- Update to 3.3-rc2.
[linux-flexiantxendom0-3.2.10.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /*
79  * Function:    scsi_unprep_request()
80  *
81  * Purpose:     Remove all preparation done for a request, including its
82  *              associated scsi_cmnd, so that it can be requeued.
83  *
84  * Arguments:   req     - request to unprepare
85  *
86  * Lock status: Assumed that no locks are held upon entry.
87  *
88  * Returns:     Nothing.
89  */
90 static void scsi_unprep_request(struct request *req)
91 {
92         struct scsi_cmnd *cmd = req->special;
93
94         blk_unprep_request(req);
95         req->special = NULL;
96
97         scsi_put_command(cmd);
98 }
99
100 /**
101  * __scsi_queue_insert - private queue insertion
102  * @cmd: The SCSI command being requeued
103  * @reason:  The reason for the requeue
104  * @unbusy: Whether the queue should be unbusied
105  *
106  * This is a private queue insertion.  The public interface
107  * scsi_queue_insert() always assumes the queue should be unbusied
108  * because it's always called before the completion.  This function is
109  * for a requeue after completion, which should only occur in this
110  * file.
111  */
112 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114         struct Scsi_Host *host = cmd->device->host;
115         struct scsi_device *device = cmd->device;
116         struct scsi_target *starget = scsi_target(device);
117         struct request_queue *q = device->request_queue;
118         unsigned long flags;
119
120         SCSI_LOG_MLQUEUE(1,
121                  printk("Inserting command %p into mlqueue\n", cmd));
122
123         /*
124          * Set the appropriate busy bit for the device/host.
125          *
126          * If the host/device isn't busy, assume that something actually
127          * completed, and that we should be able to queue a command now.
128          *
129          * Note that the prior mid-layer assumption that any host could
130          * always queue at least one command is now broken.  The mid-layer
131          * will implement a user specifiable stall (see
132          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133          * if a command is requeued with no other commands outstanding
134          * either for the device or for the host.
135          */
136         switch (reason) {
137         case SCSI_MLQUEUE_HOST_BUSY:
138                 host->host_blocked = host->max_host_blocked;
139                 break;
140         case SCSI_MLQUEUE_DEVICE_BUSY:
141         case SCSI_MLQUEUE_EH_RETRY:
142                 device->device_blocked = device->max_device_blocked;
143                 break;
144         case SCSI_MLQUEUE_TARGET_BUSY:
145                 starget->target_blocked = starget->max_target_blocked;
146                 break;
147         }
148
149         /*
150          * Decrement the counters, since these commands are no longer
151          * active on the host/device.
152          */
153         if (unbusy)
154                 scsi_device_unbusy(device);
155
156         /*
157          * Requeue this command.  It will go before all other commands
158          * that are already in the queue.
159          */
160         spin_lock_irqsave(q->queue_lock, flags);
161         blk_requeue_request(q, cmd->request);
162         spin_unlock_irqrestore(q->queue_lock, flags);
163
164         kblockd_schedule_work(q, &device->requeue_work);
165
166         return 0;
167 }
168
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190         return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:       scsi device
195  * @cmd:        scsi command
196  * @data_direction: data direction
197  * @buffer:     data buffer
198  * @bufflen:    len of buffer
199  * @sense:      optional sense buffer
200  * @timeout:    request timeout in seconds
201  * @retries:    number of times to retry request
202  * @flags:      or into request flags;
203  * @resid:      optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209                  int data_direction, void *buffer, unsigned bufflen,
210                  unsigned char *sense, int timeout, int retries, int flags,
211                  int *resid)
212 {
213         struct request *req;
214         int write = (data_direction == DMA_TO_DEVICE);
215         int ret = DRIVER_ERROR << 24;
216
217         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218         if (!req)
219                 return ret;
220
221         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
222                                         buffer, bufflen, __GFP_WAIT))
223                 goto out;
224
225         req->cmd_len = COMMAND_SIZE(cmd[0]);
226         memcpy(req->cmd, cmd, req->cmd_len);
227         req->sense = sense;
228         req->sense_len = 0;
229         req->retries = retries;
230         req->timeout = timeout;
231         req->cmd_type = REQ_TYPE_BLOCK_PC;
232         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233
234         /*
235          * head injection *required* here otherwise quiesce won't work
236          */
237         blk_execute_rq(req->q, NULL, req, 1);
238
239         /*
240          * Some devices (USB mass-storage in particular) may transfer
241          * garbage data together with a residue indicating that the data
242          * is invalid.  Prevent the garbage from being misinterpreted
243          * and prevent security leaks by zeroing out the excess data.
244          */
245         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247
248         if (resid)
249                 *resid = req->resid_len;
250         ret = req->errors;
251  out:
252         blk_put_request(req);
253
254         return ret;
255 }
256 EXPORT_SYMBOL(scsi_execute);
257
258
259 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260                      int data_direction, void *buffer, unsigned bufflen,
261                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
262                      int *resid)
263 {
264         char *sense = NULL;
265         int result;
266         
267         if (sshdr) {
268                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
269                 if (!sense)
270                         return DRIVER_ERROR << 24;
271         }
272         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273                               sense, timeout, retries, 0, resid);
274         if (sshdr)
275                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
276
277         kfree(sense);
278         return result;
279 }
280 EXPORT_SYMBOL(scsi_execute_req);
281
282 /*
283  * Function:    scsi_init_cmd_errh()
284  *
285  * Purpose:     Initialize cmd fields related to error handling.
286  *
287  * Arguments:   cmd     - command that is ready to be queued.
288  *
289  * Notes:       This function has the job of initializing a number of
290  *              fields related to error handling.   Typically this will
291  *              be called once for each command, as required.
292  */
293 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
294 {
295         cmd->serial_number = 0;
296         scsi_set_resid(cmd, 0);
297         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298         if (cmd->cmd_len == 0)
299                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 }
301
302 void scsi_device_unbusy(struct scsi_device *sdev)
303 {
304         struct Scsi_Host *shost = sdev->host;
305         struct scsi_target *starget = scsi_target(sdev);
306         unsigned long flags;
307
308         spin_lock_irqsave(shost->host_lock, flags);
309         shost->host_busy--;
310         starget->target_busy--;
311         if (unlikely(scsi_host_in_recovery(shost) &&
312                      (shost->host_failed || shost->host_eh_scheduled)))
313                 scsi_eh_wakeup(shost);
314         spin_unlock(shost->host_lock);
315         spin_lock(sdev->request_queue->queue_lock);
316         sdev->device_busy--;
317         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
318 }
319
320 /*
321  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322  * and call blk_run_queue for all the scsi_devices on the target -
323  * including current_sdev first.
324  *
325  * Called with *no* scsi locks held.
326  */
327 static void scsi_single_lun_run(struct scsi_device *current_sdev)
328 {
329         struct Scsi_Host *shost = current_sdev->host;
330         struct scsi_device *sdev, *tmp;
331         struct scsi_target *starget = scsi_target(current_sdev);
332         unsigned long flags;
333
334         spin_lock_irqsave(shost->host_lock, flags);
335         starget->starget_sdev_user = NULL;
336         spin_unlock_irqrestore(shost->host_lock, flags);
337
338         /*
339          * Call blk_run_queue for all LUNs on the target, starting with
340          * current_sdev. We race with others (to set starget_sdev_user),
341          * but in most cases, we will be first. Ideally, each LU on the
342          * target would get some limited time or requests on the target.
