mtd/spia.c
  *      Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  * 
- * $Id: autcpu12.c,v 1.11 2003/06/04 17:04:09 gleixner Exp $
+ * $Id: autcpu12.c,v 1.19 2004/07/12 15:02:15 dwmw2 Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -15,7 +15,7 @@
  *  Overview:
  *   This is a device driver for the NAND flash device found on the
  *   autronix autcpu12 board, which is a SmartMediaCard. It supports 
- *   16MB, 32MB and 64MB cards.
+ *   16MiB, 32MiB and 64MiB cards.
  *
  *
  *     02-12-2002 TG   Cleanup of module params
@@ -71,42 +71,40 @@ __setup("autcpu12_pedr=",autcpu12_pedr);
 /*
  * Define partitions for flash devices
  */
-extern struct nand_oobinfo jffs2_oobinfo;
-
 static struct mtd_partition partition_info16k[] = {
-       { .name = "AUTCPU12 flash partition 1",
-         .offset  = 0,
-         .size =    8 * SZ_1M },
-       { .name = "AUTCPU12 flash partition 2",
-         .offset =  8 * SZ_1M,
-         .size =    8 * SZ_1M },
+       { .name         = "AUTCPU12 flash partition 1",
+         .offset       = 0,
+         .size         = 8 * SZ_1M },
+       { .name         = "AUTCPU12 flash partition 2",
+         .offset       = 8 * SZ_1M,
+         .size         = 8 * SZ_1M },
 };
 
 static struct mtd_partition partition_info32k[] = {
-       { .name = "AUTCPU12 flash partition 1",
-         .offset  = 0,
-         .size =    8 * SZ_1M },
-       { .name = "AUTCPU12 flash partition 2",
-         .offset =  8 * SZ_1M,
-         .size =   24 * SZ_1M },
+       { .name         = "AUTCPU12 flash partition 1",
+         .offset       = 0,
+         .size         = 8 * SZ_1M },
+       { .name         = "AUTCPU12 flash partition 2",
+         .offset       = 8 * SZ_1M,
+         .size         = 24 * SZ_1M },
 };
 
 static struct mtd_partition partition_info64k[] = {
-       { .name = "AUTCPU12 flash partition 1",
-         .offset  = 0,
-         .size =   16 * SZ_1M },
-       { .name = "AUTCPU12 flash partition 2",
-         .offset = 16 * SZ_1M,
-         .size =   48 * SZ_1M },
+       { .name         = "AUTCPU12 flash partition 1",
+         .offset       = 0,
+         .size         = 16 * SZ_1M },
+       { .name         = "AUTCPU12 flash partition 2",
+         .offset       = 16 * SZ_1M,
+         .size         = 48 * SZ_1M },
 };
 
 static struct mtd_partition partition_info128k[] = {
-       { .name = "AUTCPU12 flash partition 1",
-         .offset  = 0,
-         .size =   16 * SZ_1M },
-       { .name = "AUTCPU12 flash partition 2",
-         .offset = 16 * SZ_1M,
-         .size =   112 * SZ_1M },
+       { .name         = "AUTCPU12 flash partition 1",
+         .offset       = 0,
+         .size         = 16 * SZ_1M },
+       { .name         = "AUTCPU12 flash partition 2",
+         .offset       = 16 * SZ_1M,
+         .size         = 112 * SZ_1M },
 };
 
 #define NUM_PARTITIONS16K 2
@@ -116,7 +114,7 @@ static struct mtd_partition partition_info128k[] = {
 /* 
  *     hardware specific access to control-lines
 */
-void autcpu12_hwcontrol(int cmd)
+static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd)
 {
 
        switch(cmd){
@@ -135,12 +133,13 @@ void autcpu12_hwcontrol(int cmd)
 /*
 *      read device ready pin
 */
-int autcpu12_device_ready(void)
+int autcpu12_device_ready(struct mtd_info *mtd)
 {
 
        return ( (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) & AUTCPU12_SMC_RDY) ? 1 : 0;
 
 }
+
 /*
  * Main initialization routine
  */
@@ -185,20 +184,18 @@ int __init autcpu12_init (void)
        this->chip_delay = 20;          
        this->eccmode = NAND_ECC_SOFT;
 
+       /* Enable the following for a flash based bad block table */
+       /*
+       this->options = NAND_USE_FLASH_BBT;
+       */
+       this->options = NAND_USE_FLASH_BBT;
+       
        /* Scan to find existance of the device */
-       if (nand_scan (autcpu12_mtd)) {
+       if (nand_scan (autcpu12_mtd, 1)) {
                err = -ENXIO;
                goto out_ior;
        }
-
-       /* Allocate memory for internal data buffer */
-       this->data_buf = kmalloc (sizeof(u_char) * (autcpu12_mtd->oobblock + autcpu12_mtd->oobsize), GFP_KERNEL);
-       if (!this->data_buf) {
-               printk ("Unable to allocate NAND data buffer for AUTCPU12.\n");
-               err = -ENOMEM;
-               goto out_ior;
-       }
-
+       
        /* Register the partitions */
        switch(autcpu12_mtd->size){
                case SZ_16M: add_mtd_partitions(autcpu12_mtd, partition_info16k, NUM_PARTITIONS16K); break;
@@ -208,13 +205,11 @@ int __init autcpu12_init (void)
                default: {
                        printk ("Unsupported SmartMedia device\n"); 
                        err = -ENXIO;
-                       goto out_buf;
+                       goto out_ior;
                }
        }
        goto out;
 
-out_buf:
-       kfree (this->data_buf);    
 out_ior:
        iounmap((void *)autcpu12_fio_base);
 out_mtd:
@@ -231,20 +226,12 @@ module_init(autcpu12_init);
 #ifdef MODULE
 static void __exit autcpu12_cleanup (void)
 {
-       struct nand_chip *this = (struct nand_chip *) &autcpu12_mtd[1];
-
-       /* Unregister partitions */
-       del_mtd_partitions(autcpu12_mtd);
-       
-       /* Unregister the device */
-       del_mtd_device (autcpu12_mtd);
-
-       /* Free internal data buffers */
-       kfree (this->data_buf);
+       /* Release resources, unregister device */
+       nand_release (autcpu12_mtd);
 
        /* unmap physical adress */
        iounmap((void *)autcpu12_fio_base);
-
+       
        /* Free the MTD device structure */
        kfree (autcpu12_mtd);
 }
diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c
new file mode 100644 (file)
index 0000000..677c216
--- /dev/null
@@ -0,0 +1,1237 @@
+/* 
+ * drivers/mtd/nand/diskonchip.c
+ *
+ * (C) 2003 Red Hat, Inc.
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ *
+ * Interface to generic NAND code for M-Systems DiskOnChip devices
+ *
+ * $Id: diskonchip.c,v 1.23 2004/07/13 00:14:35 dbrown Exp $
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/inftl.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_DOCPROBE_ADDRESS
+#define CONFIG_MTD_DOCPROBE_ADDRESS 0
+#endif
+
+static unsigned long __initdata doc_locations[] = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_DOCPROBE_HIGH
+       0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 
+       0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+       0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 
+       0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 
+       0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else /*  CONFIG_MTD_DOCPROBE_HIGH */
+       0xc8000, 0xca000, 0xcc000, 0xce000, 
+       0xd0000, 0xd2000, 0xd4000, 0xd6000,
+       0xd8000, 0xda000, 0xdc000, 0xde000, 
+       0xe0000, 0xe2000, 0xe4000, 0xe6000, 
+       0xe8000, 0xea000, 0xec000, 0xee000,
+#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
+#elif defined(__PPC__)
+       0xe4000000,
+#elif defined(CONFIG_MOMENCO_OCELOT)
+       0x2f000000,
+        0xff000000,
+#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
+        0xff000000,
+##else
+#warning Unknown architecture for DiskOnChip. No default probe locations defined
+#endif
+       0xffffffff };
+
+static struct mtd_info *doclist = NULL;
+
+struct doc_priv {
+       unsigned long virtadr;
+       unsigned long physadr;
+       u_char ChipID;
+       u_char CDSNControl;
+       int chips_per_floor; /* The number of chips detected on each floor */
+       int curfloor;
+       int curchip;
+       int mh0_page;
+       int mh1_page;
+       struct mtd_info *nextdoc;
+};
+
+/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
+   MediaHeader.  The spec says to just keep going, I think, but that's just
+   silly. */
+#define MAX_MEDIAHEADER_SCAN 8
+
+/* This is the syndrome computed by the HW ecc generator upon reading an empty
+   page, one with all 0xff for data and stored ecc code. */
+static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
+/* This is the ecc value computed by the HW ecc generator upon writing an empty
+   page, one with all 0xff for data. */
+static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
+
+#define INFTL_BBT_RESERVED_BLOCKS 4
+
+#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
+#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
+static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+
+static int debug=0;
+MODULE_PARM(debug, "i");
+
+static int try_dword=1;
+MODULE_PARM(try_dword, "i");
+
+static int no_ecc_failures=0;
+MODULE_PARM(no_ecc_failures, "i");
+
+static int no_autopart=0;
+MODULE_PARM(no_autopart, "i");
+
+#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
+static int inftl_bbt_write=1;
+#else
+static int inftl_bbt_write=0;
+#endif
+MODULE_PARM(inftl_bbt_write, "i");
+
+static unsigned long doc_config_location = CONFIG_MTD_DOCPROBE_ADDRESS;
+MODULE_PARM(doc_config_location, "l");
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
+{
+       volatile char dummy;
+       int i;
+       
+       for (i = 0; i < cycles; i++) {
+               if (DoC_is_Millennium(doc))
+                       dummy = ReadDOC(doc->virtadr, NOP);
+               else
+                       dummy = ReadDOC(doc->virtadr, DOCStatus);
+       }
+       
+}
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct doc_priv *doc)
+{
+       unsigned long docptr = doc->virtadr;
+       unsigned long timeo = jiffies + (HZ * 10);
+
+       if(debug) printk("_DoC_WaitReady...\n");
+       /* Out-of-line routine to wait for chip response */
+       while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+               if (time_after(jiffies, timeo)) {
+                       printk("_DoC_WaitReady timed out.\n");
+                       return -EIO;
+               }
+               udelay(1);
+               cond_resched();
+       }
+
+       return 0;
+}
+
+static inline int DoC_WaitReady(struct doc_priv *doc)
+{
+       unsigned long docptr = doc->virtadr;
+       int ret = 0;
+
+       DoC_Delay(doc, 4);
+
+       if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+               /* Call the out-of-line routine to wait */
+               ret = _DoC_WaitReady(doc);
+
+       DoC_Delay(doc, 2);
+       if(debug) printk("DoC_WaitReady OK\n");
+       return ret;
+}
+
+static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+
+       if(debug)printk("write_byte %02x\n", datum);
+       WriteDOC(datum, docptr, CDSNSlowIO);
+       WriteDOC(datum, docptr, 2k_CDSN_IO);
+}
+
+static u_char doc2000_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       u_char ret;
+
+       ReadDOC(docptr, CDSNSlowIO);
+       DoC_Delay(doc, 2);
+       ret = ReadDOC(docptr, 2k_CDSN_IO);
+       if (debug) printk("read_byte returns %02x\n", ret);
+       return ret;
+}
+
+static void doc2000_writebuf(struct mtd_info *mtd, 
+                            const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int i;
+       if (debug)printk("writebuf of %d bytes: ", len);
+       for (i=0; i < len; i++) {
+               WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
+               if (debug && i < 16)
+                       printk("%02x ", buf[i]);
+       }
+       if (debug) printk("\n");
+}
+
+static void doc2000_readbuf(struct mtd_info *mtd, 
+                           u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int i;
+
+       if (debug)printk("readbuf of %d bytes: ", len);
+
+       for (i=0; i < len; i++) {
+               buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
+       }
+}
+
+static void doc2000_readbuf_dword(struct mtd_info *mtd, 
+                           u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int i;
+
+       if (debug) printk("readbuf_dword of %d bytes: ", len);
+
+       if (unlikely((((unsigned long)buf)|len) & 3)) {
+               for (i=0; i < len; i++) {
+                       *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
+               }
+       } else {
+               for (i=0; i < len; i+=4) {
+                       *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
+               }
+       }
+}
+
+static int doc2000_verifybuf(struct mtd_info *mtd, 
+                             const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int i;
+
+       for (i=0; i < len; i++)
+               if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
+                       return -EFAULT;
+       return 0;
+}
+
+static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       uint16_t ret;
+
+       doc200x_select_chip(mtd, nr);
+       doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+       this->write_byte(mtd, NAND_CMD_READID);
+       doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+       doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+       this->write_byte(mtd, 0);
+       doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+       ret = this->read_byte(mtd) << 8;
+       ret |= this->read_byte(mtd);
+
+       if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
+               /* First chip probe. See if we get same results by 32-bit access */
+               union {
+                       uint32_t dword;
+                       uint8_t byte[4];
+               } ident;
+               unsigned long docptr = doc->virtadr;
+
+               doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+               doc2000_write_byte(mtd, NAND_CMD_READID);
+               doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+               doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+               doc2000_write_byte(mtd, 0);
+               doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+               ident.dword = readl(docptr + DoC_2k_CDSN_IO);
+               if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
+                       printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+                       this->read_buf = &doc2000_readbuf_dword;
+               }
+       }
+               
+       return ret;
+}
+
+static void __init doc2000_count_chips(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       uint16_t mfrid;
+       int i;
+
+       /* Max 4 chips per floor on DiskOnChip 2000 */
+       doc->chips_per_floor = 4;
+
+       /* Find out what the first chip is */
+       mfrid = doc200x_ident_chip(mtd, 0);
+
+       /* Find how many chips in each floor. */
+       for (i = 1; i < 4; i++) {
+               if (doc200x_ident_chip(mtd, i) != mfrid)
+                       break;
+       }
+       doc->chips_per_floor = i;
+       printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+}
+
+static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+       struct doc_priv *doc = (void *)this->priv;
+
+       int status;
+       
+       DoC_WaitReady(doc);
+       this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+       DoC_WaitReady(doc);
+       status = (int)this->read_byte(mtd);
+
+       return status;
+}
+
+static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+
+       WriteDOC(datum, docptr, CDSNSlowIO);
+       WriteDOC(datum, docptr, Mil_CDSN_IO);
+       WriteDOC(datum, docptr, WritePipeTerm);
+}
+
+static u_char doc2001_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+
+       //ReadDOC(docptr, CDSNSlowIO);
+       /* 11.4.5 -- delay twice to allow extended length cycle */
+       DoC_Delay(doc, 2);
+       ReadDOC(docptr, ReadPipeInit);
+       //return ReadDOC(docptr, Mil_CDSN_IO);
+       return ReadDOC(docptr, LastDataRead);
+}
+
+static void doc2001_writebuf(struct mtd_info *mtd, 
+                            const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int i;
+
+       for (i=0; i < len; i++)
+               WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+       /* Terminate write pipeline */
+       WriteDOC(0x00, docptr, WritePipeTerm);
+}
+
+static void doc2001_readbuf(struct mtd_info *mtd, 
+                           u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int i;
+
+       /* Start read pipeline */
+       ReadDOC(docptr, ReadPipeInit);
+
+       for (i=0; i < len-1; i++)
+               buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
+
+       /* Terminate read pipeline */
+       buf[i] = ReadDOC(docptr, LastDataRead);
+}
+
+static int doc2001_verifybuf(struct mtd_info *mtd, 
+                            const u_char *buf, int len)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int i;
+
+       /* Start read pipeline */
+       ReadDOC(docptr, ReadPipeInit);
+
+       for (i=0; i < len-1; i++)
+               if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+                       ReadDOC(docptr, LastDataRead);
+                       return i;
+               }
+       if (buf[i] != ReadDOC(docptr, LastDataRead))
+               return i;
+       return 0;
+}
+
+static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int floor = 0;
+
+       /* 11.4.4 -- deassert CE before changing chip */
+       doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
+
+       if(debug)printk("select chip (%d)\n", chip);
+
+       if (chip == -1)
+               return;
+
+       floor = chip / doc->chips_per_floor;
+       chip -= (floor *  doc->chips_per_floor);
+
+       WriteDOC(floor, docptr, FloorSelect);
+       WriteDOC(chip, docptr, CDSNDeviceSelect);
+
+       doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
+
+       doc->curchip = chip;
+       doc->curfloor = floor;
+}
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+
+       switch(cmd) {
+       case NAND_CTL_SETNCE:
+               doc->CDSNControl |= CDSN_CTRL_CE;
+               break;
+       case NAND_CTL_CLRNCE:
+               doc->CDSNControl &= ~CDSN_CTRL_CE;
+               break;
+       case NAND_CTL_SETCLE:
+               doc->CDSNControl |= CDSN_CTRL_CLE;
+               break;
+       case NAND_CTL_CLRCLE:
+               doc->CDSNControl &= ~CDSN_CTRL_CLE;
+               break;
+       case NAND_CTL_SETALE:
+               doc->CDSNControl |= CDSN_CTRL_ALE;
+               break;
+       case NAND_CTL_CLRALE:
+               doc->CDSNControl &= ~CDSN_CTRL_ALE;
+               break;
+       case NAND_CTL_SETWP:
+               doc->CDSNControl |= CDSN_CTRL_WP;
+               break;
+       case NAND_CTL_CLRWP:
+               doc->CDSNControl &= ~CDSN_CTRL_WP;
+               break;
+       }
+       if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
+       WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+       /* 11.4.3 -- 4 NOPs after CSDNControl write */
+       DoC_Delay(doc, 4);
+}
+
+static int doc200x_dev_ready(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+
+       /* 11.4.2 -- must NOP four times before checking FR/B# */
+       DoC_Delay(doc, 4);
+       if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+               if(debug)
+                       printk("not ready\n");
+               return 0;
+       }
+       /* 11.4.2 -- Must NOP twice if it's ready */
+       DoC_Delay(doc, 2);
+       if (debug)printk("was ready\n");
+       return 1; 
+}      
+
+static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+       /* This is our last resort if we couldn't find or create a BBT.  Just
+          pretend all blocks are good. */
+       return 0;
+}
+
+static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+
+       /* Prime the ECC engine */
+       switch(mode) {
+       case NAND_ECC_READ:
+               WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+               WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+               break;
+       case NAND_ECC_WRITE:
+               WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+               WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+               break;
+       }       
+}
+
+/* This code is only called on write */
+static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+                                unsigned char *ecc_code)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       int i;
+       int emptymatch = 1;
+
+       /* flush the pipeline */
+       if (DoC_is_2000(doc)) {
+               WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
+               WriteDOC(0, docptr, 2k_CDSN_IO);
+               WriteDOC(0, docptr, 2k_CDSN_IO);
+               WriteDOC(0, docptr, 2k_CDSN_IO);
+               WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+       } else {
+               WriteDOC(0, docptr, NOP);
+               WriteDOC(0, docptr, NOP);
+               WriteDOC(0, docptr, NOP);
+       }
+
+       for (i = 0; i < 6; i++) {
+               ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+               if (ecc_code[i] != empty_write_ecc[i])
+                       emptymatch = 0;
+       }
+       WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+#if 0
+       /* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
+       if (emptymatch) {
+               /* Note: this somewhat expensive test should not be triggered
+                  often.  It could be optimized away by examining the data in
+                  the writebuf routine, and remembering the result. */
+               for (i = 0; i < 512; i++) {
+                       if (dat[i] == 0xff) continue;
+                       emptymatch = 0;
+                       break;
+               }
+       }
+       /* If emptymatch still =1, we do have an all-0xff data buffer.
+          Return all-0xff ecc value instead of the computed one, so
+          it'll look just like a freshly-erased page. */
+       if (emptymatch) memset(ecc_code, 0xff, 6);
+#endif
+       return 0;
+}
+
+static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+       int i, ret = 0;
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       unsigned long docptr = doc->virtadr;
+       volatile u_char dummy;
+       int emptymatch = 1;
+       
+       /* flush the pipeline */
+       if (DoC_is_2000(doc)) {
+               dummy = ReadDOC(docptr, 2k_ECCStatus);
+               dummy = ReadDOC(docptr, 2k_ECCStatus);
+               dummy = ReadDOC(docptr, 2k_ECCStatus);
+       } else {
+               dummy = ReadDOC(docptr, ECCConf);
+               dummy = ReadDOC(docptr, ECCConf);
+               dummy = ReadDOC(docptr, ECCConf);
+       }
+       
+       /* Error occured ? */
+       if (dummy & 0x80) {
+               for (i = 0; i < 6; i++) {
+                       calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+                       if (calc_ecc[i] != empty_read_syndrome[i])
+                               emptymatch = 0;
+               }
+               /* If emptymatch=1, the read syndrome is consistent with an
+                  all-0xff data and stored ecc block.  Check the stored ecc. */
+               if (emptymatch) {
+                       for (i = 0; i < 6; i++) {
+                               if (read_ecc[i] == 0xff) continue;
+                               emptymatch = 0;
+                               break;
+                       }
+               }
+               /* If emptymatch still =1, check the data block. */
+               if (emptymatch) {
+               /* Note: this somewhat expensive test should not be triggered
+                  often.  It could be optimized away by examining the data in
+                  the readbuf routine, and remembering the result. */
+                       for (i = 0; i < 512; i++) {
+                               if (dat[i] == 0xff) continue;
+                               emptymatch = 0;
+                               break;
+                       }
+               }
+               /* If emptymatch still =1, this is almost certainly a freshly-
+                  erased block, in which case the ECC will not come out right.
+                  We'll suppress the error and tell the caller everything's
+                  OK.  Because it is. */
+               if (!emptymatch) ret = doc_decode_ecc (dat, calc_ecc);
+               if (ret > 0)
+                       printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+       }       
+       WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+       if (no_ecc_failures && (ret == -1)) {
+               printk(KERN_ERR "suppressing ECC failure\n");
+               ret = 0;
+       }
+       return ret;
+}
+               
+//u_char mydatabuf[528];
+
+static struct nand_oobinfo doc200x_oobinfo = {
+        .useecc = MTD_NANDECC_AUTOPLACE,
+        .eccbytes = 6,
+        .eccpos = {0, 1, 2, 3, 4, 5},
+        .oobfree = { {8, 8} }
+};
+/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
+   On sucessful return, buf will contain a copy of the media header for
+   further processing.  id is the string to scan for, and will presumably be
+   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
+   header.  The page #s of the found media headers are placed in mh0_page and
+   mh1_page in the DOC private structure. */
+static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
+                                    const char *id, int findmirror)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       int offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
+       int ret, retlen;
+
+       end = min(end, mtd->size); // paranoia
+       for (offs = 0; offs < end; offs += mtd->erasesize) {
+               ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+               if (retlen != mtd->oobblock) continue;
+               if (ret) {
+                       printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
+                               offs);
+               }
+               if (memcmp(buf, id, 6)) continue;
+               printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+               if (doc->mh0_page == -1) {
+                       doc->mh0_page = offs >> this->page_shift;
+                       if (!findmirror) return 1;
+                       continue;
+               }
+               doc->mh1_page = offs >> this->page_shift;
+               return 2;
+       }
+       if (doc->mh0_page == -1) {
+               printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+               return 0;
+       }
+       /* Only one mediaheader was found.  We want buf to contain a
+          mediaheader on return, so we'll have to re-read the one we found. */
+       offs = doc->mh0_page << this->page_shift;
+       ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+       if (retlen != mtd->oobblock) {
+               /* Insanity.  Give up. */
+               printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+               return 0;
+       }
+       return 1;
+}
+
+static inline int __init nftl_partscan(struct mtd_info *mtd,
+                               struct mtd_partition *parts)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       u_char *buf = this->data_buf;
+       struct NFTLMediaHeader *mh = (struct NFTLMediaHeader *) buf;
+       const int psize = 1 << this->page_shift;
+       int blocks, maxblocks;
+       int offs, numheaders;
+
+       if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) return 0;
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//     if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+       printk(KERN_INFO "    DataOrgID        = %s\n"
+                        "    NumEraseUnits    = %d\n"
+                        "    FirstPhysicalEUN = %d\n"
+                        "    FormattedSize    = %d\n"
+                        "    UnitSizeFactor   = %d\n",
+               mh->DataOrgID, mh->NumEraseUnits,
+               mh->FirstPhysicalEUN, mh->FormattedSize,
+               mh->UnitSizeFactor);
+//#endif
+
+       blocks = mtd->size >> this->phys_erase_shift;
+       maxblocks = min(32768, mtd->erasesize - psize);
+
+       if (mh->UnitSizeFactor == 0x00) {
+               /* Auto-determine UnitSizeFactor.  The constraints are:
+                  - There can be at most 32768 virtual blocks.
+                  - There can be at most (virtual block size - page size)
+                    virtual blocks (because MediaHeader+BBT must fit in 1).
+               */
+               mh->UnitSizeFactor = 0xff;
+               while (blocks > maxblocks) {
+                       blocks >>= 1;
+                       maxblocks = min(32768, (maxblocks << 1) + psize);
+                       mh->UnitSizeFactor--;
+               }
+               printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+       }
+
+       /* NOTE: The lines below modify internal variables of the NAND and MTD
+          layers; variables with have already been configured by nand_scan.
+          Unfortunately, we didn't know before this point what these values
+          should be.  Thus, this code is somewhat dependant on the exact
+          implementation of the NAND layer.  */
+       if (mh->UnitSizeFactor != 0xff) {
+               this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+               mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
+               printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+               blocks = mtd->size >> this->bbt_erase_shift;
+               maxblocks = min(32768, mtd->erasesize - psize);
+       }
+
+       if (blocks > maxblocks) {
+               printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
+               return 0;
+       }
+
+       /* Skip past the media headers. */
+       offs = max(doc->mh0_page, doc->mh1_page);
+       offs <<= this->page_shift;
+       offs += mtd->erasesize;
+
+       //parts[0].name = " DiskOnChip Boot / Media Header partition";
+       //parts[0].offset = 0;
+       //parts[0].size = offs;
+
+       parts[0].name = " DiskOnChip BDTL partition";
+       parts[0].offset = offs;
+       parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
+
+       offs += parts[0].size;
+       if (offs < mtd->size) {
+               parts[1].name = " DiskOnChip Remainder partition";
+               parts[1].offset = offs;
+               parts[1].size = mtd->size - offs;
+               return 2;
+       }
+       return 1;
+}
+
+/* This is a stripped-down copy of the code in inftlmount.c */
+static inline int __init inftl_partscan(struct mtd_info *mtd,
+                                struct mtd_partition *parts)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       u_char *buf = this->data_buf;
+       struct INFTLMediaHeader *mh = (struct INFTLMediaHeader *) buf;
+       struct INFTLPartition *ip;
+       int numparts = 0;
+       int blocks;
+       int vshift, lastvunit = 0;
+       int i;
+       int end = mtd->size;
+
+       if (inftl_bbt_write)
+               end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
+
+       if (!find_media_headers(mtd, buf, "BNAND", 0)) return 0;
+       doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
+
+       mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
+       mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
+       mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
+       mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
+       mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
+       mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//     if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+       printk(KERN_INFO "    bootRecordID          = %s\n"
+                        "    NoOfBootImageBlocks   = %d\n"
+                        "    NoOfBinaryPartitions  = %d\n"
+                        "    NoOfBDTLPartitions    = %d\n"
+                        "    BlockMultiplerBits    = %d\n"
+                        "    FormatFlgs            = %d\n"
+                        "    OsakVersion           = 0x%x\n"
+                        "    PercentUsed           = %d\n",
+               mh->bootRecordID, mh->NoOfBootImageBlocks,
+               mh->NoOfBinaryPartitions,
+               mh->NoOfBDTLPartitions,
+               mh->BlockMultiplierBits, mh->FormatFlags,
+               mh->OsakVersion, mh->PercentUsed);
+//#endif
+
+       vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
+
+       blocks = mtd->size >> vshift;
+       if (blocks > 32768) {
+               printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
+               return 0;
+       }
+
+       blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
+       if (inftl_bbt_write && (blocks > mtd->erasesize)) {
+               printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
+               return 0;
+       }
+
+       /* Scan the partitions */
+       for (i = 0; (i < 4); i++) {
+               ip = &(mh->Partitions[i]);
+               ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
+               ip->firstUnit = le32_to_cpu(ip->firstUnit);
+               ip->lastUnit = le32_to_cpu(ip->lastUnit);
+               ip->flags = le32_to_cpu(ip->flags);
+               ip->spareUnits = le32_to_cpu(ip->spareUnits);
+               ip->Reserved0 = le32_to_cpu(ip->Reserved0);
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+//             if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+               printk(KERN_INFO        "    PARTITION[%d] ->\n"
+                       "        virtualUnits    = %d\n"
+                       "        firstUnit       = %d\n"
+                       "        lastUnit        = %d\n"
+                       "        flags           = 0x%x\n"
+                       "        spareUnits      = %d\n",
+                       i, ip->virtualUnits, ip->firstUnit,
+                       ip->lastUnit, ip->flags,
+                       ip->spareUnits);
+//#endif
+
+/*
+               if ((i == 0) && (ip->firstUnit > 0)) {
+                       parts[0].name = " DiskOnChip IPL / Media Header partition";
+                       parts[0].offset = 0;
+                       parts[0].size = mtd->erasesize * ip->firstUnit;
+                       numparts = 1;
+               }
+*/
+
+               if (ip->flags & INFTL_BINARY)
+                       parts[numparts].name = " DiskOnChip BDK partition";
+               else
+                       parts[numparts].name = " DiskOnChip BDTL partition";
+               parts[numparts].offset = ip->firstUnit << vshift;
+               parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
+               numparts++;
+               if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
+               if (ip->flags & INFTL_LAST) break;
+       }
+       lastvunit++;
+       if ((lastvunit << vshift) < end) {
+               parts[numparts].name = " DiskOnChip Remainder partition";
+               parts[numparts].offset = lastvunit << vshift;
+               parts[numparts].size = end - parts[numparts].offset;
+               numparts++;
+       }
+       return numparts;
+}
+
+static int __init nftl_scan_bbt(struct mtd_info *mtd)
+{
+       int ret, numparts;
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       struct mtd_partition parts[2];
+
+       memset((char *) parts, 0, sizeof(parts));
+       /* On NFTL, we have to find the media headers before we can read the
+          BBTs, since they're stored in the media header eraseblocks. */
+       numparts = nftl_partscan(mtd, parts);
+       if (!numparts) return -EIO;
+       this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+                               NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+                               NAND_BBT_VERSION;
+       this->bbt_td->veroffs = 7;
+       this->bbt_td->pages[0] = doc->mh0_page + 1;
+       if (doc->mh1_page != -1) {
+               this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+                                       NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+                                       NAND_BBT_VERSION;
+               this->bbt_md->veroffs = 7;
+               this->bbt_md->pages[0] = doc->mh1_page + 1;
+       } else {
+               this->bbt_md = NULL;
+       }
+
+       /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+          At least as nand_bbt.c is currently written. */
+       if ((ret = nand_scan_bbt(mtd, NULL)))
+               return ret;
+       add_mtd_device(mtd);
+#if defined(CONFIG_MTD_PARTITIONS) || defined(CONFIG_MTD_PARTITIONS_MODULE)
+       if (!no_autopart) add_mtd_partitions(mtd, parts, numparts);
+#endif
+       return 0;
+}
+
+static int __init inftl_scan_bbt(struct mtd_info *mtd)
+{
+       int ret, numparts;
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+       struct mtd_partition parts[5];
+
+       if (this->numchips > doc->chips_per_floor) {
+               printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+               return -EIO;
+       }
+
+       if (mtd->size == (8<<20)) {
+#if 0
+/* This doesn't seem to work for me.  I get ECC errors on every page. */
+               /* The Millennium 8MiB is actually an NFTL device! */
+               mtd->name = "DiskOnChip Millennium 8MiB (NFTL)";
+               return nftl_scan_bbt(mtd);
+#endif
+               printk(KERN_ERR "DiskOnChip Millennium 8MiB is not supported.\n");
+               return -EIO;
+       }
+
+       this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+                               NAND_BBT_VERSION;
+       if (inftl_bbt_write)
+               this->bbt_td->options |= NAND_BBT_WRITE;
+       this->bbt_td->offs = 8;
+       this->bbt_td->len = 8;
+       this->bbt_td->veroffs = 7;
+       this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+       this->bbt_td->reserved_block_code = 0x01;
+       this->bbt_td->pattern = "MSYS_BBT";
+
+       this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+                               NAND_BBT_VERSION;
+       if (inftl_bbt_write)
+               this->bbt_md->options |= NAND_BBT_WRITE;
+       this->bbt_md->offs = 8;
+       this->bbt_md->len = 8;
+       this->bbt_md->veroffs = 7;
+       this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+       this->bbt_md->reserved_block_code = 0x01;
+       this->bbt_md->pattern = "TBB_SYSM";
+
+       /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+          At least as nand_bbt.c is currently written. */
+       if ((ret = nand_scan_bbt(mtd, NULL)))
+               return ret;
+       memset((char *) parts, 0, sizeof(parts));
+       numparts = inftl_partscan(mtd, parts);
+       /* At least for now, require the INFTL Media Header.  We could probably
+          do without it for non-INFTL use, since all it gives us is
+          autopartitioning, but I want to give it more thought. */
+       if (!numparts) return -EIO;
+       add_mtd_device(mtd);
+#if defined(CONFIG_MTD_PARTITIONS) || defined(CONFIG_MTD_PARTITIONS_MODULE)
+       if (!no_autopart) add_mtd_partitions(mtd, parts, numparts);
+#endif
+       return 0;
+}
+
+static inline int __init doc2000_init(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+
+       this->write_byte = doc2000_write_byte;
+       this->read_byte = doc2000_read_byte;
+       this->write_buf = doc2000_writebuf;
+       this->read_buf = doc2000_readbuf;
+       this->verify_buf = doc2000_verifybuf;
+       this->scan_bbt = nftl_scan_bbt;
+
+       doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
+       doc2000_count_chips(mtd);
+       mtd->name = "DiskOnChip 2000 (NFTL Model)";
+       return (4 * doc->chips_per_floor);
+}
+
+static inline int __init doc2001_init(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       struct doc_priv *doc = (void *)this->priv;
+
+       this->write_byte = doc2001_write_byte;
+       this->read_byte = doc2001_read_byte;
+       this->write_buf = doc2001_writebuf;
+       this->read_buf = doc2001_readbuf;
+       this->verify_buf = doc2001_verifybuf;
+       this->scan_bbt = inftl_scan_bbt;
+
+       ReadDOC(doc->virtadr, ChipID);
+       ReadDOC(doc->virtadr, ChipID);
+       ReadDOC(doc->virtadr, ChipID);
+       if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
+               /* It's not a Millennium; it's one of the newer
+                  DiskOnChip 2000 units with a similar ASIC. 
+                  Treat it like a Millennium, except that it
+                  can have multiple chips. */
+               doc2000_count_chips(mtd);
+               mtd->name = "DiskOnChip 2000 (INFTL Model)";
+               return (4 * doc->chips_per_floor);
+       } else {
+               /* Bog-standard Millennium */
+               doc->chips_per_floor = 1;
+               mtd->name = "DiskOnChip Millennium";
+               return 1;
+       }
+}
+
+static inline int __init doc_probe(unsigned long physadr)
+{
+       unsigned char ChipID;
+       struct mtd_info *mtd;
+       struct nand_chip *nand;
+       struct doc_priv *doc;
+       unsigned long virtadr;
+       unsigned char save_control;
+       unsigned char tmp, tmpb, tmpc;
+       int reg, len, numchips;
+       int ret = 0;
+
+       virtadr = (unsigned long)ioremap(physadr, DOC_IOREMAP_LEN);
+       if (!virtadr) {
+               printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+               return -EIO;
+       }
+
+       /* It's not possible to cleanly detect the DiskOnChip - the
+        * bootup procedure will put the device into reset mode, and
+        * it's not possible to talk to it without actually writing
+        * to the DOCControl register. So we store the current contents
+        * of the DOCControl register's location, in case we later decide
+        * that it's not a DiskOnChip, and want to put it back how we
+        * found it. 
+        */
+       save_control = ReadDOC(virtadr, DOCControl);
+
+       /* Reset the DiskOnChip ASIC */
+       WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, 
+                virtadr, DOCControl);
+       WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, 
+                virtadr, DOCControl);
+
+       /* Enable the DiskOnChip ASIC */
+       WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, 
+                virtadr, DOCControl);
+       WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, 
+                virtadr, DOCControl);
+
+       ChipID = ReadDOC(virtadr, ChipID);
+
+       switch(ChipID) {
+       case DOC_ChipID_Doc2k:
+               reg = DoC_2k_ECCStatus;
+               break;
+       case DOC_ChipID_DocMil:
+               reg = DoC_ECCConf;
+               break;
+       default:
+               ret = -ENODEV;
+               goto notfound;
+       }
+       /* Check the TOGGLE bit in the ECC register */
+       tmp  = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+       tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+       tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+       if ((tmp == tmpb) || (tmp != tmpc)) {
+               printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+               ret = -ENODEV;
+               goto notfound;
+       }
+
+       for (mtd = doclist; mtd; mtd = doc->nextdoc) {
+               nand = mtd->priv;
+               doc = (void *)nand->priv;
+               /* Use the alias resolution register to determine if this is
+                  in fact the same DOC aliased to a new address.  If writes
+                  to one chip's alias resolution register change the value on
+                  the other chip, they're the same chip. */
+               unsigned char oldval = ReadDOC(doc->virtadr, AliasResolution);
+               unsigned char newval = ReadDOC(virtadr, AliasResolution);
+               if (oldval != newval)
+                       continue;
+               WriteDOC(~newval, virtadr, AliasResolution);
+               oldval = ReadDOC(doc->virtadr, AliasResolution);
+               WriteDOC(newval, virtadr, AliasResolution); // restore it
+               newval = ~newval;
+               if (oldval == newval) {
+                       //printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+                       goto notfound;
+               }
+       }
+
+       printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+
+       len = sizeof(struct mtd_info) +
+             sizeof(struct nand_chip) +
+             sizeof(struct doc_priv) +
+             (2 * sizeof(struct nand_bbt_descr));
+       mtd = kmalloc(len, GFP_KERNEL);
+       if (!mtd) {
+               printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
+               ret = -ENOMEM;
+               goto fail;
+       }
+       memset(mtd, 0, len);
+
+       nand                    = (struct nand_chip *) (mtd + 1);
+       doc                     = (struct doc_priv *) (nand + 1);
+       nand->bbt_td            = (struct nand_bbt_descr *) (doc + 1);
+       nand->bbt_md            = nand->bbt_td + 1;
+
+       mtd->priv               = (void *) nand;
+       mtd->owner              = THIS_MODULE;
+
+       nand->priv              = (void *) doc;
+       nand->select_chip       = doc200x_select_chip;
+       nand->hwcontrol         = doc200x_hwcontrol;
+       nand->dev_ready         = doc200x_dev_ready;
+       nand->waitfunc          = doc200x_wait;
+       nand->block_bad         = doc200x_block_bad;
+       nand->enable_hwecc      = doc200x_enable_hwecc;
+       nand->calculate_ecc     = doc200x_calculate_ecc;
+       nand->correct_data      = doc200x_correct_data;
+       //nand->data_buf
+       nand->autooob           = &doc200x_oobinfo;
+       nand->eccmode           = NAND_ECC_HW6_512;
+       nand->options           = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
+
+       doc->physadr            = physadr;
+       doc->virtadr            = virtadr;
+       doc->ChipID             = ChipID;
+       doc->curfloor           = -1;
+       doc->curchip            = -1;
+       doc->mh0_page           = -1;
+       doc->mh1_page           = -1;
+       doc->nextdoc            = doclist;
+
+       if (ChipID == DOC_ChipID_Doc2k)
+               numchips = doc2000_init(mtd);
+       else
+               numchips = doc2001_init(mtd);
+
+       if ((ret = nand_scan(mtd, numchips))) {
+               /* DBB note: i believe nand_release is necessary here, as
+                  buffers may have been allocated in nand_base.  Check with
+                  Thomas. FIX ME! */
+               /* nand_release will call del_mtd_device, but we haven't yet
+                  added it.  This is handled without incident by
+                  del_mtd_device, as far as I can tell. */
+               nand_release(mtd);
+               kfree(mtd);
+               goto fail;
+       }
+
+       /* Success! */
+       doclist = mtd;
+       return 0;
+
+notfound:
+       /* Put back the contents of the DOCControl register, in case it's not
+          actually a DiskOnChip.  */
+       WriteDOC(save_control, virtadr, DOCControl);
+fail:
+       iounmap((void *)virtadr);
+       return ret;
+}
+
+int __init init_nanddoc(void)
+{
+       int i;
+
+       if (doc_config_location) {
+               printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+               return doc_probe(doc_config_location);
+       } else {
+               for (i=0; (doc_locations[i] != 0xffffffff); i++) {
+                       doc_probe(doc_locations[i]);
+               }
+       }
+       /* No banner message any more. Print a message if no DiskOnChip
+          found, so the user knows we at least tried. */
+       if (!doclist) {
+               printk(KERN_INFO "No valid DiskOnChip devices found\n");
+               return -ENODEV;
+       }
+       return 0;
+}
+
+void __exit cleanup_nanddoc(void)
+{
+       struct mtd_info *mtd, *nextmtd;
+       struct nand_chip *nand;
+       struct doc_priv *doc;
+
+       for (mtd = doclist; mtd; mtd = nextmtd) {
+               nand = mtd->priv;
+               doc = (void *)nand->priv;
+
+               nextmtd = doc->nextdoc;
+               nand_release(mtd);
+               iounmap((void *)doc->virtadr);
+               kfree(mtd);
+       }
+}
+       
+module_init(init_nanddoc);
+module_exit(cleanup_nanddoc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("M-Systems DiskOnChip 2000 and Millennium device driver\n");
index db678bf..7977940 100644 (file)
@@ -6,7 +6,7 @@
  *  Derived from drivers/mtd/nand/autcpu12.c
  *       Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
  *
- * $Id: edb7312.c,v 1.5 2003/04/20 07:24:40 gleixner Exp $
+ * $Id: edb7312.c,v 1.8 2004/07/12 15:03:26 dwmw2 Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -20,6 +20,7 @@
 
