- Update to 3.3-rc2.
[linux-flexiantxendom0-3.2.10.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static struct kmem_cache        *rpc_task_slabp __read_mostly;
38 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
39 static mempool_t        *rpc_task_mempool __read_mostly;
40 static mempool_t        *rpc_buffer_mempool __read_mostly;
41
42 static void                     rpc_async_schedule(struct work_struct *);
43 static void                      rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
45
46 /*
47  * RPC tasks sit here while waiting for conditions to improve.
48  */
49 static struct rpc_wait_queue delay_queue;
50
51 /*
52  * rpciod-related stuff
53  */
54 struct workqueue_struct *rpciod_workqueue;
55
56 /*
57  * Disable the timer for a given RPC task. Should be called with
58  * queue->lock and bh_disabled in order to avoid races within
59  * rpc_run_timer().
60  */
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 {
64         if (task->tk_timeout == 0)
65                 return;
66         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67         task->tk_timeout = 0;
68         list_del(&task->u.tk_wait.timer_list);
69         if (list_empty(&queue->timer_list.list))
70                 del_timer(&queue->timer_list.timer);
71 }
72
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 {
76         queue->timer_list.expires = expires;
77         mod_timer(&queue->timer_list.timer, expires);
78 }
79
80 /*
81  * Set up a timer for the current task.
82  */
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86         if (!task->tk_timeout)
87                 return;
88
89         dprintk("RPC: %5u setting alarm for %lu ms\n",
90                         task->tk_pid, task->tk_timeout * 1000 / HZ);
91
92         task->u.tk_wait.expires = jiffies + task->tk_timeout;
93         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
96 }
97
98 /*
99  * Add new request to a priority queue.
100  */
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
102                 struct rpc_task *task,
103                 unsigned char queue_priority)
104 {
105         struct list_head *q;
106         struct rpc_task *t;
107
108         INIT_LIST_HEAD(&task->u.tk_wait.links);
109         q = &queue->tasks[queue_priority];
110         if (unlikely(queue_priority > queue->maxpriority))
111                 q = &queue->tasks[queue->maxpriority];
112         list_for_each_entry(t, q, u.tk_wait.list) {
113                 if (t->tk_owner == task->tk_owner) {
114                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
115                         return;
116                 }
117         }
118         list_add_tail(&task->u.tk_wait.list, q);
119 }
120
121 /*
122  * Add new request to wait queue.
123  *
124  * Swapper tasks always get inserted at the head of the queue.
125  * This should avoid many nasty memory deadlocks and hopefully
126  * improve overall performance.
127  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
128  */
129 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
130                 struct rpc_task *task,
131                 unsigned char queue_priority)
132 {
133         BUG_ON (RPC_IS_QUEUED(task));
134
135         if (RPC_IS_PRIORITY(queue))
136                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
137         else if (RPC_IS_SWAPPER(task))
138                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
139         else
140                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
141         task->tk_waitqueue = queue;
142         queue->qlen++;
143         rpc_set_queued(task);
144
145         dprintk("RPC: %5u added to queue %p \"%s\"\n",
146                         task->tk_pid, queue, rpc_qname(queue));
147 }
148
149 /*
150  * Remove request from a priority queue.
151  */
152 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
153 {
154         struct rpc_task *t;
155
156         if (!list_empty(&task->u.tk_wait.links)) {
157                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
158                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
159                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
160         }
161 }
162
163 /*
164  * Remove request from queue.
165  * Note: must be called with spin lock held.