343          */
344         blk_run_queue(current_sdev->request_queue);
345
346         spin_lock_irqsave(shost->host_lock, flags);
347         if (starget->starget_sdev_user)
348                 goto out;
349         list_for_each_entry_safe(sdev, tmp, &starget->devices,
350                         same_target_siblings) {
351                 if (sdev == current_sdev)
352                         continue;
353                 if (scsi_device_get(sdev))
354                         continue;
355
356                 spin_unlock_irqrestore(shost->host_lock, flags);
357                 blk_run_queue(sdev->request_queue);
358                 spin_lock_irqsave(shost->host_lock, flags);
359         
360                 scsi_device_put(sdev);
361         }
362  out:
363         spin_unlock_irqrestore(shost->host_lock, flags);
364 }
365
366 static inline int scsi_device_is_busy(struct scsi_device *sdev)
367 {
368         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
369                 return 1;
370
371         return 0;
372 }
373
374 static inline int scsi_target_is_busy(struct scsi_target *starget)
375 {
376         return ((starget->can_queue > 0 &&
377                  starget->target_busy >= starget->can_queue) ||
378                  starget->target_blocked);
379 }
380
381 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
382 {
383         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384             shost->host_blocked || shost->host_self_blocked)
385                 return 1;
386
387         return 0;
388 }
389
390 /*
391  * Function:    scsi_run_queue()
392  *
393  * Purpose:     Select a proper request queue to serve next
394  *
395  * Arguments:   q       - last request's queue
396  *
397  * Returns:     Nothing
398  *
399  * Notes:       The previous command was completely finished, start
400  *              a new one if possible.
401  */
402 static void scsi_run_queue(struct request_queue *q)
403 {
404         struct scsi_device *sdev = q->queuedata;
405         struct Scsi_Host *shost;
406         LIST_HEAD(starved_list);
407         unsigned long flags;
408
409         /* if the device is dead, sdev will be NULL, so no queue to run */
410         if (!sdev)
411                 return;
412
413         shost = sdev->host;
414         if (scsi_target(sdev)->single_lun)
415                 scsi_single_lun_run(sdev);
416
417         spin_lock_irqsave(shost->host_lock, flags);
418         list_splice_init(&shost->starved_list, &starved_list);
419
420         while (!list_empty(&starved_list)) {
421                 /*
422                  * As long as shost is accepting commands and we have
423                  * starved queues, call blk_run_queue. scsi_request_fn
424                  * drops the queue_lock and can add us back to the
425                  * starved_list.
426                  *
427                  * host_lock protects the starved_list and starved_entry.
428                  * scsi_request_fn must get the host_lock before checking
429                  * or modifying starved_list or starved_entry.
430                  */
431                 if (scsi_host_is_busy(shost))
432                         break;
433
434                 sdev = list_entry(starved_list.next,
435                                   struct scsi_device, starved_entry);
436                 list_del_init(&sdev->starved_entry);
437                 if (scsi_target_is_busy(scsi_target(sdev))) {
438                         list_move_tail(&sdev->starved_entry,
439                                        &shost->starved_list);
440                         continue;
441                 }
442
443                 spin_unlock(shost->host_lock);
444                 spin_lock(sdev->request_queue->queue_lock);
445                 __blk_run_queue(sdev->request_queue);
446                 spin_unlock(sdev->request_queue->queue_lock);
447                 spin_lock(shost->host_lock);
448         }
449         /* put any unprocessed entries back */
450         list_splice(&starved_list, &shost->starved_list);
451         spin_unlock_irqrestore(shost->host_lock, flags);
452
453         blk_run_queue(q);
454 }
455
456 void scsi_requeue_run_queue(struct work_struct *work)
457 {
458         struct scsi_device *sdev;
459         struct request_queue *q;
460
461         sdev = container_of(work, struct scsi_device, requeue_work);
462         q = sdev->request_queue;
463         scsi_run_queue(q);
464 }
465
466 /*
467  * Function:    scsi_requeue_command()
468  *
469  * Purpose:     Handle post-processing of completed commands.
470  *
471  * Arguments:   q       - queue to operate on
472  *              cmd     - command that may need to be requeued.
473  *
474  * Returns:     Nothing
475  *
476  * Notes:       After command completion, there may be blocks left
477  *              over which weren't finished by the previous command
478  *              this can be for a number of reasons - the main one is
479  *              I/O errors in the middle of the request, in which case
480  *              we need to request the blocks that come after the bad
481  *              sector.
482  * Notes:       Upon return, cmd is a stale pointer.
483  */
484 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
485 {
486         struct request *req = cmd->request;
487         unsigned long flags;
488
489         spin_lock_irqsave(q->queue_lock, flags);
490         scsi_unprep_request(req);
491         blk_requeue_request(q, req);
492         spin_unlock_irqrestore(q->queue_lock, flags);
493
494         scsi_run_queue(q);
495 }
496
497 void scsi_next_command(struct scsi_cmnd *cmd)
498 {
499         struct scsi_device *sdev = cmd->device;
500         struct request_queue *q = sdev->request_queue;
501
502         /* need to hold a reference on the device before we let go of the cmd */
503         get_device(&sdev->sdev_gendev);
504
505         scsi_put_command(cmd);
506         scsi_run_queue(q);
507
508         /* ok to remove device now */
509         put_device(&sdev->sdev_gendev);
510 }
511
512 void scsi_run_host_queues(struct Scsi_Host *shost)
513 {
514         struct scsi_device *sdev;
515
516         shost_for_each_device(sdev, shost)
517                 scsi_run_queue(sdev->request_queue);
518 }
519
520 static void __scsi_release_buffers(struct scsi_cmnd *, int);
521
522 /*
523  * Function:    scsi_end_request()
524  *
525  * Purpose:     Post-processing of completed commands (usually invoked at end
526  *              of upper level post-processing and scsi_io_completion).
527  *
528  * Arguments:   cmd      - command that is complete.
529  *              error    - 0 if I/O indicates success, < 0 for I/O error.
530  *              bytes    - number of bytes of completed I/O
531  *              requeue  - indicates whether we should requeue leftovers.
532  *
533  * Lock status: Assumed that lock is not held upon entry.
534  *
535  * Returns:     cmd if requeue required, NULL otherwise.
536  *
537  * Notes:       This is called for block device requests in order to
538  *              mark some number of sectors as complete.
539  * 
540  *              We are guaranteeing that the request queue will be goosed
541  *              at some point during this call.
542  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
543  */
544 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
545                                           int bytes, int requeue)
546 {
547         struct request_queue *q = cmd->device->request_queue;
548         struct request *req = cmd->request;
549
550         /*
551          * If there are blocks left over at the end, set up the command
552          * to queue the remainder of them.
553          */
554         if (blk_end_request(req, error, bytes)) {
555                 /* kill remainder if no retrys */
556                 if (error && scsi_noretry_cmd(cmd))
557                         blk_end_request_all(req, error);
558                 else {
559                         if (requeue) {
560                                 /*
561                                  * Bleah.  Leftovers again.  Stick the
562                                  * leftovers in the front of the
563                                  * queue, and goose the queue again.
564                                  */
565                                 scsi_release_buffers(cmd);
566                                 scsi_requeue_command(q, cmd);
567                                 cmd = NULL;
568                         }
569                         return cmd;
570                 }
571         }
572
573         /*
574          * This will goose the queue request function at the end, so we don't
575          * need to worry about launching another command.
576          */
577         __scsi_release_buffers(cmd, 0);
578         scsi_next_command(cmd);
579         return NULL;
580 }
581
582 static inline unsigned int scsi_sgtable_index(unsigned short nents)
583 {
584         unsigned int index;
585
586         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
587
588         if (nents <= 8)
589                 index = 0;
590         else
591                 index = get_count_order(nents) - 3;
592
593         return index;
594 }
595
596 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
597 {
598         struct scsi_host_sg_pool *sgp;
599
600         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
601         mempool_free(sgl, sgp->pool);
602 }
603
604 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
605 {
606         struct scsi_host_sg_pool *sgp;
607
608         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
609         return mempool_alloc(sgp->pool, gfp_mask);
610 }
611
612 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
613                               gfp_t gfp_mask)
614 {
615         int ret;
616
617         BUG_ON(!nents);
618
619         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
620                                gfp_mask, scsi_sg_alloc);
621         if (unlikely(ret))
622                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
623                                 scsi_sg_free);
624
625         return ret;
626 }
627
628 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
629 {
630         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
631 }
632
633 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
634 {
635
636         if (cmd->sdb.table.nents)
637                 scsi_free_sgtable(&cmd->sdb);
638
639         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
640
641         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
642                 struct scsi_data_buffer *bidi_sdb =
643                         cmd->request->next_rq->special;
644                 scsi_free_sgtable(bidi_sdb);
645                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
646                 cmd->request->next_rq->special = NULL;
647         }
648
649         if (scsi_prot_sg_count(cmd))
650                 scsi_free_sgtable(cmd->prot_sdb);
651 }
652
653 /*
654  * Function:    scsi_release_buffers()
655  *
656  * Purpose:     Completion processing for block device I/O requests.