 #include <linux/slab.h>
 #include <linux/module.h>
+#include <linux/init.h>
 #include <linux/mtd/mtd.h>
 #include <linux/mtd/nand.h>
 #include <linux/mtd/partitions.h>
@@ -83,7 +84,7 @@ static struct mtd_partition partition_info[] = {
 /* 
  *     hardware specific access to control-lines
  */
-static void ep7312_hwcontrol(int cmd) 
+static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd) 
 {
        switch(cmd) {
                
@@ -113,10 +114,13 @@ static void ep7312_hwcontrol(int cmd)
 /*
  *     read device ready pin
  */
-static int ep7312_device_ready(void)
+static int ep7312_device_ready(struct mtd_info *mtd)
 {
        return 1;
 }
+#ifdef CONFIG_MTD_PARTITIONS
+const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
 
 /*
  * Main initialization routine
@@ -171,7 +175,7 @@ static int __init ep7312_init (void)
        this->chip_delay = 15;
        
        /* Scan to find existence of the device */
-       if (nand_scan (ep7312_mtd)) {
+       if (nand_scan (ep7312_mtd, 1)) {
                iounmap((void *)ep7312_fio_base);
                kfree (ep7312_mtd);
                return -ENXIO;
@@ -186,16 +190,16 @@ static int __init ep7312_init (void)
                return -ENOMEM;
        }
        