166  */
167 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
168 {
169         __rpc_disable_timer(queue, task);
170         if (RPC_IS_PRIORITY(queue))
171                 __rpc_remove_wait_queue_priority(task);
172         list_del(&task->u.tk_wait.list);
173         queue->qlen--;
174         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
175                         task->tk_pid, queue, rpc_qname(queue));
176 }
177
178 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
179 {
180         queue->priority = priority;
181         queue->count = 1 << (priority * 2);
182 }
183
184 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
185 {
186         queue->owner = pid;
187         queue->nr = RPC_BATCH_COUNT;
188 }
189
190 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
191 {
192         rpc_set_waitqueue_priority(queue, queue->maxpriority);
193         rpc_set_waitqueue_owner(queue, 0);
194 }
195
196 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
197 {
198         int i;
199
200         spin_lock_init(&queue->lock);
201         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
202                 INIT_LIST_HEAD(&queue->tasks[i]);
203         queue->maxpriority = nr_queues - 1;
204         rpc_reset_waitqueue_priority(queue);
205         queue->qlen = 0;
206         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
207         INIT_LIST_HEAD(&queue->timer_list.list);
208 #ifdef RPC_DEBUG
209         queue->name = qname;
210 #endif
211 }
212
213 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
214 {
215         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
216 }
217 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
218
219 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
220 {
221         __rpc_init_priority_wait_queue(queue, qname, 1);
222 }
223 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
224
225 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
226 {
227         del_timer_sync(&queue->timer_list.timer);
228 }
229 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
230
231 static int rpc_wait_bit_killable(void *word)
232 {
233         if (fatal_signal_pending(current))
234                 return -ERESTARTSYS;
235         freezable_schedule();
236         return 0;
237 }
238
239 #ifdef RPC_DEBUG
240 static void rpc_task_set_debuginfo(struct rpc_task *task)
241 {
242         static atomic_t rpc_pid;
243
244         task->tk_pid = atomic_inc_return(&rpc_pid);
245 }
246 #else
247 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
248 {
249 }
250 #endif
251
252 static void rpc_set_active(struct rpc_task *task)
253 {
254         rpc_task_set_debuginfo(task);
255         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
256 }
257
258 /*
259  * Mark an RPC call as having completed by clearing the 'active' bit
260  * and then waking up all tasks that were sleeping.
261  */
262 static int rpc_complete_task(struct rpc_task *task)
263 {
264         void *m = &task->tk_runstate;
265         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
266         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
267         unsigned long flags;
268         int ret;
269
270         spin_lock_irqsave(&wq->lock, flags);
271         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
272         ret = atomic_dec_and_test(&task->tk_count);
273         if (waitqueue_active(wq))
274                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
275         spin_unlock_irqrestore(&wq->lock, flags);
276         return ret;
277 }
278
279 /*
280  * Allow callers to wait for completion of an RPC call
281  *
282  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
283  * to enforce taking of the wq->lock and hence avoid races with
284  * rpc_complete_task().
285  */
286 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
287 {
288         if (action == NULL)
289                 action = rpc_wait_bit_killable;
290         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
291                         action, TASK_KILLABLE);
292 }
293 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
294
295 /*
296  * Make an RPC task runnable.
297  *
298  * Note: If the task is ASYNC, this must be called with
299  * the spinlock held to protect the wait queue operation.
300  */
301 static void rpc_make_runnable(struct rpc_task *task)
302 {
303         rpc_clear_queued(task);
304         if (rpc_test_and_set_running(task))
305                 return;
306         if (RPC_IS_ASYNC(task)) {
307                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
308                 queue_work(rpciod_workqueue, &task->u.tk_work);
309         } else
310                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
311 }
312
313 /*
314  * Prepare for sleeping on a wait queue.
315  * By always appending tasks to the list we ensure FIFO behavior.
316  * NB: An RPC task will only receive interrupt-driven events as long
317  * as it's on a wait queue.
318  */
319 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
320                 struct rpc_task *task,
321                 rpc_action action,
322                 unsigned char queue_priority)
323 {
324         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325                         task->tk_pid, rpc_qname(q), jiffies);
326
327         __rpc_add_wait_queue(q, task, queue_priority);
328
329         BUG_ON(task->tk_callback != NULL);
330         task->tk_callback = action;
331         __rpc_add_timer(q, task);
332 }
333
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335                                 rpc_action action)
336 {
337         /* We shouldn't ever put an inactive task to sleep */
338         BUG_ON(!RPC_IS_ACTIVATED(task));
339
340         /*
341          * Protect the queue operations.
342          */
343         spin_lock_bh(&q->lock);
344         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
345         spin_unlock_bh(&q->lock);
346 }
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
348
349 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
350                 rpc_action action, int priority)
351 {
352         /* We shouldn't ever put an inactive task to sleep */
353         BUG_ON(!RPC_IS_ACTIVATED(task));
354
355         /*
356          * Protect the queue operations.