657  *
658  * Arguments:   cmd     - command that we are bailing.
659  *
660  * Lock status: Assumed that no lock is held upon entry.
661  *
662  * Returns:     Nothing
663  *
664  * Notes:       In the event that an upper level driver rejects a
665  *              command, we must release resources allocated during
666  *              the __init_io() function.  Primarily this would involve
667  *              the scatter-gather table, and potentially any bounce
668  *              buffers.
669  */
670 void scsi_release_buffers(struct scsi_cmnd *cmd)
671 {
672         __scsi_release_buffers(cmd, 1);
673 }
674 EXPORT_SYMBOL(scsi_release_buffers);
675
676 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
677 {
678         int error = 0;
679
680         switch(host_byte(result)) {
681         case DID_TRANSPORT_FAILFAST:
682                 error = -ENOLINK;
683                 break;
684         case DID_TARGET_FAILURE:
685                 cmd->result |= (DID_OK << 16);
686                 error = -EREMOTEIO;
687                 break;
688         case DID_NEXUS_FAILURE:
689                 cmd->result |= (DID_OK << 16);
690                 error = -EBADE;
691                 break;
692         default:
693                 error = -EIO;
694                 break;
695         }
696
697         return error;
698 }
699
700 /*
701  * Function:    scsi_io_completion()
702  *
703  * Purpose:     Completion processing for block device I/O requests.
704  *
705  * Arguments:   cmd   - command that is finished.
706  *
707  * Lock status: Assumed that no lock is held upon entry.
708  *
709  * Returns:     Nothing
710  *
711  * Notes:       This function is matched in terms of capabilities to
712  *              the function that created the scatter-gather list.
713  *              In other words, if there are no bounce buffers
714  *              (the normal case for most drivers), we don't need
715  *              the logic to deal with cleaning up afterwards.
716  *
717  *              We must call scsi_end_request().  This will finish off
718  *              the specified number of sectors.  If we are done, the
719  *              command block will be released and the queue function
720  *              will be goosed.  If we are not done then we have to
721  *              figure out what to do next:
722  *
723  *              a) We can call scsi_requeue_command().  The request
724  *                 will be unprepared and put back on the queue.  Then
725  *                 a new command will be created for it.  This should
726  *                 be used if we made forward progress, or if we want
727  *                 to switch from READ(10) to READ(6) for example.
728  *
729  *              b) We can call scsi_queue_insert().  The request will
730  *                 be put back on the queue and retried using the same
731  *                 command as before, possibly after a delay.
732  *
733  *              c) We can call blk_end_request() with -EIO to fail
734  *                 the remainder of the request.
735  */
736 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
737 {
738         int result = cmd->result;
739         struct request_queue *q = cmd->device->request_queue;
740         struct request *req = cmd->request;
741         int error = 0;
742         struct scsi_sense_hdr sshdr;
743         int sense_valid = 0;
744         int sense_deferred = 0;
745         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
746               ACTION_DELAYED_RETRY} action;
747         char *description = NULL;
748
749         if (result) {
750                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
751                 if (sense_valid)
752                         sense_deferred = scsi_sense_is_deferred(&sshdr);
753         }
754
755         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
756                 req->errors = result;
757                 if (result) {
758                         if (sense_valid && req->sense) {
759                                 /*
760                                  * SG_IO wants current and deferred errors
761                                  */
762                                 int len = 8 + cmd->sense_buffer[7];
763
764                                 if (len > SCSI_SENSE_BUFFERSIZE)
765                                         len = SCSI_SENSE_BUFFERSIZE;
766                                 memcpy(req->sense, cmd->sense_buffer,  len);
767                                 req->sense_len = len;
768                         }
769                         if (!sense_deferred)
770                                 error = __scsi_error_from_host_byte(cmd, result);
771                 }
772
773                 req->resid_len = scsi_get_resid(cmd);
774
775                 if (scsi_bidi_cmnd(cmd)) {
776                         /*
777                          * Bidi commands Must be complete as a whole,
778                          * both sides at once.
779                          */
780                         req->next_rq->resid_len = scsi_in(cmd)->resid;
781
782                         scsi_release_buffers(cmd);
783                         blk_end_request_all(req, 0);
784
785                         scsi_next_command(cmd);
786                         return;
787                 }
788         }
789
790         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
791         BUG_ON(blk_bidi_rq(req));
792
793         /*
794          * Next deal with any sectors which we were able to correctly
795          * handle.
796          */
797         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
798                                       "%d bytes done.\n",
799                                       blk_rq_sectors(req), good_bytes));
800
801         /*
802          * Recovered errors need reporting, but they're always treated
803          * as success, so fiddle the result code here.  For BLOCK_PC
804          * we already took a copy of the original into rq->errors which
805          * is what gets returned to the user
806          */
807         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
808                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
809                  * print since caller wants ATA registers. Only occurs on
810                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
811                  */
812                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
813                         ;
814                 else if (!(req->cmd_flags & REQ_QUIET))
815                         scsi_print_sense("", cmd);
816                 result = 0;
817                 /* BLOCK_PC may have set error */
818                 error = 0;
819         }
820
821         /*
822          * A number of bytes were successfully read.  If there
823          * are leftovers and there is some kind of error
824          * (result != 0), retry the rest.
825          */
826         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
827                 return;
828
829         error = __scsi_error_from_host_byte(cmd, result);
830
831         if (host_byte(result) == DID_RESET) {
832                 /* Third party bus reset or reset for error recovery
833                  * reasons.  Just retry the command and see what
834                  * happens.
835                  */
836                 action = ACTION_RETRY;
837         } else if (sense_valid && !sense_deferred) {
838                 switch (sshdr.sense_key) {
839                 case UNIT_ATTENTION:
840                         if (cmd->device->removable) {
841                                 /* Detected disc change.  Set a bit
842                                  * and quietly refuse further access.
843                                  */
844                                 cmd->device->changed = 1;
845                                 description = "Media Changed";
846                                 action = ACTION_FAIL;
847                         } else {
848                                 /* Must have been a power glitch, or a
849                                  * bus reset.  Could not have been a
850                                  * media change, so we just retry the
851                                  * command and see what happens.
852                                  */
853                                 action = ACTION_RETRY;
854                         }
855                         break;
856                 case ILLEGAL_REQUEST:
857                         /* If we had an ILLEGAL REQUEST returned, then
858                          * we may have performed an unsupported
859                          * command.  The only thing this should be
860                          * would be a ten byte read where only a six
861                          * byte read was supported.  Also, on a system
862                          * where READ CAPACITY failed, we may have
863                          * read past the end of the disk.
864                          */
865                         if ((cmd->device->use_10_for_rw &&
866                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
867                             (cmd->cmnd[0] == READ_10 ||
868                              cmd->cmnd[0] == WRITE_10)) {
869                                 /* This will issue a new 6-byte command. */
870                                 cmd->device->use_10_for_rw = 0;
871                                 action = ACTION_REPREP;
872                         } else if (sshdr.asc == 0x10) /* DIX */ {
873                                 description = "Host Data Integrity Failure";
874                                 action = ACTION_FAIL;
875                                 error = -EILSEQ;
876                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
877                         } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
878                                    (cmd->cmnd[0] == UNMAP ||
879                                     cmd->cmnd[0] == WRITE_SAME_16 ||
880                                     cmd->cmnd[0] == WRITE_SAME)) {
881                                 description = "Discard failure";
882                                 action = ACTION_FAIL;
883                         } else
884                                 action = ACTION_FAIL;
885                         break;
886                 case ABORTED_COMMAND:
887                         action = ACTION_FAIL;
888                         if (sshdr.asc == 0x10) { /* DIF */
889                                 description = "Target Data Integrity Failure";
890                                 error = -EILSEQ;
891                         }
892                         break;
893                 case NOT_READY:
894                         /* If the device is in the process of becoming
895                          * ready, or has a temporary blockage, retry.