-#ifdef CONFIG_MTD_CMDLINE_PARTS
-       mtd_parts_nb = parse_cmdline_partitions(ep7312_mtd, &mtd_parts, 
-                                               "edb7312-nand");
+#ifdef CONFIG_PARTITIONS
+       ep7312_mtd->name = "edb7312-nand";
+       mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes,
+                                           &mtd_parts, 0);
        if (mtd_parts_nb > 0)
-         part_type = "command line";
+               part_type = "command line";
        else
-         mtd_parts_nb = 0;
+               mtd_parts_nb = 0;
 #endif
-       if (mtd_parts_nb == 0)
-       {
+       if (mtd_parts_nb == 0) {
                mtd_parts = partition_info;
                mtd_parts_nb = NUM_PARTITIONS;
                part_type = "static";
diff --git a/drivers/mtd/nand/nand.c b/drivers/mtd/nand/nand.c
deleted file mode 100644 (file)
index 63244bf..0000000
+++ /dev/null
@@ -1,1397 +0,0 @@
-/*
- *  drivers/mtd/nand.c
- *
- *  Overview:
- *   This is the generic MTD driver for NAND flash devices. It should be
- *   capable of working with almost all NAND chips currently available.
- *   
- *     Additional technical information is available on
- *     http://www.linux-mtd.infradead.org/tech/nand.html
- *     
- *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
- *               2002 Thomas Gleixner (tglx@linutronix.de)
- *
- *  10-29-2001  Thomas Gleixner (tglx@linutronix.de)
- *             - Changed nand_chip structure for controlline function to
- *             support different hardware structures (Access to
- *             controllines ALE,CLE,NCE via hardware specific function. 
- *             - exit out of "failed erase block" changed, to avoid
- *             driver hangup
- *             - init_waitqueue_head added in function nand_scan !!
- *
- *  01-30-2002  Thomas Gleixner (tglx@linutronix.de)
- *             change in nand_writev to block invalid vecs entries
- *
- *  02-11-2002  Thomas Gleixner (tglx@linutronix.de)
- *             - major rewrite to avoid duplicated code
- *               common nand_write_page function  
- *               common get_chip function 
- *             - added oob_config structure for out of band layouts
- *             - write_oob changed for partial programming
- *             - read cache for faster access for subsequent reads
- *             from the same page.
- *             - support for different read/write address
- *             - support for device ready/busy line
- *             - read oob for more than one page enabled
- *
- *  02-27-2002 Thomas Gleixner (tglx@linutronix.de)
- *             - command-delay can be programmed
- *             - fixed exit from erase with callback-function enabled
- *
- *  03-21-2002  Thomas Gleixner (tglx@linutronix.de)
- *             - DEBUG improvements provided by Elizabeth Clarke 
- *             (eclarke@aminocom.com)
- *             - added zero check for this->chip_delay
- *
- *  04-03-2002  Thomas Gleixner (tglx@linutronix.de)
- *             - added added hw-driver supplied command and wait functions
- *             - changed blocking for erase (erase suspend enabled)
- *             - check pointers before accessing flash provided by
- *             John Hall (john.hall@optionexist.co.uk)
- *
- *  04-09-2002  Thomas Gleixner (tglx@linutronix.de)
- *             - nand_wait repaired
- *
- *  04-28-2002  Thomas Gleixner (tglx@linutronix.de)   
- *             - OOB config defines moved to nand.h 
- *
- *  08-01-2002  Thomas Gleixner (tglx@linutronix.de)   
- *             - changed my mailaddress, added pointer to tech/nand.html
- *
- *  08-07-2002         Thomas Gleixner (tglx@linutronix.de)
- *             forced bad block location to byte 5 of OOB, even if
- *             CONFIG_MTD_NAND_ECC_JFFS2 is not set, to prevent
- *             erase /dev/mtdX from erasing bad blocks and destroying
- *             bad block info
- *
- *  08-10-2002         Thomas Gleixner (tglx@linutronix.de)
- *             Fixed writing tail of data. Thanks to Alice Hennessy
- *             <ahennessy@mvista.com>.
- *
- *  08-10-2002         Thomas Gleixner (tglx@linutronix.de)
- *             nand_read_ecc and nand_write_page restructured to support
- *             hardware ECC. Thanks to Steven Hein (ssh@sgi.com)
- *             for basic implementation and suggestions.
- *             3 new pointers in nand_chip structure:
- *             calculate_ecc, correct_data, enabled_hwecc                                       
- *             forcing all hw-drivers to support page cache
- *             eccvalid_pos is now mandatory
- *
- *  08-17-2002 tglx: fixed signed/unsigned missmatch in write.c
- *             Thanks to Ken Offer <koffer@arlut.utexas.edu>   
- *
- *  08-29-2002  tglx: use buffered read/write only for non pagealigned 
- *             access, speed up the aligned path by using the fs-buffer
- *             reset chip removed from nand_select(), implicit done
- *             only, when erase is interrupted
- *             waitfuntion use yield, instead of schedule_timeout
- *             support for 6byte/512byte hardware ECC
- *             read_ecc, write_ecc extended for different oob-layout
- *             selections: Implemented NAND_NONE_OOB, NAND_JFFS2_OOB,
- *             NAND_YAFFS_OOB. fs-driver gives one of these constants
- *             to select the oob-layout fitting the filesystem.
- *             oobdata can be read together with the raw data, when
- *             the fs-driver supplies a big enough buffer.
- *             size = 12 * number of pages to read (256B pagesize)
- *                    24 * number of pages to read (512B pagesize)
- *             the buffer contains 8/16 byte oobdata and 4/8 byte
- *             returncode from calculate_ecc
- *             oobdata can be given from filesystem to program them
- *             in one go together with the raw data. ECC codes are
- *             filled in at the place selected by oobsel.
- *
- *  09-04-2002  tglx: fixed write_verify (John Hall (john.hall@optionexist.co.uk))
- *
- *  11-11-2002  tglx: fixed debug output in nand_write_page 
- *             (John Hall (john.hall@optionexist.co.uk))
- *
- *  11-25-2002  tglx: Moved device ID/ manufacturer ID from nand_ids.h
- *             Splitted device ID and manufacturer ID table. 
- *             Removed CONFIG_MTD_NAND_ECC, as it defaults to ECC_NONE for
- *             mtd->read / mtd->write and is controllable by the fs driver
- *             for mtd->read_ecc / mtd->write_ecc
- *             some minor cleanups
- *
- *  12-05-2002  tglx: Dave Ellis (DGE@sixnetio) provided the fix for
- *             WRITE_VERIFY long time ago. Thanks for remembering me.  
- *
- *  02-14-2003  tglx: Reject non page aligned writes   
- *             Fixed ecc select in nand_write_page to match semantics. 
- *
- *  02-18-2003 tglx: Changed oobsel to pointer. Added a default oob-selector
- *                     
- *  02-18-2003 tglx: Implemented oobsel again. Now it uses a pointer to
- +             a structure, which will be supplied by a filesystem driver
- *             If NULL is given, then the defaults (none or defaults
- *             supplied by ioctl (MEMSETOOBSEL) are used.
- *             For partitions the partition defaults are used (mtdpart.c)
- *
- *  06-04-2003  tglx: fix compile errors and fix write verify problem for
- *             some chips, which need either a delay between the readback
- *             and the next write command or have the CE removed. The
- *             CE disable/enable is much faster than a 20us delay and
- *             it should work on all available chips.
- *     
- * $Id: nand.c,v 1.46 2003/06/04 17:10:36 gleixner Exp $
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- */
-
-#include <linux/delay.h>
-#include <linux/errno.h>
-#include <linux/sched.h>
-#include <linux/types.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/nand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <linux/mtd/compatmac.h>
-#include <linux/interrupt.h>
-#include <asm/io.h>
-
-/*
- * Macros for low-level register control
- */
-#define nand_select()  this->hwcontrol(NAND_CTL_SETNCE);
-#define nand_deselect() this->hwcontrol(NAND_CTL_CLRNCE);
-
-/*
- * NAND low-level MTD interface functions
- */
-static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
-static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
-                         size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
-static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
-static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
-static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
-                          size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
-static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
-static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
-                       unsigned long count, loff_t to, size_t * retlen);
-static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
-                       unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
-static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
-static void nand_sync (struct mtd_info *mtd);
-static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,  struct nand_oobinfo *oobsel);
-
-
-/*
- * Send command to NAND device
- */
-static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
-{
-       register struct nand_chip *this = mtd->priv;
-       register unsigned long NAND_IO_ADDR = this->IO_ADDR_W;
-
-       /* Begin command latch cycle */
-       this->hwcontrol (NAND_CTL_SETCLE);
-       /*
-        * Write out the command to the device.
-        */
-       if (command != NAND_CMD_SEQIN)
-               writeb (command, NAND_IO_ADDR);
-       else {
-               if (mtd->oobblock == 256 && column >= 256) {
-                       column -= 256;
-                       writeb (NAND_CMD_READOOB, NAND_IO_ADDR);
-                       writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);
-               } else if (mtd->oobblock == 512 && column >= 256) {
-                       if (column < 512) {
-                               column -= 256;
-                               writeb (NAND_CMD_READ1, NAND_IO_ADDR);
-                               writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);
-                       } else {
-                               column -= 512;
-                               writeb (NAND_CMD_READOOB, NAND_IO_ADDR);
-                               writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);
-                       }
-               } else {
-                       writeb (NAND_CMD_READ0, NAND_IO_ADDR);
-                       writeb (NAND_CMD_SEQIN, NAND_IO_ADDR);
-               }
-       }
-
-       /* Set ALE and clear CLE to start address cycle */
-       this->hwcontrol (NAND_CTL_CLRCLE);
-
-       if (column != -1 || page_addr != -1) {
-               this->hwcontrol (NAND_CTL_SETALE);
-
-               /* Serially input address */
-               if (column != -1)
-                       writeb (column, NAND_IO_ADDR);
-               if (page_addr != -1) {
-                       writeb ((unsigned char) (page_addr & 0xff), NAND_IO_ADDR);
-                       writeb ((unsigned char) ((page_addr >> 8) & 0xff), NAND_IO_ADDR);
-                       /* One more address cycle for higher density devices */
-                       if (mtd->size & 0x0c000000) 
-                               writeb ((unsigned char) ((page_addr >> 16) & 0x0f), NAND_IO_ADDR);
-               }
-               /* Latch in address */
-               this->hwcontrol (NAND_CTL_CLRALE);
-       }
-       
-       /* 
-        * program and erase have their own busy handlers 
-        * status and sequential in needs no delay
-       */
-       switch (command) {
-                       
-       case NAND_CMD_PAGEPROG:
-       case NAND_CMD_ERASE1:
-       case NAND_CMD_ERASE2:
-       case NAND_CMD_SEQIN:
-       case NAND_CMD_STATUS:
-               return;
-
-       case NAND_CMD_RESET:
-               if (this->dev_ready)    
-                       break;
-               this->hwcontrol (NAND_CTL_SETCLE);
-               writeb (NAND_CMD_STATUS, NAND_IO_ADDR);
-               this->hwcontrol (NAND_CTL_CLRCLE);
-               while ( !(readb (this->IO_ADDR_R) & 0x40));
-               return;
-
-       /* This applies to read commands */     
-       default:
-               /* 
-                * If we don't have access to the busy pin, we apply the given
-                * command delay
-               */
-               if (!this->dev_ready) {
-                       udelay (this->chip_delay);
-                       return;
-               }       
-       }
-       
-       /* wait until command is processed */
-       while (!this->dev_ready());
-}
-
-/*
- *     Get chip for selected access
- */
-static inline void nand_get_chip (struct nand_chip *this, struct mtd_info *mtd, int new_state, int *erase_state)
-{
-
-       DECLARE_WAITQUEUE (wait, current);
-
-       /* 
-        * Grab the lock and see if the device is available 
-        * For erasing, we keep the spinlock until the
-        * erase command is written. 
-       */
-retry:
-       spin_lock_bh (&this->chip_lock);
-
-       if (this->state == FL_READY) {
-               this->state = new_state;
-               if (new_state != FL_ERASING)
-                       spin_unlock_bh (&this->chip_lock);
-               return;
-       }
-
-       if (this->state == FL_ERASING) {
-               if (new_state != FL_ERASING) {
-                       this->state = new_state;
-                       spin_unlock_bh (&this->chip_lock);
-                       nand_select (); /* select in any case */
-                       this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
-                       return;
-               }
-       }
-
-       set_current_state (TASK_UNINTERRUPTIBLE);
-       add_wait_queue (&this->wq, &wait);
-       spin_unlock_bh (&this->chip_lock);
-       schedule ();
-       remove_wait_queue (&this->wq, &wait);
-       goto retry;
-}
-
-/*
- * Wait for command done. This applies to erase and program only
- * Erase can take up to 400ms and program up to 20ms according to 
- * general NAND and SmartMedia specs
- *
-*/
-static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
-{
-
-       unsigned long   timeo = jiffies;
-       int     status;
-       
-       if (state == FL_ERASING)
-                timeo += (HZ * 400) / 1000;
-       else
-                timeo += (HZ * 20) / 1000;
-
-       spin_lock_bh (&this->chip_lock);
-       this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
-
-       while (time_before(jiffies, timeo)) {           
-               /* Check, if we were interrupted */
-               if (this->state != state) {
-                       spin_unlock_bh (&this->chip_lock);
-                       return 0;
-               }
-               if (this->dev_ready) {
-                       if (this->dev_ready ())
-                               break;
-               }
-               if (readb (this->IO_ADDR_R) & 0x40)
-                       break;
-                                               
-               spin_unlock_bh (&this->chip_lock);
-               yield ();
-               spin_lock_bh (&this->chip_lock);
-       }
-       status = (int) readb (this->IO_ADDR_R);
-       spin_unlock_bh (&this->chip_lock);
-
-       return status;
-}
-
-/*
- *     Nand_page_program function is used for write and writev !
- *     This function will always program a full page of data
- *     If you call it with a non page aligned buffer, you're lost :)
- */
-static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,  struct nand_oobinfo *oobsel)
-{
-       int     i, status;
-       u_char  ecc_code[6], *oob_data;
-       int     eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
-       int     *oob_config = oobsel->eccpos;
-       
-       /* pad oob area, if we have no oob buffer from fs-driver */
-       if (!oob_buf) {
-               oob_data = &this->data_buf[mtd->oobblock];
-               for (i = 0; i < mtd->oobsize; i++)
-                       oob_data[i] = 0xff;
-       } else 
-               oob_data = oob_buf;
-       
-       /* Send command to begin auto page programming */
-       this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
-
-       /* Write out complete page of data, take care of eccmode */
-       switch (eccmode) {
-       /* No ecc and software ecc 3/256, write all */
-       case NAND_ECC_NONE:
-               printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
-               for (i = 0; i < mtd->oobblock; i++) 
-                       writeb ( this->data_poi[i] , this->IO_ADDR_W);
-               break;
-       case NAND_ECC_SOFT:
-               this->calculate_ecc (&this->data_poi[0], &(ecc_code[0]));
-               for (i = 0; i < 3; i++)
-                       oob_data[oob_config[i]] = ecc_code[i];
-               /* Calculate and write the second ECC for 512 Byte page size */
-               if (mtd->oobblock == 512) {
-                       this->calculate_ecc (&this->data_poi[256], &(ecc_code[3]));
-                       for (i = 3; i < 6; i++)
-                               oob_data[oob_config[i]] = ecc_code[i];
-               } 
-               for (i = 0; i < mtd->oobblock; i++) 
-                       writeb ( this->data_poi[i] , this->IO_ADDR_W);
-               break;
-               
-       /* Hardware ecc 3 byte / 256 data, write first half, get ecc, then second, if 512 byte pagesize */      
-       case NAND_ECC_HW3_256:          
-               this->enable_hwecc (NAND_ECC_WRITE);    /* enable hardware ecc logic for write */
-               for (i = 0; i < mtd->eccsize; i++) 
-                       writeb ( this->data_poi[i] , this->IO_ADDR_W);
-               
-               this->calculate_ecc (NULL, &(ecc_code[0]));
-               for (i = 0; i < 3; i++)
-                       oob_data[oob_config[i]] = ecc_code[i];
-                       
-               if (mtd->oobblock == 512) {
-                       this->enable_hwecc (NAND_ECC_WRITE);    /* enable hardware ecc logic for write*/
-                       for (i = mtd->eccsize; i < mtd->oobblock; i++) 
-                               writeb ( this->data_poi[i] , this->IO_ADDR_W);
-                       this->calculate_ecc (NULL, &(ecc_code[3]));
-                       for (i = 3; i < 6; i++)
-                               oob_data[oob_config[i]] = ecc_code[i];
-               }
-               break;
-                               
-       /* Hardware ecc 3 byte / 512 byte data, write full page */      
-       case NAND_ECC_HW3_512:  
-               this->enable_hwecc (NAND_ECC_WRITE);    /* enable hardware ecc logic */
-               for (i = 0; i < mtd->oobblock; i++) 
-                       writeb ( this->data_poi[i] , this->IO_ADDR_W);
-               this->calculate_ecc (NULL, &(ecc_code[0]));
-               for (i = 0; i < 3; i++)
-                       oob_data[oob_config[i]] = ecc_code[i];
-               break;
-
-       /* Hardware ecc 6 byte / 512 byte data, write full page */      
-       case NAND_ECC_HW6_512:  
-               this->enable_hwecc (NAND_ECC_WRITE);    /* enable hardware ecc logic */
-               for (i = 0; i < mtd->oobblock; i++) 
-                       writeb ( this->data_poi[i] , this->IO_ADDR_W);
-               this->calculate_ecc (NULL, &(ecc_code[0]));
-               for (i = 0; i < 6; i++)
-                       oob_data[oob_config[i]] = ecc_code[i];
-               break;
-               
-       default:
-               printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
-               BUG();  
-       }       
-       
-       /* Write out OOB data */
-       for (i = 0; i <  mtd->oobsize; i++)
-               writeb ( oob_data[i] , this->IO_ADDR_W);
-
-       /* Send command to actually program the data */
-       this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
-
-       /* call wait ready function */
-       status = this->waitfunc (mtd, this, FL_WRITING);
-
-       /* See if device thinks it succeeded */
-       if (status & 0x01) {
-               DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
-               return -EIO;
-       }
-
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
-       /*
-        * The NAND device assumes that it is always writing to
-        * a cleanly erased page. Hence, it performs its internal
-        * write verification only on bits that transitioned from
-        * 1 to 0. The device does NOT verify the whole page on a
-        * byte by byte basis. It is possible that the page was
-        * not completely erased or the page is becoming unusable
-        * due to wear. The read with ECC would catch the error
-        * later when the ECC page check fails, but we would rather
-        * catch it early in the page write stage. Better to write
-        * no data than invalid data.
-        */
-
-       /* Send command to read back the page */
-       this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
-       /* Loop through and verify the data */
-       for (i = 0; i < mtd->oobblock; i++) {
-               if (this->data_poi[i] != readb (this->IO_ADDR_R)) {
-                       DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
-                       return -EIO;
-               }
-       }
-
-       /* check, if we have a fs-supplied oob-buffer */
-       if (oob_buf) {
-               for (i = 0; i < mtd->oobsize; i++) {
-                       if (oob_data[i] != readb (this->IO_ADDR_R)) {
-                               DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
-                               return -EIO;
-                       }
-               }
-       } else {
-               if (eccmode != NAND_ECC_NONE) {
-                       int ecc_bytes = 0;
-
-                       switch (this->eccmode) {
-                       case NAND_ECC_SOFT:
-                       case NAND_ECC_HW3_256: ecc_bytes = (mtd->oobblock == 512) ? 6 : 3; break;
-                       case NAND_ECC_HW3_512: ecc_bytes = 3; break;
-                       case NAND_ECC_HW6_512: ecc_bytes = 6; break;
-                       }
-
-                       for (i = 0; i < mtd->oobsize; i++)
-                               oob_data[i] = readb (this->IO_ADDR_R);
-
-                       for (i = 0; i < ecc_bytes; i++) {
-                               if (oob_data[oob_config[i]] != ecc_code[i]) {
-                                       DEBUG (MTD_DEBUG_LEVEL0,
-                                              "%s: Failed ECC write "
-                                      "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
-                               return -EIO;
-                               }
-                       }
-               }
-       }
-       /* 
-        * Terminate the read command. This is faster than sending a reset command or 
-        * applying a 20us delay before issuing the next programm sequence.
-        * This is not a problem for all chips, but I have found a bunch of them.
-        */
-       nand_deselect();
-       nand_select();
-#endif
-       return 0;
-}
-
-/*
-*      Use NAND read ECC
-*/
-static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
-{
-       return (nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL));
-}                         
-
-
-/*
- * NAND read with ECC
- */
-static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
-                         size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
-{
-       int j, col, page, end, ecc;
-       int erase_state = 0;
-       int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
-       struct nand_chip *this = mtd->priv;
-       u_char *data_poi, *oob_data = oob_buf;
-       u_char ecc_calc[6];
-       u_char ecc_code[6];
-       int     eccmode;
-       int     *oob_config;
-
-       // use chip default if zero
-       if (oobsel == NULL)
-               oobsel = &mtd->oobinfo;
-               
-       eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
-       oob_config = oobsel->eccpos;
-
-       DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
-
-       /* Do not allow reads past end of device */
-       if ((from + len) > mtd->size) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
-               *retlen = 0;
-               return -EINVAL;
-       }
-
-       /* Grab the lock and see if the device is available */
-       nand_get_chip (this, mtd ,FL_READING, &erase_state);
-
-       /* Select the NAND device */
-       nand_select ();
-
-       /* First we calculate the starting page */
-       page = from >> this->page_shift;
-
-       /* Get raw starting column */
-       col = from & (mtd->oobblock - 1);
-
-       end = mtd->oobblock;
-       ecc = mtd->eccsize;
-
-       /* Send the read command */
-       this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
-       
-       /* Loop until all data read */
-       while (read < len) {
-               
-               /* If we have consequent page reads, apply delay or wait for ready/busy pin */
-               if (read) {
-                       if (!this->dev_ready) 
-                               udelay (this->chip_delay);
-                       else
-                               while (!this->dev_ready());     
-               }
-
-               /* 
-                * If the read is not page aligned, we have to read into data buffer
-                * due to ecc, else we read into return buffer direct
-                */
-               if (!col && (len - read) >= end)  
-                       data_poi = &buf[read];
-               else 
-                       data_poi = this->data_buf;
-
-               /* get oob area, if we have no oob buffer from fs-driver */
-               if (!oob_buf) {
-                       oob_data = &this->data_buf[end];
-                       oob = 0;
-               }       
-                       
-               j = 0;
-               switch (eccmode) {
-               case NAND_ECC_NONE:     /* No ECC, Read in a page */            
-                       printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
-                       while (j < end)
-                               data_poi[j++] = readb (this->IO_ADDR_R);
-                       break;
-                       
-               case NAND_ECC_SOFT:     /* Software ECC 3/256: Read in a page + oob data */
-                       while (j < end)
-                               data_poi[j++] = readb (this->IO_ADDR_R);
-                       this->calculate_ecc (&data_poi[0], &ecc_calc[0]);
-                       if (mtd->oobblock == 512)
-                               this->calculate_ecc (&data_poi[256], &ecc_calc[3]);
-                       break;  
-                       
-               case NAND_ECC_HW3_256: /* Hardware ECC 3 byte /256 byte data: Read in first 256 byte, get ecc, */
-                       this->enable_hwecc (NAND_ECC_READ);     
-                       while (j < ecc)
-                               data_poi[j++] = readb (this->IO_ADDR_R);
-                       this->calculate_ecc (&data_poi[0], &ecc_calc[0]);       /* read from hardware */
-                       
-                       if (mtd->oobblock == 512) { /* read second, if pagesize = 512 */
-                               this->enable_hwecc (NAND_ECC_READ);     
-                               while (j < end)
-                                       data_poi[j++] = readb (this->IO_ADDR_R);
-                               this->calculate_ecc (&data_poi[256], &ecc_calc[3]); /* read from hardware */
-                       }                                       
-                       break;                                          
-                               
-               case NAND_ECC_HW3_512:  
-               case NAND_ECC_HW6_512: /* Hardware ECC 3/6 byte / 512 byte data : Read in a page  */
-                       this->enable_hwecc (NAND_ECC_READ);     
-                       while (j < end)
-                               data_poi[j++] = readb (this->IO_ADDR_R);
-                       this->calculate_ecc (&data_poi[0], &ecc_calc[0]);       /* read from hardware */
-                       break;
-
-               default:
-                       printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
-                       BUG();  
-               }
-
-               /* read oobdata */
-               for (j = 0; j <  mtd->oobsize; j++) 
-                       oob_data[oob + j] = readb (this->IO_ADDR_R);
-               
-               /* Skip ECC, if not active */
-               if (eccmode == NAND_ECC_NONE)
-                       goto readdata;  
-               
-               /* Pick the ECC bytes out of the oob data */
-               for (j = 0; j < 6; j++)
-                       ecc_code[j] = oob_data[oob + oob_config[j]];
-
-               /* correct data, if neccecary */
-               ecc_status = this->correct_data (&data_poi[0], &ecc_code[0], &ecc_calc[0]);
-               /* check, if we have a fs supplied oob-buffer */
-               if (oob_buf) { 
-                       oob += mtd->oobsize;
-                       *((int *)&oob_data[oob]) = ecc_status;
-                       oob += sizeof(int);
-               }
-               if (ecc_status == -1) { 
-                       DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
-                       ecc_failed++;
-               }
-               
-               if (mtd->oobblock == 512 && eccmode != NAND_ECC_HW3_512) {
-                       ecc_status = this->correct_data (&data_poi[256], &ecc_code[3], &ecc_calc[3]);
-                       if (oob_buf) {
-                               *((int *)&oob_data[oob]) = ecc_status;
-                               oob += sizeof(int);
-                       }
-                       if (ecc_status == -1) {
-                               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
-                               ecc_failed++;
-                       }
-               }
-readdata:
-               if (col || (len - read) < end) { 
-                       for (j = col; j < end && read < len; j++)
-                               buf[read++] = data_poi[j];
-               } else          
-                       read += mtd->oobblock;
-               /* For subsequent reads align to page boundary. */
-               col = 0;
-               /* Increment page address */
-               page++;
-       }
-
-       /* De-select the NAND device */
-       nand_deselect ();
-
-       /* Wake up anyone waiting on the device */
-       spin_lock_bh (&this->chip_lock);
-       this->state = FL_READY;
-       wake_up (&this->wq);
-       spin_unlock_bh (&this->chip_lock);
-
-       /*
-        * Return success, if no ECC failures, else -EIO
-        * fs driver will take care of that, because
-        * retlen == desired len and result == -EIO
-        */
-       *retlen = read;
-       return ecc_failed ? -EIO : 0;
-}
-
-/*
- * NAND read out-of-band
- */
-static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
-{
-       int i, col, page;
-       int erase_state = 0;
-       struct nand_chip *this = mtd->priv;
-
-       DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
-
-       /* Shift to get page */
-       page = ((int) from) >> this->page_shift;
-
-       /* Mask to get column */
-       col = from & 0x0f;
-
-       /* Initialize return length value */
-       *retlen = 0;
-
-       /* Do not allow reads past end of device */
-       if ((from + len) > mtd->size) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
-               *retlen = 0;
-               return -EINVAL;
-       }
-
-       /* Grab the lock and see if the device is available */
-       nand_get_chip (this, mtd , FL_READING, &erase_state);
-
-       /* Select the NAND device */
-       nand_select ();
-
-       /* Send the read command */
-       this->cmdfunc (mtd, NAND_CMD_READOOB, col, page);
-       /* 
-        * Read the data, if we read more than one page
-        * oob data, let the device transfer the data !
-        */
-       for (i = 0; i < len; i++) {
-               buf[i] = readb (this->IO_ADDR_R);
-               if ((col++ & (mtd->oobsize - 1)) == (mtd->oobsize - 1))
-                       udelay (this->chip_delay);
-       }
-       /* De-select the NAND device */
-       nand_deselect ();
-
-       /* Wake up anyone waiting on the device */
-       spin_lock_bh (&this->chip_lock);
-       this->state = FL_READY;
-       wake_up (&this->wq);
-       spin_unlock_bh (&this->chip_lock);
-
-       /* Return happy */
-       *retlen = len;
-       return 0;
-}
-
-#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
-
-/*
-*      Use NAND write ECC
-*/
-static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
-{
-       return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
-}                         
-/*
- * NAND write with ECC
- */
-static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
-                          size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
-{
-       int page, ret = 0, oob = 0, written = 0;
-       struct nand_chip *this = mtd->priv;
-
-       DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
-
-       /* Do not allow write past end of device */
-       if ((to + len) > mtd->size) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
-               return -EINVAL;
-       }
-
-       /* reject writes, which are not page aligned */ 
-       if (NOTALIGNED (to) || NOTALIGNED(len)) {
-               printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
-               return -EINVAL;
-       }
-
-       // if oobsel is NULL, use chip defaults
-       if (oobsel == NULL) 
-               oobsel = &mtd->oobinfo;         
-
-       /* Shift to get page */
-       page = ((int) to) >> this->page_shift;
-
-       /* Grab the lock and see if the device is available */
-       nand_get_chip (this, mtd, FL_WRITING, NULL);
-
-       /* Select the NAND device */
-       nand_select ();
-
-       /* Check the WP bit */
-       this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
-       if (!(readb (this->IO_ADDR_R) & 0x80)) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Device is write protected!!!\n");
-               ret = -EIO;
-               goto out;
-       }
-
-       /* Loop until all data is written */
-       while (written < len) {
-               int cnt = mtd->oobblock;
-               this->data_poi = (u_char*) &buf[written];
-               /* We use the same function for write and writev */
-               if (eccbuf) {
-                       ret = nand_write_page (mtd, this, page, &eccbuf[oob], oobsel);
-                       oob += mtd->oobsize;
-               } else 
-                       ret = nand_write_page (mtd, this, page, NULL, oobsel);  
-               
-               if (ret)
-                       goto out;
-
-               /* Update written bytes count */
-               written += cnt;
-               /* Increment page address */
-               page++;
-       }
-
-out:
-       /* De-select the NAND device */
-       nand_deselect ();
-
-       /* Wake up anyone waiting on the device */
-       spin_lock_bh (&this->chip_lock);
-       this->state = FL_READY;
-       wake_up (&this->wq);
-       spin_unlock_bh (&this->chip_lock);
-
-       *retlen = written;
-       return ret;
-}
-
-/*
- * NAND write out-of-band
- */
-static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
-{
-       int i, column, page, status, ret = 0;
-       struct nand_chip *this = mtd->priv;
-
-       DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
-
-       /* Shift to get page */
-       page = ((int) to) >> this->page_shift;
-
-       /* Mask to get column */
-       column = to & 0x1f;
-
-       /* Initialize return length value */
-       *retlen = 0;
-
-       /* Do not allow write past end of page */
-       if ((column + len) > mtd->oobsize) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
-               return -EINVAL;
-       }
-
-       /* Grab the lock and see if the device is available */
-       nand_get_chip (this, mtd, FL_WRITING, NULL);
-
-       /* Select the NAND device */
-       nand_select ();
-
-       /* Check the WP bit */
-       this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
-       if (!(readb (this->IO_ADDR_R) & 0x80)) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Device is write protected!!!\n");
-               ret = -EIO;
-               goto out;
-       }
-
-       /* Write out desired data */
-       this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page);
-       /* prepad 0xff for partial programming */
-       for (i = 0; i < column; i++)
-               writeb (0xff, this->IO_ADDR_W);
-       /* write data */
-       for (i = 0; i < len; i++)
-               writeb (buf[i], this->IO_ADDR_W);       
-       /* postpad 0xff for partial programming */
-       for (i = len + column; i < mtd->oobsize; i++)
-               writeb (0xff, this->IO_ADDR_W);
-
-       /* Send command to program the OOB data */
-       this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
-
-       status = this->waitfunc (mtd, this, FL_WRITING);
-
-       /* See if device thinks it succeeded */
-       if (status & 0x01) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
-               ret = -EIO;
-               goto out;
-       }
-       /* Return happy */
-       *retlen = len;
-
-#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
-       /* Send command to read back the data */
-       this->cmdfunc (mtd, NAND_CMD_READOOB, column, page);
-
-       /* Loop through and verify the data */
-       for (i = 0; i < len; i++) {
-               if (buf[i] != readb (this->IO_ADDR_R)) {
-                       DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
-                       ret = -EIO;
-                       goto out;
-               }
-       }
-#endif
-
-out:
-       /* De-select the NAND device */
-       nand_deselect ();
-
-       /* Wake up anyone waiting on the device */
-       spin_lock_bh (&this->chip_lock);
-       this->state = FL_READY;
-       wake_up (&this->wq);
-       spin_unlock_bh (&this->chip_lock);
-
-       return ret;
-}
-
-
-/*
- * NAND write with kvec
- */
-static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
-               loff_t to, size_t * retlen)
-{
-       return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));    
-}
-
-static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
-               loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
-{
-       int i, page, len, total_len, ret = 0, written = 0;
-       struct nand_chip *this = mtd->priv;
-
-       /* Calculate total length of data */
-       total_len = 0;
-       for (i = 0; i < count; i++)
-               total_len += (int) vecs[i].iov_len;
-
-       DEBUG (MTD_DEBUG_LEVEL3,
-              "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
-
-       /* Do not allow write past end of page */
-       if ((to + total_len) > mtd->size) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
-               return -EINVAL;
-       }
-
-       /* reject writes, which are not page aligned */ 
-       if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
-               printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
-               return -EINVAL;
-       }
-
-       // if oobsel is NULL, use chip defaults
-       if (oobsel == NULL) 
-               oobsel = &mtd->oobinfo;         
-
-       /* Shift to get page */
-       page = ((int) to) >> this->page_shift;
-
-       /* Grab the lock and see if the device is available */
-       nand_get_chip (this, mtd, FL_WRITING, NULL);
-
-       /* Select the NAND device */
-       nand_select ();
-
-       /* Check the WP bit */
-       this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
-       if (!(readb (this->IO_ADDR_R) & 0x80)) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Device is write protected!!!\n");
-               ret = -EIO;
-               goto out;
-       }
-
-       /* Loop until all kvec' data has been written */
-       len = 0;
-       while (count) {
-               /* 
-                *  Check, if the tuple gives us not enough data for a 
-                *  full page write. Then we can use the iov direct, 
-                *  else we have to copy into data_buf.         
-                */
-               if ((vecs->iov_len - len) >= mtd->oobblock) {
-                       this->data_poi = vecs->iov_base;
-                       this->data_poi += len;
-                       len += mtd->oobblock; 
-                       /* Check, if we have to switch to the next tuple */
-                       if (len >= (int) vecs->iov_len) {
-                               vecs++;
-                               len = 0;
-                               count--;
-                       }
-               } else {
-                       /*
-                        * Read data out of each tuple until we have a full page
-                        * to write or we've read all the tuples.
-                       */
-                       int cnt = 0;
-                       while ((cnt < mtd->oobblock) && count) {
-                               if (vecs->iov_base != NULL && vecs->iov_len) {
-                                       this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
-                               }
-                               /* Check, if we have to switch to the next tuple */
-                               if (len >= (int) vecs->iov_len) {
-                                       vecs++;
-                                       len = 0;
-                                       count--;
-                               }
-                       }       
-                       this->data_poi = this->data_buf;        
-               }
-               
-               /* We use the same function for write and writev !) */
-               ret = nand_write_page (mtd, this, page, NULL, oobsel);
-               if (ret)
-                       goto out;
-
-               /* Update written bytes count */
-               written += mtd->oobblock;
-
-               /* Increment page address */
-               page++;
-       }
-
-out:
-       /* De-select the NAND device */
-       nand_deselect ();
-
-       /* Wake up anyone waiting on the device */
-       spin_lock_bh (&this->chip_lock);
-       this->state = FL_READY;
-       wake_up (&this->wq);
-       spin_unlock_bh (&this->chip_lock);
-
-       *retlen = written;
-       return ret;
-}
-
-/*
- * NAND erase a block
- */
-static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
-{
-       int page, len, status, pages_per_block, ret;
-       struct nand_chip *this = mtd->priv;
-       DECLARE_WAITQUEUE (wait, current);
-
-       DEBUG (MTD_DEBUG_LEVEL3,
-              "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
-
-       /* Start address must align on block boundary */
-       if (instr->addr & (mtd->erasesize - 1)) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
-               return -EINVAL;
-       }
-
-       /* Length must align on block boundary */
-       if (instr->len & (mtd->erasesize - 1)) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
-               return -EINVAL;
-       }
-
-       /* Do not allow erase past end of device */
-       if ((instr->len + instr->addr) > mtd->size) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
-               return -EINVAL;
-       }
-
-       /* Grab the lock and see if the device is available */
-       nand_get_chip (this, mtd, FL_ERASING, NULL);
-
-       /* Shift to get first page */
-       page = (int) (instr->addr >> this->page_shift);
-
-       /* Calculate pages in each block */
-       pages_per_block = mtd->erasesize / mtd->oobblock;
-
-       /* Select the NAND device */
-       nand_select ();
-
-       /* Check the WP bit */
-       this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
-       if (!(readb (this->IO_ADDR_R) & 0x80)) {
-               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
-               instr->state = MTD_ERASE_FAILED;
-               goto erase_exit;
-       }
-
-       /* Loop through the pages */
-       len = instr->len;
-
-       instr->state = MTD_ERASING;
-
-       while (len) {
-               /* Check if we have a bad block, we do not erase bad blocks ! */
-               this->cmdfunc (mtd, NAND_CMD_READOOB, NAND_BADBLOCK_POS, page);
-               if (readb (this->IO_ADDR_R) != 0xff) {
-                       printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
-                       instr->state = MTD_ERASE_FAILED;
-                       goto erase_exit;
-               }
-
-               /* Send commands to erase a page */
-               this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
-               this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
-
-               spin_unlock_bh (&this->chip_lock);
-               status = this->waitfunc (mtd, this, FL_ERASING);
-
-               /* Get spinlock, in case we exit */
-               spin_lock_bh (&this->chip_lock);
-               /* See if block erase succeeded */
-               if (status & 0x01) {
-                       DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
-                       instr->state = MTD_ERASE_FAILED;
-                       goto erase_exit;
-               }
-               
-               /* Check, if we were interupted */
-               if (this->state == FL_ERASING) {
-                       /* Increment page address and decrement length */
-                       len -= mtd->erasesize;
-                       page += pages_per_block;
-               }
-               /* Release the spin lock */
-               spin_unlock_bh (&this->chip_lock);
-erase_retry:
-               spin_lock_bh (&this->chip_lock);
-               /* Check the state and sleep if it changed */
-               if (this->state == FL_ERASING || this->state == FL_READY) {
-                       /* Select the NAND device again, if we were interrupted */
-                       this->state = FL_ERASING;
-                       nand_select ();
-                       continue;
-               } else {
-                       set_current_state (TASK_UNINTERRUPTIBLE);
-                       add_wait_queue (&this->wq, &wait);
-                       spin_unlock_bh (&this->chip_lock);
-                       schedule ();
-                       remove_wait_queue (&this->wq, &wait);
-                       goto erase_retry;
-               }
-       }
-       instr->state = MTD_ERASE_DONE;
-
-erase_exit:
-       /* De-select the NAND device */
-       nand_deselect ();
-       spin_unlock_bh (&this->chip_lock);
-
-       ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
-       /* Do call back function */
-       if (!ret && instr->callback)
-               instr->callback (instr);
-
-       /* The device is ready */
-       spin_lock_bh (&this->chip_lock);
-       this->state = FL_READY;
-       spin_unlock_bh (&this->chip_lock);
-
-       /* Return more or less happy */
-       return ret;
-}
-
-/*
- * NAND sync
- */
-static void nand_sync (struct mtd_info *mtd)
-{
-       struct nand_chip *this = mtd->priv;
-       DECLARE_WAITQUEUE (wait, current);
-
-       DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
-
-retry:
-       /* Grab the spinlock */
-       spin_lock_bh (&this->chip_lock);
-
-       /* See what's going on */
-       switch (this->state) {
-       case FL_READY:
-       case FL_SYNCING:
-               this->state = FL_SYNCING;
-               spin_unlock_bh (&this->chip_lock);
-               break;
-
-       default:
-               /* Not an idle state */
-               add_wait_queue (&this->wq, &wait);
-               spin_unlock_bh (&this->chip_lock);
-               schedule ();
-
-               remove_wait_queue (&this->wq, &wait);
-               goto retry;
-       }
-
-       /* Lock the device */
-       spin_lock_bh (&this->chip_lock);
-
-       /* Set the device to be ready again */
-       if (this->state == FL_SYNCING) {
-               this->state = FL_READY;
-               wake_up (&this->wq);
-       }
-
-       /* Unlock the device */
-       spin_unlock_bh (&this->chip_lock);
-}
-
-/*
- * Scan for the NAND device
- */
-int nand_scan (struct mtd_info *mtd)
-{
-       int i, nand_maf_id, nand_dev_id;
-       struct nand_chip *this = mtd->priv;
-
-       /* check for proper chip_delay setup, set 20us if not */
-       if (!this->chip_delay)
-               this->chip_delay = 20;
-
-       /* check, if a user supplied command function given */
-       if (this->cmdfunc == NULL)
-               this->cmdfunc = nand_command;
-
-       /* check, if a user supplied wait function given */
-       if (this->waitfunc == NULL)
-               this->waitfunc = nand_wait;
-
-       /* Select the device */
-       nand_select ();
-
-       /* Send the command for reading device ID */
-       this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
-
-       /* Read manufacturer and device IDs */
-       nand_maf_id = readb (this->IO_ADDR_R);
-       nand_dev_id = readb (this->IO_ADDR_R);
-
-       /* Print and store flash device information */
-       for (i = 0; nand_flash_ids[i].name != NULL; i++) {
-               if (nand_dev_id == nand_flash_ids[i].id && !mtd->size) {
-                       mtd->name = nand_flash_ids[i].name;
-                       mtd->erasesize = nand_flash_ids[i].erasesize;
-                       mtd->size = (1 << nand_flash_ids[i].chipshift);
-                       mtd->eccsize = 256;
-                       if (nand_flash_ids[i].page256) {
-                               mtd->oobblock = 256;
-                               mtd->oobsize = 8;
-                               this->page_shift = 8;
-                       } else {
-                               mtd->oobblock = 512;
-                               mtd->oobsize = 16;
-                               this->page_shift = 9;
-                       }
-                       /* Try to identify manufacturer */
-                       for (i = 0; nand_manuf_ids[i].id != 0x0; i++) {
-                               if (nand_manuf_ids[i].id == nand_maf_id)
-                                       break;
-                       }       
-                       printk (KERN_INFO "NAND device: Manufacture ID:"
-                               " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
-                               nand_manuf_ids[i].name , mtd->name);
-                       break;
-               }
-       }
-
-       /* 
-        * check ECC mode, default to software
-        * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
-        * fallback to software ECC 
-       */
-       this->eccsize = 256;    /* set default eccsize */       
-
-       switch (this->eccmode) {
-
-       case NAND_ECC_HW3_512: 
-               if (mtd->oobblock == 256) {
-                       printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
-                       this->eccmode = NAND_ECC_SOFT;
-                       this->calculate_ecc = nand_calculate_ecc;
-                       this->correct_data = nand_correct_data;
-                       break;          
-               } else 
-                       this->eccsize = 512; /* set eccsize to 512 and fall through for function check */
-
-       case NAND_ECC_HW3_256:
-               if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
-                       break;
-               printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
-               BUG();  
-
-       case NAND_ECC_NONE: 
-               printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
-               this->eccmode = NAND_ECC_NONE;
-               break;
-
-       case NAND_ECC_SOFT:     
-               this->calculate_ecc = nand_calculate_ecc;
-               this->correct_data = nand_correct_data;
-               break;
-
-       default:
-               printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
-               BUG();  
-       }       
-       
-       /* Initialize state, waitqueue and spinlock */
-       this->state = FL_READY;
-       init_waitqueue_head (&this->wq);
-       spin_lock_init (&this->chip_lock);
-
-       /* De-select the device */
-       nand_deselect ();
-
-       /* Print warning message for no device */
-       if (!mtd->size) {
-               printk (KERN_WARNING "No NAND device found!!!\n");
-               return 1;
-       }
-
-       /* Fill in remaining MTD driver data */
-       mtd->type = MTD_NANDFLASH;
-       mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
-       mtd->ecctype = MTD_ECC_SW;
-       mtd->erase = nand_erase;
-       mtd->point = NULL;
-       mtd->unpoint = NULL;
-       mtd->read = nand_read;
-       mtd->write = nand_write;
-       mtd->read_ecc = nand_read_ecc;
-       mtd->write_ecc = nand_write_ecc;
-       mtd->read_oob = nand_read_oob;
-       mtd->write_oob = nand_write_oob;
-       mtd->readv = NULL;
-       mtd->writev = nand_writev;
-       mtd->writev_ecc = nand_writev_ecc;
-       mtd->sync = nand_sync;
-       mtd->lock = NULL;
-       mtd->unlock = NULL;
-       mtd->suspend = NULL;
-       mtd->resume = NULL;
-       mtd->owner = THIS_MODULE;
-
-       /* Return happy */
-       return 0;
-}
-
-EXPORT_SYMBOL (nand_scan);
-
-MODULE_LICENSE ("GPL");
-MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
-MODULE_DESCRIPTION ("Generic NAND flash driver code");
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
new file mode 100644 (file)
index 0000000..596bc8f
--- /dev/null
@@ -0,0 +1,2581 @@
+/*
+ *  drivers/mtd/nand.c
+ *
+ *  Overview:
+ *   This is the generic MTD driver for NAND flash devices. It should be
+ *   capable of working with almost all NAND chips currently available.
+ *   Basic support for AG-AND chips is provided.
+ *   
+ *     Additional technical information is available on
+ *     http://www.linux-mtd.infradead.org/tech/nand.html
+ *     
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *               2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ *  02-08-2004  tglx: support for strange chips, which cannot auto increment 
+ *             pages on read / read_oob
+ *
+ *  03-17-2004  tglx: Check ready before auto increment check. Simon Bayes
+ *             pointed this out, as he marked an auto increment capable chip
+ *             as NOAUTOINCR in the board driver.
+ *             Make reads over block boundaries work too
+ *
+ *  04-14-2004 tglx: first working version for 2k page size chips
+ *  
+ *  05-19-2004  tglx: Basic support for Renesas AG-AND chips
+ *
+ * Credits:
+ *     David Woodhouse for adding multichip support  
+ *     
+ *     Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ *     rework for 2K page size chips
+ *
+ * TODO:
+ *     Enable cached programming for 2k page size chips
+ *     Check, if mtd->ecctype should be set to MTD_ECC_HW
+ *     if we have HW ecc support.
+ *     The AG-AND chips have nice features for speed improvement,
+ *     which are not supported yet. Read / program 4 pages in one go.
+ *
+ * $Id: nand_base.c,v 1.113 2004/07/14 16:31:31 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+
+#if defined(CONFIG_MTD_PARTITIONS) || defined(CONFIG_MTD_PARTITIONS_MODULE)
+#include <linux/mtd/partitions.h>
+#endif
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_oobinfo nand_oob_8 = {
+       .useecc = MTD_NANDECC_AUTOPLACE,
+       .eccbytes = 3,
+       .eccpos = {0, 1, 2},
+       .oobfree = { {3, 2}, {6, 2} }
+};
+
+static struct nand_oobinfo nand_oob_16 = {
+       .useecc = MTD_NANDECC_AUTOPLACE,
+       .eccbytes = 6,
+       .eccpos = {0, 1, 2, 3, 6, 7},
+       .oobfree = { {8, 8} }
+};
+
+static struct nand_oobinfo nand_oob_64 = {
+       .useecc = MTD_NANDECC_AUTOPLACE,
+       .eccbytes = 24,
+       .eccpos = {
+               40, 41, 42, 43, 44, 45, 46, 47, 
+               48, 49, 50, 51, 52, 53, 54, 55, 
+               56, 57, 58, 59, 60, 61, 62, 63},
+       .oobfree = { {2, 38} }
+};
+
+/* This is used for padding purposes in nand_write_oob */
+static u_char ffchars[] = {
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+};
+
+/*
+ * NAND low-level MTD interface functions
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
+
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+                         size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+                          size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
+                       unsigned long count, loff_t to, size_t * retlen);
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
+                       unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
+static void nand_sync (struct mtd_info *mtd);
+
+/* Some internal functions */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
+               struct nand_oobinfo *oobsel, int mode);
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, 
+       u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
+#else
+#define nand_verify_pages(...) (0)
+#endif
+               
+static void nand_get_chip (struct nand_chip *this, struct mtd_info *mtd, int new_state);
+
+/**
+ * nand_release_chip - [GENERIC] release chip
+ * @mtd:       MTD device structure
+ * 
+ * Deselect, release chip lock and wake up anyone waiting on the device 
+ */
+static void nand_release_chip (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+
+       /* De-select the NAND device */
+       this->select_chip(mtd, -1);
+       /* Release the chip */
+       spin_lock_bh (&this->chip_lock);
+       this->state = FL_READY;
+       wake_up (&this->wq);
+       spin_unlock_bh (&this->chip_lock);
+}
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd:       MTD device structure
+ *
+ * Default read function for 8bit buswith
+ */
+static u_char nand_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       return readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write one byte to the chip
+ * @mtd:       MTD device structure
+ * @byte:      pointer to data byte to write
+ *
+ * Default write function for 8it buswith
+ */
+static void nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+       struct nand_chip *this = mtd->priv;
+       writeb(byte, this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
+ * @mtd:       MTD device structure
+ *
+ * Default read function for 16bit buswith with 
+ * endianess conversion
+ */
+static u_char nand_read_byte16(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
+ * @mtd:       MTD device structure
+ * @byte:      pointer to data byte to write
+ *
+ * Default write function for 16bit buswith with
+ * endianess conversion
+ */
+static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+       struct nand_chip *this = mtd->priv;
+       writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd:       MTD device structure
+ *
+ * Default read function for 16bit buswith without 
+ * endianess conversion
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       return readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_word - [DEFAULT] write one word to the chip
+ * @mtd:       MTD device structure
+ * @word:      data word to write
+ *
+ * Default write function for 16bit buswith without 
+ * endianess conversion
+ */
+static void nand_write_word(struct mtd_info *mtd, u16 word)
+{
+       struct nand_chip *this = mtd->priv;
+       writew(word, this->IO_ADDR_W);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd:       MTD device structure
+ * @chip:      chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       switch(chip) {
+       case -1:
+               this->hwcontrol(mtd, NAND_CTL_CLRNCE);  
+               break;
+       case 0:
+               this->hwcontrol(mtd, NAND_CTL_SETNCE);
+               break;
+
+       default:
+               BUG();
+       }
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd:       MTD device structure
+ * @buf:       data buffer
+ * @len:       number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               writeb(buf[i], this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer 
+ * @mtd:       MTD device structure
+ * @buf:       buffer to store date
+ * @len:       number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               buf[i] = readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf - [DEFAULT] Verify chip data against buffer 
+ * @mtd:       MTD device structure
