ia64/pv_ops/pv_time_ops: add sched_clock hook.
[linux-flexiantxendom0-3.2.10.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      Stephane Eranian <eranian@hpl.hp.com>
6  *      David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/paravirt.h>
28 #include <asm/ptrace.h>
29 #include <asm/sal.h>
30 #include <asm/sections.h>
31 #include <asm/system.h>
32
33 #include "fsyscall_gtod_data.h"
34
35 static cycle_t itc_get_cycles(void);
36
37 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
38         .lock = SEQLOCK_UNLOCKED,
39 };
40
41 struct itc_jitter_data_t itc_jitter_data;
42
43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
44
45 #ifdef CONFIG_IA64_DEBUG_IRQ
46
47 unsigned long last_cli_ip;
48 EXPORT_SYMBOL(last_cli_ip);
49
50 #endif
51
52 #ifdef CONFIG_PARAVIRT
53 /* We need to define a real function for sched_clock, to override the
54    weak default version */
55 unsigned long long sched_clock(void)
56 {
57         return paravirt_sched_clock();
58 }
59 #endif
60
61 #ifdef CONFIG_PARAVIRT
62 static void
63 paravirt_clocksource_resume(void)
64 {
65         if (pv_time_ops.clocksource_resume)
66                 pv_time_ops.clocksource_resume();
67 }
68 #endif
69
70 static struct clocksource clocksource_itc = {
71         .name           = "itc",
72         .rating         = 350,
73         .read           = itc_get_cycles,
74         .mask           = CLOCKSOURCE_MASK(64),
75         .mult           = 0, /*to be calculated*/
76         .shift          = 16,
77         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
78 #ifdef CONFIG_PARAVIRT
79         .resume         = paravirt_clocksource_resume,
80 #endif
81 };
82 static struct clocksource *itc_clocksource;
83
84 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
85
86 #include <linux/kernel_stat.h>
87
88 extern cputime_t cycle_to_cputime(u64 cyc);
89
90 /*
91  * Called from the context switch with interrupts disabled, to charge all
92  * accumulated times to the current process, and to prepare accounting on
93  * the next process.
94  */
95 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
96 {
97         struct thread_info *pi = task_thread_info(prev);
98         struct thread_info *ni = task_thread_info(next);
99         cputime_t delta_stime, delta_utime;
100         __u64 now;
101
102         now = ia64_get_itc();
103
104         delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
105         if (idle_task(smp_processor_id()) != prev)
106                 account_system_time(prev, 0, delta_stime, delta_stime);
107         else
108                 account_idle_time(delta_stime);
109
110         if (pi->ac_utime) {
111                 delta_utime = cycle_to_cputime(pi->ac_utime);
112                 account_user_time(prev, delta_utime, delta_utime);
113         }
114
115         pi->ac_stamp = ni->ac_stamp = now;
116         ni->ac_stime = ni->ac_utime = 0;
117 }
118
119 /*
120  * Account time for a transition between system, hard irq or soft irq state.
121  * Note that this function is called with interrupts enabled.
122  */
123 void account_system_vtime(struct task_struct *tsk)
124 {
125         struct thread_info *ti = task_thread_info(tsk);
126         unsigned long flags;
127         cputime_t delta_stime;
128         __u64 now;
129
130         local_irq_save(flags);
131
132         now = ia64_get_itc();
133
134         delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
135         if (irq_count() || idle_task(smp_processor_id()) != tsk)
136                 account_system_time(tsk, 0, delta_stime, delta_stime);
137         else
138                 account_idle_time(delta_stime);
139         ti->ac_stime = 0;
140
141         ti->ac_stamp = now;
142
143         local_irq_restore(flags);
144 }
145 EXPORT_SYMBOL_GPL(account_system_vtime);
146
147 /*
148  * Called from the timer interrupt handler to charge accumulated user time
149  * to the current process.  Must be called with interrupts disabled.