357          */
358         spin_lock_bh(&q->lock);
359         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
360         spin_unlock_bh(&q->lock);
361 }
362
363 /**
364  * __rpc_do_wake_up_task - wake up a single rpc_task
365  * @queue: wait queue
366  * @task: task to be woken up
367  *
368  * Caller must hold queue->lock, and have cleared the task queued flag.
369  */
370 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
371 {
372         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
373                         task->tk_pid, jiffies);
374
375         /* Has the task been executed yet? If not, we cannot wake it up! */
376         if (!RPC_IS_ACTIVATED(task)) {
377                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
378                 return;
379         }
380
381         __rpc_remove_wait_queue(queue, task);
382
383         rpc_make_runnable(task);
384
385         dprintk("RPC:       __rpc_wake_up_task done\n");
386 }
387
388 /*
389  * Wake up a queued task while the queue lock is being held
390  */
391 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
392 {
393         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
394                 __rpc_do_wake_up_task(queue, task);
395 }
396
397 /*
398  * Tests whether rpc queue is empty
399  */
400 int rpc_queue_empty(struct rpc_wait_queue *queue)
401 {
402         int res;
403
404         spin_lock_bh(&queue->lock);
405         res = queue->qlen;
406         spin_unlock_bh(&queue->lock);
407         return res == 0;
408 }
409 EXPORT_SYMBOL_GPL(rpc_queue_empty);
410
411 /*
412  * Wake up a task on a specific queue
413  */
414 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
415 {
416         spin_lock_bh(&queue->lock);
417         rpc_wake_up_task_queue_locked(queue, task);
418         spin_unlock_bh(&queue->lock);
419 }
420 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
421
422 /*
423  * Wake up the next task on a priority queue.
424  */
425 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
426 {
427         struct list_head *q;
428         struct rpc_task *task;
429
430         /*
431          * Service a batch of tasks from a single owner.
432          */
433         q = &queue->tasks[queue->priority];
434         if (!list_empty(q)) {
435                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
436                 if (queue->owner == task->tk_owner) {
437                         if (--queue->nr)
438                                 goto out;
439                         list_move_tail(&task->u.tk_wait.list, q);
440                 }
441                 /*
442                  * Check if we need to switch queues.
443                  */
444                 if (--queue->count)
445                         goto new_owner;
446         }
447
448         /*
449          * Service the next queue.
450          */
451         do {
452                 if (q == &queue->tasks[0])
453                         q = &queue->tasks[queue->maxpriority];
454                 else
455                         q = q - 1;
456                 if (!list_empty(q)) {
457                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
458                         goto new_queue;
459                 }
460         } while (q != &queue->tasks[queue->priority]);
461
462         rpc_reset_waitqueue_priority(queue);
463         return NULL;
464
465 new_queue:
466         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
467 new_owner:
468         rpc_set_waitqueue_owner(queue, task->tk_owner);
469 out:
470         rpc_wake_up_task_queue_locked(queue, task);
471         return task;
472 }
473
474 /*
475  * Wake up the next task on the wait queue.
476  */
477 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
478 {
479         struct rpc_task *task = NULL;
480
481         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
482                         queue, rpc_qname(queue));
483         spin_lock_bh(&queue->lock);
484         if (RPC_IS_PRIORITY(queue))
485                 task = __rpc_wake_up_next_priority(queue);
486         else {
487                 task_for_first(task, &queue->tasks[0])
488                         rpc_wake_up_task_queue_locked(queue, task);
489         }
490         spin_unlock_bh(&queue->lock);
491
492         return task;
493 }
494 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
495
496 /**
497  * rpc_wake_up - wake up all rpc_tasks
498  * @queue: rpc_wait_queue on which the tasks are sleeping
499  *
500  * Grabs queue->lock
501  */
502 void rpc_wake_up(struct rpc_wait_queue *queue)
503 {
504         struct rpc_task *task, *next;
505         struct list_head *head;
506
507         spin_lock_bh(&queue->lock);
508         head = &queue->tasks[queue->maxpriority];
509         for (;;) {
510                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
511                         rpc_wake_up_task_queue_locked(queue, task);
512                 if (head == &queue->tasks[0])
513                         break;
514                 head--;
515         }
516         spin_unlock_bh(&queue->lock);
517 }
518 EXPORT_SYMBOL_GPL(rpc_wake_up);
519
520 /**
521  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
522  * @queue: rpc_wait_queue on which the tasks are sleeping
523  * @status: status value to set
524  *
525  * Grabs queue->lock
526  */
527 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
528 {
529         struct rpc_task *task, *next;
530         struct list_head *head;
531
532         spin_lock_bh(&queue->lock);
533         head = &queue->tasks[queue->maxpriority];
534         for (;;) {
535                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
536                         task->tk_status = status;
537                         rpc_wake_up_task_queue_locked(queue, task);
538                 }
539                 if (head == &queue->tasks[0])
540                         break;
541                 head--;
542         }
543         spin_unlock_bh(&queue->lock);
544 }
545 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
546
547 /**
548  * rpc_wake_up_softconn_status - wake up all SOFTCONN rpc_tasks and set their
549  * status value.