+ * @buf:       buffer containing the data to compare
+ * @len:       number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               if (buf[i] != readb(this->IO_ADDR_R))
+                       return -EFAULT;
+
+       return 0;
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd:       MTD device structure
+ * @buf:       data buffer
+ * @len:       number of bytes to write
+ *
+ * Default write function for 16bit buswith
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+       u16 *p = (u16 *) buf;
+       len >>= 1;
+       
+       for (i=0; i<len; i++)
+               writew(p[i], this->IO_ADDR_W);
+               
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer 
+ * @mtd:       MTD device structure
+ * @buf:       buffer to store date
+ * @len:       number of bytes to read
+ *
+ * Default read function for 16bit buswith
+ */
+static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+       u16 *p = (u16 *) buf;
+       len >>= 1;
+
+       for (i=0; i<len; i++)
+               p[i] = readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer 
+ * @mtd:       MTD device structure
+ * @buf:       buffer containing the data to compare
+ * @len:       number of bytes to compare
+ *
+ * Default verify function for 16bit buswith
+ */
+static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+       u16 *p = (u16 *) buf;
+       len >>= 1;
+
+       for (i=0; i<len; i++)
+               if (p[i] != readw(this->IO_ADDR_R))
+                       return -EFAULT;
+
+       return 0;
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd:       MTD device structure
+ * @ofs:       offset from device start
+ * @getchip:   0, if the chip is already selected
+ *
+ * Check, if the block is bad. 
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+       int page, chipnr, res = 0;
+       struct nand_chip *this = mtd->priv;
+       u16 bad;
+
+       if (getchip) {
+               page = (int)(ofs >> this->page_shift);
+               chipnr = (int)(ofs >> this->chip_shift);
+
+               /* Grab the lock and see if the device is available */
+               nand_get_chip (this, mtd, FL_READING);
+
+               /* Select the NAND device */
+               this->select_chip(mtd, chipnr);
+       } else 
+               page = (int) ofs;       
+
+       if (this->options & NAND_BUSWIDTH_16) {
+               this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
+               bad = cpu_to_le16(this->read_word(mtd));
+               if (this->badblockpos & 0x1)
+                       bad >>= 1;
+               if ((bad & 0xFF) != 0xff)
+                       res = 1;
+       } else {
+               this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
+               if (this->read_byte(mtd) != 0xff)
+                       res = 1;
+       }
+               
+       if (getchip) {
+               /* Deselect and wake up anyone waiting on the device */
+               nand_release_chip(mtd);
+       }       
+       
+       return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad
+ * @mtd:       MTD device structure
+ * @ofs:       offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+*/
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+       struct nand_chip *this = mtd->priv;
+       u_char buf[2] = {0, 0};
+       size_t  retlen;
+       int block;
+       
+       /* Get block number */
+       block = ((int) ofs) >> this->bbt_erase_shift;
+       this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+       /* Do we have a flash based bad block table ? */
+       if (this->options & NAND_USE_FLASH_BBT)
+               return nand_update_bbt (mtd, ofs);
+               
+       /* We write two bytes, so we dont have to mess with 16 bit access */
+       ofs += mtd->oobsize + (this->badblockpos & ~0x01);
+       return nand_write_oob (mtd, ofs , 2, &retlen, buf);
+}
+
+/** 
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd:       MTD device structure
+ * Check, if the device is write protected 
+ *
+ * The function expects, that the device is already selected 
+ */
+static int nand_check_wp (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       /* Check the WP bit */
+       this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+       return (this->read_byte(mtd) & 0x80) ? 0 : 1; 
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd:       MTD device structure
+ * @ofs:       offset from device start
+ * @getchip:   0, if the chip is already selected
+ * @allowbbt:  1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
+{
+       struct nand_chip *this = mtd->priv;
+       
+       if (!this->bbt)
+               return this->block_bad(mtd, ofs, getchip);
+       
+       /* Return info from the table */
+       return nand_isbad_bbt (mtd, ofs, allowbbt);
+}
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd:       MTD device structure
+ * @command:   the command to be sent
+ * @column:    the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page
+ * devices (256/512 Bytes per page)
+ */
+static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+       register struct nand_chip *this = mtd->priv;
+
+       /* Begin command latch cycle */
+       this->hwcontrol(mtd, NAND_CTL_SETCLE);
+       /*
+        * Write out the command to the device.
+        */
+       if (command == NAND_CMD_SEQIN) {
+               int readcmd;
+
+               if (column >= mtd->oobblock) {
+                       /* OOB area */
+                       column -= mtd->oobblock;
+                       readcmd = NAND_CMD_READOOB;
+               } else if (column < 256) {
+                       /* First 256 bytes --> READ0 */
+                       readcmd = NAND_CMD_READ0;
+               } else {
+                       column -= 256;
+                       readcmd = NAND_CMD_READ1;
+               }
+               this->write_byte(mtd, readcmd);
+       }
+       this->write_byte(mtd, command);
+
+       /* Set ALE and clear CLE to start address cycle */
+       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+       if (column != -1 || page_addr != -1) {
+               this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+               /* Serially input address */
+               if (column != -1) {
+                       /* Adjust columns for 16 bit buswidth */
+                       if (this->options & NAND_BUSWIDTH_16)
+                               column >>= 1;
+                       this->write_byte(mtd, column);
+               }
+               if (page_addr != -1) {
+                       this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+                       this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+                       /* One more address cycle for higher density devices */
+                       if (this->chipsize & 0x0c000000) 
+                               this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+               }
+               /* Latch in address */
+               this->hwcontrol(mtd, NAND_CTL_CLRALE);
+       }
+       
+       /* 
+        * program and erase have their own busy handlers 
+        * status and sequential in needs no delay
+       */
+       switch (command) {
+                       
+       case NAND_CMD_PAGEPROG:
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+       case NAND_CMD_SEQIN:
+       case NAND_CMD_STATUS:
+               return;
+
+       case NAND_CMD_RESET:
+               if (this->dev_ready)    
+                       break;
+               udelay(this->chip_delay);
+               this->hwcontrol(mtd, NAND_CTL_SETCLE);
+               this->write_byte(mtd, NAND_CMD_STATUS);
+               this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+               while ( !(this->read_byte(mtd) & 0x40));
+               return;
+
+       /* This applies to read commands */     
+       default:
+               /* 
+                * If we don't have access to the busy pin, we apply the given
+                * command delay
+               */
+               if (!this->dev_ready) {
+                       udelay (this->chip_delay);
+                       return;
+               }       
+       }
+       
+       /* Apply this short delay always to ensure that we do wait tWB in
+        * any case on any machine. */
+       ndelay (100);
+       /* wait until command is processed */
+       while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd:       MTD device structure
+ * @command:   the command to be sent
+ * @column:    the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page devices
+ * We dont have the seperate regions as we have in the small page devices.
+ * We must emulate NAND_CMD_READOOB to keep the code compatible.
+ *
+ */
+static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+       register struct nand_chip *this = mtd->priv;
+
+       /* Emulate NAND_CMD_READOOB */
+       if (command == NAND_CMD_READOOB) {
+               column += mtd->oobblock;
+               command = NAND_CMD_READ0;
+       }
+       
+               
+       /* Begin command latch cycle */
+       this->hwcontrol(mtd, NAND_CTL_SETCLE);
+       /* Write out the command to the device. */
+       this->write_byte(mtd, command);
+       /* End command latch cycle */
+       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+       if (column != -1 || page_addr != -1) {
+               this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+               /* Serially input address */
+               if (column != -1) {
+                       /* Adjust columns for 16 bit buswidth */
+                       if (this->options & NAND_BUSWIDTH_16)
+                               column >>= 1;
+                       this->write_byte(mtd, column & 0xff);
+                       this->write_byte(mtd, column >> 8);
+               }       
+               if (page_addr != -1) {
+                       this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+                       this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+                       /* One more address cycle for devices > 128MiB */
+                       if (this->chipsize > (128 << 20))
+                               this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
+               }
+               /* Latch in address */
+               this->hwcontrol(mtd, NAND_CTL_CLRALE);
+       }
+       
+       /* 
+        * program and erase have their own busy handlers 
+        * status and sequential in needs no delay
+       */
+       switch (command) {
+                       
+       case NAND_CMD_CACHEDPROG:
+       case NAND_CMD_PAGEPROG:
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+       case NAND_CMD_SEQIN:
+       case NAND_CMD_STATUS:
+               return;
+
+
+       case NAND_CMD_RESET:
+               if (this->dev_ready)    
+                       break;
+               udelay(this->chip_delay);
+               this->hwcontrol(mtd, NAND_CTL_SETCLE);
+               this->write_byte(mtd, NAND_CMD_STATUS);
+               this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+               while ( !(this->read_byte(mtd) & 0x40));
+               return;
+
+       case NAND_CMD_READ0:
+               /* Begin command latch cycle */
+               this->hwcontrol(mtd, NAND_CTL_SETCLE);
+               /* Write out the start read command */
+               this->write_byte(mtd, NAND_CMD_READSTART);
+               /* End command latch cycle */
+               this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+               /* Fall through into ready check */
+               
+       /* This applies to read commands */     
+       default:
+               /* 
+                * If we don't have access to the busy pin, we apply the given
+                * command delay
+               */
+               if (!this->dev_ready) {
+                       udelay (this->chip_delay);
+                       return;
+               }       
+       }
+       
+       /* Apply this short delay always to ensure that we do wait tWB in
+        * any case on any machine. */
+       ndelay (100);
+       /* wait until command is processed */
+       while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_get_chip - [GENERIC] Get chip for selected access
+ * @this:      the nand chip descriptor
+ * @mtd:       MTD device structure
+ * @new_state: the state which is requested 
+ *
+ * Get the device and lock it for exclusive access
+ */
+static void nand_get_chip (struct nand_chip *this, struct mtd_info *mtd, int new_state)
+{
+
+       DECLARE_WAITQUEUE (wait, current);
+
+       /* 
+        * Grab the lock and see if the device is available 
+       */
+retry:
+       spin_lock_bh (&this->chip_lock);
+
+       if (this->state == FL_READY) {
+               this->state = new_state;
+               spin_unlock_bh (&this->chip_lock);
+               return;
+       }
+
+       set_current_state (TASK_UNINTERRUPTIBLE);
+       add_wait_queue (&this->wq, &wait);
+       spin_unlock_bh (&this->chip_lock);
+       schedule ();
+       remove_wait_queue (&this->wq, &wait);
+       goto retry;
+}
+
+/**
+ * nand_wait - [DEFAULT]  wait until the command is done
+ * @mtd:       MTD device structure
+ * @this:      NAND chip structure
+ * @state:     state to select the max. timeout value
+ *
+ * Wait for command done. This applies to erase and program only
+ * Erase can take up to 400ms and program up to 20ms according to 
+ * general NAND and SmartMedia specs
+ *
+*/
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+
+       unsigned long   timeo = jiffies;
+       int     status;
+       
+       if (state == FL_ERASING)
+                timeo += (HZ * 400) / 1000;
+       else
+                timeo += (HZ * 20) / 1000;
+
+       /* Apply this short delay always to ensure that we do wait tWB in
+        * any case on any machine. */
+       ndelay (100);
+
+       spin_lock_bh (&this->chip_lock);
+       if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+               this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+       else    
+               this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+
+       while (time_before(jiffies, timeo)) {           
+               /* Check, if we were interrupted */
+               if (this->state != state) {
+                       spin_unlock_bh (&this->chip_lock);
+                       return 0;
+               }
+               if (this->dev_ready) {
+                       if (this->dev_ready(mtd))
+                               break;
+               }
+               if (this->read_byte(mtd) & NAND_STATUS_READY)
+                       break;
+                                               
+               spin_unlock_bh (&this->chip_lock);
+               yield ();
+               spin_lock_bh (&this->chip_lock);
+       }
+       status = (int) this->read_byte(mtd);
+       spin_unlock_bh (&this->chip_lock);
+
+       return status;
+}
+
+/**
+ * nand_write_page - [GENERIC] write one page
+ * @mtd:       MTD device structure
+ * @this:      NAND chip structure
+ * @page:      startpage inside the chip, must be called with (page & this->pagemask)
+ * @oob_buf:   out of band data buffer
+ * @oobsel:    out of band selecttion structre
+ * @cached:    1 = enable cached programming if supported by chip
+ *
+ * Nand_page_program function is used for write and writev !
+ * This function will always program a full page of data
+ * If you call it with a non page aligned buffer, you're lost :)
+ *
+ * Cached programming is not supported yet.
+ */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, 
+       u_char *oob_buf,  struct nand_oobinfo *oobsel, int cached)
+{
+       int     i, status;
+       u_char  ecc_code[8];
+       int     eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+       int     *oob_config = oobsel->eccpos;
+       int     datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
+       int     eccbytes = 0;
+       
+       /* FIXME: Enable cached programming */
+       cached = 0;
+       
+       /* Send command to begin auto page programming */
+       this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
+
+       /* Write out complete page of data, take care of eccmode */
+       switch (eccmode) {
+       /* No ecc, write all */
+       case NAND_ECC_NONE:
+               printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
+               this->write_buf(mtd, this->data_poi, mtd->oobblock);
+               break;
+               
+       /* Software ecc 3/256, write all */
+       case NAND_ECC_SOFT:
+               for (; eccsteps; eccsteps--) {
+                       this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+                       for (i = 0; i < 3; i++, eccidx++)
+                               oob_buf[oob_config[eccidx]] = ecc_code[i];
+                       datidx += this->eccsize;
+               }
+               this->write_buf(mtd, this->data_poi, mtd->oobblock);
+               break;
+               
+       /* Hardware ecc 8 byte / 512 byte data */       
+       case NAND_ECC_HW8_512:  
+               eccbytes += 2;
+       /* Hardware ecc 6 byte / 512 byte data */       
+       case NAND_ECC_HW6_512:  
+               eccbytes += 3;
+       /* Hardware ecc 3 byte / 256 data */    
+       /* Hardware ecc 3 byte / 512 byte data */       
+       case NAND_ECC_HW3_256:          
+       case NAND_ECC_HW3_512:
+               eccbytes += 3;
+               for (; eccsteps; eccsteps--) {
+                       /* enable hardware ecc logic for write */
+                       this->enable_hwecc(mtd, NAND_ECC_WRITE);
+                       this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
+                       this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+                       for (i = 0; i < eccbytes; i++, eccidx++)
+                               oob_buf[oob_config[eccidx]] = ecc_code[i];
+                       /* If the hardware ecc provides syndromes then
+                        * the ecc code must be written immidiately after
+                        * the data bytes (words) */
+                       if (this->options & NAND_HWECC_SYNDROME)
+                               this->write_buf(mtd, ecc_code, eccbytes);
+
+                       datidx += this->eccsize;
+               }
+               break;
+
+       default:
+               printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+               BUG();  
+       }
+                                                                               
+       /* Write out OOB data */
+       if (this->options & NAND_HWECC_SYNDROME)
+               this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
+       else 
+               this->write_buf(mtd, oob_buf, mtd->oobsize);
+
+       /* Send command to actually program the data */
+       this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
+
+       if (!cached) {
+               /* call wait ready function */
+               status = this->waitfunc (mtd, this, FL_WRITING);
+               /* See if device thinks it succeeded */
+               if (status & 0x01) {
+                       DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
+                       return -EIO;
+               }
+       } else {
+               /* FIXME: Implement cached programming ! */
+               /* wait until cache is ready*/
+               // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
+       }
+       return 0;       
+}
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+/**
+ * nand_verify_pages - [GENERIC] verify the chip contents after a write
+ * @mtd:       MTD device structure
+ * @this:      NAND chip structure
+ * @page:      startpage inside the chip, must be called with (page & this->pagemask)
+ * @numpages:  number of pages to verify
+ * @oob_buf:   out of band data buffer
+ * @oobsel:    out of band selecttion structre
+ * @chipnr:    number of the current chip
+ * @oobmode:   1 = full buffer verify, 0 = ecc only
+ *
+ * The NAND device assumes that it is always writing to a cleanly erased page.
+ * Hence, it performs its internal write verification only on bits that 
+ * transitioned from 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was not completely erased 
+ * or the page is becoming unusable due to wear. The read with ECC would catch 
+ * the error later when the ECC page check fails, but we would rather catch 
+ * it early in the page write stage. Better to write no data than invalid data.
+ */
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, 
+       u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
+{
+       int     i, j, datidx = 0, oobofs = 0, res = -EIO;
+       int     eccsteps = this->eccsteps;
+       int     hweccbytes; 
+       u_char  oobdata[64];
+
+       hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
+
+       /* Send command to read back the first page */
+       this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
+
+       for(;;) {
+               for (j = 0; j < eccsteps; j++) {
+                       /* Loop through and verify the data */
+                       if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
+                               DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+                               goto out;
+                       }
+                       datidx += mtd->eccsize;
+                       /* Have we a hw generator layout ? */
+                       if (!hweccbytes)
+                               continue;
+                       if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
+                               DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+                               goto out;
+                       }
+                       oobofs += hweccbytes;
+               }
+
+               /* check, if we must compare all data or if we just have to
+                * compare the ecc bytes
+                */
+               if (oobmode) {
+                       if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
+                               DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+                               goto out;
+                       }
+               } else {
+                       /* Read always, else autoincrement fails */
+                       this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
+
+                       if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
+                               int ecccnt = oobsel->eccbytes;
+               
+                               for (i = 0; i < ecccnt; i++) {
+                                       int idx = oobsel->eccpos[i];
+                                       if (oobdata[idx] != oob_buf[oobofs + idx] ) {
+                                               DEBUG (MTD_DEBUG_LEVEL0,
+                                               "%s: Failed ECC write "
+                                               "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
+                                               goto out;
+                                       }
+                               }
+                       }       
+               }
+               oobofs += mtd->oobsize - hweccbytes * eccsteps;
+               page++;
+               numpages--;
+
+               /* Apply delay or wait for ready/busy pin 
+                * Do this before the AUTOINCR check, so no problems
+                * arise if a chip which does auto increment
+                * is marked as NOAUTOINCR by the board driver.
+                * Do this also before returning, so the chip is
+                * ready for the next command.
+               */
+               if (!this->dev_ready) 
+                       udelay (this->chip_delay);
+               else
+                       while (!this->dev_ready(mtd));  
+
+               /* All done, return happy */
+               if (!numpages)
+                       return 0;
+               
+                       
+               /* Check, if the chip supports auto page increment */ 
+               if (!NAND_CANAUTOINCR(this))
+                       this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+       }
+       /* 
+        * Terminate the read command. We come here in case of an error
+        * So we must issue a reset command.
+        */
+out:    
+       this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
+       return res;
+}
+#endif
+
+/**
+ * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
+ * @mtd:       MTD device structure
+ * @from:      offset to read from
+ * @len:       number of bytes to read
+ * @retlen:    pointer to variable to store the number of read bytes
+ * @buf:       the databuffer to put data
+ *
+ * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
+*/
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+       return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
+}                         
+
+
+/**
+ * nand_read_ecc - [MTD Interface] Read data with ECC
+ * @mtd:       MTD device structure
+ * @from:      offset to read from
+ * @len:       number of bytes to read
+ * @retlen:    pointer to variable to store the number of read bytes
+ * @buf:       the databuffer to put data
+ * @oob_buf:   filesystem supplied oob data buffer
+ * @oobsel:    oob selection structure
+ *
+ * NAND read with ECC
+ */
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+                         size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
+{
+       int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
+       int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
+       struct nand_chip *this = mtd->priv;
+       u_char *data_poi, *oob_data = oob_buf;
+       u_char ecc_calc[32];
+       u_char ecc_code[32];
+        int eccmode, eccsteps;
+       int     *oob_config, datidx;
+       int     blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+       int     eccbytes = 3;
+       int     compareecc = 1;
+       int     oobreadlen;
+
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+       /* Do not allow reads past end of device */
+       if ((from + len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
+               *retlen = 0;
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_chip (this, mtd ,FL_READING);
+
+       /* use userspace supplied oobinfo, if zero */
+       if (oobsel == NULL)
+               oobsel = &mtd->oobinfo;
+       
+       /* Autoplace of oob data ? Use the default placement scheme */
+       if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+               oobsel = this->autooob;
+               
+       eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+       oob_config = oobsel->eccpos;
+
+       /* Select the NAND device */
+       chipnr = (int)(from >> this->chip_shift);
+       this->select_chip(mtd, chipnr);
+
+       /* First we calculate the starting page */
+       realpage = (int) (from >> this->page_shift);
+       page = realpage & this->pagemask;
+
+       /* Get raw starting column */
+       col = from & (mtd->oobblock - 1);
+
+       end = mtd->oobblock;
+       ecc = this->eccsize;
+       switch (eccmode) {
+       case NAND_ECC_HW6_512: /* Hardware ECC 6 byte / 512 byte data  */
+               eccbytes = 6;
+               break;                                          
+       case NAND_ECC_HW8_512: /* Hardware ECC 8 byte / 512 byte data  */
+               eccbytes = 8;
+               break;
+       case NAND_ECC_NONE:
+               compareecc = 0;
+               break;                                          
+       }        
+
+       if (this->options & NAND_HWECC_SYNDROME)
+               compareecc = 0;
+
+       oobreadlen = mtd->oobsize;
+       if (this->options & NAND_HWECC_SYNDROME) 
+               oobreadlen -= oobsel->eccbytes;
+
+       /* Loop until all data read */
+       while (read < len) {
+               
+               int aligned = (!col && (len - read) >= end);
+               /* 
+                * If the read is not page aligned, we have to read into data buffer
+                * due to ecc, else we read into return buffer direct
+                */
+               if (aligned)
+                       data_poi = &buf[read];
+               else 
+                       data_poi = this->data_buf;
+               
+               /* Check, if we have this page in the buffer 
+                *
+                * FIXME: Make it work when we must provide oob data too,
+                * check the usage of data_buf oob field
+                */
+               if (realpage == this->pagebuf && !oob_buf) {
+                       /* aligned read ? */
+                       if (aligned)
+                               memcpy (data_poi, this->data_buf, end);
+                       goto readdata;
+               }
+
+               /* Check, if we must send the read command */
+               if (sndcmd) {
+                       this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+                       sndcmd = 0;
+               }       
+
+               /* get oob area, if we have no oob buffer from fs-driver */
+               if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+                       oob_data = &this->data_buf[end];
+
+               eccsteps = this->eccsteps;
+               
+               switch (eccmode) {
+               case NAND_ECC_NONE: {   /* No ECC, Read in a page */
+                       static unsigned long lastwhinge = 0;
+                       if ((lastwhinge / HZ) != (jiffies / HZ)) {
+                               printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
+                               lastwhinge = jiffies;
+                       }
+                       this->read_buf(mtd, data_poi, end);
+                       break;
+               }
+                       
+               case NAND_ECC_SOFT:     /* Software ECC 3/256: Read in a page + oob data */
+                       this->read_buf(mtd, data_poi, end);
+                       for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc) 
+                               this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+                       break;  
+                       
+               case NAND_ECC_HW3_256: /* Hardware ECC 3 byte /256 byte data */
+               case NAND_ECC_HW3_512: /* Hardware ECC 3 byte /512 byte data */ 
+               case NAND_ECC_HW6_512: /* Hardware ECC 6 byte / 512 byte data  */
+               case NAND_ECC_HW8_512: /* Hardware ECC 8 byte / 512 byte data  */
+                       for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
+                               this->enable_hwecc(mtd, NAND_ECC_READ); 
+                               this->read_buf(mtd, &data_poi[datidx], ecc);
+
+                               /* HW ecc with syndrome calculation must read the
+                                * syndrome from flash immidiately after the data */
+                               if (!compareecc) {
+                                       /* Some hw ecc generators need to know when the
+                                        * syndrome is read from flash */
+                                       this->enable_hwecc(mtd, NAND_ECC_READSYN);
+                                       this->read_buf(mtd, &oob_data[i], eccbytes);
+                                       /* We calc error correction directly, it checks the hw
+                                        * generator for an error, reads back the syndrome and
+                                        * does the error correction on the fly */
+                                       if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
+                                               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " 
+                                                       "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
+                                               ecc_failed++;
+                                       }
+                               } else {
+                                       this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+                               }       
+                       }
+                       break;                                          
+
+               default:
+                       printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+                       BUG();  
+               }
+
+               /* read oobdata */
+               this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
+
+               /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
+               if (!compareecc)
+                       goto readoob;   
+               
+               /* Pick the ECC bytes out of the oob data */
+               for (j = 0; j < oobsel->eccbytes; j++)
+                       ecc_code[j] = oob_data[oob_config[j]];
+
+               /* correct data, if neccecary */
+               for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
+                       ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
+                       
+                       /* Get next chunk of ecc bytes */
+                       j += eccbytes;
+                       
+                       /* Check, if we have a fs supplied oob-buffer, 
+                        * This is the legacy mode. Used by YAFFS1
+                        * Should go away some day
+                        */
+                       if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { 
+                               int *p = (int *)(&oob_data[mtd->oobsize]);
+                               p[i] = ecc_status;
+                       }
+                       
+                       if (ecc_status == -1) { 
+                               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+                               ecc_failed++;
+                       }
+               }               
+
+       readoob:
+               /* check, if we have a fs supplied oob-buffer */
+               if (oob_buf) {
+                       /* without autoplace. Legacy mode used by YAFFS1 */
+                       switch(oobsel->useecc) {
+                       case MTD_NANDECC_AUTOPLACE:
+                               /* Walk through the autoplace chunks */
+                               for (i = 0, j = 0; j < mtd->oobavail; i++) {
+                                       int from = oobsel->oobfree[i][0];
+                                       int num = oobsel->oobfree[i][1];
+                                       memcpy(&oob_buf[oob], &oob_data[from], num);
+                                       j+= num;
+                               }
+                               oob += mtd->oobavail;
+                               break;
+                       case MTD_NANDECC_PLACE:
+                               /* YAFFS1 legacy mode */
+                               oob_data += this->eccsteps * sizeof (int);
+                       default:
+                               oob_data += mtd->oobsize;
+                       }
+               }
+       readdata:
+               /* Partial page read, transfer data into fs buffer */
+               if (!aligned) { 
+                       for (j = col; j < end && read < len; j++)
+                               buf[read++] = data_poi[j];
+                       this->pagebuf = realpage;       
+               } else          
+                       read += mtd->oobblock;
+
+               /* Apply delay or wait for ready/busy pin 
+                * Do this before the AUTOINCR check, so no problems
+                * arise if a chip which does auto increment
+                * is marked as NOAUTOINCR by the board driver.
+               */
+               if (!this->dev_ready) 
+                       udelay (this->chip_delay);
+               else
+                       while (!this->dev_ready(mtd));  
+                       
+               if (read == len)
+                       break;  
+
+               /* For subsequent reads align to page boundary. */
+               col = 0;
+               /* Increment page address */
+               realpage++;
+
+               page = realpage & this->pagemask;
+               /* Check, if we cross a chip boundary */
+               if (!page) {
+                       chipnr++;
+                       this->select_chip(mtd, -1);
+                       this->select_chip(mtd, chipnr);
+               }
+               /* Check, if the chip supports auto page increment 
+                * or if we have hit a block boundary. 
+               */ 
+               if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+                       sndcmd = 1;                             
+       }
+
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_chip(mtd);
+
+       /*
+        * Return success, if no ECC failures, else -EIO
+        * fs driver will take care of that, because
+        * retlen == desired len and result == -EIO
+        */
+       *retlen = read;
+       return ecc_failed ? -EIO : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read out-of-band
+ * @mtd:       MTD device structure
+ * @from:      offset to read from
+ * @len:       number of bytes to read
+ * @retlen:    pointer to variable to store the number of read bytes
+ * @buf:       the databuffer to put data
+ *
+ * NAND read out-of-band data from the spare area
+ */
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+       int i, col, page, chipnr;
+       struct nand_chip *this = mtd->priv;
+       int     blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+       /* Shift to get page */
+       page = (int)(from >> this->page_shift);
+       chipnr = (int)(from >> this->chip_shift);
+       
+       /* Mask to get column */
+       col = from & (mtd->oobsize - 1);
+
+       /* Initialize return length value */
+       *retlen = 0;
+
+       /* Do not allow reads past end of device */
+       if ((from + len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
+               *retlen = 0;
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_chip (this, mtd , FL_READING);
+
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Send the read command */
+       this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
+       /* 
+        * Read the data, if we read more than one page
+        * oob data, let the device transfer the data !
+        */
+       i = 0;
+       while (i < len) {
+               int thislen = mtd->oobsize - col;
+               thislen = min_t(int, thislen, len);
+               this->read_buf(mtd, &buf[i], thislen);
+               i += thislen;
+               
+               /* Apply delay or wait for ready/busy pin 
+                * Do this before the AUTOINCR check, so no problems
+                * arise if a chip which does auto increment
+                * is marked as NOAUTOINCR by the board driver.
+               */
+               if (!this->dev_ready) 
+                       udelay (this->chip_delay);
+               else
+                       while (!this->dev_ready(mtd));  
+
+               /* Read more ? */
+               if (i < len) {
+                       page++;
+                       col = 0;
+
+                       /* Check, if we cross a chip boundary */
+                       if (!(page & this->pagemask)) {
+                               chipnr++;
+                               this->select_chip(mtd, -1);
+                               this->select_chip(mtd, chipnr);
+                       }
+                               
+                       /* Check, if the chip supports auto page increment 
+                        * or if we have hit a block boundary. 
+                       */ 
+                       if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
+                               /* For subsequent page reads set offset to 0 */
+                               this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
+                       }
+               }
+       }
+
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_chip(mtd);
+
+       /* Return happy */
+       *retlen = len;
+       return 0;
+}
+
+/**
+ * nand_read_raw - [GENERIC] Read raw data including oob into buffer
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @from:      offset to read from
+ * @len:       number of bytes to read
+ * @ooblen:    number of oob data bytes to read
+ *
+ * Read raw data including oob into buffer
+ */
+int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
+{
+       struct nand_chip *this = mtd->priv;
+       int page = (int) (from >> this->page_shift);
+       int chip = (int) (from >> this->chip_shift);
+       int sndcmd = 1;
+       int cnt = 0;
+       int pagesize = mtd->oobblock + mtd->oobsize;
+       int     blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+       /* Do not allow reads past end of device */
+       if ((from + len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_chip (this, mtd , FL_READING);
+
+       this->select_chip (mtd, chip);
+       
+       /* Add requested oob length */
+       len += ooblen;
+       
+       while (len) {
+               if (sndcmd)
+                       this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
+               sndcmd = 0;     
+
+               this->read_buf (mtd, &buf[cnt], pagesize);
+
+               len -= pagesize;
+               cnt += pagesize;
+               page++;
+               
+               if (!this->dev_ready) 
+                       udelay (this->chip_delay);
+               else
+                       while (!this->dev_ready(mtd));  
+                       
+               /* Check, if the chip supports auto page increment */ 
+               if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+                       sndcmd = 1;
+       }
+
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_chip(mtd);
+       return 0;
+}
+
+
+/** 
+ * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer 
+ * @mtd:       MTD device structure
+ * @fsbuf:     buffer given by fs driver
+ * @oobsel:    out of band selection structre
+ * @autoplace: 1 = place given buffer into the oob bytes
+ * @numpages:  number of pages to prepare
+ *
+ * Return:
+ * 1. Filesystem buffer available and autoplacement is off,
+ *    return filesystem buffer
+ * 2. No filesystem buffer or autoplace is off, return internal
+ *    buffer
+ * 3. Filesystem buffer is given and autoplace selected
+ *    put data from fs buffer into internal buffer and
+ *    retrun internal buffer
+ *
+ * Note: The internal buffer is filled with 0xff. This must
+ * be done only once, when no autoplacement happens
+ * Autoplacement sets the buffer dirty flag, which
+ * forces the 0xff fill before using the buffer again.
+ *
+*/
+static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
+               int autoplace, int numpages)
+{
+       struct nand_chip *this = mtd->priv;
+       int i, len, ofs;
+
+       /* Zero copy fs supplied buffer */
+       if (fsbuf && !autoplace) 
+               return fsbuf;
+
+       /* Check, if the buffer must be filled with ff again */
+       if (this->oobdirty) {   
+               memset (this->oob_buf, 0xff, 
+                       mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+               this->oobdirty = 0;
+       }       
+       
+       /* If we have no autoplacement or no fs buffer use the internal one */
+       if (!autoplace || !fsbuf)
+               return this->oob_buf;
+       
+       /* Walk through the pages and place the data */
+       this->oobdirty = 1;
+       ofs = 0;
+       while (numpages--) {
+               for (i = 0, len = 0; len < mtd->oobavail; i++) {
+                       int to = ofs + oobsel->oobfree[i][0];
+                       int num = oobsel->oobfree[i][1];
+                       memcpy (&this->oob_buf[to], fsbuf, num);
+                       len += num;
+                       fsbuf += num;
+               }
+               ofs += mtd->oobavail;
+       }
+       return this->oob_buf;
+}
+
+#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
+
+/**
+ * nand_write - [MTD Interface] compability function for nand_write_ecc
+ * @mtd:       MTD device structure
+ * @to:                offset to write to
+ * @len:       number of bytes to write
+ * @retlen:    pointer to variable to store the number of written bytes
+ * @buf:       the data to write
+ *
+ * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
+ *
+*/
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+       return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
+}
+                          
+/**
+ * nand_write_ecc - [MTD Interface] NAND write with ECC
+ * @mtd:       MTD device structure
+ * @to:                offset to write to
+ * @len:       number of bytes to write
+ * @retlen:    pointer to variable to store the number of written bytes
+ * @buf:       the data to write
+ * @eccbuf:    filesystem supplied oob data buffer
+ * @oobsel:    oob selection structure
+ *
+ * NAND write with ECC
+ */
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+                          size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+       int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
+       int autoplace = 0, numpages, totalpages;
+       struct nand_chip *this = mtd->priv;
+       u_char *oobbuf, *bufstart;
+       int     ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+       /* Initialize retlen, in case of early exit */
+       *retlen = 0;
+
+       /* Do not allow write past end of device */
+       if ((to + len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
+               return -EINVAL;
+       }
+
+       /* reject writes, which are not page aligned */ 
+       if (NOTALIGNED (to) || NOTALIGNED(len)) {
+               printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_chip (this, mtd, FL_WRITING);
+
+       /* Calculate chipnr */
+       chipnr = (int)(to >> this->chip_shift);
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Check, if it is write protected */
+       if (nand_check_wp(mtd))
+               goto out;
+
+       /* if oobsel is NULL, use chip defaults */
+       if (oobsel == NULL) 
+               oobsel = &mtd->oobinfo;         
+               
+       /* Autoplace of oob data ? Use the default placement scheme */
+       if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+               oobsel = this->autooob;
+               autoplace = 1;
+       }       
+
+       /* Setup variables and oob buffer */
+       totalpages = len >> this->page_shift;
+       page = (int) (to >> this->page_shift);
+       /* Invalidate the page cache, if we write to the cached page */
+       if (page <= this->pagebuf && this->pagebuf < (page + totalpages))  
+               this->pagebuf = -1;
+       
+       /* Set it relative to chip */
+       page &= this->pagemask;
+       startpage = page;
+       /* Calc number of pages we can write in one go */
+       numpages = min (ppblock - (startpage  & (ppblock - 1)), totalpages);
+       oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
+       bufstart = (u_char *)buf;
+
+       /* Loop until all data is written */
+       while (written < len) {
+
+               this->data_poi = (u_char*) &buf[written];
+               /* Write one page. If this is the last page to write
+                * or the last page in this block, then use the
+                * real pageprogram command, else select cached programming
+                * if supported by the chip.
+                */
+               ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
+               if (ret) {
+                       DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
+                       goto out;
+               }       
+               /* Next oob page */
+               oob += mtd->oobsize;
+               /* Update written bytes count */
+               written += mtd->oobblock;
+               if (written == len) 
+                       goto cmp;
+               
+               /* Increment page address */
+               page++;
+
+               /* Have we hit a block boundary ? Then we have to verify and
+                * if verify is ok, we have to setup the oob buffer for
+                * the next pages.
+               */
+               if (!(page & (ppblock - 1))){
+                       int ofs;
+                       this->data_poi = bufstart;
+                       ret = nand_verify_pages (mtd, this, startpage, 
+                               page - startpage,
+                               oobbuf, oobsel, chipnr, (eccbuf != NULL));
+                       if (ret) {
+                               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+                               goto out;
+                       }       
+                       *retlen = written;
+
+                       ofs = autoplace ? mtd->oobavail : mtd->oobsize;
+                       if (eccbuf)
+                               eccbuf += (page - startpage) * ofs;
+                       totalpages -= page - startpage;
+                       numpages = min (totalpages, ppblock);
+                       page &= this->pagemask;
+                       startpage = page;
+                       oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, 
+                                       autoplace, numpages);
+                       /* Check, if we cross a chip boundary */
+                       if (!page) {
+                               chipnr++;
+                               this->select_chip(mtd, -1);
+                               this->select_chip(mtd, chipnr);
+                       }
+               }
+       }
+       /* Verify the remaining pages */
+cmp:
+       this->data_poi = bufstart;
+       ret = nand_verify_pages (mtd, this, startpage, totalpages,
+               oobbuf, oobsel, chipnr, (eccbuf != NULL));
+       if (!ret)
+               *retlen = written;
+       else    
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+
+out:
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_chip(mtd);
+
+       return ret;
+}
+
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd:       MTD device structure
+ * @to:                offset to write to
+ * @len:       number of bytes to write
+ * @retlen:    pointer to variable to store the number of written bytes
+ * @buf:       the data to write
+ *
+ * NAND write out-of-band
+ */
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+       int column, page, status, ret = -EIO, chipnr;
+       struct nand_chip *this = mtd->priv;
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+       /* Shift to get page */
+       page = (int) (to >> this->page_shift);
+       chipnr = (int) (to >> this->chip_shift);
+
+       /* Mask to get column */
+       column = to & (mtd->oobsize - 1);
+
+       /* Initialize return length value */
+       *retlen = 0;
+
+       /* Do not allow write past end of page */
+       if ((column + len) > mtd->oobsize) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_chip (this, mtd, FL_WRITING);
+
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Reset the chip. Some chips (like the Toshiba TC5832DC found
+          in one of my DiskOnChip 2000 test units) will clear the whole
+          data page too if we don't do this. I have no clue why, but
+          I seem to have 'fixed' it in the doc2000 driver in
+          August 1999.  dwmw2. */
+       this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+       /* Check, if it is write protected */
+       if (nand_check_wp(mtd))
+               goto out;
+       
+       /* Invalidate the page cache, if we write to the cached page */
+       if (page == this->pagebuf)
+               this->pagebuf = -1;
+
+       if (NAND_MUST_PAD(this)) {
+               /* Write out desired data */
+               this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
+               /* prepad 0xff for partial programming */
+               this->write_buf(mtd, ffchars, column);
+               /* write data */
+               this->write_buf(mtd, buf, len);
+               /* postpad 0xff for partial programming */
+               this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
+       } else {
+               /* Write out desired data */
+               this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
+               /* write data */
+               this->write_buf(mtd, buf, len);
+       }
+       /* Send command to program the OOB data */
+       this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+       status = this->waitfunc (mtd, this, FL_WRITING);
+
+       /* See if device thinks it succeeded */
+       if (status & 0x01) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
+               ret = -EIO;
+               goto out;
+       }
+       /* Return happy */
+       *retlen = len;
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+       /* Send command to read back the data */
+       this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
+
+       if (this->verify_buf(mtd, buf, len)) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
+               ret = -EIO;
+               goto out;
+       }
+#endif
+       ret = 0;
+out:
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_chip(mtd);
+
+       return ret;
+}
+
+
+/**
+ * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
+ * @mtd:       MTD device structure
+ * @vecs:      the iovectors to write
+ * @count:     number of vectors
+ * @to:                offset to write to
+ * @retlen:    pointer to variable to store the number of written bytes
+ *
+ * NAND write with kvec. This just calls the ecc function
+ */
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
+               loff_t to, size_t * retlen)
+{
+       return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));    
+}
+
+/**
+ * nand_writev_ecc - [MTD Interface] write with iovec with ecc
+ * @mtd:       MTD device structure
+ * @vecs:      the iovectors to write
+ * @count:     number of vectors
+ * @to:                offset to write to
+ * @retlen:    pointer to variable to store the number of written bytes
+ * @eccbuf:    filesystem supplied oob data buffer
+ * @oobsel:    oob selection structure
+ *
+ * NAND write with iovec with ecc
+ */
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, 
+               loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
+{
+       int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
+       int oob, numpages, autoplace = 0, startpage;
+       struct nand_chip *this = mtd->priv;
+       int     ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+       u_char *oobbuf, *bufstart;
+
+       /* Preset written len for early exit */
+       *retlen = 0;
+
+       /* Calculate total length of data */
+       total_len = 0;
+       for (i = 0; i < count; i++)
+               total_len += (int) vecs[i].iov_len;
+
+       DEBUG (MTD_DEBUG_LEVEL3,
+              "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
+
+       /* Do not allow write past end of page */
+       if ((to + total_len) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
+               return -EINVAL;
+       }
+
+       /* reject writes, which are not page aligned */ 
+       if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
+               printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+               return -EINVAL;
+       }
+
+       /* Grab the lock and see if the device is available */
+       nand_get_chip (this, mtd, FL_WRITING);
+
+       /* Get the current chip-nr */
+       chipnr = (int) (to >> this->chip_shift);
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Check, if it is write protected */
+       if (nand_check_wp(mtd))
+               goto out;
+
+       /* if oobsel is NULL, use chip defaults */
+       if (oobsel == NULL) 
+               oobsel = &mtd->oobinfo;         
+
+       /* Autoplace of oob data ? Use the default placement scheme */
+       if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+               oobsel = this->autooob;
+               autoplace = 1;
+       }       
+
+       /* Setup start page */
+       page = (int) (to >> this->page_shift);
+       /* Invalidate the page cache, if we write to the cached page */
+       if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))  
+               this->pagebuf = -1;
+
+       startpage = page & this->pagemask;
+
+       /* Loop until all kvec' data has been written */
+       len = 0;
+       while (count) {
+               /* If the given tuple is >= pagesize then
+                * write it out from the iov
+                */
+               if ((vecs->iov_len - len) >= mtd->oobblock) {
+                       /* Calc number of pages we can write
+                        * out of this iov in one go */
+                       numpages = (vecs->iov_len - len) >> this->page_shift;
+                       /* Do not cross block boundaries */
+                       numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
+                       oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+                       bufstart = (u_char *)vecs->iov_base;
+                       bufstart += len;
+                       this->data_poi = bufstart;
+                       oob = 0;
+                       for (i = 1; i <= numpages; i++) {
+                               /* Write one page. If this is the last page to write
+                                * then use the real pageprogram command, else select 
+                                * cached programming if supported by the chip.
+                                */
+                               ret = nand_write_page (mtd, this, page & this->pagemask, 
+                                       &oobbuf[oob], oobsel, i != numpages);
+                               if (ret)
+                                       goto out;
+                               this->data_poi += mtd->oobblock;
+                               len += mtd->oobblock;
+                               oob += mtd->oobsize;
+                               page++;
+                       }
+                       /* Check, if we have to switch to the next tuple */
+                       if (len >= (int) vecs->iov_len) {
+                               vecs++;
+                               len = 0;
+                               count--;
+                       }
+               } else {
+                       /* We must use the internal buffer, read data out of each 
+                        * tuple until we have a full page to write
+                        */
+                       int cnt = 0;
+                       while (cnt < mtd->oobblock) {
+                               if (vecs->iov_base != NULL && vecs->iov_len) 
+                                       this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
+                               /* Check, if we have to switch to the next tuple */
+                               if (len >= (int) vecs->iov_len) {
+                                       vecs++;
+                                       len = 0;
+                                       count--;
+                               }
+                       }
+                       this->pagebuf = page;   
+                       this->data_poi = this->data_buf;        
+                       bufstart = this->data_poi;
+                       numpages = 1;           
+                       oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+                       ret = nand_write_page (mtd, this, page & this->pagemask,
+                               oobbuf, oobsel, 0);
+                       if (ret)
+                               goto out;
+                       page++;
+               }
+
+               this->data_poi = bufstart;
+               ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
+               if (ret)
+                       goto out;
+                       
+               written += mtd->oobblock * numpages;
+               /* All done ? */
+               if (!count)
+                       break;
+
+               startpage = page & this->pagemask;
+               /* Check, if we cross a chip boundary */
+               if (!startpage) {
+                       chipnr++;
+                       this->select_chip(mtd, -1);
+                       this->select_chip(mtd, chipnr);
+               }
+       }
+       ret = 0;
+out:
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_chip(mtd);
+
+       *retlen = written;