150  */
151 void account_process_tick(struct task_struct *p, int user_tick)
152 {
153         struct thread_info *ti = task_thread_info(p);
154         cputime_t delta_utime;
155
156         if (ti->ac_utime) {
157                 delta_utime = cycle_to_cputime(ti->ac_utime);
158                 account_user_time(p, delta_utime, delta_utime);
159                 ti->ac_utime = 0;
160         }
161 }
162
163 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
164
165 static irqreturn_t
166 timer_interrupt (int irq, void *dev_id)
167 {
168         unsigned long new_itm;
169
170         if (unlikely(cpu_is_offline(smp_processor_id()))) {
171                 return IRQ_HANDLED;
172         }
173
174         platform_timer_interrupt(irq, dev_id);
175
176         new_itm = local_cpu_data->itm_next;
177
178         if (!time_after(ia64_get_itc(), new_itm))
179                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
180                        ia64_get_itc(), new_itm);
181
182         profile_tick(CPU_PROFILING);
183
184         if (paravirt_do_steal_accounting(&new_itm))
185                 goto skip_process_time_accounting;
186
187         while (1) {
188                 update_process_times(user_mode(get_irq_regs()));
189
190                 new_itm += local_cpu_data->itm_delta;
191
192                 if (smp_processor_id() == time_keeper_id) {
193                         /*
194                          * Here we are in the timer irq handler. We have irqs locally
195                          * disabled, but we don't know if the timer_bh is running on
196                          * another CPU. We need to avoid to SMP race by acquiring the
197                          * xtime_lock.
198                          */
199                         write_seqlock(&xtime_lock);
200                         do_timer(1);
201                         local_cpu_data->itm_next = new_itm;
202                         write_sequnlock(&xtime_lock);
203                 } else
204                         local_cpu_data->itm_next = new_itm;
205
206                 if (time_after(new_itm, ia64_get_itc()))
207                         break;
208
209                 /*
210                  * Allow IPIs to interrupt the timer loop.
211                  */
212                 local_irq_enable();
213                 local_irq_disable();
214         }
215
216 skip_process_time_accounting:
217
218         do {
219                 /*
220                  * If we're too close to the next clock tick for
221                  * comfort, we increase the safety margin by
222                  * intentionally dropping the next tick(s).  We do NOT
223                  * update itm.next because that would force us to call
224                  * do_timer() which in turn would let our clock run
225                  * too fast (with the potentially devastating effect
226                  * of losing monotony of time).
227                  */
228                 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
229                         new_itm += local_cpu_data->itm_delta;
230                 ia64_set_itm(new_itm);
231                 /* double check, in case we got hit by a (slow) PMI: */
232         } while (time_after_eq(ia64_get_itc(), new_itm));
233         return IRQ_HANDLED;
234 }
235
236 /*
237  * Encapsulate access to the itm structure for SMP.
238  */
239 void
240 ia64_cpu_local_tick (void)
241 {
242         int cpu = smp_processor_id();
243         unsigned long shift = 0, delta;
244
245         /* arrange for the cycle counter to generate a timer interrupt: */
246         ia64_set_itv(IA64_TIMER_VECTOR);
247
248         delta = local_cpu_data->itm_delta;
249         /*
250          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
251          * same time:
252          */
253         if (cpu) {
254                 unsigned long hi = 1UL << ia64_fls(cpu);
255                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
256         }
257         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
258         ia64_set_itm(local_cpu_data->itm_next);
259 }
260
261 static int nojitter;
262
263 static int __init nojitter_setup(char *str)
264 {
265         nojitter = 1;
266         printk("Jitter checking for ITC timers disabled\n");
267         return 1;
268 }
269
270 __setup("nojitter", nojitter_setup);
271
272
273 void __devinit
274 ia64_init_itm (void)
275 {
276         unsigned long platform_base_freq, itc_freq;
277         struct pal_freq_ratio itc_ratio, proc_ratio;
278         long status, platform_base_drift, itc_drift;
279
280         /*
281          * According to SAL v2.6, we need to use a SAL call to determine the platform base
282          * frequency and then a PAL call to determine the frequency ratio between the ITC
283          * and the base frequency.
284          */
285         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
286                                     &platform_base_freq, &platform_base_drift);
287         if (status != 0) {
288                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
289         } else {
290                 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
291                 if (status != 0)
292                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
293         }
294         if (status != 0) {
295                 /* invent "random" values */
296                 printk(KERN_ERR
297                        "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
298                 platform_base_freq = 100000000;
299                 platform_base_drift = -1;       /* no drift info */
300                 itc_ratio.num = 3;
301                 itc_ratio.den = 1;
302         }
303         if (platform_base_freq < 40000000) {
304                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
305                        platform_base_freq);
306                 platform_base_freq = 75000000;
307                 platform_base_drift = -1;
308         }
309         if (!proc_ratio.den)
310                 proc_ratio.den = 1;     /* avoid division by zero */
311         if (!itc_ratio.den)
312                 itc_ratio.den = 1;      /* avoid division by zero */
313
314         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
315
316         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
317         printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
318                "ITC freq=%lu.%03luMHz", smp_processor_id(),
319                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
320                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
321
322         if (platform_base_drift != -1) {
323                 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
324                 printk("+/-%ldppm\n", itc_drift);
325         } else {
326                 itc_drift = -1;
327                 printk("\n");
328         }
329
330         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
331         local_cpu_data->itc_freq = itc_freq;
332         local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
333         local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
334                                         + itc_freq/2)/itc_freq;
335
336         if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
337 #ifdef CONFIG_SMP
338                 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
339                  * Jitter compensation requires a cmpxchg which may limit
340                  * the scalability of the syscalls for retrieving time.