550  * @queue: rpc_wait_queue on which the tasks are sleeping
551  * @status: status value to set
552  *
553  * Grabs queue->lock
554  */
555 void rpc_wake_up_softconn_status(struct rpc_wait_queue *queue, int status)
556 {
557         struct rpc_task *task, *next;
558         struct list_head *head;
559
560         spin_lock_bh(&queue->lock);
561         head = &queue->tasks[queue->maxpriority];
562         for (;;) {
563                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
564                         if (RPC_IS_SOFTCONN(task)) {
565                                 task->tk_status = status;
566                                 rpc_wake_up_task_queue_locked(queue, task);
567                         }
568                 if (head == &queue->tasks[0])
569                         break;
570                 head--;
571         }
572         spin_unlock_bh(&queue->lock);
573 }
574 EXPORT_SYMBOL_GPL(rpc_wake_up_softconn_status);
575
576 static void __rpc_queue_timer_fn(unsigned long ptr)
577 {
578         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
579         struct rpc_task *task, *n;
580         unsigned long expires, now, timeo;
581
582         spin_lock(&queue->lock);
583         expires = now = jiffies;
584         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
585                 timeo = task->u.tk_wait.expires;
586                 if (time_after_eq(now, timeo)) {
587                         dprintk("RPC: %5u timeout\n", task->tk_pid);
588                         task->tk_status = -ETIMEDOUT;
589                         rpc_wake_up_task_queue_locked(queue, task);
590                         continue;
591                 }
592                 if (expires == now || time_after(expires, timeo))
593                         expires = timeo;
594         }
595         if (!list_empty(&queue->timer_list.list))
596                 rpc_set_queue_timer(queue, expires);
597         spin_unlock(&queue->lock);
598 }
599
600 static void __rpc_atrun(struct rpc_task *task)
601 {
602         task->tk_status = 0;
603 }
604
605 /*
606  * Run a task at a later time
607  */
608 void rpc_delay(struct rpc_task *task, unsigned long delay)
609 {
610         task->tk_timeout = delay;
611         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
612 }
613 EXPORT_SYMBOL_GPL(rpc_delay);
614
615 /*
616  * Helper to call task->tk_ops->rpc_call_prepare
617  */
618 void rpc_prepare_task(struct rpc_task *task)
619 {
620         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
621 }
622
623 static void
624 rpc_init_task_statistics(struct rpc_task *task)
625 {
626         /* Initialize retry counters */
627         task->tk_garb_retry = 2;
628         task->tk_cred_retry = 2;
629         task->tk_rebind_retry = 2;
630
631         /* starting timestamp */
632         task->tk_start = ktime_get();
633 }
634
635 static void
636 rpc_reset_task_statistics(struct rpc_task *task)
637 {
638         task->tk_timeouts = 0;
639         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
640
641         rpc_init_task_statistics(task);
642 }
643
644 /*
645  * Helper that calls task->tk_ops->rpc_call_done if it exists
646  */
647 void rpc_exit_task(struct rpc_task *task)
648 {
649         task->tk_action = NULL;
650         if (task->tk_ops->rpc_call_done != NULL) {
651                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
652                 if (task->tk_action != NULL) {
653                         WARN_ON(RPC_ASSASSINATED(task));
654                         /* Always release the RPC slot and buffer memory */
655                         xprt_release(task);
656                         rpc_reset_task_statistics(task);
657                 }
658         }
659 }
660
661 void rpc_exit(struct rpc_task *task, int status)
662 {
663         task->tk_status = status;
664         task->tk_action = rpc_exit_task;
665         if (RPC_IS_QUEUED(task))
666                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
667 }
668 EXPORT_SYMBOL_GPL(rpc_exit);
669
670 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
671 {
672         if (ops->rpc_release != NULL)
673                 ops->rpc_release(calldata);
674 }
675
676 /*
677  * This is the RPC `scheduler' (or rather, the finite state machine).