+       return ret;
+}
+
+/**
+ * single_erease_cmd - [GENERIC] NAND standard block erase command function
+ * @mtd:       MTD device structure
+ * @page:      the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips
+ */
+static void single_erase_cmd (struct mtd_info *mtd, int page)
+{
+       struct nand_chip *this = mtd->priv;
+       /* Send commands to erase a block */
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+       this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * multi_erease_cmd - [GENERIC] AND specific block erase command function
+ * @mtd:       MTD device structure
+ * @page:      the page address of the block which will be erased
+ *
+ * AND multi block erase command function
+ * Erase 4 consecutive blocks
+ */
+static void multi_erase_cmd (struct mtd_info *mtd, int page)
+{
+       struct nand_chip *this = mtd->priv;
+       /* Send commands to erase a block */
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+       this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+       this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd:       MTD device structure
+ * @instr:     erase instruction
+ *
+ * Erase one ore more blocks
+ */
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+       return nand_erase_nand (mtd, instr, 0);
+}
+/**
+ * nand_erase_intern - [NAND Interface] erase block(s)
+ * @mtd:       MTD device structure
+ * @instr:     erase instruction
+ * @allowbbt:  allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
+{
+       int page, len, status, pages_per_block, ret, chipnr;
+       struct nand_chip *this = mtd->priv;
+
+       DEBUG (MTD_DEBUG_LEVEL3,
+              "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
+
+       /* Start address must align on block boundary */
+       if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
+               return -EINVAL;
+       }
+
+       /* Length must align on block boundary */
+       if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
+               return -EINVAL;
+       }
+
+       /* Do not allow erase past end of device */
+       if ((instr->len + instr->addr) > mtd->size) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
+               return -EINVAL;
+       }
+
+       instr->fail_addr = 0xffffffff;
+
+       /* Grab the lock and see if the device is available */
+       nand_get_chip (this, mtd, FL_ERASING);
+
+       /* Shift to get first page */
+       page = (int) (instr->addr >> this->page_shift);
+       chipnr = (int) (instr->addr >> this->chip_shift);
+
+       /* Calculate pages in each block */
+       pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
+
+       /* Select the NAND device */
+       this->select_chip(mtd, chipnr);
+
+       /* Check the WP bit */
+       /* Check, if it is write protected */
+       if (nand_check_wp(mtd)) {
+               DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
+               instr->state = MTD_ERASE_FAILED;
+               goto erase_exit;
+       }
+
+       /* Loop through the pages */
+       len = instr->len;
+
+       instr->state = MTD_ERASING;
+
+       while (len) {
+               /* Check if we have a bad block, we do not erase bad blocks ! */
+               if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
+                       printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
+                       instr->state = MTD_ERASE_FAILED;
+                       goto erase_exit;
+               }
+               
+               /* Invalidate the page cache, if we erase the block which contains 
+                  the current cached page */
+               if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
+                       this->pagebuf = -1;
+
+               this->erase_cmd (mtd, page & this->pagemask);
+               
+               status = this->waitfunc (mtd, this, FL_ERASING);
+
+               /* See if block erase succeeded */
+               if (status & 0x01) {
+                       DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
+                       instr->state = MTD_ERASE_FAILED;
+                       instr->fail_addr = (page << this->page_shift);
+                       goto erase_exit;
+               }
+               
+               /* Increment page address and decrement length */
+               len -= (1 << this->phys_erase_shift);
+               page += pages_per_block;
+
+               /* Check, if we cross a chip boundary */
+               if (len && !(page & this->pagemask)) {
+                       chipnr++;
+                       this->select_chip(mtd, -1);
+                       this->select_chip(mtd, chipnr);
+               }
+       }
+       instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+       ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+       /* Do call back function */
+       if (!ret && instr->callback)
+               instr->callback (instr);
+
+       /* Deselect and wake up anyone waiting on the device */
+       nand_release_chip(mtd);
+
+       /* Return more or less happy */
+       return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd:       MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void nand_sync (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       DECLARE_WAITQUEUE (wait, current);
+
+       DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
+
+retry:
+       /* Grab the spinlock */
+       spin_lock_bh (&this->chip_lock);
+
+       /* See what's going on */
+       switch (this->state) {
+       case FL_READY:
+       case FL_SYNCING:
+               this->state = FL_SYNCING;
+               spin_unlock_bh (&this->chip_lock);
+               break;
+
+       default:
+               /* Not an idle state */
+               add_wait_queue (&this->wq, &wait);
+               spin_unlock_bh (&this->chip_lock);
+               schedule ();
+
+               remove_wait_queue (&this->wq, &wait);
+               goto retry;
+       }
+
+       /* Lock the device */
+       spin_lock_bh (&this->chip_lock);
+
+       /* Set the device to be ready again */
+       if (this->state == FL_SYNCING) {
+               this->state = FL_READY;
+               wake_up (&this->wq);
+       }
+
+       /* Unlock the device */
+       spin_unlock_bh (&this->chip_lock);
+}
+
+
+/**
+ * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @mtd:       MTD device structure
+ * @ofs:       offset relative to mtd start
+ */
+static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
+{
+       /* Check for invalid offset */
+       if (ofs > mtd->size) 
+               return -EINVAL;
+       
+       return nand_block_checkbad (mtd, ofs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @mtd:       MTD device structure
+ * @ofs:       offset relative to mtd start
+ */
+static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
+{
+       struct nand_chip *this = mtd->priv;
+       int ret;
+
+        if ((ret = nand_block_isbad(mtd, ofs))) {
+               /* If it was bad already, return success and do nothing. */
+               if (ret > 0)
+                       return 0;
+               return ret;
+        }
+
+       return this->block_markbad(mtd, ofs);
+}
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd:       MTD device structure
+ * @maxchips:  Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values. Buffers are allocated if
+ * they are not provided by the board driver
+ *
+ */
+int nand_scan (struct mtd_info *mtd, int maxchips)
+{
+       int i, j, nand_maf_id, nand_dev_id, busw;
+       struct nand_chip *this = mtd->priv;
+
+       /* Get buswidth to select the correct functions*/
+       busw = this->options & NAND_BUSWIDTH_16;
+
+       /* check for proper chip_delay setup, set 20us if not */
+       if (!this->chip_delay)
+               this->chip_delay = 20;
+
+       /* check, if a user supplied command function given */
+       if (this->cmdfunc == NULL)
+               this->cmdfunc = nand_command;
+
+       /* check, if a user supplied wait function given */
+       if (this->waitfunc == NULL)
+               this->waitfunc = nand_wait;
+
+       if (!this->select_chip)
+               this->select_chip = nand_select_chip;
+       if (!this->write_byte)
+               this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+       if (!this->read_byte)
+               this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+       if (!this->write_word)
+               this->write_word = nand_write_word;
+       if (!this->read_word)
+               this->read_word = nand_read_word;
+       if (!this->block_bad)
+               this->block_bad = nand_block_bad;
+       if (!this->block_markbad)
+               this->block_markbad = nand_default_block_markbad;
+       if (!this->write_buf)
+               this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+       if (!this->read_buf)
+               this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+       if (!this->verify_buf)
+               this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
+       if (!this->scan_bbt)
+               this->scan_bbt = nand_default_bbt;
+
+       /* Select the device */
+       this->select_chip(mtd, 0);
+
+       /* Send the command for reading device ID */
+       this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+       /* Read manufacturer and device IDs */
+       nand_maf_id = this->read_byte(mtd);
+       nand_dev_id = this->read_byte(mtd);
+
+       /* Print and store flash device information */
+       for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+                               
+               if (nand_dev_id != nand_flash_ids[i].id) 
+                       continue;
+
+               if (!mtd->name) mtd->name = nand_flash_ids[i].name;
+               this->chipsize = nand_flash_ids[i].chipsize << 20;
+               
+               /* New devices have all the information in additional id bytes */
+               if (!nand_flash_ids[i].pagesize) {
+                       int extid;
+                       /* The 3rd id byte contains non relevant data ATM */
+                       extid = this->read_byte(mtd);
+                       /* The 4th id byte is the important one */
+                       extid = this->read_byte(mtd);
+                       /* Calc pagesize */
+                       mtd->oobblock = 1024 << (extid & 0x3);
+                       extid >>= 2;
+                       /* Calc oobsize */
+                       mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
+                       extid >>= 2;
+                       /* Calc blocksize. Blocksize is multiples of 64KiB */
+                       mtd->erasesize = (64 * 1024)  << (extid & 0x03);
+                       extid >>= 2;
+                       /* Get buswidth information */
+                       busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+               
+               } else {
+                       /* Old devices have this data hardcoded in the
+                        * device id table */
+                       mtd->erasesize = nand_flash_ids[i].erasesize;
+                       mtd->oobblock = nand_flash_ids[i].pagesize;
+                       mtd->oobsize = mtd->oobblock / 32;
+                       busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
+               }
+
+               /* Check, if buswidth is correct. Hardware drivers should set
+                * this correct ! */
+               if (busw != (this->options & NAND_BUSWIDTH_16)) {
+                       printk (KERN_INFO "NAND device: Manufacturer ID:"
+                               " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
+                               nand_manuf_ids[i].name , mtd->name);
+                       printk (KERN_WARNING 
+                               "NAND bus width %d instead %d bit\n", 
+                                       (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
+                                       busw ? 16 : 8);
+                       this->select_chip(mtd, -1);
+                       return 1;       
+               }
+               
+               /* Calculate the address shift from the page size */    
+               this->page_shift = ffs(mtd->oobblock) - 1;
+               this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
+               this->chip_shift = ffs(this->chipsize) - 1;
+
+               /* Set the bad block position */
+               this->badblockpos = mtd->oobblock > 512 ? 
+                       NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
+
+               /* Get chip options, preserve non chip based options */
+               this->options &= ~NAND_CHIPOPTIONS_MSK;
+               this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
+               /* Set this as a default. Board drivers can override it, if neccecary */
+               this->options |= NAND_NO_AUTOINCR;
+               /* Check if this is a not a samsung device. Do not clear the options
+                * for chips which are not having an extended id.
+                */     
+               if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
+                       this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+               
+               /* Check for AND chips with 4 page planes */
+               if (this->options & NAND_4PAGE_ARRAY)
+                       this->erase_cmd = multi_erase_cmd;
+               else
+                       this->erase_cmd = single_erase_cmd;
+
+               /* Do not replace user supplied command function ! */
+               if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
+                       this->cmdfunc = nand_command_lp;
+                               
+               /* Try to identify manufacturer */
+               for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+                       if (nand_manuf_ids[j].id == nand_maf_id)
+                               break;
+               }
+               printk (KERN_INFO "NAND device: Manufacturer ID:"
+                       " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, 
+                       nand_manuf_ids[j].name , nand_flash_ids[i].name);
+               break;
+       }
+
+       if (!nand_flash_ids[i].name) {
+               printk (KERN_WARNING "No NAND device found!!!\n");
+               this->select_chip(mtd, -1);
+               return 1;
+       }
+
+       for (i=1; i < maxchips; i++) {
+               this->select_chip(mtd, i);
+
+               /* Send the command for reading device ID */
+               this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+               /* Read manufacturer and device IDs */
+               if (nand_maf_id != this->read_byte(mtd) ||
+                   nand_dev_id != this->read_byte(mtd))
+                       break;
+       }
+       if (i > 1)
+               printk(KERN_INFO "%d NAND chips detected\n", i);
+       
+       /* Allocate buffers, if neccecary */
+       if (!this->oob_buf) {
+               size_t len;
+               len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
+               this->oob_buf = kmalloc (len, GFP_KERNEL);
+               if (!this->oob_buf) {
+                       printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
+                       return -ENOMEM;
+               }
+               this->options |= NAND_OOBBUF_ALLOC;
+       }
+       
+       if (!this->data_buf) {
+               size_t len;
+               len = mtd->oobblock + mtd->oobsize;
+               this->data_buf = kmalloc (len, GFP_KERNEL);
+               if (!this->data_buf) {
+                       if (this->options & NAND_OOBBUF_ALLOC)
+                               kfree (this->oob_buf);
+                       printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
+                       return -ENOMEM;
+               }
+               this->options |= NAND_DATABUF_ALLOC;
+       }
+
+       /* Store the number of chips and calc total size for mtd */
+       this->numchips = i;
+       mtd->size = i * this->chipsize;
+       /* Convert chipsize to number of pages per chip -1. */
+       this->pagemask = (this->chipsize >> this->page_shift) - 1;
+       /* Preset the internal oob buffer */
+       memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+
+       /* If no default placement scheme is given, select an
+        * appropriate one */
+       if (!this->autooob) {
+               /* Select the appropriate default oob placement scheme for
+                * placement agnostic filesystems */
+               switch (mtd->oobsize) { 
+               case 8:
+                       this->autooob = &nand_oob_8;
+                       break;
+               case 16:
+                       this->autooob = &nand_oob_16;
+                       break;
+               case 64:
+                       this->autooob = &nand_oob_64;
+                       break;
+               default:
+                       printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
+                               mtd->oobsize);
+                       BUG();
+               }
+       }
+       
+       /* The number of bytes available for the filesystem to place fs dependend
+        * oob data */
+       if (this->options & NAND_BUSWIDTH_16) {
+               mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
+               if (this->autooob->eccbytes & 0x01)
+                       mtd->oobavail--;
+       } else
+               mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
+
+       /* 
+        * check ECC mode, default to software
+        * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
+        * fallback to software ECC 
+       */
+       this->eccsize = 256;    /* set default eccsize */       
+
+       switch (this->eccmode) {
+
+       case NAND_ECC_HW3_512: 
+       case NAND_ECC_HW6_512: 
+       case NAND_ECC_HW8_512: 
+               if (mtd->oobblock == 256) {
+                       printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
+                       this->eccmode = NAND_ECC_SOFT;
+                       this->calculate_ecc = nand_calculate_ecc;
+                       this->correct_data = nand_correct_data;
+                       break;          
+               } else 
+                       this->eccsize = 512; /* set eccsize to 512 and fall through for function check */
+
+       case NAND_ECC_HW3_256:
+               if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
+                       break;
+               printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
+               BUG();  
+
+       case NAND_ECC_NONE: 
+               printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
+               this->eccmode = NAND_ECC_NONE;
+               break;
+
+       case NAND_ECC_SOFT:     
+               this->calculate_ecc = nand_calculate_ecc;
+               this->correct_data = nand_correct_data;
+               break;
+
+       default:
+               printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+               BUG();  
+       }       
+       
+       mtd->eccsize = this->eccsize;
+       
+       /* Set the number of read / write steps for one page to ensure ECC generation */
+       switch (this->eccmode) {
+       case NAND_ECC_HW3_512:
+       case NAND_ECC_HW6_512:
+       case NAND_ECC_HW8_512:
+               this->eccsteps = mtd->oobblock / 512;
+               break;
+       case NAND_ECC_HW3_256:
+       case NAND_ECC_SOFT:     
+               this->eccsteps = mtd->oobblock / 256;
+               break;
+               
+       case NAND_ECC_NONE: 
+               this->eccsteps = 1;
+               break;
+       }
+       
+       /* Initialize state, waitqueue and spinlock */
+       this->state = FL_READY;
+       init_waitqueue_head (&this->wq);
+       spin_lock_init (&this->chip_lock);
+
+       /* De-select the device */
+       this->select_chip(mtd, -1);
+
+       /* Invalidate the pagebuffer reference */
+       this->pagebuf = -1;
+
+       /* Fill in remaining MTD driver data */
+       mtd->type = MTD_NANDFLASH;
+       mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
+       mtd->ecctype = MTD_ECC_SW;
+       mtd->erase = nand_erase;
+       mtd->point = NULL;
+       mtd->unpoint = NULL;
+       mtd->read = nand_read;
+       mtd->write = nand_write;
+       mtd->read_ecc = nand_read_ecc;
+       mtd->write_ecc = nand_write_ecc;
+       mtd->read_oob = nand_read_oob;
+       mtd->write_oob = nand_write_oob;
+       mtd->readv = NULL;
+       mtd->writev = nand_writev;
+       mtd->writev_ecc = nand_writev_ecc;
+       mtd->sync = nand_sync;
+       mtd->lock = NULL;
+       mtd->unlock = NULL;
+       mtd->suspend = NULL;
+       mtd->resume = NULL;
+       mtd->block_isbad = nand_block_isbad;
+       mtd->block_markbad = nand_block_markbad;
+
+       /* and make the autooob the default one */
+       memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
+
+       mtd->owner = THIS_MODULE;
+
+       /* Build bad block table */
+       return this->scan_bbt (mtd);
+}
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device 
+ * @mtd:       MTD device structure
+*/
+void nand_release (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+
+#if defined(CONFIG_MTD_PARTITIONS) || defined(CONFIG_MTD_PARTITIONS_MODULE)
+       /* Unregister partitions */
+       del_mtd_partitions (mtd);
+#endif
+       /* Unregister the device */
+       del_mtd_device (mtd);
+
+       /* Free bad block table memory, if allocated */
+       if (this->bbt)
+               kfree (this->bbt);
+       /* Buffer allocated by nand_scan ? */
+       if (this->options & NAND_OOBBUF_ALLOC)
+               kfree (this->oob_buf);
+       /* Buffer allocated by nand_scan ? */
+       if (this->options & NAND_DATABUF_ALLOC)
+               kfree (this->data_buf);
+}
+
+EXPORT_SYMBOL (nand_scan);
+EXPORT_SYMBOL (nand_release);
+
+MODULE_LICENSE ("GPL");
+MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION ("Generic NAND flash driver code");
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c
new file mode 100644 (file)
index 0000000..2642e11
--- /dev/null
@@ -0,0 +1,1053 @@
+/*
+ *  drivers/mtd/nand_bbt.c
+ *
+ *  Overview:
+ *   Bad block table support for the NAND driver
+ *   
+ *  Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_bbt.c,v 1.24 2004/06/28 08:25:35 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table 
+ * depending on the options in the bbt descriptor(s). If a bbt is found 
+ * then the contents are read and the memory based bbt is created. If a 
+ * mirrored bbt is selected then the mirror is searched too and the
+ * versions are compared. If the mirror has a greater version number 
+ * than the mirror bbt is used to build the memory based bbt.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the bbt's is out of date or does not exist it is (re)created. 
+ * If no bbt exists at all then the device is scanned for factory marked 
+ * good / bad blocks and the bad block tables are created. 
+ *
+ * For manufacturer created bbts like the one found on M-SYS DOC devices 
+ * the bbt is searched and read but never created
+ *
+ * The autogenerated bad block table is located in the last good blocks 
+ * of the device. The table is mirrored, so it can be updated eventually. 
+ * The table is marked in the oob area with an ident pattern and a version 
+ * number which indicates which of both tables is more up to date.
+ *
+ * The table uses 2 bits per block
+ * 11b:        block is good
+ * 00b:        block is factory marked bad
+ * 01b, 10b:   block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b:                block is good
+ * 01b:                block is marked bad due to wear
+ * 10b:                block is reserved (to protect the bbt area)
+ * 11b:                block is factory marked bad
+ * 
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space neccecary for a bbt in FLASH does not exceed a block boundary
+ * 
+ */
+
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/bitops.h>
+#include <linux/delay.h>
+
+
+/** 
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf:       the buffer to search
+ * @len:       the length of buffer to search
+ * @paglen:    the pagelength
+ * @td:                search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers.
+ * If the SCAN_EMPTY option is set then check, if all bytes except the
+ * pattern area contain 0xff
+ *
+*/
+static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+       int i, end;
+       uint8_t *p = buf;
+
+       end = paglen + td->offs;
+       if (td->options & NAND_BBT_SCANEMPTY) {
+               for (i = 0; i < end; i++) {
+                       if (p[i] != 0xff)
+                               return -1;
+               }
+       }       
+       p += end;
+       
+       /* Compare the pattern */
+       for (i = 0; i < td->len; i++) {
+               if (p[i] != td->pattern[i])
+                       return -1;
+       }
+
+       p += td->len;
+       end += td->len;
+       if (td->options & NAND_BBT_SCANEMPTY) {
+               for (i = end; i < len; i++) {
+                       if (*p++ != 0xff)
+                               return -1;
+               }
+       }
+       return 0;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @page:      the starting page
+ * @num:       the number of bbt descriptors to read
+ * @bits:      number of bits per block
+ * @offs:      offset in the memory table
+ *
+ * Read the bad block table starting from page.
+ *
+ */
+static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num, 
+       int bits, int offs, int reserved_block_code)
+{
+       int res, i, j, act = 0;
+       struct nand_chip *this = mtd->priv;
+       size_t retlen, len, totlen;
+       loff_t from;
+       uint8_t msk = (uint8_t) ((1 << bits) - 1);
+
+       totlen = (num * bits) >> 3;
+       from = ((loff_t)page) << this->page_shift;
+       
+       while (totlen) {
+               len = min (totlen, (size_t) (1 << this->bbt_erase_shift));
+               res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob);
+               if (res < 0) {
+                       if (retlen != len) {
+                               printk (KERN_INFO "nand_bbt: Error reading bad block table\n");
+                               return res;
+                       }
+                       printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
+               }       
+
+               /* Analyse data */
+               for (i = 0; i < len; i++) {
+                       uint8_t dat = buf[i];
+                       for (j = 0; j < 8; j += bits, act += 2) {
+                               uint8_t tmp = (dat >> j) & msk;
+                               if (tmp == msk)
+                                       continue;
+                               if (reserved_block_code &&
+                                   (tmp == reserved_block_code)) {
+                                       printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
+                                               ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+                                       this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
+                                       continue;
+                               }
+                               /* Leave it for now, if its matured we can move this
+                                * message to MTD_DEBUG_LEVEL0 */
+                               printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
+                                       ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+                               /* Factory marked bad or worn out ? */  
+                               if (tmp == 0)
+                                       this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06);
+                               else
+                                       this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06);
+                       }       
+               }
+               totlen -= len;
+               from += len;
+       }
+       return 0;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table 
+ * @chip:      read the table for a specific chip, -1 read all chips.
+ *             Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+*/
+static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       int res = 0, i;
+       int bits;
+
+       bits = td->options & NAND_BBT_NRBITS_MSK;
+       if (td->options & NAND_BBT_PERCHIP) {
+               int offs = 0;
+               for (i = 0; i < this->numchips; i++) {
+                       if (chip == -1 || chip == i)
+                               res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code);
+                       if (res)
+                               return res;
+                       offs += this->chipsize >> (this->bbt_erase_shift + 2);
+               }
+       } else {
+               res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code);
+               if (res)
+                       return res;
+       }
+       return 0;
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table 
+ * @md:                descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+ *
+*/
+static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td,
+       struct nand_bbt_descr *md)
+{
+       struct nand_chip *this = mtd->priv;
+
+       /* Read the primary version, if available */    
+       if (td->options & NAND_BBT_VERSION) {
+               nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); 
+               td->version[0] = buf[mtd->oobblock + td->veroffs];
+               printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]);
+       }
+
+       /* Read the mirror version, if available */     
+       if (md && (md->options & NAND_BBT_VERSION)) {
+               nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); 
+               md->version[0] = buf[mtd->oobblock + md->veroffs];
+               printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]);
+       }
+
+       return 1;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @bd:                descriptor for the good/bad block search pattern
+ * @chip:      create the table for a specific chip, -1 read all chips.
+ *             Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+       struct nand_chip *this = mtd->priv;
+       int i, j, numblocks, len, scanlen;
+       int startblock;
+       loff_t from;
+       size_t readlen, ooblen;
+
+       printk (KERN_INFO "Scanning device for bad blocks\n");
+
+       if (bd->options & NAND_BBT_SCANALLPAGES)
+               len = 1 << (this->bbt_erase_shift - this->page_shift);
+       else {
+               if (bd->options & NAND_BBT_SCAN2NDPAGE)
+                       len = 2;
+               else    
+                       len = 1;
+       }
+       scanlen = mtd->oobblock + mtd->oobsize;
+       readlen = len * mtd->oobblock;
+       ooblen = len * mtd->oobsize;
+
+       if (chip == -1) {
+               /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
+                * makes shifting and masking less painful */
+               numblocks = mtd->size >> (this->bbt_erase_shift - 1);
+               startblock = 0;
+               from = 0;
+       } else {
+               if (chip >= this->numchips) {
+                       printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
+                               chip + 1, this->numchips);
+                       return; 
+               }
+               numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
+               startblock = chip * numblocks;
+               numblocks += startblock;
+               from = startblock << (this->bbt_erase_shift - 1);
+       }
+       
+       for (i = startblock; i < numblocks;) {
+               nand_read_raw (mtd, buf, from, readlen, ooblen);
+               for (j = 0; j < len; j++) {
+                       if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
+                               this->bbt[i >> 3] |= 0x03 << (i & 0x6);
+                               printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n", 
+                                       i >> 1, (unsigned int) from);
+                               break;
+                       }
+               }
+               i += 2;
+               from += (1 << this->bbt_erase_shift);
+       }
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern.
+ * Search is preformed either from the beginning up or from the end of 
+ * the device downwards. The search starts always at the start of a
+ * block.
+ * If the option NAND_BBT_PERCHIP is given, each chip is searched 
+ * for a bbt, which contains the bad block information of this chip.
+ * This is neccecary to provide support for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page 
+ * in a block. 
+ */
+static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+       struct nand_chip *this = mtd->priv;
+       int i, chips;
+       int bits, startblock, block, dir;
+       int scanlen = mtd->oobblock + mtd->oobsize;
+       int bbtblocks;
+
+       /* Search direction top -> down ? */
+       if (td->options & NAND_BBT_LASTBLOCK) {
+               startblock = (mtd->size >> this->bbt_erase_shift) -1;
+               dir = -1;
+       } else {
+               startblock = 0; 
+               dir = 1;
+       }       
+       
+       /* Do we have a bbt per chip ? */
+       if (td->options & NAND_BBT_PERCHIP) {
+               chips = this->numchips;
+               bbtblocks = this->chipsize >> this->bbt_erase_shift;
+               startblock &= bbtblocks - 1;
+       } else {
+               chips = 1;
+               bbtblocks = mtd->size >> this->bbt_erase_shift;
+       }
+       
+       /* Number of bits for each erase block in the bbt */
+       bits = td->options & NAND_BBT_NRBITS_MSK;
+       
+       for (i = 0; i < chips; i++) {
+               /* Reset version information */
+               td->version[i] = 0;     
+               td->pages[i] = -1;
+               /* Scan the maximum number of blocks */
+               for (block = 0; block < td->maxblocks; block++) {
+                       int actblock = startblock + dir * block;
+                       /* Read first page */
+                       nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize); 
+                       if (!check_pattern(buf, scanlen, mtd->oobblock, td)) {
+                               td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift);
+                               if (td->options & NAND_BBT_VERSION) {
+                                       td->version[i] = buf[mtd->oobblock + td->veroffs];
+                               }
+                               break;
+                       }
+               }
+               startblock += this->chipsize >> this->bbt_erase_shift;
+       }
+       /* Check, if we found a bbt for each requested chip */
+       for (i = 0; i < chips; i++) {
+               if (td->pages[i] == -1)
+                       printk (KERN_WARNING "Bad block table not found for chip %d\n", i);
+               else
+                       printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]);
+       }
+       return 0;       
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table 
+ * @md:                descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s)
+*/
+static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf, 
+       struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+       /* Search the primary table */
+       search_bbt (mtd, buf, td);
+               
+       /* Search the mirror table */
+       if (md)
+               search_bbt (mtd, buf, md);
+       
+       /* Force result check */
+       return 1;       
+}
+       
+
+/** 
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ *
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @td:                descriptor for the bad block table 
+ * @md:                descriptor for the bad block table mirror
+ * @chipsel:   selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table
+ *
+*/
+static int write_bbt (struct mtd_info *mtd, uint8_t *buf, 
+       struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel)
+{
+       struct nand_chip *this = mtd->priv;
+       struct nand_oobinfo oobinfo;
+       struct erase_info einfo;
+       int i, j, res, chip = 0;
+       int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
+       int nrchips, bbtoffs, pageoffs;
+       uint8_t msk[4];
+       uint8_t rcode = td->reserved_block_code;
+       size_t retlen, len = 0;
+       loff_t to;
+
+       if (!rcode)
+               rcode = 0xff;
+       /* Write bad block table per chip rather than per device ? */
+       if (td->options & NAND_BBT_PERCHIP) {
+               numblocks = (int) (this->chipsize >> this->bbt_erase_shift);
+               /* Full device write or specific chip ? */      
+               if (chipsel == -1) {
+                       nrchips = this->numchips;
+               } else {
+                       nrchips = chipsel + 1;
+                       chip = chipsel;
+               }
+       } else {
+               numblocks = (int) (mtd->size >> this->bbt_erase_shift);
+               nrchips = 1;
+       }       
+       
+       /* Loop through the chips */
+       for (; chip < nrchips; chip++) {
+               
+               /* There was already a version of the table, reuse the page 
+                * This applies for absolute placement too, as we have the 
+                * page nr. in td->pages.
+                */
+               if (td->pages[chip] != -1) {
+                       page = td->pages[chip];
+                       goto write;
+               }       
+
+               /* Automatic placement of the bad block table */
+               /* Search direction top -> down ? */
+               if (td->options & NAND_BBT_LASTBLOCK) {
+                       startblock = numblocks * (chip + 1) - 1;
+                       dir = -1;
+               } else {
+                       startblock = chip * numblocks;
+                       dir = 1;
+               }       
+
+               for (i = 0; i < td->maxblocks; i++) {
+                       int block = startblock + dir * i;
+                       /* Check, if the block is bad */
+                       switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) {
+                       case 0x01:
+                       case 0x03:
+                               continue;
+                       }
+                       page = block << (this->bbt_erase_shift - this->page_shift);
+                       /* Check, if the block is used by the mirror table */
+                       if (!md || md->pages[chip] != page)
+                               goto write;
+               }
+               printk (KERN_ERR "No space left to write bad block table\n");
+               return -ENOSPC;
+write: 
+
+               /* Set up shift count and masks for the flash table */
+               bits = td->options & NAND_BBT_NRBITS_MSK;
+               switch (bits) {
+               case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break;
+               case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break;
+               case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break;
+               case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break;
+               default: return -EINVAL;
+               }
+               
+               bbtoffs = chip * (numblocks >> 2);
+               
+               to = ((loff_t) page) << this->page_shift;
+
+               memcpy (&oobinfo, this->autooob, sizeof(oobinfo));
+               oobinfo.useecc = MTD_NANDECC_PLACEONLY;
+               
+               /* Must we save the block contents ? */
+               if (td->options & NAND_BBT_SAVECONTENT) {
+                       /* Make it block aligned */
+                       to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
+                       len = 1 << this->bbt_erase_shift;
+                       res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+                       if (res < 0) {
+                               if (retlen != len) {
+                                       printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n");
+                                       return res;
+                               }
+                               printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n");
+                       }
+                       /* Calc the byte offset in the buffer */
+                       pageoffs = page - (int)(to >> this->page_shift);
+                       offs = pageoffs << this->page_shift;
+                       /* Preset the bbt area with 0xff */
+                       memset (&buf[offs], 0xff, (size_t)(numblocks >> sft));
+                       /* Preset the bbt's oob area with 0xff */
+                       memset (&buf[len + pageoffs * mtd->oobsize], 0xff,
+                               ((len >> this->page_shift) - pageoffs) * mtd->oobsize);
+                       if (td->options & NAND_BBT_VERSION) {
+                               buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip];
+                       }
+               } else {
+                       /* Calc length */
+                       len = (size_t) (numblocks >> sft);
+                       /* Make it page aligned ! */
+                       len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1);
+                       /* Preset the buffer with 0xff */
+                       memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize);
+                       offs = 0;
+                       /* Pattern is located in oob area of first page */
+                       memcpy (&buf[len + td->offs], td->pattern, td->len);
+                       if (td->options & NAND_BBT_VERSION) {
+                               buf[len + td->veroffs] = td->version[chip];
+                       }
+               }
+       
+               /* walk through the memory table */
+               for (i = 0; i < numblocks; ) {
+                       uint8_t dat;
+                       dat = this->bbt[bbtoffs + (i >> 2)];
+                       for (j = 0; j < 4; j++ , i++) {
+                               int sftcnt = (i << (3 - sft)) & sftmsk;
+                               /* Do not store the reserved bbt blocks ! */
+                               buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt);
+                               dat >>= 2;
+                       }
+               }
+               
+               memset (&einfo, 0, sizeof (einfo));
+               einfo.mtd = mtd;
+               einfo.addr = (unsigned long) to;
+               einfo.len = 1 << this->bbt_erase_shift;
+               res = nand_erase_nand (mtd, &einfo, 1);
+               if (res < 0) {
+                       printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res);
+                       return res;
+               }
+       
+               res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+               if (res < 0) {
+                       printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res);
+                       return res;
+               }
+               printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n", 
+                       (unsigned int) to, td->version[chip]);
+       
+               /* Mark it as used */
+               td->pages[chip] = page;
+       }       
+       return 0;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd:       MTD device structure
+ * @bd:                descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device 
+ * for manufacturer / software marked good / bad blocks
+*/
+static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+       struct nand_chip *this = mtd->priv;
+
+       /* Ensure that we only scan for the pattern and nothing else */
+       bd->options = 0;
+       create_bbt (mtd, this->data_buf, bd, -1);
+       return 0;
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if neccecary
+ * @mtd:       MTD device structure
+ * @buf:       temporary buffer
+ * @bd:                descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt
+ * and creates / updates the bbt(s) if neccecary
+ * Creation is neccecary if no bbt was found for the chip/device
+ * Update is neccecary if one of the tables is missing or the
+ * version nr. of one table is less than the other
+*/
+static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+       int i, chips, writeops, chipsel, res;
+       struct nand_chip *this = mtd->priv;
+       struct nand_bbt_descr *td = this->bbt_td;
+       struct nand_bbt_descr *md = this->bbt_md;
+       struct nand_bbt_descr *rd, *rd2;
+
+       /* Do we have a bbt per chip ? */
+       if (td->options & NAND_BBT_PERCHIP) 
+               chips = this->numchips;
+       else 
+               chips = 1;
+       
+       for (i = 0; i < chips; i++) {
+               writeops = 0;
+               rd = NULL;
+               rd2 = NULL;
+               /* Per chip or per device ? */
+               chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+               /* Mirrored table avilable ? */
+               if (md) {
+                       if (td->pages[i] == -1 && md->pages[i] == -1) {
+                               writeops = 0x03;
+                               goto create;
+                       }
+
+                       if (td->pages[i] == -1) {
+                               rd = md;                                
+                               td->version[i] = md->version[i];
+                               writeops = 1;
+                               goto writecheck;
+                       }
+
+                       if (md->pages[i] == -1) {
+                               rd = td;
+                               md->version[i] = td->version[i];
+                               writeops = 2;
+                               goto writecheck;
+                       }
+
+                       if (td->version[i] == md->version[i]) {
+                               rd = td;
+                               if (!(td->options & NAND_BBT_VERSION))
+                                       rd2 = md;
+                               goto writecheck;
+                       }       
+
+                       if (((int8_t) (td->version[i] - md->version[i])) > 0) {
+                               rd = td;
+                               md->version[i] = td->version[i];
+                               writeops = 2;
+                       } else {
+                               rd = md;
+                               td->version[i] = md->version[i];
+                               writeops = 1;
+                       }
+
+                       goto writecheck;
+
+               } else {
+                       if (td->pages[i] == -1) {
+                               writeops = 0x01;
+                               goto create;
+                       }
+                       rd = td;
+                       goto writecheck;
+               }
+create:
+               /* Create the bad block table by scanning the device ? */
+               if (!(td->options & NAND_BBT_CREATE))
+                       continue;       
+               
+               /* Create the table in memory by scanning the chip(s) */
+               create_bbt (mtd, buf, bd, chipsel);
+               
+               td->version[i] = 1;
+               if (md)
+                       md->version[i] = 1;     
+writecheck:    
+               /* read back first ? */
+               if (rd)
+                       read_abs_bbt (mtd, buf, rd, chipsel);
+               /* If they weren't versioned, read both. */
+               if (rd2)
+                       read_abs_bbt (mtd, buf, rd2, chipsel);
+
+               /* Write the bad block table to the device ? */
+               if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+                       res = write_bbt (mtd, buf, td, md, chipsel);
+                       if (res < 0)
+                               return res;
+               }
+               
+               /* Write the mirror bad block table to the device ? */
+               if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+                       res = write_bbt (mtd, buf, md, td, chipsel);
+                       if (res < 0)
+                               return res;
+               }
+       }
+       return 0;       
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions 
+ * @mtd:       MTD device structure
+ * @td:                bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent
+ * accidental erasures / writes. The regions are identified by
+ * the mark 0x02.
+*/
+static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+       struct nand_chip *this = mtd->priv;
+       int i, j, chips, block, nrblocks, update;
+       uint8_t oldval, newval;
+
+       /* Do we have a bbt per chip ? */
+       if (td->options & NAND_BBT_PERCHIP) {
+               chips = this->numchips;
+               nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+       } else {
+               chips = 1;
+               nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+       }       
+       
+       for (i = 0; i < chips; i++) {
+               if ((td->options & NAND_BBT_ABSPAGE) ||
+                   !(td->options & NAND_BBT_WRITE)) {
+                       if (td->pages[i] == -1) continue;
+                       block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+                       block <<= 1;            
+                       oldval = this->bbt[(block >> 3)];
+                       newval = oldval | (0x2 << (block & 0x06));
+                       this->bbt[(block >> 3)] = newval;
+                       if ((oldval != newval) && td->reserved_block_code)
+                               nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1));
+                       continue;
+               }
+               update = 0;
+               if (td->options & NAND_BBT_LASTBLOCK)
+                       block = ((i + 1) * nrblocks) - td->maxblocks;
+               else    
+                       block = i * nrblocks;
+               block <<= 1;    
+               for (j = 0; j < td->maxblocks; j++) {
+                       oldval = this->bbt[(block >> 3)];
+                       newval = oldval | (0x2 << (block & 0x06));
+                       this->bbt[(block >> 3)] = newval;
+                       if (oldval != newval) update = 1;
+                       block += 2;
+               }       
+               /* If we want reserved blocks to be recorded to flash, and some
+                  new ones have been marked, then we need to update the stored
+                  bbts.  This should only happen once. */
+               if (update && td->reserved_block_code)
+                       nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1));
+       }
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd:       MTD device structure
+ * @bd:                descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already 
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed
+ * by calling the nand_free_bbt function.
+ *
+*/
+int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+       struct nand_chip *this = mtd->priv;
+       int len, res = 0;
+       uint8_t *buf;
+       struct nand_bbt_descr *td = this->bbt_td;
+       struct nand_bbt_descr *md = this->bbt_md;
+
+       len = mtd->size >> (this->bbt_erase_shift + 2);
+       /* Allocate memory (2bit per block) */
+       this->bbt = (uint8_t *) kmalloc (len, GFP_KERNEL);
+       if (!this->bbt) {
+               printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
+               return -ENOMEM;
+       }
+       /* Clear the memory bad block table */
+       memset (this->bbt, 0x00, len);
+
+       /* If no primary table decriptor is given, scan the device
+        * to build a memory based bad block table
+        */
+       if (!td)
+               return nand_memory_bbt(mtd, bd);
+
+       /* Allocate a temporary buffer for one eraseblock incl. oob */
+       len = (1 << this->bbt_erase_shift);
+       len += (len >> this->page_shift) * mtd->oobsize;
+       buf = kmalloc (len, GFP_KERNEL);
+       if (!buf) {
+               printk (KERN_ERR "nand_bbt: Out of memory\n");
+               kfree (this->bbt);
+               this->bbt = NULL;
+               return -ENOMEM;
+       }
+       
+       /* Is the bbt at a given page ? */
+       if (td->options & NAND_BBT_ABSPAGE) {
+               res = read_abs_bbts (mtd, buf, td, md);
+       } else {        
+               /* Search the bad block table using a pattern in oob */
+               res = search_read_bbts (mtd, buf, td, md);
+       }       
+
+       if (res) 
+               res = check_create (mtd, buf, bd);
+       
+       /* Prevent the bbt regions from erasing / writing */
+       mark_bbt_region (mtd, td);
+       if (md)
+               mark_bbt_region (mtd, md);
+       
+       kfree (buf);
+       return res;
+}
+
+
+/**
+ * nand_update_bbt - [NAND Interface] update bad block table(s) 
+ * @mtd:       MTD device structure
+ * @offs:      the offset of the newly marked block
+ *
+ * The function updates the bad block table(s)
+*/
+int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
+{
+       struct nand_chip *this = mtd->priv;
+       int len, res = 0, writeops = 0;
+       int chip, chipsel;
+       uint8_t *buf;
+       struct nand_bbt_descr *td = this->bbt_td;
+       struct nand_bbt_descr *md = this->bbt_md;
+
+       if (!this->bbt || !td)
+               return -EINVAL;
+
+       len = mtd->size >> (this->bbt_erase_shift + 2);
+       /* Allocate a temporary buffer for one eraseblock incl. oob */
+       len = (1 << this->bbt_erase_shift);
+       len += (len >> this->page_shift) * mtd->oobsize;
+       buf = kmalloc (len, GFP_KERNEL);
+       if (!buf) {
+               printk (KERN_ERR "nand_update_bbt: Out of memory\n");
+               return -ENOMEM;
+       }
+       
+       writeops = md != NULL ? 0x03 : 0x01;
+
+       /* Do we have a bbt per chip ? */
+       if (td->options & NAND_BBT_PERCHIP) {
+               chip = (int) (offs >> this->chip_shift);
+               chipsel = chip;
+       } else {
+               chip = 0;
+               chipsel = -1;
+       }
+
+       td->version[chip]++;
+       if (md)
+               md->version[chip]++;    
+
+       /* Write the bad block table to the device ? */
+       if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+               res = write_bbt (mtd, buf, td, md, chipsel);
+               if (res < 0)
+                       goto out;
+       }
+       /* Write the mirror bad block table to the device ? */
+       if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+               res = write_bbt (mtd, buf, md, td, chipsel);
+       }
+
+out:   
+       kfree (buf);
+       return res;
+}
+
+/* Define some generic bad / good block scan pattern which are used 
+ * while scanning a device for factory marked good / bad blocks
+ * 
+ * The memory based patterns just 
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr smallpage_memorybased = {
+       .options = 0,
+       .offs = 5,
+       .len = 1,
+       .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_memorybased = {
+       .options = 0,
+       .offs = 0,
+       .len = 2,
+       .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr smallpage_flashbased = {
+       .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+       .offs = 5,
+       .len = 1,
+       .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_flashbased = {
+       .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+       .offs = 0,
+       .len = 2,
+       .pattern = scan_ff_pattern
+};
+
+static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 };
+
+static struct nand_bbt_descr agand_flashbased = {
+       .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+       .offs = 0x20,
+       .len = 6,
+       .pattern = scan_agand_pattern
+};
+
+/* Generic flash bbt decriptors
+*/
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 8,
+       .len = 4,
+       .veroffs = 12,
+       .maxblocks = 4,
+       .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE 
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 8,
+       .len = 4,
+       .veroffs = 12,
+       .maxblocks = 4,
+       .pattern = mirror_pattern
+};
+
+/**
+ * nand_default_bbt - [NAND Interface] Select a default bad block table for the device 
+ * @mtd:       MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the nand_scan_bbt function
+ *
+*/
+int nand_default_bbt (struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       
+       /* Default for AG-AND. We must use a flash based 
+        * bad block table as the devices have factory marked
+        * _good_ blocks. Erasing those blocks leads to loss
+        * of the good / bad information, so we _must_ store
+        * this information in a good / bad table during 
+        * startup
+       */
+       if (this->options & NAND_IS_AND) {
+               /* Use the default pattern descriptors */
+               if (!this->bbt_td) {    
+                       this->bbt_td = &bbt_main_descr;
+                       this->bbt_md = &bbt_mirror_descr;
+               }       
+               this->options |= NAND_USE_FLASH_BBT;
+               return nand_scan_bbt (mtd, &agand_flashbased);
+       }
+       
+       /* Is a flash based bad block table requested ? */
+       if (this->options & NAND_USE_FLASH_BBT) {
+               /* Use the default pattern descriptors */       
+               if (!this->bbt_td) {    
+                       this->bbt_td = &bbt_main_descr;
+                       this->bbt_md = &bbt_mirror_descr;
+               }       
+               if (mtd->oobblock > 512)
+                       return nand_scan_bbt (mtd, &largepage_flashbased);
+               else    
+                       return nand_scan_bbt (mtd, &smallpage_flashbased);                      
+       } else {
+               this->bbt_td = NULL;
+               this->bbt_md = NULL;
+               if (mtd->oobblock > 512)
+                       return nand_scan_bbt (mtd, &largepage_memorybased);
+               else
+                       return nand_scan_bbt (mtd, &smallpage_memorybased);
+       }
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad 
+ * @mtd:       MTD device structure
+ * @offs:      offset in the device
+ * @allowbbt:  allow access to bad block table region
+ *
+*/
+int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+       struct nand_chip *this = mtd->priv;
+       int block;
+       uint8_t res;
+       
+       /* Get block number * 2 */
+       block = (int) (offs >> (this->bbt_erase_shift - 1));
+       res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+       DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", 
+               (unsigned int)offs, res, block >> 1);
+
+       switch ((int)res) {
+       case 0x00:      return 0;
+       case 0x01:      return 1;
+       case 0x02:      return allowbbt ? 0 : 1;
+       }
+       return 1;
+}
+
+EXPORT_SYMBOL (nand_scan_bbt);
+EXPORT_SYMBOL (nand_default_bbt);
index bb57398..2e341b7 100644 (file)
@@ -1,22 +1,44 @@
 /*
- *  drivers/mtd/nand_ecc.c
+ * This file contains an ECC algorithm from Toshiba that detects and
+ * corrects 1 bit errors in a 256 byte block of data.
  *
- *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
- *                     Toshiba America Electronics Components, Inc.
+ * drivers/mtd/nand/nand_ecc.c
  *
- * $Id: nand_ecc.c,v 1.9 2003/02/20 13:34:19 sjhill Exp $
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
+ *                         Toshiba America Electronics Components, Inc.
  *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public License
- * version 2.1 as published by the Free Software Foundation.
+ * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $
  *
- * This file contains an ECC algorithm from Toshiba that detects and
- * corrects 1 bit errors in a 256 byte block of data.
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ * 
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * for more details.
+ * 
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ * 
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ * 
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
  */
 