896                          */
897                         if (sshdr.asc == 0x04) {
898                                 switch (sshdr.ascq) {
899                                 case 0x01: /* becoming ready */
900                                 case 0x04: /* format in progress */
901                                 case 0x05: /* rebuild in progress */
902                                 case 0x06: /* recalculation in progress */
903                                 case 0x07: /* operation in progress */
904                                 case 0x08: /* Long write in progress */
905                                 case 0x09: /* self test in progress */
906                                 case 0x14: /* space allocation in progress */
907                                         action = ACTION_DELAYED_RETRY;
908                                         break;
909                                 default:
910                                         description = "Device not ready";
911                                         action = ACTION_FAIL;
912                                         break;
913                                 }
914                         } else {
915                                 description = "Device not ready";
916                                 action = ACTION_FAIL;
917                         }
918                         break;
919                 case VOLUME_OVERFLOW:
920                         /* See SSC3rXX or current. */
921                         action = ACTION_FAIL;
922                         break;
923                 default:
924                         description = "Unhandled sense code";
925                         action = ACTION_FAIL;
926                         break;
927                 }
928         } else {
929                 description = "Unhandled error code";
930                 action = ACTION_FAIL;
931         }
932
933         switch (action) {
934         case ACTION_FAIL:
935                 /* Give up and fail the remainder of the request */
936                 scsi_release_buffers(cmd);
937                 if (!(req->cmd_flags & REQ_QUIET)) {
938                         if (description)
939                                 scmd_printk(KERN_INFO, cmd, "%s\n",
940                                             description);
941                         scsi_print_result(cmd);
942                         if (driver_byte(result) & DRIVER_SENSE)
943                                 scsi_print_sense("", cmd);
944                         scsi_print_command(cmd);
945                 }
946                 if (blk_end_request_err(req, error))
947                         scsi_requeue_command(q, cmd);
948                 else
949                         scsi_next_command(cmd);
950                 break;
951         case ACTION_REPREP:
952                 /* Unprep the request and put it back at the head of the queue.
953                  * A new command will be prepared and issued.
954                  */
955                 scsi_release_buffers(cmd);
956                 scsi_requeue_command(q, cmd);
957                 break;
958         case ACTION_RETRY:
959                 /* Retry the same command immediately */
960                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
961                 break;
962         case ACTION_DELAYED_RETRY:
963                 /* Retry the same command after a delay */
964                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
965                 break;
966         }
967 }
968
969 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
970                              gfp_t gfp_mask)
971 {
972         int count;
973
974         /*
975          * If sg table allocation fails, requeue request later.
976          */
977         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
978                                         gfp_mask))) {
979                 return BLKPREP_DEFER;
980         }
981
982         req->buffer = NULL;
983
984         /* 
985          * Next, walk the list, and fill in the addresses and sizes of
986          * each segment.
987          */
988         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
989         BUG_ON(count > sdb->table.nents);
990         sdb->table.nents = count;
991         sdb->length = blk_rq_bytes(req);
992         return BLKPREP_OK;
993 }
994
995 /*
996  * Function:    scsi_init_io()
997  *
998  * Purpose:     SCSI I/O initialize function.
999  *
1000  * Arguments:   cmd   - Command descriptor we wish to initialize
1001  *
1002  * Returns:     0 on success
1003  *              BLKPREP_DEFER if the failure is retryable
1004  *              BLKPREP_KILL if the failure is fatal
1005  */
1006 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1007 {
1008         struct request *rq = cmd->request;
1009
1010         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1011         if (error)
1012                 goto err_exit;
1013
1014         if (blk_bidi_rq(rq)) {
1015                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1016                         scsi_sdb_cache, GFP_ATOMIC);
1017                 if (!bidi_sdb) {
1018                         error = BLKPREP_DEFER;
1019                         goto err_exit;
1020                 }
1021
1022                 rq->next_rq->special = bidi_sdb;
1023                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1024                 if (error)
1025                         goto err_exit;
1026         }
1027
1028         if (blk_integrity_rq(rq)) {
1029                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1030                 int ivecs, count;
1031
1032                 BUG_ON(prot_sdb == NULL);
1033                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1034
1035                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1036                         error = BLKPREP_DEFER;
1037                         goto err_exit;
1038                 }
1039
1040                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1041                                                 prot_sdb->table.sgl);
1042                 BUG_ON(unlikely(count > ivecs));
1043                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1044
1045                 cmd->prot_sdb = prot_sdb;
1046                 cmd->prot_sdb->table.nents = count;
1047         }
1048
1049         return BLKPREP_OK ;
1050
1051 err_exit:
1052         scsi_release_buffers(cmd);
1053         cmd->request->special = NULL;
1054         scsi_put_command(cmd);
1055         return error;
1056 }
1057 EXPORT_SYMBOL(scsi_init_io);
1058
1059 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1060                 struct request *req)
1061 {
1062         struct scsi_cmnd *cmd;
1063
1064         if (!req->special) {
1065                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1066                 if (unlikely(!cmd))
1067                         return NULL;
1068                 req->special = cmd;
1069         } else {
1070                 cmd = req->special;
1071         }
1072
1073         /* pull a tag out of the request if we have one */
1074         cmd->tag = req->tag;
1075         cmd->request = req;
1076
1077         cmd->cmnd = req->cmd;
1078         cmd->prot_op = SCSI_PROT_NORMAL;
1079
1080         return cmd;
1081 }
1082
1083 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1084 {
1085         struct scsi_cmnd *cmd;
1086         int ret = scsi_prep_state_check(sdev, req);
1087
1088         if (ret != BLKPREP_OK)
1089                 return ret;
1090
1091         cmd = scsi_get_cmd_from_req(sdev, req);
1092         if (unlikely(!cmd))
1093                 return BLKPREP_DEFER;
1094
1095         /*
1096          * BLOCK_PC requests may transfer data, in which case they must
1097          * a bio attached to them.  Or they might contain a SCSI command
1098          * that does not transfer data, in which case they may optionally
1099          * submit a request without an attached bio.
1100          */
1101         if (req->bio) {
1102                 int ret;
1103
1104                 BUG_ON(!req->nr_phys_segments);
1105
1106                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1107                 if (unlikely(ret))
1108                         return ret;
1109         } else {
1110                 BUG_ON(blk_rq_bytes(req));
1111
1112                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1113                 req->buffer = NULL;
1114         }
1115
1116         cmd->cmd_len = req->cmd_len;
1117         if (!blk_rq_bytes(req))
1118                 cmd->sc_data_direction = DMA_NONE;
1119         else if (rq_data_dir(req) == WRITE)
1120                 cmd->sc_data_direction = DMA_TO_DEVICE;
1121         else
1122                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1123         
1124         cmd->transfersize = blk_rq_bytes(req);
1125         cmd->allowed = req->retries;
1126         return BLKPREP_OK;
1127 }
1128 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1129
1130 /*
1131  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1132  * from filesystems that still need to be translated to SCSI CDBs from
1133  * the ULD.
1134  */
1135 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1136 {
1137         struct scsi_cmnd *cmd;
1138         int ret = scsi_prep_state_check(sdev, req);
1139
1140         if (ret != BLKPREP_OK)
1141                 return ret;
1142
1143         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1144                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1145                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1146                 if (ret != BLKPREP_OK)
1147                         return ret;
1148         }
1149
1150         /*
1151          * Filesystem requests must transfer data.