678  */
679 static void __rpc_execute(struct rpc_task *task)
680 {
681         struct rpc_wait_queue *queue;
682         int task_is_async = RPC_IS_ASYNC(task);
683         int status = 0;
684
685         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
686                         task->tk_pid, task->tk_flags);
687
688         BUG_ON(RPC_IS_QUEUED(task));
689
690         for (;;) {
691                 void (*do_action)(struct rpc_task *);
692
693                 /*
694                  * Execute any pending callback first.
695                  */
696                 do_action = task->tk_callback;
697                 task->tk_callback = NULL;
698                 if (do_action == NULL) {
699                         /*
700                          * Perform the next FSM step.
701                          * tk_action may be NULL if the task has been killed.
702                          * In particular, note that rpc_killall_tasks may
703                          * do this at any time, so beware when dereferencing.
704                          */
705                         do_action = task->tk_action;
706                         if (do_action == NULL)
707                                 break;
708                 }
709                 do_action(task);
710
711                 /*
712                  * Lockless check for whether task is sleeping or not.
713                  */
714                 if (!RPC_IS_QUEUED(task))
715                         continue;
716                 /*
717                  * The queue->lock protects against races with
718                  * rpc_make_runnable().
719                  *
720                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
721                  * rpc_task, rpc_make_runnable() can assign it to a
722                  * different workqueue. We therefore cannot assume that the
723                  * rpc_task pointer may still be dereferenced.
724                  */
725                 queue = task->tk_waitqueue;
726                 spin_lock_bh(&queue->lock);
727                 if (!RPC_IS_QUEUED(task)) {
728                         spin_unlock_bh(&queue->lock);
729                         continue;
730                 }
731                 rpc_clear_running(task);
732                 spin_unlock_bh(&queue->lock);
733                 if (task_is_async)
734                         return;
735
736                 /* sync task: sleep here */
737                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
738                 status = out_of_line_wait_on_bit(&task->tk_runstate,
739                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
740                                 TASK_KILLABLE);
741                 if (status == -ERESTARTSYS) {
742                         /*
743                          * When a sync task receives a signal, it exits with
744                          * -ERESTARTSYS. In order to catch any callbacks that
745                          * clean up after sleeping on some queue, we don't
746                          * break the loop here, but go around once more.
747                          */
748                         dprintk("RPC: %5u got signal\n", task->tk_pid);
749                         task->tk_flags |= RPC_TASK_KILLED;
750                         rpc_exit(task, -ERESTARTSYS);
751                 }
752                 rpc_set_running(task);
753                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
754         }
755
756         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
757                         task->tk_status);
758         /* Release all resources associated with the task */
759         rpc_release_task(task);
760 }
761
762 /*
763  * User-visible entry point to the scheduler.
764  *
765  * This may be called recursively if e.g. an async NFS task updates
766  * the attributes and finds that dirty pages must be flushed.
767  * NOTE: Upon exit of this function the task is guaranteed to be
768  *       released. In particular note that tk_release() will have
769  *       been called, so your task memory may have been freed.
770  */
771 void rpc_execute(struct rpc_task *task)
772 {
773         rpc_set_active(task);
774         rpc_make_runnable(task);
775         if (!RPC_IS_ASYNC(task))
776                 __rpc_execute(task);
777 }
778
779 static void rpc_async_schedule(struct work_struct *work)
780 {
781         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
782 }
783
784 /**
785  * rpc_malloc - allocate an RPC buffer
786  * @task: RPC task that will use this buffer
787  * @size: requested byte size
788  *
789  * To prevent rpciod from hanging, this allocator never sleeps,
790  * returning NULL if the request cannot be serviced immediately.
791  * The caller can arrange to sleep in a way that is safe for rpciod.
792  *
793  * Most requests are 'small' (under 2KiB) and can be serviced from a
794  * mempool, ensuring that NFS reads and writes can always proceed,
795  * and that there is good locality of reference for these buffers.