 #include <linux/types.h>
 #include <linux/kernel.h>
 #include <linux/module.h>
+#include <linux/mtd/nand_ecc.h>
 
 /*
  * Pre-calculated 256-way 1 byte column parity
@@ -41,7 +63,12 @@ static const u_char nand_ecc_precalc_table[] = {
 };
 
 
-/*
+/**
+ * nand_trans_result - [GENERIC] create non-inverted ECC
+ * @reg2:      line parity reg 2
+ * @reg3:      line parity reg 3
+ * @ecc_code:  ecc 
+ *
  * Creates non-inverted ECC code from line parity
  */
 static void nand_trans_result(u_char reg2, u_char reg3,
@@ -81,10 +108,13 @@ static void nand_trans_result(u_char reg2, u_char reg3,
        ecc_code[1] = tmp2;
 }
 
-/*
- * Calculate 3 byte ECC code for 256 byte block
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block
+ * @mtd:       MTD block structure
+ * @dat:       raw data
+ * @ecc_code:  buffer for ECC
  */
-void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
 {
        u_char idx, reg1, reg2, reg3;
        int j;
@@ -114,12 +144,19 @@ void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
        ecc_code[0] = ~ecc_code[0];
        ecc_code[1] = ~ecc_code[1];
        ecc_code[2] = ((~reg1) << 2) | 0x03;
+       return 0;
 }
 
-/*
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd:       MTD block structure
+ * @dat:       raw data read from the chip
+ * @read_ecc:  ECC from the chip
+ * @calc_ecc:  the ECC calculated from raw data
+ *
  * Detect and correct a 1 bit error for 256 byte block
  */
-int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
 {
        u_char a, b, c, d1, d2, d3, add, bit, i;
        
index 5a5518f..2d8c432 100644 (file)
@@ -2,9 +2,8 @@
  *  drivers/mtd/nandids.c
  *
  *  Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
- *
- *
- * $Id: nand_ids.c,v 1.4 2003/05/21 15:15:08 dwmw2 Exp $
+  *
+ * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
  */
 #include <linux/module.h>
 #include <linux/mtd/nand.h>
-
 /*
 *      Chip ID list
+*      
+*      Name. ID code, pagesize, chipsize in MegaByte, eraseblock size,
+*      options
+* 
+*      Pagesize; 0, 256, 512
+*      0       get this information from the extended chip ID
++      256     256 Byte page size
+*      512     512 Byte page size      
 */
 struct nand_flash_dev nand_flash_ids[] = {
-       {"NAND 1MiB 5V", 0x6e, 20, 0x1000, 1},
-       {"NAND 2MiB 5V", 0x64, 21, 0x1000, 1},
-       {"NAND 4MiB 5V", 0x6b, 22, 0x2000, 0},
-       {"NAND 1MiB 3,3V", 0xe8, 20, 0x1000, 1},
-       {"NAND 1MiB 3,3V", 0xec, 20, 0x1000, 1},
-       {"NAND 2MiB 3,3V", 0xea, 21, 0x1000, 1},
-       {"NAND 4MiB 3,3V", 0xd5, 22, 0x2000, 0},
-       {"NAND 4MiB 3,3V", 0xe3, 22, 0x2000, 0},
-       {"NAND 4MiB 3,3V", 0xe5, 22, 0x2000, 0},
-       {"NAND 8MiB 3,3V", 0xd6, 23, 0x2000, 0},
-       {"NAND 8MiB 3,3V", 0xe6, 23, 0x2000, 0},
-       {"NAND 16MiB 3,3V", 0x73, 24, 0x4000, 0},
-       {"NAND 32MiB 3,3V", 0x75, 25, 0x4000, 0},
-       {"NAND 64MiB 3,3V", 0x76, 26, 0x4000, 0},
-       {"NAND 128MiB 3,3V", 0x79, 27, 0x4000, 0},
+       {"NAND 1MiB 5V 8-bit",          0x6e, 256, 1, 0x1000, 0},
+       {"NAND 2MiB 5V 8-bit",          0x64, 256, 2, 0x1000, 0},
+       {"NAND 4MiB 5V 8-bit",          0x6b, 512, 4, 0x2000, 0},
+       {"NAND 1MiB 3,3V 8-bit",        0xe8, 256, 1, 0x1000, 0},
+       {"NAND 1MiB 3,3V 8-bit",        0xec, 256, 1, 0x1000, 0},
+       {"NAND 2MiB 3,3V 8-bit",        0xea, 256, 2, 0x1000, 0},
+       {"NAND 4MiB 3,3V 8-bit",        0xd5, 512, 4, 0x2000, 0},
+       {"NAND 4MiB 3,3V 8-bit",        0xe3, 512, 4, 0x2000, 0},
+       {"NAND 4MiB 3,3V 8-bit",        0xe5, 512, 4, 0x2000, 0},
+       {"NAND 8MiB 3,3V 8-bit",        0xd6, 512, 8, 0x2000, 0},
+       
+       {"NAND 8MiB 1,8V 8-bit",        0x39, 512, 8, 0x2000, 0},
+       {"NAND 8MiB 3,3V 8-bit",        0xe6, 512, 8, 0x2000, 0},
+       {"NAND 8MiB 1,8V 16-bit",       0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+       {"NAND 8MiB 3,3V 16-bit",       0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+       
+       {"NAND 16MiB 1,8V 8-bit",       0x33, 512, 16, 0x4000, 0},
+       {"NAND 16MiB 3,3V 8-bit",       0x73, 512, 16, 0x4000, 0},
+       {"NAND 16MiB 1,8V 16-bit",      0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+       {"NAND 16MiB 3,3V 16-bit",      0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+       
+       {"NAND 32MiB 1,8V 8-bit",       0x35, 512, 32, 0x4000, 0},
+       {"NAND 32MiB 3,3V 8-bit",       0x75, 512, 32, 0x4000, 0},
+       {"NAND 32MiB 1,8V 16-bit",      0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+       {"NAND 32MiB 3,3V 16-bit",      0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+       
+       {"NAND 64MiB 1,8V 8-bit",       0x36, 512, 64, 0x4000, 0},
+       {"NAND 64MiB 3,3V 8-bit",       0x76, 512, 64, 0x4000, 0},
+       {"NAND 64MiB 1,8V 16-bit",      0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+       {"NAND 64MiB 3,3V 16-bit",      0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+       
+       {"NAND 128MiB 1,8V 8-bit",      0x78, 512, 128, 0x4000, 0},
+       {"NAND 128MiB 3,3V 8-bit",      0x79, 512, 128, 0x4000, 0},
+       {"NAND 128MiB 1,8V 16-bit",     0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+       {"NAND 128MiB 3,3V 16-bit",     0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+       
+       {"NAND 256MiB 3,3V 8-bit",      0x71, 512, 256, 0x4000, 0},
+
+       {"NAND 512MiB 3,3V 8-bit",      0xDC, 512, 512, 0x4000, 0},
+       
+       /* These are the new chips with large page size. The pagesize
+       * and the erasesize is determined from the extended id bytes
+       */
+       /* 1 Gigabit */
+       {"NAND 128MiB 1,8V 8-bit",      0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 128MiB 3,3V 8-bit",      0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 128MiB 1,8V 16-bit",     0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 128MiB 3,3V 16-bit",     0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+       /* 2 Gigabit */
+       {"NAND 256MiB 1,8V 8-bit",      0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 256MiB 3,3V 8-bit",      0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 256MiB 1,8V 16-bit",     0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 256MiB 3,3V 16-bit",     0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       
+       /* 4 Gigabit */
+       {"NAND 512MiB 1,8V 8-bit",      0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 512MiB 3,3V 8-bit",      0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 512MiB 1,8V 16-bit",     0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 512MiB 3,3V 16-bit",     0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       
+       /* 8 Gigabit */
+       {"NAND 1GiB 1,8V 8-bit",        0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 1GiB 3,3V 8-bit",        0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 1GiB 1,8V 16-bit",       0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 1GiB 3,3V 16-bit",       0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+       /* 16 Gigabit */
+       {"NAND 2GiB 1,8V 8-bit",        0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 2GiB 3,3V 8-bit",        0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+       {"NAND 2GiB 1,8V 16-bit",       0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+       {"NAND 2GiB 3,3V 16-bit",       0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+       /* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout ! 
+        * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes
+        * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7
+        * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go
+        * There are more speed improvements for reads and writes possible, but not implemented now 
+        */
+       {"AND 128MiB 3,3V 8-bit",       0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY},
+
        {NULL,}
 };
 
@@ -44,10 +116,11 @@ struct nand_manufacturers nand_manuf_ids[] = {
        {NAND_MFR_SAMSUNG, "Samsung"},
        {NAND_MFR_FUJITSU, "Fujitsu"},
        {NAND_MFR_NATIONAL, "National"},
+       {NAND_MFR_RENESAS, "Renesas"},
+       {NAND_MFR_STMICRO, "ST Micro"},
        {0x0, "Unknown"}
 };
 
-
 EXPORT_SYMBOL (nand_manuf_ids);
 EXPORT_SYMBOL (nand_flash_ids);
 
diff --git a/drivers/mtd/nand/ppchameleonevb.c b/drivers/mtd/nand/ppchameleonevb.c
new file mode 100644 (file)
index 0000000..9c356a0
--- /dev/null
@@ -0,0 +1,430 @@
+/*
+ *  drivers/mtd/nand/ppchameleonevb.c
+ *
+ *  Copyright (C) 2003 DAVE Srl (info@wawnet.biz)
+ *
+ *  Derived from drivers/mtd/nand/edb7312.c
+ *
+ *
+ * $Id: ppchameleonevb.c,v 1.2 2004/05/05 22:09:54 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash devices found on the
+ *   PPChameleon/PPChameleonEVB system.
+ *   PPChameleon options (autodetected):
+ *   - BA model: no NAND
+ *   - ME model: 32MB (Samsung K9F5608U0B)
+ *   - HI model: 128MB (Samsung K9F1G08UOM)
+ *   PPChameleonEVB options:
+ *   - 32MB (Samsung K9F5608U0B)
+ */
+
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <platforms/PPChameleonEVB.h>
+
+#undef USE_READY_BUSY_PIN
+#define USE_READY_BUSY_PIN
+/* see datasheets (tR) */
+#define NAND_BIG_DELAY_US              25
+#define NAND_SMALL_DELAY_US            10
+
+/* handy sizes */
+#define SZ_4M                           0x00400000
+#define NAND_SMALL_SIZE                 0x02000000
+#define NAND_MTD_NAME          "ppchameleon-nand"
+#define NAND_EVB_MTD_NAME      "ppchameleonevb-nand"
+
+/* GPIO pins used to drive NAND chip mounted on processor module */
+#define NAND_nCE_GPIO_PIN              (0x80000000 >> 1)
+#define NAND_CLE_GPIO_PIN              (0x80000000 >> 2)
+#define NAND_ALE_GPIO_PIN              (0x80000000 >> 3)
+#define NAND_RB_GPIO_PIN               (0x80000000 >> 4)
+/* GPIO pins used to drive NAND chip mounted on EVB */
+#define NAND_EVB_nCE_GPIO_PIN  (0x80000000 >> 14)
+#define NAND_EVB_CLE_GPIO_PIN  (0x80000000 >> 15)
+#define NAND_EVB_ALE_GPIO_PIN  (0x80000000 >> 16)
+#define NAND_EVB_RB_GPIO_PIN   (0x80000000 >> 31)
+
+/*
+ * MTD structure for PPChameleonEVB board
+ */
+static struct mtd_info *ppchameleon_mtd        = NULL;
+static struct mtd_info *ppchameleonevb_mtd = NULL;
+
+/*
+ * Module stuff
+ */
+static int ppchameleon_fio_pbase       = CFG_NAND0_PADDR;
+static int ppchameleonevb_fio_pbase = CFG_NAND1_PADDR;
+
+#ifdef MODULE
+MODULE_PARM(ppchameleon_fio_pbase, "i");
+__setup("ppchameleon_fio_pbase=",ppchameleon_fio_pbase);
+MODULE_PARM(ppchameleonevb_fio_pbase, "i");
+__setup("ppchameleonevb_fio_pbase=",ppchameleonevb_fio_pbase);
+#endif
+
+/* Internal buffers. Page buffer and oob buffer for one block */
+static u_char data_buf[2048 + 64];
+static u_char oob_buf[64 * 64];
+static u_char data_buf_evb[512 + 16];
+static u_char oob_buf_evb[16 * 32];
+
+#ifdef CONFIG_MTD_PARTITIONS
+/*
+ * Define static partitions for flash devices
+ */
+static struct mtd_partition partition_info_hi[] = {
+       { name: "PPChameleon HI Nand Flash",
+                 offset: 0,
+                 size: 128*1024*1024 }
+};
+
+static struct mtd_partition partition_info_me[] = {
+       { name: "PPChameleon ME Nand Flash",
+                 offset: 0,
+                 size: 32*1024*1024 }
+};
+
+static struct mtd_partition partition_info_evb[] = {
+       { name: "PPChameleonEVB Nand Flash",
+                 offset: 0,
+                 size: 32*1024*1024 }
+};
+
+#define NUM_PARTITIONS 1
+
+extern int parse_cmdline_partitions(struct mtd_info *master,
+                                   struct mtd_partition **pparts,
+                                   const char *mtd_id);
+#endif
+
+
+/*
+ *     hardware specific access to control-lines
+ */
+static void ppchameleon_hwcontrol(struct mtd_info *mtdinfo, int cmd)
+{
+       switch(cmd) {
+
+       case NAND_CTL_SETCLE:
+               MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND0_PADDR);
+               break;
+       case NAND_CTL_CLRCLE:
+               MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND0_PADDR);
+               break;
+       case NAND_CTL_SETALE:
+               MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND0_PADDR);
+               break;
+       case NAND_CTL_CLRALE:
+               MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND0_PADDR);
+               break;
+       case NAND_CTL_SETNCE:
+                       MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND0_PADDR);
+               break;
+       case NAND_CTL_CLRNCE:
+                       MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND0_PADDR);
+               break;
+       }
+}
+
+static void ppchameleonevb_hwcontrol(struct mtd_info *mtdinfo, int cmd)
+{
+       switch(cmd) {
+
+       case NAND_CTL_SETCLE:
+               MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND1_PADDR);
+               break;
+       case NAND_CTL_CLRCLE:
+               MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND1_PADDR);
+               break;
+       case NAND_CTL_SETALE:
+               MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND1_PADDR);
+               break;
+       case NAND_CTL_CLRALE:
+               MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND1_PADDR);
+               break;
+       case NAND_CTL_SETNCE:
+               MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND1_PADDR);
+               break;
+       case NAND_CTL_CLRNCE:
+               MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND1_PADDR);
+               break;
+       }
+}
+
+#ifdef USE_READY_BUSY_PIN
+/*
+ *     read device ready pin
+ */
+static int ppchameleon_device_ready(struct mtd_info *minfo)
+{
+       if (in_be32((volatile unsigned*)GPIO0_IR) & NAND_RB_GPIO_PIN)
+               return 1;
+       return 0;
+}
+
+static int ppchameleonevb_device_ready(struct mtd_info *minfo)
+{
+       if (in_be32((volatile unsigned*)GPIO0_IR) & NAND_EVB_RB_GPIO_PIN)
+       return 1;
+       return 0;
+}
+#endif
+
+#ifdef CONFIG_MTD_PARTITIONS
+const char *part_probes[] = { "cmdlinepart", NULL };
+const char *part_probes_evb[] = { "cmdlinepart", NULL };
+#endif
+
+/*
+ * Main initialization routine
+ */
+static int __init ppchameleonevb_init (void)
+{
+       struct nand_chip *this;
+       const char *part_type = 0;
+       int mtd_parts_nb = 0;
+       struct mtd_partition *mtd_parts = 0;
+       int ppchameleon_fio_base;
+       int ppchameleonevb_fio_base;
+
+
+       /*********************************
+       * Processor module NAND (if any) *
+       *********************************/
+       /* Allocate memory for MTD device structure and private data */
+       ppchameleon_mtd = kmalloc(sizeof(struct mtd_info) +
+                            sizeof(struct nand_chip),
+                            GFP_KERNEL);
+       if (!ppchameleon_mtd) {
+               printk("Unable to allocate PPChameleon NAND MTD device structure.\n");
+               return -ENOMEM;
+       }
+
+       /* map physical address */
+       ppchameleon_fio_base = (unsigned long)ioremap(ppchameleon_fio_pbase, SZ_4M);
+       if(!ppchameleon_fio_base) {
+               printk("ioremap PPChameleon NAND flash failed\n");
+               kfree(ppchameleon_mtd);
+               return -EIO;
+       }
+
+       /* Get pointer to private data */
+       this = (struct nand_chip *) (&ppchameleon_mtd[1]);
+
+       /* Initialize structures */
+       memset((char *) ppchameleon_mtd, 0, sizeof(struct mtd_info));
+       memset((char *) this, 0, sizeof(struct nand_chip));
+
+       /* Link the private data with the MTD structure */
+       ppchameleon_mtd->priv = this;
+
+        /* Initialize GPIOs */
+       /* Pin mapping for NAND chip */
+       /*
+               CE      GPIO_01
+               CLE     GPIO_02
+               ALE     GPIO_03
+               R/B     GPIO_04
+       */
+       /* output select */
+       out_be32((volatile unsigned*)GPIO0_OSRH, in_be32((volatile unsigned*)GPIO0_OSRH) & 0xC0FFFFFF);
+       /* three-state select */
+       out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xC0FFFFFF);
+       /* enable output driver */
+       out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_nCE_GPIO_PIN | NAND_CLE_GPIO_PIN | NAND_ALE_GPIO_PIN);
+#ifdef USE_READY_BUSY_PIN
+       /* three-state select */
+       out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFF3FFFFF);
+       /* high-impedecence */
+       out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) & (~NAND_RB_GPIO_PIN));
+       /* input select */
+       out_be32((volatile unsigned*)GPIO0_ISR1H, (in_be32((volatile unsigned*)GPIO0_ISR1H) & 0xFF3FFFFF) | 0x00400000);
+#endif
+
+       /* insert callbacks */
+       this->IO_ADDR_R = ppchameleon_fio_base;
+       this->IO_ADDR_W = ppchameleon_fio_base;
+       this->hwcontrol = ppchameleon_hwcontrol;
+#ifdef USE_READY_BUSY_PIN
+       this->dev_ready = ppchameleon_device_ready;
+#endif
+       this->chip_delay = NAND_BIG_DELAY_US;
+       /* ECC mode */
+       this->eccmode = NAND_ECC_SOFT;
+
+       /* Set internal data buffer */
+       this->data_buf = data_buf;
+       this->oob_buf = oob_buf;
+
+       /* Scan to find existence of the device (it could not be mounted) */
+       if (nand_scan (ppchameleon_mtd, 1)) {
+               iounmap((void *)ppchameleon_fio_base);
+               kfree (ppchameleon_mtd);
+               goto nand_evb_init;
+       }
+
+#ifndef USE_READY_BUSY_PIN
+       /* Adjust delay if necessary */
+       if (ppchameleon_mtd->size == NAND_SMALL_SIZE)
+               this->chip_delay = NAND_SMALL_DELAY_US;
+#endif
+
+#ifdef CONFIG_MTD_PARTITIONS
+       ppchameleon_mtd->name = "ppchameleon-nand";
+       mtd_parts_nb = parse_mtd_partitions(ppchameleon_mtd, part_probes, &mtd_parts, 0);
+       if (mtd_parts_nb > 0)
+         part_type = "command line";
+       else
+         mtd_parts_nb = 0;
+#endif
+       if (mtd_parts_nb == 0)
+       {
+               if (ppchameleon_mtd->size == NAND_SMALL_SIZE)
+                       mtd_parts = partition_info_me;
+               else
+                       mtd_parts = partition_info_hi;
+               mtd_parts_nb = NUM_PARTITIONS;
+               part_type = "static";
+       }
+
+       /* Register the partitions */
+       printk(KERN_NOTICE "Using %s partition definition\n", part_type);
+       add_mtd_partitions(ppchameleon_mtd, mtd_parts, mtd_parts_nb);
+
+nand_evb_init:
+       /****************************
+       * EVB NAND (always present) *
+       ****************************/
+       /* Allocate memory for MTD device structure and private data */
+       ppchameleonevb_mtd = kmalloc(sizeof(struct mtd_info) +
+                            sizeof(struct nand_chip),
+                            GFP_KERNEL);
+       if (!ppchameleonevb_mtd) {
+               printk("Unable to allocate PPChameleonEVB NAND MTD device structure.\n");
+               return -ENOMEM;
+       }
+
+       /* map physical address */
+       ppchameleonevb_fio_base = (unsigned long)ioremap(ppchameleonevb_fio_pbase, SZ_4M);
+       if(!ppchameleonevb_fio_base) {
+               printk("ioremap PPChameleonEVB NAND flash failed\n");
+               kfree(ppchameleonevb_mtd);
+               return -EIO;
+       }
+
+       /* Get pointer to private data */
+       this = (struct nand_chip *) (&ppchameleonevb_mtd[1]);
+
+       /* Initialize structures */
+       memset((char *) ppchameleonevb_mtd, 0, sizeof(struct mtd_info));
+       memset((char *) this, 0, sizeof(struct nand_chip));
+
+       /* Link the private data with the MTD structure */
+       ppchameleonevb_mtd->priv = this;
+
+        /* Initialize GPIOs */
+       /* Pin mapping for NAND chip */
+       /*
+               CE      GPIO_14
+               CLE     GPIO_15
+               ALE     GPIO_16
+               R/B     GPIO_31
+       */
+       /* output select */
+       out_be32((volatile unsigned*)GPIO0_OSRH, in_be32((volatile unsigned*)GPIO0_OSRH) & 0xFFFFFFF0);
+       out_be32((volatile unsigned*)GPIO0_OSRL, in_be32((volatile unsigned*)GPIO0_OSRL) & 0x3FFFFFFF);
+       /* three-state select */
+       out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFFFFFFF0);
+       out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0x3FFFFFFF);
+       /* enable output driver */
+       out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN | NAND_EVB_CLE_GPIO_PIN | NAND_EVB_ALE_GPIO_PIN);
+#ifdef USE_READY_BUSY_PIN
+       /* three-state select */
+       out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0xFFFFFFFC);
+       /* high-impedecence */
+       out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) & (~NAND_EVB_RB_GPIO_PIN));
+       /* input select */
+       out_be32((volatile unsigned*)GPIO0_ISR1L, (in_be32((volatile unsigned*)GPIO0_ISR1L) & 0xFFFFFFFC) | 0x00000001);
+#endif
+
+
+       /* insert callbacks */
+       this->IO_ADDR_R = ppchameleonevb_fio_base;
+       this->IO_ADDR_W = ppchameleonevb_fio_base;
+       this->hwcontrol = ppchameleonevb_hwcontrol;
+#ifdef USE_READY_BUSY_PIN
+       this->dev_ready = ppchameleonevb_device_ready;
+#endif
+       this->chip_delay = NAND_SMALL_DELAY_US;
+
+       /* ECC mode */
+       this->eccmode = NAND_ECC_SOFT;
+
+       /* Set internal data buffer */
+       this->data_buf = data_buf_evb;
+       this->oob_buf = oob_buf_evb;
+
+       /* Scan to find existence of the device */
+       if (nand_scan (ppchameleonevb_mtd, 1)) {
+               iounmap((void *)ppchameleonevb_fio_base);
+               kfree (ppchameleonevb_mtd);
+               return -ENXIO;
+       }
+
+#ifdef CONFIG_MTD_PARTITIONS
+       ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME;
+       mtd_parts_nb = parse_mtd_partitions(ppchameleonevb_mtd, part_probes_evb, &mtd_parts, 0);
+       if (mtd_parts_nb > 0)
+         part_type = "command line";
+       else
+         mtd_parts_nb = 0;
+#endif
+       if (mtd_parts_nb == 0)
+       {
+               mtd_parts = partition_info_evb;
+               mtd_parts_nb = NUM_PARTITIONS;
+               part_type = "static";
+       }
+
+       /* Register the partitions */
+       printk(KERN_NOTICE "Using %s partition definition\n", part_type);
+       add_mtd_partitions(ppchameleonevb_mtd, mtd_parts, mtd_parts_nb);
+
+       /* Return happy */
+       return 0;
+}
+module_init(ppchameleonevb_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit ppchameleonevb_cleanup (void)
+{
+       struct nand_chip *this = (struct nand_chip *) &ppchameleonevb_mtd[1];
+
+       /* Unregister the device */
+       del_mtd_device (ppchameleonevb_mtd);
+
+       /* Free internal data buffer */
+       kfree (this->data_buf);
+
+       /* Free the MTD device structure */
+       kfree (ppchameleonevb_mtd);
+}
+module_exit(ppchameleonevb_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("DAVE Srl <support-ppchameleon@dave-tech.it>");
+MODULE_DESCRIPTION("MTD map driver for DAVE Srl PPChameleonEVB board");
index e5e25eb..acf6fc8 100644 (file)
@@ -8,7 +8,7 @@
  *                     to controllines (due to change in nand.c)
  *                     page_cache added
  *
- * $Id: spia.c,v 1.19 2003/04/20 07:24:40 gleixner Exp $
+ * $Id: spia.c,v 1.21 2003/07/11 15:12:29 dwmw2 Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
@@ -20,6 +20,8 @@
  *   a 64Mibit (8MiB x 8 bits) NAND flash device.
  */
 