1152          */
1153         BUG_ON(!req->nr_phys_segments);
1154
1155         cmd = scsi_get_cmd_from_req(sdev, req);
1156         if (unlikely(!cmd))
1157                 return BLKPREP_DEFER;
1158
1159         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1160         return scsi_init_io(cmd, GFP_ATOMIC);
1161 }
1162 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1163
1164 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1165 {
1166         int ret = BLKPREP_OK;
1167
1168         /*
1169          * If the device is not in running state we will reject some
1170          * or all commands.
1171          */
1172         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1173                 switch (sdev->sdev_state) {
1174                 case SDEV_OFFLINE:
1175                         /*
1176                          * If the device is offline we refuse to process any
1177                          * commands.  The device must be brought online
1178                          * before trying any recovery commands.
1179                          */
1180                         sdev_printk(KERN_ERR, sdev,
1181                                     "rejecting I/O to offline device\n");
1182                         ret = BLKPREP_KILL;
1183                         break;
1184                 case SDEV_DEL:
1185                         /*
1186                          * If the device is fully deleted, we refuse to
1187                          * process any commands as well.
1188                          */
1189                         sdev_printk(KERN_ERR, sdev,
1190                                     "rejecting I/O to dead device\n");
1191                         ret = BLKPREP_KILL;
1192                         break;
1193                 case SDEV_QUIESCE:
1194                 case SDEV_BLOCK:
1195                 case SDEV_CREATED_BLOCK:
1196                         /*
1197                          * If the devices is blocked we defer normal commands.
1198                          */
1199                         if (!(req->cmd_flags & REQ_PREEMPT))
1200                                 ret = BLKPREP_DEFER;
1201                         break;
1202                 default:
1203                         /*
1204                          * For any other not fully online state we only allow
1205                          * special commands.  In particular any user initiated
1206                          * command is not allowed.
1207                          */
1208                         if (!(req->cmd_flags & REQ_PREEMPT))
1209                                 ret = BLKPREP_KILL;
1210                         break;
1211                 }
1212         }
1213         return ret;
1214 }
1215 EXPORT_SYMBOL(scsi_prep_state_check);
1216
1217 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1218 {
1219         struct scsi_device *sdev = q->queuedata;
1220
1221         switch (ret) {
1222         case BLKPREP_KILL:
1223                 req->errors = DID_NO_CONNECT << 16;
1224                 /* release the command and kill it */
1225                 if (req->special) {
1226                         struct scsi_cmnd *cmd = req->special;
1227                         scsi_release_buffers(cmd);
1228                         scsi_put_command(cmd);
1229                         req->special = NULL;
1230                 }
1231                 break;
1232         case BLKPREP_DEFER:
1233                 /*
1234                  * If we defer, the blk_peek_request() returns NULL, but the
1235                  * queue must be restarted, so we schedule a callback to happen
1236                  * shortly.
1237                  */
1238                 if (sdev->device_busy == 0)
1239                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1240                 break;
1241         default:
1242                 req->cmd_flags |= REQ_DONTPREP;
1243         }
1244
1245         return ret;
1246 }
1247 EXPORT_SYMBOL(scsi_prep_return);
1248
1249 int scsi_prep_fn(struct request_queue *q, struct request *req)
1250 {
1251         struct scsi_device *sdev = q->queuedata;
1252         int ret = BLKPREP_KILL;
1253
1254         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1255                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1256         return scsi_prep_return(q, req, ret);
1257 }
1258 EXPORT_SYMBOL(scsi_prep_fn);
1259
1260 /*
1261  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1262  * return 0.
1263  *
1264  * Called with the queue_lock held.
1265  */
1266 static inline int scsi_dev_queue_ready(struct request_queue *q,
1267                                   struct scsi_device *sdev)
1268 {
1269         if (sdev->device_busy == 0 && sdev->device_blocked) {
1270                 /*
1271                  * unblock after device_blocked iterates to zero
1272                  */
1273                 if (--sdev->device_blocked == 0) {
1274                         SCSI_LOG_MLQUEUE(3,
1275                                    sdev_printk(KERN_INFO, sdev,
1276                                    "unblocking device at zero depth\n"));
1277                 } else {
1278                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1279                         return 0;
1280                 }
1281         }
1282         if (scsi_device_is_busy(sdev))
1283                 return 0;
1284
1285         return 1;
1286 }
1287
1288
1289 /*
1290  * scsi_target_queue_ready: checks if there we can send commands to target
1291  * @sdev: scsi device on starget to check.
1292  *
1293  * Called with the host lock held.
1294  */
1295 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1296                                            struct scsi_device *sdev)
1297 {
1298         struct scsi_target *starget = scsi_target(sdev);
1299
1300         if (starget->single_lun) {
1301                 if (starget->starget_sdev_user &&
1302                     starget->starget_sdev_user != sdev)
1303                         return 0;
1304                 starget->starget_sdev_user = sdev;
1305         }
1306
1307         if (starget->target_busy == 0 && starget->target_blocked) {
1308                 /*
1309                  * unblock after target_blocked iterates to zero
1310                  */
1311                 if (--starget->target_blocked == 0) {
1312                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1313                                          "unblocking target at zero depth\n"));
1314                 } else
1315                         return 0;
1316         }
1317
1318         if (scsi_target_is_busy(starget)) {
1319                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1320                 return 0;
1321         }
1322
1323         return 1;
1324 }
1325
1326 /*
1327  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1328  * return 0. We must end up running the queue again whenever 0 is
1329  * returned, else IO can hang.
1330  *
1331  * Called with host_lock held.
1332  */
1333 static inline int scsi_host_queue_ready(struct request_queue *q,
1334                                    struct Scsi_Host *shost,
1335                                    struct scsi_device *sdev)
1336 {
1337         if (scsi_host_in_recovery(shost))
1338                 return 0;
1339         if (shost->host_busy == 0 && shost->host_blocked) {
1340                 /*
1341                  * unblock after host_blocked iterates to zero
1342                  */
1343                 if (--shost->host_blocked == 0) {
1344                         SCSI_LOG_MLQUEUE(3,
1345                                 printk("scsi%d unblocking host at zero depth\n",
1346                                         shost->host_no));
1347                 } else {
1348                         return 0;
1349                 }
1350         }
1351         if (scsi_host_is_busy(shost)) {
1352                 if (list_empty(&sdev->starved_entry))
1353                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1354                 return 0;
1355         }
1356
1357         /* We're OK to process the command, so we can't be starved */
1358         if (!list_empty(&sdev->starved_entry))
1359                 list_del_init(&sdev->starved_entry);
1360
1361         return 1;
1362 }
1363
1364 /*
1365  * Busy state exporting function for request stacking drivers.
1366  *
1367  * For efficiency, no lock is taken to check the busy state of
1368  * shost/starget/sdev, since the returned value is not guaranteed and
1369  * may be changed after request stacking drivers call the function,
1370  * regardless of taking lock or not.
1371  *
1372  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1373  * (e.g. !sdev), scsi needs to return 'not busy'.
1374  * Otherwise, request stacking drivers may hold requests forever.
1375  */
1376 static int scsi_lld_busy(struct request_queue *q)
1377 {
1378         struct scsi_device *sdev = q->queuedata;
1379         struct Scsi_Host *shost;
1380         struct scsi_target *starget;
1381
1382         if (!sdev)
1383                 return 0;
1384
1385         shost = sdev->host;
1386         starget = scsi_target(sdev);
1387
1388         if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1389             scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1390                 return 1;
1391
1392         return 0;
1393 }
1394
1395 /*
1396  * Kill a request for a dead device
1397  */
1398 static void scsi_kill_request(struct request *req, struct request_queue *q)
1399 {
1400         struct scsi_cmnd *cmd = req->special;
1401         struct scsi_device *sdev;
1402         struct scsi_target *starget;
1403         struct Scsi_Host *shost;
1404
1405         blk_start_request(req);
1406
1407         scmd_printk(KERN_INFO, cmd, "killing request\n");
1408
1409         sdev = cmd->device;
1410         starget = scsi_target(sdev);
1411         shost = sdev->host;
1412         scsi_init_cmd_errh(cmd);
1413         cmd->result = DID_NO_CONNECT << 16;
1414         atomic_inc(&cmd->device->iorequest_cnt);
1415
1416         /*
1417          * SCSI request completion path will do scsi_device_unbusy(),
1418          * bump busy counts.  To bump the counters, we need to dance
1419          * with the locks as normal issue path does.