796  *
797  * In order to avoid memory starvation triggering more writebacks of
798  * NFS requests, we avoid using GFP_KERNEL.
799  */
800 void *rpc_malloc(struct rpc_task *task, size_t size)
801 {
802         struct rpc_buffer *buf;
803         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
804
805         size += sizeof(struct rpc_buffer);
806         if (size <= RPC_BUFFER_MAXSIZE)
807                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
808         else
809                 buf = kmalloc(size, gfp);
810
811         if (!buf)
812                 return NULL;
813
814         buf->len = size;
815         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
816                         task->tk_pid, size, buf);
817         return &buf->data;
818 }
819 EXPORT_SYMBOL_GPL(rpc_malloc);
820
821 /**
822  * rpc_free - free buffer allocated via rpc_malloc
823  * @buffer: buffer to free
824  *
825  */
826 void rpc_free(void *buffer)
827 {
828         size_t size;
829         struct rpc_buffer *buf;
830
831         if (!buffer)
832                 return;
833
834         buf = container_of(buffer, struct rpc_buffer, data);
835         size = buf->len;
836
837         dprintk("RPC:       freeing buffer of size %zu at %p\n",
838                         size, buf);
839
840         if (size <= RPC_BUFFER_MAXSIZE)
841                 mempool_free(buf, rpc_buffer_mempool);
842         else
843                 kfree(buf);
844 }
845 EXPORT_SYMBOL_GPL(rpc_free);
846
847 /*
848  * Creation and deletion of RPC task structures
849  */
850 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
851 {
852         memset(task, 0, sizeof(*task));
853         atomic_set(&task->tk_count, 1);
854         task->tk_flags  = task_setup_data->flags;
855         task->tk_ops = task_setup_data->callback_ops;
856         task->tk_calldata = task_setup_data->callback_data;
857         INIT_LIST_HEAD(&task->tk_task);
858
859         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
860         task->tk_owner = current->tgid;
861
862         /* Initialize workqueue for async tasks */
863         task->tk_workqueue = task_setup_data->workqueue;
864
865         if (task->tk_ops->rpc_call_prepare != NULL)
866                 task->tk_action = rpc_prepare_task;
867
868         rpc_init_task_statistics(task);
869
870         dprintk("RPC:       new task initialized, procpid %u\n",
871                                 task_pid_nr(current));
872 }
873
874 static struct rpc_task *
875 rpc_alloc_task(void)
876 {
877         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
878 }
879
880 /*
881  * Create a new task for the specified client.
882  */
883 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
884 {
885         struct rpc_task *task = setup_data->task;
886         unsigned short flags = 0;
887
888         if (task == NULL) {
889                 task = rpc_alloc_task();
890                 if (task == NULL) {
891                         rpc_release_calldata(setup_data->callback_ops,
892                                         setup_data->callback_data);
893                         return ERR_PTR(-ENOMEM);
894                 }
895                 flags = RPC_TASK_DYNAMIC;
896         }
897
898         rpc_init_task(task, setup_data);
899         task->tk_flags |= flags;
900         dprintk("RPC:       allocated task %p\n", task);
901         return task;
902 }
903
904 static void rpc_free_task(struct rpc_task *task)
905 {
906         const struct rpc_call_ops *tk_ops = task->tk_ops;
907         void *calldata = task->tk_calldata;
908
909         if (task->tk_flags & RPC_TASK_DYNAMIC) {
910                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
911                 mempool_free(task, rpc_task_mempool);
912         }
913         rpc_release_calldata(tk_ops, calldata);
914 }
915
916 static void rpc_async_release(struct work_struct *work)
917 {
918         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
919 }
920
921 static void rpc_release_resources_task(struct rpc_task *task)
922 {
923         if (task->tk_rqstp)
924                 xprt_release(task);
925         if (task->tk_msg.rpc_cred) {
926                 put_rpccred(task->tk_msg.rpc_cred);
927                 task->tk_msg.rpc_cred = NULL;
928         }
929         rpc_task_release_client(task);
930 }
931
932 static void rpc_final_put_task(struct rpc_task *task,
933                 struct workqueue_struct *q)
934 {
935         if (q != NULL) {
936                 INIT_WORK(&task->u.tk_work, rpc_async_release);
937                 queue_work(q, &task->u.tk_work);
938         } else
939                 rpc_free_task(task);
940 }
941
942 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
943 {
944         if (atomic_dec_and_test(&task->tk_count)) {
945                 rpc_release_resources_task(task);
946                 rpc_final_put_task(task, q);
947         }
948 }
949
950 void rpc_put_task(struct rpc_task *task)
951 {
952         rpc_do_put_task(task, NULL);
953 }
954 EXPORT_SYMBOL_GPL(rpc_put_task);
955
956 void rpc_put_task_async(struct rpc_task *task)
957 {
958         rpc_do_put_task(task, task->tk_workqueue);
959 }
960 EXPORT_SYMBOL_GPL(rpc_put_task_async);
961
962 static void rpc_release_task(struct rpc_task *task)
963 {
964         dprintk("RPC: %5u release task\n", task->tk_pid);
965
966         BUG_ON (RPC_IS_QUEUED(task));
967
968         rpc_release_resources_task(task);
969
970         /*
971          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
972          * so it should be safe to use task->tk_count as a test for whether
973          * or not any other processes still hold references to our rpc_task.