+#include <linux/kernel.h>
+#include <linux/init.h>
 #include <linux/slab.h>
 #include <linux/module.h>
 #include <linux/mtd/mtd.h>
@@ -35,14 +37,14 @@ static struct mtd_info *spia_mtd = NULL;
 /*
  * Values specific to the SPIA board (used with EP7212 processor)
  */
-#define SPIA_IO_ADDR   = 0xd0000000    /* Start of EP7212 IO address space */
-#define SPIA_FIO_ADDR  = 0xf0000000    /* Address where flash is mapped */
-#define SPIA_PEDR      = 0x0080        /*
+#define SPIA_IO_BASE   0xd0000000      /* Start of EP7212 IO address space */
+#define SPIA_FIO_BASE  0xf0000000      /* Address where flash is mapped */
+#define SPIA_PEDR      0x0080          /*
                                         * IO offset to Port E data register
                                         * where the CLE, ALE and NCE pins
                                         * are wired to.
                                         */
-#define SPIA_PEDDR     = 0x00c0        /*
+#define SPIA_PEDDR     0x00c0          /*
                                         * IO offset to Port E data direction
                                         * register so we can control the IO
                                         * lines.
@@ -62,11 +64,6 @@ MODULE_PARM(spia_fio_base, "i");
 MODULE_PARM(spia_pedr, "i");
 MODULE_PARM(spia_peddr, "i");
 
-__setup("spia_io_base=",spia_io_base);
-__setup("spia_fio_base=",spia_fio_base);
-__setup("spia_pedr=",spia_pedr);
-__setup("spia_peddr=",spia_peddr);
-
 /*
  * Define partitions for flash device
  */
@@ -88,7 +85,7 @@ const static struct mtd_partition partition_info[] = {
 /* 
  *     hardware specific access to control-lines
 */
-void spia_hwcontrol(int cmd){
+static void spia_hwcontrol(struct mtd_info *mtd, int cmd){
 
     switch(cmd){
 
@@ -143,7 +140,7 @@ int __init spia_init (void)
        this->chip_delay = 15;          
 
        /* Scan to find existence of the device */
-       if (nand_scan (spia_mtd)) {
+       if (nand_scan (spia_mtd, 1)) {
                kfree (spia_mtd);
                return -ENXIO;
        }
diff --git a/drivers/mtd/nand/toto.c b/drivers/mtd/nand/toto.c
new file mode 100644 (file)
index 0000000..ecb9f3d
--- /dev/null
@@ -0,0 +1,221 @@
+/*
+ *  drivers/mtd/nand/toto.c
+ *
+ *  Copyright (c) 2003 Texas Instruments
+ *
+ *  Derived from drivers/mtd/autcpu12.c
+ *
+ *  Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash device found on the
+ *   TI fido board. It supports 32MiB and 64MiB cards
+ *
+ * $Id: toto.c,v 1.2 2003/10/21 10:04:58 dwmw2 Exp $
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/arch/hardware.h>
+#include <asm/sizes.h>
+#include <asm/arch/toto.h>
+#include <asm/arch-omap1510/hardware.h>
+#include <asm/arch/gpio.h>
+
+/*
+ * MTD structure for TOTO board
+ */
+static struct mtd_info *toto_mtd = NULL;
+
+static int toto_io_base = OMAP_FLASH_1_BASE;
+
+#define CONFIG_NAND_WORKAROUND 1
+
+#define NAND_NCE 0x4000
+#define NAND_CLE 0x1000
+#define NAND_ALE 0x0002
+#define NAND_MASK (NAND_CLE | NAND_ALE | NAND_NCE)
+
+#define T_NAND_CTL_CLRALE(iob)  gpiosetout(NAND_ALE, 0)
+#define T_NAND_CTL_SETALE(iob)  gpiosetout(NAND_ALE, NAND_ALE)
+#ifdef CONFIG_NAND_WORKAROUND     /* "some" dev boards busted, blue wired to rts2 :( */
+#define T_NAND_CTL_CLRCLE(iob)  gpiosetout(NAND_CLE, 0); rts2setout(2, 2)
+#define T_NAND_CTL_SETCLE(iob)  gpiosetout(NAND_CLE, NAND_CLE); rts2setout(2, 0)
+#else
+#define T_NAND_CTL_CLRCLE(iob)  gpiosetout(NAND_CLE, 0)
+#define T_NAND_CTL_SETCLE(iob)  gpiosetout(NAND_CLE, NAND_CLE)
+#endif
+#define T_NAND_CTL_SETNCE(iob)  gpiosetout(NAND_NCE, 0)
+#define T_NAND_CTL_CLRNCE(iob)  gpiosetout(NAND_NCE, NAND_NCE)
+                
+/*
+ * Define partitions for flash devices
+ */
+
+static struct mtd_partition partition_info64M[] = {
+       { .name =       "toto kernel partition 1",
+         .offset =     0,
+         .size =       2 * SZ_1M },
+       { .name =       "toto file sys partition 2",
+         .offset =     2 * SZ_1M,
+         .size =       14 * SZ_1M },
+       { .name =       "toto user partition 3",
+         .offset =     16 * SZ_1M,
+         .size =       16 * SZ_1M },
+       { .name =       "toto devboard extra partition 4",
+         .offset =     32 * SZ_1M,
+         .size =       32 * SZ_1M },
+};
+
+static struct mtd_partition partition_info32M[] = {
+       { .name =       "toto kernel partition 1",
+         .offset =     0,
+         .size =       2 * SZ_1M },
+       { .name =       "toto file sys partition 2",
+         .offset =     2 * SZ_1M,
+         .size =       14 * SZ_1M },
+       { .name =       "toto user partition 3",
+         .offset =     16 * SZ_1M,
+         .size =       16 * SZ_1M },
+};
+
+#define NUM_PARTITIONS32M 3
+#define NUM_PARTITIONS64M 4
+/* 
+ *     hardware specific access to control-lines
+*/
+
+static void toto_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+
+       udelay(1); /* hopefully enough time for tc make proceding write to clear */
+       switch(cmd){
+
+               case NAND_CTL_SETCLE: T_NAND_CTL_SETCLE(cmd); break;
+               case NAND_CTL_CLRCLE: T_NAND_CTL_CLRCLE(cmd); break;
+
+               case NAND_CTL_SETALE: T_NAND_CTL_SETALE(cmd); break;
+               case NAND_CTL_CLRALE: T_NAND_CTL_CLRALE(cmd); break;
+
+               case NAND_CTL_SETNCE: T_NAND_CTL_SETNCE(cmd); break;
+               case NAND_CTL_CLRNCE: T_NAND_CTL_CLRNCE(cmd); break;
+       }
+       udelay(1); /* allow time to ensure gpio state to over take memory write */
+}
+
+/*
+ * Main initialization routine
+ */
+int __init toto_init (void)
+{
+       struct nand_chip *this;
+       int err = 0;
+
+       /* Allocate memory for MTD device structure and private data */
+       toto_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+                               GFP_KERNEL);
+       if (!toto_mtd) {
+               printk (KERN_WARNING "Unable to allocate toto NAND MTD device structure.\n");
+               err = -ENOMEM;
+               goto out;
+       }
+
+       /* Get pointer to private data */
+       this = (struct nand_chip *) (&toto_mtd[1]);
+
+       /* Initialize structures */
+       memset((char *) toto_mtd, 0, sizeof(struct mtd_info));
+       memset((char *) this, 0, sizeof(struct nand_chip));
+
+       /* Link the private data with the MTD structure */
+       toto_mtd->priv = this;
+
+       /* Set address of NAND IO lines */
+       this->IO_ADDR_R = toto_io_base;
+       this->IO_ADDR_W = toto_io_base;
+       this->hwcontrol = toto_hwcontrol;
+       this->dev_ready = NULL;
+       /* 25 us command delay time */
+       this->chip_delay = 30;          
+       this->eccmode = NAND_ECC_SOFT;
+
+        /* Scan to find existance of the device */
+       if (nand_scan (toto_mtd, 1)) {
+               err = -ENXIO;
+               goto out_mtd;
+       }
+
+       /* Allocate memory for internal data buffer */
+       this->data_buf = kmalloc (sizeof(u_char) * (toto_mtd->oobblock + toto_mtd->oobsize), GFP_KERNEL);
+       if (!this->data_buf) {
+               printk (KERN_WARNING "Unable to allocate NAND data buffer for toto.\n");
+               err = -ENOMEM;
+               goto out_mtd;
+       }
+
+       /* Register the partitions */
+       switch(toto_mtd->size){
+               case SZ_64M: add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M); break; 
+               case SZ_32M: add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M); break; 
+               default: {
+                       printk (KERN_WARNING "Unsupported Nand device\n"); 
+                       err = -ENXIO;
+                       goto out_buf;
+               }
+       }
+
+       gpioreserve(NAND_MASK);  /* claim our gpios */
+       archflashwp(0,0);        /* open up flash for writing */
+
+       goto out;
+    
+out_buf:
+       kfree (this->data_buf);    
+out_mtd:
+       kfree (toto_mtd);
+out:
+       return err;
+}
+
+module_init(toto_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit toto_cleanup (void)
+{
+       struct nand_chip *this = (struct nand_chip *) &toto_mtd[1];
+
+       /* Unregister partitions */
+       del_mtd_partitions(toto_mtd);
+       
+       /* Unregister the device */
+       del_mtd_device (toto_mtd);
+
+       /* Free internal data buffers */
+       kfree (this->data_buf);
+
+       /* Free the MTD device structure */
+       kfree (toto_mtd);
+
+       /* stop flash writes */
+        archflashwp(0,1);
+       
+       /* release gpios to system */
+        gpiorelease(NAND_MASK);
+}
+module_exit(toto_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Richard Woodruff <r-woodruff2@ti.com>");
+MODULE_DESCRIPTION("Glue layer for NAND flash on toto board");
diff --git a/drivers/mtd/nand/tx4925ndfmc.c b/drivers/mtd/nand/tx4925ndfmc.c
new file mode 100644 (file)
index 0000000..94a6165
--- /dev/null
@@ -0,0 +1,442 @@
+/*
+ *  drivers/mtd/tx4925ndfmc.c
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash device found on the
+ *   Toshiba RBTX4925 reference board, which is a SmartMediaCard. It supports 
+ *   16MiB, 32MiB and 64MiB cards.
+ *
+ * Author: MontaVista Software, Inc.  source@mvista.com
+ *
+ * Derived from drivers/mtd/autcpu12.c
+ *       Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * $Id: tx4925ndfmc.c,v 1.2 2004/03/27 19:55:53 gleixner Exp $
+ *
+ * Copyright (C) 2001 Toshiba Corporation 
+ * 
+ * 2003 (c) MontaVista Software, Inc. This file is licensed under
+ * the terms of the GNU General Public License version 2. This program
+ * is licensed "as is" without any warranty of any kind, whether express
+ * or implied.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+#include <asm/tx4925/tx4925_nand.h>
+
+extern struct nand_oobinfo jffs2_oobinfo;
+
+/*
+ * MTD structure for RBTX4925 board
+ */
+static struct mtd_info *tx4925ndfmc_mtd = NULL;
+
+/*
+ * Module stuff
+ */
+#if LINUX_VERSION_CODE < 0x20212 && defined(MODULE)
+#define tx4925ndfmc_init init_module
+#define tx4925ndfmc_cleanup cleanup_module
+#endif
+
+/*
+ * Define partitions for flash devices
+ */
+
+static struct mtd_partition partition_info16k[] = {
+       { .name = "RBTX4925 flash partition 1",
+         .offset =  0,
+         .size =    8 * 0x00100000 },
+       { .name = "RBTX4925 flash partition 2",
+         .offset =  8 * 0x00100000,
+         .size =    8 * 0x00100000 },
+};
+
+static struct mtd_partition partition_info32k[] = {
+       { .name = "RBTX4925 flash partition 1",
+         .offset =  0,
+         .size =    8 * 0x00100000 },
+       { .name = "RBTX4925 flash partition 2",
+         .offset = 8 * 0x00100000,
+         .size =  24 * 0x00100000 },
+};
+
+static struct mtd_partition partition_info64k[] = {
+       { .name = "User FS",
+         .offset =  0,
+         .size =   16 * 0x00100000 },
+       { .name = "RBTX4925 flash partition 2",
+         .offset = 16 * 0x00100000,
+         .size =   48 * 0x00100000},
+};
+
+static struct mtd_partition partition_info128k[] = {
+       { .name = "Skip bad section",
+         .offset =  0,
+         .size =   16 * 0x00100000 },
+       { .name = "User FS",
+         .offset = 16 * 0x00100000,
+         .size =   112 * 0x00100000 },
+};
+#define NUM_PARTITIONS16K  2
+#define NUM_PARTITIONS32K  2
+#define NUM_PARTITIONS64K  2
+#define NUM_PARTITIONS128K 2
+
+/* 
+ *     hardware specific access to control-lines
+*/
+static void tx4925ndfmc_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+
+       switch(cmd){
+
+               case NAND_CTL_SETCLE: 
+                       tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_CLE;
+                       break;
+               case NAND_CTL_CLRCLE:
+                       tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_CLE;
+                       break;
+               case NAND_CTL_SETALE:
+                       tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ALE;
+                       break;
+               case NAND_CTL_CLRALE: 
+                       tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ALE;
+                       break;
+               case NAND_CTL_SETNCE:
+                       tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_CE;
+                       break;
+               case NAND_CTL_CLRNCE:
+                       tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_CE;
+                       break;
+               case NAND_CTL_SETWP:
+                       tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_WE;
+                       break;
+               case NAND_CTL_CLRWP:
+                       tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_WE;
+                       break;
+       }
+}
+
+/*
+*      read device ready pin
+*/
+static int tx4925ndfmc_device_ready(struct mtd_info *mtd)
+{
+       int ready;
+       ready = (tx4925_ndfmcptr->sr & TX4925_NDSFR_BUSY) ? 0 : 1;
+       return ready;
+}
+void tx4925ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       /* reset first */
+       tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_MASK;
+       tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
+       tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_ENAB;
+}
+static void tx4925ndfmc_disable_ecc(void)
+{
+       tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
+}
+static void tx4925ndfmc_enable_read_ecc(void)
+{
+       tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
+       tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_READ;
+}
+void tx4925ndfmc_readecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){
+       int i;
+       u_char *ecc = ecc_code;
+        tx4925ndfmc_enable_read_ecc();
+       for (i = 0;i < 6;i++,ecc++)
+               *ecc = tx4925_read_nfmc(&(tx4925_ndfmcptr->dtr));
+        tx4925ndfmc_disable_ecc();
+}
+void tx4925ndfmc_device_setup(void)
+{
+
+       *(unsigned char *)0xbb005000 &= ~0x08;
+
+        /* reset NDFMC */
+        tx4925_ndfmcptr->rstr |= TX4925_NDFRSTR_RST;
+       while (tx4925_ndfmcptr->rstr & TX4925_NDFRSTR_RST);       
+
+       /* setup BusSeparete, Hold Time, Strobe Pulse Width */
+       tx4925_ndfmcptr->mcr = TX4925_BSPRT ? TX4925_NDFMCR_BSPRT : 0;
+       tx4925_ndfmcptr->spr = TX4925_HOLD << 4 | TX4925_SPW;             
+}
+static u_char tx4925ndfmc_nand_read_byte(struct mtd_info *mtd)
+{
+        struct nand_chip *this = mtd->priv;
+        return tx4925_read_nfmc(this->IO_ADDR_R);
+}
+
+static void tx4925ndfmc_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+        struct nand_chip *this = mtd->priv;
+        tx4925_write_nfmc(byte, this->IO_ADDR_W);
+}
+
+static void tx4925ndfmc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               tx4925_write_nfmc(buf[i], this->IO_ADDR_W);
+}
+
+static void tx4925ndfmc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               buf[i] = tx4925_read_nfmc(this->IO_ADDR_R);
+}
+
+static int tx4925ndfmc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               if (buf[i] != tx4925_read_nfmc(this->IO_ADDR_R))
+                       return -EFAULT;
+
+       return 0;
+}
+
+/*
+ * Send command to NAND device
+ */
+static void tx4925ndfmc_nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+       register struct nand_chip *this = mtd->priv;
+
+       /* Begin command latch cycle */
+       this->hwcontrol(mtd, NAND_CTL_SETCLE);
+       /*
+        * Write out the command to the device.
+        */
+       if (command == NAND_CMD_SEQIN) {
+               int readcmd;
+
+               if (column >= mtd->oobblock) {
+                       /* OOB area */
+                       column -= mtd->oobblock;
+                       readcmd = NAND_CMD_READOOB;
+               } else if (column < 256) {
+                       /* First 256 bytes --> READ0 */
+                       readcmd = NAND_CMD_READ0;
+               } else {
+                       column -= 256;
+                       readcmd = NAND_CMD_READ1;
+               }
+               this->write_byte(mtd, readcmd);
+       }
+       this->write_byte(mtd, command);
+
+       /* Set ALE and clear CLE to start address cycle */
+       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+       if (column != -1 || page_addr != -1) {
+               this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+               /* Serially input address */
+               if (column != -1)
+                       this->write_byte(mtd, column);
+               if (page_addr != -1) {
+                       this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+                       this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+                       /* One more address cycle for higher density devices */
+                       if (mtd->size & 0x0c000000) 
+                               this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+               }
+               /* Latch in address */
+               this->hwcontrol(mtd, NAND_CTL_CLRALE);
+       }
+       
+       /* 
+        * program and erase have their own busy handlers 
+        * status and sequential in needs no delay
+       */
+       switch (command) {
+                       
+       case NAND_CMD_PAGEPROG:
+               /* Turn off WE */
+               this->hwcontrol (mtd, NAND_CTL_CLRWP);
+                return;
+
+       case NAND_CMD_SEQIN:
+               /* Turn on WE */
+               this->hwcontrol (mtd, NAND_CTL_SETWP);
+                return;
+
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+       case NAND_CMD_STATUS:
+               return;
+
+       case NAND_CMD_RESET:
+               if (this->dev_ready)    
+                       break;
+               this->hwcontrol(mtd, NAND_CTL_SETCLE);
+               this->write_byte(mtd, NAND_CMD_STATUS);
+               this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+               while ( !(this->read_byte(mtd) & 0x40));
+               return;
+
+       /* This applies to read commands */     
+       default:
+               /* 
+                * If we don't have access to the busy pin, we apply the given
+                * command delay
+               */
+               if (!this->dev_ready) {
+                       udelay (this->chip_delay);
+                       return;
+               }       
+       }
+       
+       /* wait until command is processed */
+       while (!this->dev_ready(mtd));
+}
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partitio
+n **pparts, char *);
+#endif
+
+/*
+ * Main initialization routine
+ */
+extern int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+int __init tx4925ndfmc_init (void)
+{
+       struct nand_chip *this;
+       int err = 0;
+
+       /* Allocate memory for MTD device structure and private data */
+       tx4925ndfmc_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+                               GFP_KERNEL);
+       if (!tx4925ndfmc_mtd) {
+               printk ("Unable to allocate RBTX4925 NAND MTD device structure.\n");
+               err = -ENOMEM;
+               goto out;
+       }
+
+        tx4925ndfmc_device_setup();
+
+       /* io is indirect via a register so don't need to ioremap address */
+
+       /* Get pointer to private data */
+       this = (struct nand_chip *) (&tx4925ndfmc_mtd[1]);
+
+       /* Initialize structures */
+       memset((char *) tx4925ndfmc_mtd, 0, sizeof(struct mtd_info));
+       memset((char *) this, 0, sizeof(struct nand_chip));
+
+       /* Link the private data with the MTD structure */
+       tx4925ndfmc_mtd->priv = this;
+
+       /* Set address of NAND IO lines */
+       this->IO_ADDR_R = (unsigned long)&(tx4925_ndfmcptr->dtr);
+       this->IO_ADDR_W = (unsigned long)&(tx4925_ndfmcptr->dtr);
+       this->hwcontrol = tx4925ndfmc_hwcontrol;
+       this->enable_hwecc = tx4925ndfmc_enable_hwecc;
+       this->calculate_ecc = tx4925ndfmc_readecc;
+       this->correct_data = nand_correct_data;
+       this->eccmode = NAND_ECC_HW6_512;       
+       this->dev_ready = tx4925ndfmc_device_ready;
+       /* 20 us command delay time */
+       this->chip_delay = 20;          
+        this->read_byte = tx4925ndfmc_nand_read_byte;
+        this->write_byte = tx4925ndfmc_nand_write_byte;
+       this->cmdfunc = tx4925ndfmc_nand_command;
+       this->write_buf = tx4925ndfmc_nand_write_buf;
+       this->read_buf = tx4925ndfmc_nand_read_buf;
+       this->verify_buf = tx4925ndfmc_nand_verify_buf;
+
+       /* Scan to find existance of the device */
+       if (nand_scan (tx4925ndfmc_mtd, 1)) {
+               err = -ENXIO;
+               goto out_ior;
+       }
+
+       /* Allocate memory for internal data buffer */
+       this->data_buf = kmalloc (sizeof(u_char) * (tx4925ndfmc_mtd->oobblock + tx4925ndfmc_mtd->oobsize), GFP_KERNEL);
+       if (!this->data_buf) {
+               printk ("Unable to allocate NAND data buffer for RBTX4925.\n");
+               err = -ENOMEM;
+               goto out_ior;
+       }
+
+       /* Register the partitions */
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+        {
+                int mtd_parts_nb = 0;
+                struct mtd_partition *mtd_parts = 0;
+                mtd_parts_nb = parse_cmdline_partitions(tx4925ndfmc_mtd, &mtd_parts, "tx4925ndfmc");
+                if (mtd_parts_nb > 0)
+                        add_mtd_partitions(tx4925ndfmc_mtd, mtd_parts, mtd_parts_nb);
+                else
+                        add_mtd_device(tx4925ndfmc_mtd);
+        }
+#else /* ifdef CONFIG_MTD_CMDLINE_PARTS */
+       switch(tx4925ndfmc_mtd->size){
+               case 0x01000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info16k, NUM_PARTITIONS16K); break;
+               case 0x02000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info32k, NUM_PARTITIONS32K); break;
+               case 0x04000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info64k, NUM_PARTITIONS64K); break; 
+               case 0x08000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info128k, NUM_PARTITIONS128K); break; 
+               default: {
+                       printk ("Unsupported SmartMedia device\n"); 
+                       err = -ENXIO;
+                       goto out_buf;
+               }
+       }
+#endif /* ifdef CONFIG_MTD_CMDLINE_PARTS */
+       goto out;
+
+out_buf:
+       kfree (this->data_buf);    
+out_ior:
+out:
+       return err;
+}
+
+module_init(tx4925ndfmc_init);
+
+/*
+ * Clean up routine
+ */
+#ifdef MODULE
+static void __exit tx4925ndfmc_cleanup (void)
+{
+       struct nand_chip *this = (struct nand_chip *) &tx4925ndfmc_mtd[1];
+
+       /* Unregister partitions */
+       del_mtd_partitions(tx4925ndfmc_mtd);
+       
+       /* Unregister the device */
+       del_mtd_device (tx4925ndfmc_mtd);
+
+       /* Free internal data buffers */
+       kfree (this->data_buf);
+
+       /* Free the MTD device structure */
+       kfree (tx4925ndfmc_mtd);
+}
+module_exit(tx4925ndfmc_cleanup);
+#endif
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Alice Hennessy <ahennessy@mvista.com>");
+MODULE_DESCRIPTION("Glue layer for SmartMediaCard on Toshiba RBTX4925");
diff --git a/drivers/mtd/nand/tx4938ndfmc.c b/drivers/mtd/nand/tx4938ndfmc.c
new file mode 100644 (file)
index 0000000..f2375b2
--- /dev/null
@@ -0,0 +1,422 @@
+/*
+ * drivers/mtd/nand/tx4938ndfmc.c
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash device connected to
+ *   TX4938 internal NAND Memory Controller.
+ *   TX4938 NDFMC is almost same as TX4925 NDFMC, but register size are 64 bit.
+ *
+ * Author: source@mvista.com
+ *
+ * Based on spia.c by Steven J. Hill
+ *
+ * $Id: tx4938ndfmc.c,v 1.2 2004/03/27 19:55:53 gleixner Exp $
+ *
+ * Copyright (C) 2000-2001 Toshiba Corporation 
+ *
+ * 2003 (c) MontaVista Software, Inc. This file is licensed under the
+ * terms of the GNU General Public License version 2. This program is
+ * licensed "as is" without any warranty of any kind, whether express
+ * or implied.
+ */
+#include <linux/config.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/bootinfo.h>
+#include <linux/delay.h>
+#include <asm/tx4938/rbtx4938.h>
+
+extern struct nand_oobinfo jffs2_oobinfo;
+
+/*
+ * MTD structure for TX4938 NDFMC
+ */
+static struct mtd_info *tx4938ndfmc_mtd;
+
+/*
+ * Define partitions for flash device
+ */
+#define flush_wb()     (void)tx4938_ndfmcptr->mcr;
+
+#define NUM_PARTITIONS         3
+#define NUMBER_OF_CIS_BLOCKS   24
+#define SIZE_OF_BLOCK          0x00004000
+#define NUMBER_OF_BLOCK_PER_ZONE 1024
+#define SIZE_OF_ZONE           (NUMBER_OF_BLOCK_PER_ZONE * SIZE_OF_BLOCK)
+#ifndef CONFIG_MTD_CMDLINE_PARTS
+/*
+ * You can use the following sample of MTD partitions 
+ * on the NAND Flash Memory 32MB or more.
+ *
+ * The following figure shows the image of the sample partition on
+ * the 32MB NAND Flash Memory. 
+ *
+ *   Block No.
+ *    0 +-----------------------------+ ------
+ *      |             CIS             |   ^
+ *   24 +-----------------------------+   |
+ *      |         kernel image        |   | Zone 0
+ *      |                             |   |
+ *      +-----------------------------+   |
+ * 1023 |         unused area         |   v
+ *      +-----------------------------+ ------
+ * 1024 |            JFFS2            |   ^
+ *      |                             |   |
+ *      |                             |   | Zone 1
+ *      |                             |   |
+ *      |                             |   |
+ *      |                             |   v
+ * 2047 +-----------------------------+ ------
+ *
+ */
+static struct mtd_partition partition_info[NUM_PARTITIONS] = {
+       {
+               .name = "RBTX4938 CIS Area",
+               .offset =  0,
+               .size =    (NUMBER_OF_CIS_BLOCKS * SIZE_OF_BLOCK),
+               .mask_flags  = MTD_WRITEABLE    /* This partition is NOT writable */
+       },
+       {
+               .name = "RBTX4938 kernel image",
+               .offset =  MTDPART_OFS_APPEND,
+               .size =    8 * 0x00100000,      /* 8MB (Depends on size of kernel image) */
+               .mask_flags  = MTD_WRITEABLE    /* This partition is NOT writable */
+       },
+       {
+               .name = "Root FS (JFFS2)",
+               .offset =  (0 + SIZE_OF_ZONE),    /* start address of next zone */
+               .size =    MTDPART_SIZ_FULL
+       },
+};
+#endif
+
+static void tx4938ndfmc_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+       switch (cmd) {
+               case NAND_CTL_SETCLE:
+                       tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_CLE;
+                       break;
+               case NAND_CTL_CLRCLE:
+                       tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_CLE;
+                       break;
+               case NAND_CTL_SETALE:
+                       tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_ALE;
+                       break;
+               case NAND_CTL_CLRALE:
+                       tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_ALE;
+                       break;
+               /* TX4938_NDFMCR_CE bit is 0:high 1:low */
+               case NAND_CTL_SETNCE:
+                       tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_CE;
+                       break;
+               case NAND_CTL_CLRNCE:
+                       tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_CE;
+                       break;
+               case NAND_CTL_SETWP:
+                       tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_WE;
+                       break;
+               case NAND_CTL_CLRWP:
+                       tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_WE;
+                       break;
+       }
+}
+static int tx4938ndfmc_dev_ready(struct mtd_info *mtd)
+{
+       flush_wb();
+       return !(tx4938_ndfmcptr->sr & TX4938_NDFSR_BUSY);
+}
+static void tx4938ndfmc_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+       u32 mcr = tx4938_ndfmcptr->mcr;
+       mcr &= ~TX4938_NDFMCR_ECC_ALL;
+       tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
+       tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_READ;
+       ecc_code[1] = tx4938_ndfmcptr->dtr;
+       ecc_code[0] = tx4938_ndfmcptr->dtr;
+       ecc_code[2] = tx4938_ndfmcptr->dtr;
+       tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
+}
+static void tx4938ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       u32 mcr = tx4938_ndfmcptr->mcr;
+       mcr &= ~TX4938_NDFMCR_ECC_ALL;
+       tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_RESET;
+       tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
+       tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_ON;
+}
+
+static u_char tx4938ndfmc_nand_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *this = mtd->priv;
+       return tx4938_read_nfmc(this->IO_ADDR_R);
+}
+
+static void tx4938ndfmc_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+       struct nand_chip *this = mtd->priv;
+       tx4938_write_nfmc(byte, this->IO_ADDR_W);
+}
+
+static void tx4938ndfmc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               tx4938_write_nfmc(buf[i], this->IO_ADDR_W);
+}
+
+static void tx4938ndfmc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               buf[i] = tx4938_read_nfmc(this->IO_ADDR_R);
+}
+
+static int tx4938ndfmc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+       int i;
+       struct nand_chip *this = mtd->priv;
+
+       for (i=0; i<len; i++)
+               if (buf[i] != tx4938_read_nfmc(this->IO_ADDR_R))
+                       return -EFAULT;
+
+       return 0;
+}
+
+/*
+ * Send command to NAND device
+ */
+static void tx4938ndfmc_nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+       register struct nand_chip *this = mtd->priv;
+
+       /* Begin command latch cycle */
+       this->hwcontrol(mtd, NAND_CTL_SETCLE);
+       /*
+        * Write out the command to the device.
+        */
+       if (command == NAND_CMD_SEQIN) {
+               int readcmd;
+
+               if (column >= mtd->oobblock) {
+                       /* OOB area */
+                       column -= mtd->oobblock;
+                       readcmd = NAND_CMD_READOOB;
+               } else if (column < 256) {
+                       /* First 256 bytes --> READ0 */
+                       readcmd = NAND_CMD_READ0;
+               } else {
+                       column -= 256;
+                       readcmd = NAND_CMD_READ1;
+               }
+               this->write_byte(mtd, readcmd);
+       }
+       this->write_byte(mtd, command);
+
+       /* Set ALE and clear CLE to start address cycle */
+       this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+       if (column != -1 || page_addr != -1) {
+               this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+               /* Serially input address */
+               if (column != -1)
+                       this->write_byte(mtd, column);
+               if (page_addr != -1) {
+                       this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+                       this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+                       /* One more address cycle for higher density devices */
+                       if (mtd->size & 0x0c000000) 
+                               this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+               }
+               /* Latch in address */
+               this->hwcontrol(mtd, NAND_CTL_CLRALE);
+       }
+       
+       /* 
+        * program and erase have their own busy handlers 
+        * status and sequential in needs no delay
+       */
+       switch (command) {
+                       
+       case NAND_CMD_PAGEPROG:
+               /* Turn off WE */
+               this->hwcontrol (mtd, NAND_CTL_CLRWP);
+                return;
+
+       case NAND_CMD_SEQIN:
+               /* Turn on WE */
+               this->hwcontrol (mtd, NAND_CTL_SETWP);
+                return;
+
+       case NAND_CMD_ERASE1:
+       case NAND_CMD_ERASE2:
+       case NAND_CMD_STATUS:
+               return;
+
+       case NAND_CMD_RESET:
+               if (this->dev_ready)    
+                       break;
+               this->hwcontrol(mtd, NAND_CTL_SETCLE);
+               this->write_byte(mtd, NAND_CMD_STATUS);
+               this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+               while ( !(this->read_byte(mtd) & 0x40));
+               return;
+
+       /* This applies to read commands */     
+       default:
+               /* 
+                * If we don't have access to the busy pin, we apply the given
+                * command delay
+               */
+               if (!this->dev_ready) {
+                       udelay (this->chip_delay);
+                       return;
+               }       
+       }
+       
+       /* wait until command is processed */
+       while (!this->dev_ready(mtd));
+}
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partition **pparts, char *);
+#endif
+/*
+ * Main initialization routine
+ */
+int __init tx4938ndfmc_init (void)
+{
+       struct nand_chip *this;
+       int bsprt = 0, hold = 0xf, spw = 0xf;
+       int protected = 0;
+
+       if ((*rbtx4938_piosel_ptr & 0x0c) != 0x08) {
+               printk("TX4938 NDFMC: disabled by IOC PIOSEL\n");
+               return -ENODEV;
+       }
+       bsprt = 1;
+       hold = 2;
+       spw = 9 - 1;    /* 8 GBUSCLK = 80ns (@ GBUSCLK 100MHz) */
+
+       if ((tx4938_ccfgptr->pcfg &
+            (TX4938_PCFG_ATA_SEL|TX4938_PCFG_ISA_SEL|TX4938_PCFG_NDF_SEL))
+           != TX4938_PCFG_NDF_SEL) {
+               printk("TX4938 NDFMC: disabled by PCFG.\n");
+               return -ENODEV;
+       }
+
+       /* reset NDFMC */
+       tx4938_ndfmcptr->rstr |= TX4938_NDFRSTR_RST;
+       while (tx4938_ndfmcptr->rstr & TX4938_NDFRSTR_RST)
+               ;
+       /* setup BusSeparete, Hold Time, Strobe Pulse Width */
+       tx4938_ndfmcptr->mcr = bsprt ? TX4938_NDFMCR_BSPRT : 0;
+       tx4938_ndfmcptr->spr = hold << 4 | spw;
+
+       /* Allocate memory for MTD device structure and private data */
+       tx4938ndfmc_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+                                     GFP_KERNEL);
+       if (!tx4938ndfmc_mtd) {
+               printk ("Unable to allocate TX4938 NDFMC MTD device structure.\n");
+               return -ENOMEM;
+       }
+
+       /* Get pointer to private data */
+       this = (struct nand_chip *) (&tx4938ndfmc_mtd[1]);
+
+       /* Initialize structures */
+       memset((char *) tx4938ndfmc_mtd, 0, sizeof(struct mtd_info));
+       memset((char *) this, 0, sizeof(struct nand_chip));
+
+       /* Link the private data with the MTD structure */
+       tx4938ndfmc_mtd->priv = this;
+
+       /* Set address of NAND IO lines */
+       this->IO_ADDR_R = (unsigned long)&tx4938_ndfmcptr->dtr;
+       this->IO_ADDR_W = (unsigned long)&tx4938_ndfmcptr->dtr;
+       this->hwcontrol = tx4938ndfmc_hwcontrol;
+       this->dev_ready = tx4938ndfmc_dev_ready;
+       this->calculate_ecc = tx4938ndfmc_calculate_ecc;
+       this->correct_data = nand_correct_data;
+       this->enable_hwecc = tx4938ndfmc_enable_hwecc;
+       this->eccmode = NAND_ECC_HW3_256;
+       this->chip_delay = 100;
+       this->read_byte = tx4938ndfmc_nand_read_byte;
+       this->write_byte = tx4938ndfmc_nand_write_byte;
+       this->cmdfunc = tx4938ndfmc_nand_command;
+       this->write_buf = tx4938ndfmc_nand_write_buf;
+       this->read_buf = tx4938ndfmc_nand_read_buf;
+       this->verify_buf = tx4938ndfmc_nand_verify_buf;
+
+       /* Scan to find existance of the device */
+       if (nand_scan (tx4938ndfmc_mtd, 1)) {
+               kfree (tx4938ndfmc_mtd);
+               return -ENXIO;
+       }
+
+       /* Allocate memory for internal data buffer */
+       this->data_buf = kmalloc (sizeof(u_char) * (tx4938ndfmc_mtd->oobblock + tx4938ndfmc_mtd->oobsize), GFP_KERNEL);
+       if (!this->data_buf) {
+               printk ("Unable to allocate NAND data buffer for TX4938.\n");
+               kfree (tx4938ndfmc_mtd);
+               return -ENOMEM;
+       }
+
+       if (protected) {
+               printk(KERN_INFO "TX4938 NDFMC: write protected.\n");
+               tx4938ndfmc_mtd->flags &= ~(MTD_WRITEABLE | MTD_ERASEABLE);
+       }
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+       {
+               int mtd_parts_nb = 0;
+               struct mtd_partition *mtd_parts = 0;
+               mtd_parts_nb = parse_cmdline_partitions(tx4938ndfmc_mtd, &mtd_parts, "tx4938ndfmc");
+               if (mtd_parts_nb > 0)
+                       add_mtd_partitions(tx4938ndfmc_mtd, mtd_parts, mtd_parts_nb);
+               else
+                       add_mtd_device(tx4938ndfmc_mtd);
+       }
+#else
+       add_mtd_partitions(tx4938ndfmc_mtd, partition_info, NUM_PARTITIONS );
+#endif
+
+       return 0;
+}
+module_init(tx4938ndfmc_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit tx4938ndfmc_cleanup (void)
+{
+       struct nand_chip *this = (struct nand_chip *) tx4938ndfmc_mtd->priv;
+
+       /* Unregister the device */
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+       del_mtd_partitions(tx4938ndfmc_mtd);
+#endif
+       del_mtd_device (tx4938ndfmc_mtd);
+
+       /* Free the MTD device structure */
+       kfree (tx4938ndfmc_mtd);
+
+       /* Free internal data buffer */
+       kfree (this->data_buf);
+}
+module_exit(tx4938ndfmc_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Alice Hennessy <ahennessy@mvista.com>");
+MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on TX4938 NDFMC");
index 88d48a2..7de9f8d 100644 (file)
@@ -5,7 +5,7 @@
  *                     Steven J. Hill <sjhill@realitydiluted.com>
  *                    Thomas Gleixner <tglx@linutronix.de>
  *
- * $Id: nand.h,v 1.25 2003/05/21 15:15:02 dwmw2 Exp $
+ * $Id: nand.h,v 1.63 2004/07/07 16:29:43 gleixner Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
  *                     NAND_YAFFS_OOB
  *  11-25-2002 tglx    Added Manufacturer code FUJITSU, NATIONAL
  *                     Split manufacturer and device ID structures 
+ *
+ *  02-08-2004 tglx    added option field to nand structure for chip anomalities
+ *  05-25-2004 tglx    added bad block table support, ST-MICRO manufacturer id
+ *                     update of nand_chip structure description
  */
 #ifndef __LINUX_MTD_NAND_H
 #define __LINUX_MTD_NAND_H
 #include <linux/config.h>
 #include <linux/wait.h>
 #include <linux/spinlock.h>
+#include <linux/mtd/mtd.h>
 