1420          */
1421         sdev->device_busy++;
1422         spin_unlock(sdev->request_queue->queue_lock);
1423         spin_lock(shost->host_lock);
1424         shost->host_busy++;
1425         starget->target_busy++;
1426         spin_unlock(shost->host_lock);
1427         spin_lock(sdev->request_queue->queue_lock);
1428
1429         blk_complete_request(req);
1430 }
1431
1432 static void scsi_softirq_done(struct request *rq)
1433 {
1434         struct scsi_cmnd *cmd = rq->special;
1435         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1436         int disposition;
1437
1438         INIT_LIST_HEAD(&cmd->eh_entry);
1439
1440         atomic_inc(&cmd->device->iodone_cnt);
1441         if (cmd->result)
1442                 atomic_inc(&cmd->device->ioerr_cnt);
1443
1444         disposition = scsi_decide_disposition(cmd);
1445         if (disposition != SUCCESS &&
1446             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1447                 sdev_printk(KERN_ERR, cmd->device,
1448                             "timing out command, waited %lus\n",
1449                             wait_for/HZ);
1450                 disposition = SUCCESS;
1451         }
1452                         
1453         scsi_log_completion(cmd, disposition);
1454
1455         switch (disposition) {
1456                 case SUCCESS:
1457                         scsi_finish_command(cmd);
1458                         break;
1459                 case NEEDS_RETRY:
1460                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1461                         break;
1462                 case ADD_TO_MLQUEUE:
1463                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1464                         break;
1465                 default:
1466                         if (!scsi_eh_scmd_add(cmd, 0))
1467                                 scsi_finish_command(cmd);
1468         }
1469 }
1470
1471 /*
1472  * Function:    scsi_request_fn()
1473  *
1474  * Purpose:     Main strategy routine for SCSI.
1475  *
1476  * Arguments:   q       - Pointer to actual queue.
1477  *
1478  * Returns:     Nothing
1479  *
1480  * Lock status: IO request lock assumed to be held when called.
1481  */
1482 static void scsi_request_fn(struct request_queue *q)
1483 {
1484         struct scsi_device *sdev = q->queuedata;
1485         struct Scsi_Host *shost;
1486         struct scsi_cmnd *cmd;
1487         struct request *req;
1488
1489         if (!sdev) {
1490                 while ((req = blk_peek_request(q)) != NULL)
1491                         scsi_kill_request(req, q);
1492                 return;
1493         }
1494
1495         if(!get_device(&sdev->sdev_gendev))
1496                 /* We must be tearing the block queue down already */
1497                 return;
1498
1499         /*
1500          * To start with, we keep looping until the queue is empty, or until
1501          * the host is no longer able to accept any more requests.
1502          */
1503         shost = sdev->host;
1504         for (;;) {
1505                 int rtn;
1506                 /*
1507                  * get next queueable request.  We do this early to make sure
1508                  * that the request is fully prepared even if we cannot 
1509                  * accept it.
1510                  */
1511                 req = blk_peek_request(q);
1512                 if (!req || !scsi_dev_queue_ready(q, sdev))
1513                         break;
1514
1515                 if (unlikely(!scsi_device_online(sdev))) {
1516                         sdev_printk(KERN_ERR, sdev,
1517                                     "rejecting I/O to offline device\n");
1518                         scsi_kill_request(req, q);
1519                         continue;
1520                 }
1521
1522
1523                 /*
1524                  * Remove the request from the request list.
1525                  */
1526                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1527                         blk_start_request(req);
1528                 sdev->device_busy++;
1529
1530                 spin_unlock(q->queue_lock);
1531                 cmd = req->special;
1532                 if (unlikely(cmd == NULL)) {
1533                         printk(KERN_CRIT "impossible request in %s.\n"
1534                                          "please mail a stack trace to "
1535                                          "linux-scsi@vger.kernel.org\n",
1536                                          __func__);
1537                         blk_dump_rq_flags(req, "foo");
1538                         BUG();
1539                 }
1540                 spin_lock(shost->host_lock);
1541
1542                 /*
1543                  * We hit this when the driver is using a host wide
1544                  * tag map. For device level tag maps the queue_depth check
1545                  * in the device ready fn would prevent us from trying
1546                  * to allocate a tag. Since the map is a shared host resource
1547                  * we add the dev to the starved list so it eventually gets
1548                  * a run when a tag is freed.
1549                  */
1550                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1551                         if (list_empty(&sdev->starved_entry))
1552                                 list_add_tail(&sdev->starved_entry,
1553                                               &shost->starved_list);
1554                         goto not_ready;
1555                 }
1556
1557                 if (!scsi_target_queue_ready(shost, sdev))
1558                         goto not_ready;
1559
1560                 if (!scsi_host_queue_ready(q, shost, sdev))
1561                         goto not_ready;
1562
1563                 scsi_target(sdev)->target_busy++;
1564                 shost->host_busy++;
1565
1566                 /*
1567                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1568                  *              take the lock again.
1569                  */
1570                 spin_unlock_irq(shost->host_lock);
1571
1572                 /*
1573                  * Finally, initialize any error handling parameters, and set up
1574                  * the timers for timeouts.
1575                  */
1576                 scsi_init_cmd_errh(cmd);
1577
1578                 /*
1579                  * Dispatch the command to the low-level driver.
1580                  */
1581                 rtn = scsi_dispatch_cmd(cmd);
1582                 spin_lock_irq(q->queue_lock);
1583                 if (rtn)
1584                         goto out_delay;
1585         }
1586
1587         goto out;
1588
1589  not_ready:
1590         spin_unlock_irq(shost->host_lock);
1591
1592         /*
1593          * lock q, handle tag, requeue req, and decrement device_busy. We
1594          * must return with queue_lock held.
1595          *
1596          * Decrementing device_busy without checking it is OK, as all such
1597          * cases (host limits or settings) should run the queue at some
1598          * later time.
1599          */
1600         spin_lock_irq(q->queue_lock);
1601         blk_requeue_request(q, req);
1602         sdev->device_busy--;
1603 out_delay:
1604         if (sdev->device_busy == 0)
1605                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1606 out:
1607         /* must be careful here...if we trigger the ->remove() function
1608          * we cannot be holding the q lock */
1609         spin_unlock_irq(q->queue_lock);
1610         put_device(&sdev->sdev_gendev);
1611         spin_lock_irq(q->queue_lock);
1612 }
1613
1614 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1615 {
1616         struct scsi_device *sdev = NULL;
1617
1618         if (q->request_fn == scsi_request_fn)
1619                 sdev = q->queuedata;
1620
1621         return sdev;
1622 }
1623 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
1624
1625 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1626 {
1627         struct device *host_dev;
1628         u64 bounce_limit = 0xffffffff;
1629
1630         if (shost->unchecked_isa_dma)
1631                 return BLK_BOUNCE_ISA;
1632         /*
1633          * Platforms with virtual-DMA translation
1634          * hardware have no practical limit.
1635          */
1636         if (!PCI_DMA_BUS_IS_PHYS)
1637                 return BLK_BOUNCE_ANY;
1638
1639         host_dev = scsi_get_device(shost);
1640         if (host_dev && host_dev->dma_mask)
1641                 bounce_limit = *host_dev->dma_mask;
1642
1643         return bounce_limit;
1644 }
1645 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1646
1647 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1648                                          request_fn_proc *request_fn)
1649 {
1650         struct request_queue *q;
1651         struct device *dev = shost->shost_gendev.parent;
1652
1653         q = blk_init_queue(request_fn, NULL);
1654         if (!q)
1655                 return NULL;
1656
1657         /*
1658          * this limit is imposed by hardware restrictions
1659          */
1660         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1661                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1662
1663         if (scsi_host_prot_dma(shost)) {
1664                 shost->sg_prot_tablesize =
1665                         min_not_zero(shost->sg_prot_tablesize,
1666                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1667                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1668                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1669         }
1670
1671         blk_queue_max_hw_sectors(q, shost->max_sectors);
1672         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1673         blk_queue_segment_boundary(q, shost->dma_boundary);
1674         dma_set_seg_boundary(dev, shost->dma_boundary);
1675
1676         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1677
1678         if (!shost->use_clustering)
1679                 q->limits.cluster = 0;
1680
1681         /*
1682          * set a reasonable default alignment on word boundaries: the
1683          * host and device may alter it using
1684          * blk_queue_update_dma_alignment() later.