341                  * The ITC synchronization is usually successful to within a few
342                  * ITC ticks but this is not a sure thing. If you need to improve
343                  * timer performance in SMP situations then boot the kernel with the
344                  * "nojitter" option. However, doing so may result in time fluctuating (maybe
345                  * even going backward) if the ITC offsets between the individual CPUs
346                  * are too large.
347                  */
348                 if (!nojitter)
349                         itc_jitter_data.itc_jitter = 1;
350 #endif
351         } else
352                 /*
353                  * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
354                  * ITC values may fluctuate significantly between processors.
355                  * Clock should not be used for hrtimers. Mark itc as only
356                  * useful for boot and testing.
357                  *
358                  * Note that jitter compensation is off! There is no point of
359                  * synchronizing ITCs since they may be large differentials
360                  * that change over time.
361                  *
362                  * The only way to fix this would be to repeatedly sync the
363                  * ITCs. Until that time we have to avoid ITC.
364                  */
365                 clocksource_itc.rating = 50;
366
367         paravirt_init_missing_ticks_accounting(smp_processor_id());
368
369         /* avoid softlock up message when cpu is unplug and plugged again. */
370         touch_softlockup_watchdog();
371
372         /* Setup the CPU local timer tick */
373         ia64_cpu_local_tick();
374
375         if (!itc_clocksource) {
376                 /* Sort out mult/shift values: */
377                 clocksource_itc.mult =
378                         clocksource_hz2mult(local_cpu_data->itc_freq,
379                                                 clocksource_itc.shift);
380                 clocksource_register(&clocksource_itc);
381                 itc_clocksource = &clocksource_itc;
382         }
383 }
384
385 static cycle_t itc_get_cycles(void)
386 {
387         u64 lcycle, now, ret;
388
389         if (!itc_jitter_data.itc_jitter)
390                 return get_cycles();
391
392         lcycle = itc_jitter_data.itc_lastcycle;
393         now = get_cycles();
394         if (lcycle && time_after(lcycle, now))
395                 return lcycle;
396
397         /*
398          * Keep track of the last timer value returned.
399          * In an SMP environment, you could lose out in contention of
400          * cmpxchg. If so, your cmpxchg returns new value which the
401          * winner of contention updated to. Use the new value instead.
402          */
403         ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
404         if (unlikely(ret != lcycle))
405                 return ret;
406
407         return now;
408 }
409
410
411 static struct irqaction timer_irqaction = {
412         .handler =      timer_interrupt,
413         .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
414         .name =         "timer"
415 };
416
417 void __init
418 time_init (void)
419 {
420         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
421         efi_gettimeofday(&xtime);
422         ia64_init_itm();
423
424         /*
425          * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
426          * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
427          */
428         set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
429 }
430
431 /*
432  * Generic udelay assumes that if preemption is allowed and the thread
433  * migrates to another CPU, that the ITC values are synchronized across
434  * all CPUs.
435  */
436 static void
437 ia64_itc_udelay (unsigned long usecs)
438 {
439         unsigned long start = ia64_get_itc();
440         unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
441
442         while (time_before(ia64_get_itc(), end))
443                 cpu_relax();
444 }
445
446 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
447
448 void
449 udelay (unsigned long usecs)
450 {
451         (*ia64_udelay)(usecs);
452 }
453 EXPORT_SYMBOL(udelay);
454
455 /* IA64 doesn't cache the timezone */
456 void update_vsyscall_tz(void)
457 {
458 }
459
460 void update_vsyscall(struct timespec *wall, struct clocksource *c)
461 {
462         unsigned long flags;
463
464         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
465
466         /* copy fsyscall clock data */
467         fsyscall_gtod_data.clk_mask = c->mask;
468         fsyscall_gtod_data.clk_mult = c->mult;
469         fsyscall_gtod_data.clk_shift = c->shift;
470         fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
471         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
472
473         /* copy kernel time structures */
474         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
475         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
476         fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
477                                                         + wall->tv_sec;
478         fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
479                                                         + wall->tv_nsec;
480
481         /* normalize */
482         while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
483                 fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
484                 fsyscall_gtod_data.monotonic_time.tv_sec++;
485         }
486
487         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
488 }
489