 struct mtd_info;
-/*
- * Searches for a NAND device
+/* Scan and identify a NAND device */
+extern int nand_scan (struct mtd_info *mtd, int max_chips);
+/* Free resources held by the NAND device */
+extern void nand_release (struct mtd_info *mtd);
+
+/* Read raw data from the device without ECC */
+extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen);
+
+
+/* The maximum number of NAND chips in an array */
+#define NAND_MAX_CHIPS         8
+
+/* This constant declares the max. oobsize / page, which
+ * is supported now. If you add a chip with bigger oobsize/page
+ * adjust this accordingly.
  */
-extern int nand_scan (struct mtd_info *mtd);
+#define NAND_MAX_OOBSIZE       64
 
 /*
  * Constants for hardware specific CLE/ALE/NCE function
 */
+/* Select the chip by setting nCE to low */
 #define NAND_CTL_SETNCE        1
+/* Deselect the chip by setting nCE to high */
 #define NAND_CTL_CLRNCE                2
+/* Select the command latch by setting CLE to high */
 #define NAND_CTL_SETCLE                3
+/* Deselect the command latch by setting CLE to low */
 #define NAND_CTL_CLRCLE                4
+/* Select the address latch by setting ALE to high */
 #define NAND_CTL_SETALE                5
+/* Deselect the address latch by setting ALE to low */
 #define NAND_CTL_CLRALE                6
+/* Set write protection by setting WP to high. Not used! */
+#define NAND_CTL_SETWP         7
+/* Clear write protection by setting WP to low. Not used! */
+#define NAND_CTL_CLRWP         8
 
 /*
  * Standard NAND flash commands
@@ -77,35 +105,102 @@ extern int nand_scan (struct mtd_info *mtd);
 #define NAND_CMD_READOOB       0x50
 #define NAND_CMD_ERASE1                0x60
 #define NAND_CMD_STATUS                0x70
+#define NAND_CMD_STATUS_MULTI  0x71
 #define NAND_CMD_SEQIN         0x80
 #define NAND_CMD_READID                0x90
 #define NAND_CMD_ERASE2                0xd0
 #define NAND_CMD_RESET         0xff
 
+/* Extended commands for large page devices */
+#define NAND_CMD_READSTART     0x30
+#define NAND_CMD_CACHEDPROG    0x15
+
+/* Status bits */
+#define NAND_STATUS_FAIL       0x01
+#define NAND_STATUS_FAIL_N1    0x02
+#define NAND_STATUS_TRUE_READY 0x20
+#define NAND_STATUS_READY      0x40
+#define NAND_STATUS_WP         0x80
+
 /* 
  * Constants for ECC_MODES
- *
- * NONE:       No ECC
- * SOFT:       Software ECC 3 byte ECC per 256 Byte data
- * HW3_256:    Hardware ECC 3 byte ECC per 256 Byte data
- * HW3_512:    Hardware ECC 3 byte ECC per 512 Byte data
- *
- *
-*/
+ */
+
+/* No ECC. Usage is not recommended ! */
 #define NAND_ECC_NONE          0
+/* Software ECC 3 byte ECC per 256 Byte data */
 #define NAND_ECC_SOFT          1
+/* Hardware ECC 3 byte ECC per 256 Byte data */
 #define NAND_ECC_HW3_256       2
+/* Hardware ECC 3 byte ECC per 512 Byte data */
 #define NAND_ECC_HW3_512       3
+/* Hardware ECC 3 byte ECC per 512 Byte data */
 #define NAND_ECC_HW6_512       4
-#define NAND_ECC_DISKONCHIP    5
+/* Hardware ECC 8 byte ECC per 512 Byte data */
+#define NAND_ECC_HW8_512       6
 
 /*
  * Constants for Hardware ECC
 */
+/* Reset Hardware ECC for read */
 #define NAND_ECC_READ          0
+/* Reset Hardware ECC for write */
 #define NAND_ECC_WRITE         1
-       
+/* Enable Hardware ECC before syndrom is read back from flash */
+#define NAND_ECC_READSYN       2
+
+/* Option constants for bizarre disfunctionality and real
+*  features
+*/
+/* Chip can not auto increment pages */
+#define NAND_NO_AUTOINCR       0x00000001
+/* Buswitdh is 16 bit */
+#define NAND_BUSWIDTH_16       0x00000002
+/* Device supports partial programming without padding */
+#define NAND_NO_PADDING                0x00000004
+/* Chip has cache program function */
+#define NAND_CACHEPRG          0x00000008
+/* Chip has copy back function */
+#define NAND_COPYBACK          0x00000010
+/* AND Chip which has 4 banks and a confusing page / block 
+ * assignment. See Renesas datasheet for further information */
+#define NAND_IS_AND            0x00000020
+/* Chip has a array of 4 pages which can be read without
+ * additional ready /busy waits */
+#define NAND_4PAGE_ARRAY       0x00000040 
+
+/* Options valid for Samsung large page devices */
+#define NAND_SAMSUNG_LP_OPTIONS \
+       (NAND_NO_PADDING | NAND_CACHEPRG | NAND_COPYBACK)
+
+/* Macros to identify the above */
+#define NAND_CANAUTOINCR(chip) (!(chip->options & NAND_NO_AUTOINCR))
+#define NAND_MUST_PAD(chip) (!(chip->options & NAND_NO_PADDING))
+#define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))
+#define NAND_HAS_COPYBACK(chip) ((chip->options & NAND_COPYBACK))
+
+/* Mask to zero out the chip options, which come from the id table */
+#define NAND_CHIPOPTIONS_MSK   (0x0000ffff & ~NAND_NO_AUTOINCR)
+
+/* Non chip related options */
+/* Use a flash based bad block table. This option is passed to the
+ * default bad block table function. */
+#define NAND_USE_FLASH_BBT     0x00010000
+/* The hw ecc generator provides a syndrome instead a ecc value on read 
+ * This can only work if we have the ecc bytes directly behind the 
+ * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
+#define NAND_HWECC_SYNDROME    0x00020000
+
+
+/* Options set by nand scan */
+/* Nand scan has allocated oob_buf */
+#define NAND_OOBBUF_ALLOC      0x40000000
+/* Nand scan has allocated data_buf */
+#define NAND_DATABUF_ALLOC     0x80000000
+
+
 /*
+ * nand_state_t - chip states
  * Enumeration for NAND flash chip state
  */
 typedef enum {
@@ -113,71 +208,116 @@ typedef enum {
        FL_READING,
        FL_WRITING,
        FL_ERASING,
-       FL_SYNCING
+       FL_SYNCING,
+       FL_CACHEDPRG,
 } nand_state_t;
 
 
-/*
- * NAND Private Flash Chip Data
- *
- * Structure overview:
- *
- *  IO_ADDR_R - address to read the 8 I/O lines of the flash device 
- *
- *  IO_ADDR_W - address to write the 8 I/O lines of the flash device 
- *
- *  hwcontrol - hardwarespecific function for accesing control-lines
- *
- *  dev_ready - hardwarespecific function for accesing device ready/busy line
- *
- *  waitfunc - hardwarespecific function for wait on ready
- *
- *  calculate_ecc - function for ecc calculation or readback from ecc hardware
- *
- *  correct_data - function for ecc correction, matching to ecc generator (sw/hw)
- *
- *  enable_hwecc - function to enable (reset) hardware ecc generator
- *
- *  eccmod - mode of ecc: see constants
- *
- *  eccsize - databytes used per ecc-calculation
- *
- *  chip_delay - chip dependent delay for transfering data from array to read regs (tR)
- *
- *  chip_lock - spinlock used to protect access to this structure
- *
- *  wq - wait queue to sleep on if a NAND operation is in progress
- *
- *  state - give the current state of the NAND device
- *
- *  page_shift - number of address bits in a page (column address bits)
- *
- *  data_buf - data buffer passed to/from MTD user modules
- *
- *  data_cache - data cache for redundant page access and shadow for
- *              ECC failure
- *
- *  cache_page - number of last valid page in page_cache 
+/**
+ * struct nand_chip - NAND Private Flash Chip Data
+ * @IO_ADDR_R:         [BOARDSPECIFIC] address to read the 8 I/O lines of the flash device 
+ * @IO_ADDR_W:         [BOARDSPECIFIC] address to write the 8 I/O lines of the flash device 
+ * @read_byte:         [REPLACEABLE] read one byte from the chip
+ * @write_byte:                [REPLACEABLE] write one byte to the chip
+ * @read_word:         [REPLACEABLE] read one word from the chip
+ * @write_word:                [REPLACEABLE] write one word to the chip
+ * @write_buf:         [REPLACEABLE] write data from the buffer to the chip
+ * @read_buf:          [REPLACEABLE] read data from the chip into the buffer
+ * @verify_buf:                [REPLACEABLE] verify buffer contents against the chip data
+ * @select_chip:       [REPLACEABLE] select chip nr
+ * @block_bad:         [REPLACEABLE] check, if the block is bad
+ * @block_markbad:     [REPLACEABLE] mark the block bad
+ * @hwcontrol:         [BOARDSPECIFIC] hardwarespecific function for accesing control-lines
+ * @dev_ready:         [BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line
+ *                     If set to NULL no access to ready/busy is available and the ready/busy information
+ *                     is read from the chip status register
+ * @cmdfunc:           [REPLACEABLE] hardwarespecific function for writing commands to the chip
+ * @waitfunc:          [REPLACEABLE] hardwarespecific function for wait on ready
+ * @calculate_ecc:     [REPLACEABLE] function for ecc calculation or readback from ecc hardware
+ * @correct_data:      [REPLACEABLE] function for ecc correction, matching to ecc generator (sw/hw)
+ * @enable_hwecc:      [BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only
+ *                     be provided if a hardware ECC is available
+ * @erase_cmd:         [INTERN] erase command write function, selectable due to AND support
+ * @scan_bbt:          [REPLACEABLE] function to scan bad block table
+ * @eccmode:           [BOARDSPECIFIC] mode of ecc, see defines 
+ * @eccsize:           [INTERN] databytes used per ecc-calculation
+ * @eccsteps:          [INTERN] number of ecc calculation steps per page
+ * @chip_delay:                [BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR)
+ * @chip_lock:         [INTERN] spinlock used to protect access to this structure and the chip
+ * @wq:                        [INTERN] wait queue to sleep on if a NAND operation is in progress
+ * @state:             [INTERN] the current state of the NAND device
+ * @page_shift:                [INTERN] number of address bits in a page (column address bits)
+ * @phys_erase_shift:  [INTERN] number of address bits in a physical eraseblock
+ * @bbt_erase_shift:   [INTERN] number of address bits in a bbt entry
+ * @chip_shift:                [INTERN] number of address bits in one chip
+ * @data_buf:          [INTERN] internal buffer for one page + oob 
+ * @oob_buf:           [INTERN] oob buffer for one eraseblock
+ * @oobdirty:          [INTERN] indicates that oob_buf must be reinitialized
+ * @data_poi:          [INTERN] pointer to a data buffer
+ * @options:           [BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about
+ *                     special functionality. See the defines for further explanation
+ * @badblockpos:       [INTERN] position of the bad block marker in the oob area
+ * @numchips:          [INTERN] number of physical chips
+ * @chipsize:          [INTERN] the size of one chip for multichip arrays
+ * @pagemask:          [INTERN] page number mask = number of (pages / chip) - 1
+ * @pagebuf:           [INTERN] holds the pagenumber which is currently in data_buf
+ * @autooob:           [REPLACEABLE] the default (auto)placement scheme
+ * @bbt:               [INTERN] bad block table pointer
+ * @bbt_td:            [REPLACEABLE] bad block table descriptor for flash lookup
+ * @bbt_md:            [REPLACEABLE] bad block table mirror descriptor
+ * @priv:              [OPTIONAL] pointer to private chip date
  */
 struct nand_chip {
        unsigned long   IO_ADDR_R;
        unsigned long   IO_ADDR_W;
-       void            (*hwcontrol)(int cmd);
-       int             (*dev_ready)(void);
+       
+       u_char          (*read_byte)(struct mtd_info *mtd);
+       void            (*write_byte)(struct mtd_info *mtd, u_char byte);
+       u16             (*read_word)(struct mtd_info *mtd);
+       void            (*write_word)(struct mtd_info *mtd, u16 word);
+       
+       void            (*write_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+       void            (*read_buf)(struct mtd_info *mtd, u_char *buf, int len);
+       int             (*verify_buf)(struct mtd_info *mtd, const u_char *buf, int len);
+       void            (*select_chip)(struct mtd_info *mtd, int chip);
+       int             (*block_bad)(struct mtd_info *mtd, loff_t ofs, int getchip);
+       int             (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
+       void            (*hwcontrol)(struct mtd_info *mtd, int cmd);
+       int             (*dev_ready)(struct mtd_info *mtd);
        void            (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr);
        int             (*waitfunc)(struct mtd_info *mtd, struct nand_chip *this, int state);
-       void            (*calculate_ecc)(const u_char *dat, u_char *ecc_code);
-       int             (*correct_data)(u_char *dat, u_char *read_ecc, u_char *calc_ecc);
-       void            (*enable_hwecc)(int mode);
+       int             (*calculate_ecc)(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
+       int             (*correct_data)(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+       void            (*enable_hwecc)(struct mtd_info *mtd, int mode);
+       void            (*erase_cmd)(struct mtd_info *mtd, int page);
+       int             (*scan_bbt)(struct mtd_info *mtd);
        int             eccmode;
        int             eccsize;
+       int             eccsteps;
        int             chip_delay;
-       spinlock_t      chip_lock;
+       spinlock_t      chip_lock;
        wait_queue_head_t wq;
        nand_state_t    state;
        int             page_shift;
+       int             phys_erase_shift;
+       int             bbt_erase_shift;
+       int             chip_shift;
        u_char          *data_buf;
+       u_char          *oob_buf;
+       int             oobdirty;
        u_char          *data_poi;
+       unsigned int    options;
+       int             badblockpos;
+       int             numchips;
+       unsigned long   chipsize;
+       int             pagemask;
+       int             pagebuf;
+       struct nand_oobinfo     *autooob;
+       uint8_t         *bbt;
+       struct nand_bbt_descr   *bbt_td;
+       struct nand_bbt_descr   *bbt_md;
+       void            *priv;
 };
 
 /*
@@ -187,46 +327,35 @@ struct nand_chip {
 #define NAND_MFR_SAMSUNG       0xec
 #define NAND_MFR_FUJITSU       0x04
 #define NAND_MFR_NATIONAL      0x8f
+#define NAND_MFR_RENESAS       0x07
+#define NAND_MFR_STMICRO       0x20
 
-/*
- * NAND Flash Device ID Structure
- *
- * Structure overview:
- *
- *  name - Identify the device type
- *
- *  id -  device ID code
- *
- *  chipshift - total number of address bits for the device which
- *              is used to calculate address offsets and the total
- *              number of bytes the device is capable of.
- *
- *  page256 - denotes if flash device has 256 byte pages or not.
- *
- *  pageadrlen - number of bytes minus one needed to hold the
- *               complete address into the flash array. Keep in
- *               mind that when a read or write is done to a
- *               specific address, the address is input serially
- *               8 bits at a time. This structure member is used
- *               by the read/write routines as a loop index for
- *               shifting the address out 8 bits at a time.
- *
- *  erasesize - size of an erase block in the flash device.
+/**
+ * struct nand_flash_dev - NAND Flash Device ID Structure
+ *
+ * @name:      Identify the device type
+ * @id:        device ID code
+ * @pagesize:          Pagesize in bytes. Either 256 or 512 or 0
+ *             If the pagesize is 0, then the real pagesize 
+ *             and the eraseize are determined from the
+ *             extended id bytes in the chip
+ * @erasesize:         Size of an erase block in the flash device.
+ * @chipsize:          Total chipsize in Mega Bytes
+ * @options:   Bitfield to store chip relevant options
  */
 struct nand_flash_dev {
-       char * name;
+       char *name;
        int id;
-       int chipshift;
+       unsigned long pagesize;
+       unsigned long chipsize;
        unsigned long erasesize;
-       char page256;
+       unsigned long options;
 };
 
-/*
- * NAND Flash Manufacturer ID Structure
- *
- *  name - Manufacturer name
- *
- *  id - manufacturer ID code of device.
+/**
+ * struct nand_manufacturers - NAND Flash Manufacturer ID Structure
+ * @name:      Manufacturer name
+ * @id:        manufacturer ID code of device.
 */
 struct nand_manufacturers {
        int id;
@@ -236,9 +365,85 @@ struct nand_manufacturers {
 extern struct nand_flash_dev nand_flash_ids[];
 extern struct nand_manufacturers nand_manuf_ids[];
 
+/** 
+ * struct nand_bbt_descr - bad block table descriptor
+ * @options:   options for this descriptor
+ * @pages:     the page(s) where we find the bbt, used with option BBT_ABSPAGE
+ *             when bbt is searched, then we store the found bbts pages here.
+ *             Its an array and supports up to 8 chips now
+ * @offs:      offset of the pattern in the oob area of the page
+ * @veroffs:   offset of the bbt version counter in the oob are of the page
+ * @version:   version read from the bbt page during scan
+ * @len:       length of the pattern, if 0 no pattern check is performed
+ * @maxblocks: maximum number of blocks to search for a bbt. This number of
+ *             blocks is reserved at the end of the device where the tables are 
+ *             written.
+ * @reserved_block_code: if non-0, this pattern denotes a reserved (rather than
+ *              bad) block in the stored bbt
+ * @pattern:   pattern to identify bad block table or factory marked good / 
+ *             bad blocks, can be NULL, if len = 0
+ *
+ * Descriptor for the bad block table marker and the descriptor for the 
+ * pattern which identifies good and bad blocks. The assumption is made
+ * that the pattern and the version count are always located in the oob area
+ * of the first block.
+ */
+struct nand_bbt_descr {
+       int     options;
+       int     pages[NAND_MAX_CHIPS];
+       int     offs;
+       int     veroffs;
+       uint8_t version[NAND_MAX_CHIPS];
+       int     len;
+       int     maxblocks;
+       int     reserved_block_code;
+       uint8_t *pattern;
+};
+
+/* Options for the bad block table descriptors */
+
+/* The number of bits used per block in the bbt on the device */
+#define NAND_BBT_NRBITS_MSK    0x0000000F
+#define NAND_BBT_1BIT          0x00000001
+#define NAND_BBT_2BIT          0x00000002
+#define NAND_BBT_4BIT          0x00000004
+#define NAND_BBT_8BIT          0x00000008
+/* The bad block table is in the last good block of the device */
+#define        NAND_BBT_LASTBLOCK      0x00000010
+/* The bbt is at the given page, else we must scan for the bbt */
+#define NAND_BBT_ABSPAGE       0x00000020
+/* The bbt is at the given page, else we must scan for the bbt */
+#define NAND_BBT_SEARCH                0x00000040
+/* bbt is stored per chip on multichip devices */
+#define NAND_BBT_PERCHIP       0x00000080
+/* bbt has a version counter at offset veroffs */
+#define NAND_BBT_VERSION       0x00000100
+/* Create a bbt if none axists */
+#define NAND_BBT_CREATE                0x00000200
+/* Search good / bad pattern through all pages of a block */
+#define NAND_BBT_SCANALLPAGES  0x00000400
+/* Scan block empty during good / bad block scan */
+#define NAND_BBT_SCANEMPTY     0x00000800
+/* Write bbt if neccecary */
+#define NAND_BBT_WRITE         0x00001000
+/* Read and write back block contents when writing bbt */
+#define NAND_BBT_SAVECONTENT   0x00002000
+/* Search good / bad pattern on the first and the second page */
+#define NAND_BBT_SCAN2NDPAGE   0x00004000
+
+/* The maximum number of blocks to scan for a bbt */
+#define NAND_BBT_SCAN_MAXBLOCKS        4
+
+extern int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd);
+extern int nand_update_bbt (struct mtd_info *mtd, loff_t offs);
+extern int nand_default_bbt (struct mtd_info *mtd);
+extern int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt);
+extern int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt);
+
 /*
 * Constants for oob configuration
 */
-#define NAND_BADBLOCK_POS              5
+#define NAND_SMALL_BADBLOCK_POS                5
+#define NAND_LARGE_BADBLOCK_POS                0
 
 #endif /* __LINUX_MTD_NAND_H */
index c3b493c..12c5bc3 100644 (file)
@@ -3,7 +3,7 @@
  *
  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  *
- * $Id: nand_ecc.h,v 1.2 2003/02/20 13:34:20 sjhill Exp $
+ * $Id: nand_ecc.h,v 1.4 2004/06/17 02:35:02 dbrown Exp $
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License version 2 as
  * This file is the header for the ECC algorithm.
  */
 
-/*
- * Creates non-inverted ECC code from line parity
- */
-void nand_trans_result(u_char reg2, u_char reg3, u_char *ecc_code);
+#ifndef __MTD_NAND_ECC_H__
+#define __MTD_NAND_ECC_H__
+
+struct mtd_info;
 
 /*
  * Calculate 3 byte ECC code for 256 byte block
  */
-void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code);
 
 /*
  * Detect and correct a 1 bit error for 256 byte block
  */
-int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+
+#endif /* __MTD_NAND_ECC_H__ */