1685          */
1686         blk_queue_dma_alignment(q, 0x03);
1687
1688         return q;
1689 }
1690 EXPORT_SYMBOL(__scsi_alloc_queue);
1691
1692 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1693 {
1694         struct request_queue *q;
1695
1696         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1697         if (!q)
1698                 return NULL;
1699
1700         blk_queue_prep_rq(q, scsi_prep_fn);
1701         blk_queue_softirq_done(q, scsi_softirq_done);
1702         blk_queue_rq_timed_out(q, scsi_times_out);
1703         blk_queue_lld_busy(q, scsi_lld_busy);
1704         return q;
1705 }
1706
1707 void scsi_free_queue(struct request_queue *q)
1708 {
1709         unsigned long flags;
1710
1711         WARN_ON(q->queuedata);
1712
1713         /* cause scsi_request_fn() to kill all non-finished requests */
1714         spin_lock_irqsave(q->queue_lock, flags);
1715         q->request_fn(q);
1716         spin_unlock_irqrestore(q->queue_lock, flags);
1717
1718         blk_cleanup_queue(q);
1719 }
1720
1721 /*
1722  * Function:    scsi_block_requests()
1723  *
1724  * Purpose:     Utility function used by low-level drivers to prevent further
1725  *              commands from being queued to the device.
1726  *
1727  * Arguments:   shost       - Host in question
1728  *
1729  * Returns:     Nothing
1730  *
1731  * Lock status: No locks are assumed held.
1732  *
1733  * Notes:       There is no timer nor any other means by which the requests
1734  *              get unblocked other than the low-level driver calling
1735  *              scsi_unblock_requests().
1736  */
1737 void scsi_block_requests(struct Scsi_Host *shost)
1738 {
1739         shost->host_self_blocked = 1;
1740 }
1741 EXPORT_SYMBOL(scsi_block_requests);
1742
1743 /*
1744  * Function:    scsi_unblock_requests()
1745  *
1746  * Purpose:     Utility function used by low-level drivers to allow further
1747  *              commands from being queued to the device.
1748  *
1749  * Arguments:   shost       - Host in question
1750  *
1751  * Returns:     Nothing
1752  *
1753  * Lock status: No locks are assumed held.
1754  *
1755  * Notes:       There is no timer nor any other means by which the requests
1756  *              get unblocked other than the low-level driver calling
1757  *              scsi_unblock_requests().
1758  *
1759  *              This is done as an API function so that changes to the
1760  *              internals of the scsi mid-layer won't require wholesale
1761  *              changes to drivers that use this feature.
1762  */
1763 void scsi_unblock_requests(struct Scsi_Host *shost)
1764 {
1765         shost->host_self_blocked = 0;
1766         scsi_run_host_queues(shost);
1767 }
1768 EXPORT_SYMBOL(scsi_unblock_requests);
1769
1770 int __init scsi_init_queue(void)
1771 {
1772         int i;
1773
1774         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1775                                            sizeof(struct scsi_data_buffer),
1776                                            0, 0, NULL);
1777         if (!scsi_sdb_cache) {
1778                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1779                 return -ENOMEM;
1780         }
1781
1782         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1783                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1784                 int size = sgp->size * sizeof(struct scatterlist);
1785
1786                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1787                                 SLAB_HWCACHE_ALIGN, NULL);
1788                 if (!sgp->slab) {
1789                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1790                                         sgp->name);
1791                         goto cleanup_sdb;
1792                 }
1793
1794                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1795                                                      sgp->slab);
1796                 if (!sgp->pool) {
1797                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1798                                         sgp->name);
1799                         goto cleanup_sdb;
1800                 }
1801         }
1802
1803         return 0;
1804
1805 cleanup_sdb:
1806         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1807                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1808                 if (sgp->pool)
1809                         mempool_destroy(sgp->pool);
1810                 if (sgp->slab)
1811                         kmem_cache_destroy(sgp->slab);
1812         }
1813         kmem_cache_destroy(scsi_sdb_cache);
1814
1815         return -ENOMEM;
1816 }
1817
1818 void scsi_exit_queue(void)
1819 {
1820         int i;
1821
1822         kmem_cache_destroy(scsi_sdb_cache);
1823
1824         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1825                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1826                 mempool_destroy(sgp->pool);
1827                 kmem_cache_destroy(sgp->slab);
1828         }
1829 }
1830
1831 /**
1832  *      scsi_mode_select - issue a mode select
1833  *      @sdev:  SCSI device to be queried
1834  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1835  *      @sp:    Save page bit (0 == don't save, 1 == save)
1836  *      @modepage: mode page being requested
1837  *      @buffer: request buffer (may not be smaller than eight bytes)
1838  *      @len:   length of request buffer.
1839  *      @timeout: command timeout
1840  *      @retries: number of retries before failing
1841  *      @data: returns a structure abstracting the mode header data
1842  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1843  *              must be SCSI_SENSE_BUFFERSIZE big.
1844  *
1845  *      Returns zero if successful; negative error number or scsi
1846  *      status on error
1847  *
1848  */
1849 int
1850 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1851                  unsigned char *buffer, int len, int timeout, int retries,
1852                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1853 {
1854         unsigned char cmd[10];
1855         unsigned char *real_buffer;
1856         int ret;
1857
1858         memset(cmd, 0, sizeof(cmd));
1859         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1860
1861         if (sdev->use_10_for_ms) {
1862                 if (len > 65535)
1863                         return -EINVAL;
1864                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1865                 if (!real_buffer)
1866                         return -ENOMEM;
1867                 memcpy(real_buffer + 8, buffer, len);
1868                 len += 8;
1869                 real_buffer[0] = 0;
1870                 real_buffer[1] = 0;
1871                 real_buffer[2] = data->medium_type;
1872                 real_buffer[3] = data->device_specific;
1873                 real_buffer[4] = data->longlba ? 0x01 : 0;
1874                 real_buffer[5] = 0;
1875                 real_buffer[6] = data->block_descriptor_length >> 8;
1876                 real_buffer[7] = data->block_descriptor_length;
1877
1878                 cmd[0] = MODE_SELECT_10;
1879                 cmd[7] = len >> 8;
1880                 cmd[8] = len;
1881         } else {
1882                 if (len > 255 || data->block_descriptor_length > 255 ||
1883                     data->longlba)
1884                         return -EINVAL;
1885
1886                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1887                 if (!real_buffer)
1888                         return -ENOMEM;
1889                 memcpy(real_buffer + 4, buffer, len);
1890                 len += 4;
1891                 real_buffer[0] = 0;
1892                 real_buffer[1] = data->medium_type;
1893                 real_buffer[2] = data->device_specific;
1894                 real_buffer[3] = data->block_descriptor_length;
1895                 
1896
1897                 cmd[0] = MODE_SELECT;
1898                 cmd[4] = len;
1899         }
1900
1901         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1902                                sshdr, timeout, retries, NULL);
1903         kfree(real_buffer);
1904         return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(scsi_mode_select);
1907
1908 /**
1909  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1910  *      @sdev:  SCSI device to be queried
1911  *      @dbd:   set if mode sense will allow block descriptors to be returned
1912  *      @modepage: mode page being requested
1913  *      @buffer: request buffer (may not be smaller than eight bytes)
1914  *      @len:   length of request buffer.
1915  *      @timeout: command timeout
1916  *      @retries: number of retries before failing
1917  *      @data: returns a structure abstracting the mode header data
1918  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1919  *              must be SCSI_SENSE_BUFFERSIZE big.