974          */
975         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
976                 /* Wake up anyone who may be waiting for task completion */
977                 if (!rpc_complete_task(task))
978                         return;
979         } else {
980                 if (!atomic_dec_and_test(&task->tk_count))
981                         return;
982         }
983         rpc_final_put_task(task, task->tk_workqueue);
984 }
985
986 int rpciod_up(void)
987 {
988         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
989 }
990
991 void rpciod_down(void)
992 {
993         module_put(THIS_MODULE);
994 }
995
996 /*
997  * Start up the rpciod workqueue.
998  */
999 static int rpciod_start(void)
1000 {
1001         struct workqueue_struct *wq;
1002
1003         /*
1004          * Create the rpciod thread and wait for it to start.
1005          */
1006         dprintk("RPC:       creating workqueue rpciod\n");
1007         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1008         rpciod_workqueue = wq;
1009         return rpciod_workqueue != NULL;
1010 }
1011
1012 static void rpciod_stop(void)
1013 {
1014         struct workqueue_struct *wq = NULL;
1015
1016         if (rpciod_workqueue == NULL)
1017                 return;
1018         dprintk("RPC:       destroying workqueue rpciod\n");
1019
1020         wq = rpciod_workqueue;
1021         rpciod_workqueue = NULL;
1022         destroy_workqueue(wq);
1023 }
1024
1025 void
1026 rpc_destroy_mempool(void)
1027 {
1028         rpciod_stop();
1029         if (rpc_buffer_mempool)
1030                 mempool_destroy(rpc_buffer_mempool);
1031         if (rpc_task_mempool)
1032                 mempool_destroy(rpc_task_mempool);
1033         if (rpc_task_slabp)
1034                 kmem_cache_destroy(rpc_task_slabp);
1035         if (rpc_buffer_slabp)
1036                 kmem_cache_destroy(rpc_buffer_slabp);
1037         rpc_destroy_wait_queue(&delay_queue);
1038 }
1039
1040 int
1041 rpc_init_mempool(void)
1042 {
1043         /*
1044          * The following is not strictly a mempool initialisation,
1045          * but there is no harm in doing it here
1046          */
1047         rpc_init_wait_queue(&delay_queue, "delayq");
1048         if (!rpciod_start())
1049                 goto err_nomem;
1050
1051         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1052                                              sizeof(struct rpc_task),
1053                                              0, SLAB_HWCACHE_ALIGN,
1054                                              NULL);
1055         if (!rpc_task_slabp)
1056                 goto err_nomem;
1057         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1058                                              RPC_BUFFER_MAXSIZE,
1059                                              0, SLAB_HWCACHE_ALIGN,
1060                                              NULL);
1061         if (!rpc_buffer_slabp)
1062                 goto err_nomem;
1063         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1064                                                     rpc_task_slabp);
1065         if (!rpc_task_mempool)
1066                 goto err_nomem;
1067         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1068                                                       rpc_buffer_slabp);
1069         if (!rpc_buffer_mempool)
1070                 goto err_nomem;
1071         return 0;
1072 err_nomem:
1073         rpc_destroy_mempool();
1074         return -ENOMEM;
1075 }