1920  *
1921  *      Returns zero if unsuccessful, or the header offset (either 4
1922  *      or 8 depending on whether a six or ten byte command was
1923  *      issued) if successful.
1924  */
1925 int
1926 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1927                   unsigned char *buffer, int len, int timeout, int retries,
1928                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1929 {
1930         unsigned char cmd[12];
1931         int use_10_for_ms;
1932         int header_length;
1933         int result;
1934         struct scsi_sense_hdr my_sshdr;
1935
1936         memset(data, 0, sizeof(*data));
1937         memset(&cmd[0], 0, 12);
1938         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1939         cmd[2] = modepage;
1940
1941         /* caller might not be interested in sense, but we need it */
1942         if (!sshdr)
1943                 sshdr = &my_sshdr;
1944
1945  retry:
1946         use_10_for_ms = sdev->use_10_for_ms;
1947
1948         if (use_10_for_ms) {
1949                 if (len < 8)
1950                         len = 8;
1951
1952                 cmd[0] = MODE_SENSE_10;
1953                 cmd[8] = len;
1954                 header_length = 8;
1955         } else {
1956                 if (len < 4)
1957                         len = 4;
1958
1959                 cmd[0] = MODE_SENSE;
1960                 cmd[4] = len;
1961                 header_length = 4;
1962         }
1963
1964         memset(buffer, 0, len);
1965
1966         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1967                                   sshdr, timeout, retries, NULL);
1968
1969         /* This code looks awful: what it's doing is making sure an
1970          * ILLEGAL REQUEST sense return identifies the actual command
1971          * byte as the problem.  MODE_SENSE commands can return
1972          * ILLEGAL REQUEST if the code page isn't supported */
1973
1974         if (use_10_for_ms && !scsi_status_is_good(result) &&
1975             (driver_byte(result) & DRIVER_SENSE)) {
1976                 if (scsi_sense_valid(sshdr)) {
1977                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1978                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1979                                 /* 
1980                                  * Invalid command operation code
1981                                  */
1982                                 sdev->use_10_for_ms = 0;
1983                                 goto retry;
1984                         }
1985                 }
1986         }
1987
1988         if(scsi_status_is_good(result)) {
1989                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1990                              (modepage == 6 || modepage == 8))) {
1991                         /* Initio breakage? */
1992                         header_length = 0;
1993                         data->length = 13;
1994                         data->medium_type = 0;
1995                         data->device_specific = 0;
1996                         data->longlba = 0;
1997                         data->block_descriptor_length = 0;
1998                 } else if(use_10_for_ms) {
1999                         data->length = buffer[0]*256 + buffer[1] + 2;
2000                         data->medium_type = buffer[2];
2001                         data->device_specific = buffer[3];
2002                         data->longlba = buffer[4] & 0x01;
2003                         data->block_descriptor_length = buffer[6]*256
2004                                 + buffer[7];
2005                 } else {
2006                         data->length = buffer[0] + 1;
2007                         data->medium_type = buffer[1];
2008                         data->device_specific = buffer[2];
2009                         data->block_descriptor_length = buffer[3];
2010                 }
2011                 data->header_length = header_length;
2012         }
2013
2014         return result;
2015 }
2016 EXPORT_SYMBOL(scsi_mode_sense);
2017
2018 /**
2019  *      scsi_test_unit_ready - test if unit is ready
2020  *      @sdev:  scsi device to change the state of.
2021  *      @timeout: command timeout
2022  *      @retries: number of retries before failing
2023  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2024  *              returning sense. Make sure that this is cleared before passing
2025  *              in.
2026  *
2027  *      Returns zero if unsuccessful or an error if TUR failed.  For
2028  *      removable media, UNIT_ATTENTION sets ->changed flag.
2029  **/
2030 int
2031 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2032                      struct scsi_sense_hdr *sshdr_external)
2033 {
2034         char cmd[] = {
2035                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2036         };
2037         struct scsi_sense_hdr *sshdr;
2038         int result;
2039
2040         if (!sshdr_external)
2041                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2042         else
2043                 sshdr = sshdr_external;
2044
2045         /* try to eat the UNIT_ATTENTION if there are enough retries */
2046         do {
2047                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2048                                           timeout, retries, NULL);
2049                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2050                     sshdr->sense_key == UNIT_ATTENTION)
2051                         sdev->changed = 1;
2052         } while (scsi_sense_valid(sshdr) &&
2053                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2054
2055         if (!sshdr_external)
2056                 kfree(sshdr);
2057         return result;
2058 }
2059 EXPORT_SYMBOL(scsi_test_unit_ready);
2060
2061 /**
2062  *      scsi_device_set_state - Take the given device through the device state model.
2063  *      @sdev:  scsi device to change the state of.
2064  *      @state: state to change to.
2065  *
2066  *      Returns zero if unsuccessful or an error if the requested 
2067  *      transition is illegal.
2068  */
2069 int
2070 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2071 {
2072         enum scsi_device_state oldstate = sdev->sdev_state;
2073
2074         if (state == oldstate)
2075                 return 0;
2076
2077         switch (state) {
2078         case SDEV_CREATED:
2079                 switch (oldstate) {
2080                 case SDEV_CREATED_BLOCK:
2081                         break;
2082                 default:
2083                         goto illegal;
2084                 }
2085                 break;
2086                         
2087         case SDEV_RUNNING:
2088                 switch (oldstate) {
2089                 case SDEV_CREATED:
2090                 case SDEV_OFFLINE:
2091                 case SDEV_QUIESCE:
2092                 case SDEV_BLOCK:
2093                         break;
2094                 default:
2095                         goto illegal;
2096                 }
2097                 break;
2098
2099         case SDEV_QUIESCE:
2100                 switch (oldstate) {
2101                 case SDEV_RUNNING:
2102                 case SDEV_OFFLINE:
2103                         break;
2104                 default:
2105                         goto illegal;
2106                 }
2107                 break;
2108
2109         case SDEV_OFFLINE:
2110                 switch (oldstate) {
2111                 case SDEV_CREATED:
2112                 case SDEV_RUNNING:
2113                 case SDEV_QUIESCE:
2114                 case SDEV_BLOCK:
2115                         break;
2116                 default:
2117                         goto illegal;
2118                 }
2119                 break;
2120
2121         case SDEV_BLOCK:
2122                 switch (oldstate) {
2123                 case SDEV_RUNNING:
2124                 case SDEV_CREATED_BLOCK:
2125                         break;
2126                 default:
2127                         goto illegal;
2128                 }
2129                 break;
2130
2131         case SDEV_CREATED_BLOCK:
2132                 switch (oldstate) {
2133                 case SDEV_CREATED:
2134                         break;
2135                 default:
2136                         goto illegal;
2137                 }
2138                 break;
2139
2140         case SDEV_CANCEL:
2141                 switch (oldstate) {
2142                 case SDEV_CREATED:
2143                 case SDEV_RUNNING:
2144                 case SDEV_QUIESCE:
2145                 case SDEV_OFFLINE:
2146                 case SDEV_BLOCK:
2147                         break;
2148                 default:
2149                         goto illegal;
2150                 }
2151                 break;
2152
2153         case SDEV_DEL:
2154                 switch (oldstate) {
2155                 case SDEV_CREATED:
2156                 case SDEV_RUNNING:
2157                 case SDEV_OFFLINE:
2158                 case SDEV_CANCEL:
2159                         break;
2160                 default:
2161                         goto illegal;
2162                 }
2163                 break;
2164
2165         }
2166         sdev->sdev_state = state;
2167         return 0;
2168
2169  illegal:
2170         SCSI_LOG_ERROR_RECOVERY(1, 
2171                                 sdev_printk(KERN_ERR, sdev,
2172                                             "Illegal state transition %s->%s\n",
2173                                             scsi_device_state_name(oldstate),
2174                                             scsi_device_state_name(state))
2175                                 );
2176         return -EINVAL;
2177 }
2178 EXPORT_SYMBOL(scsi_device_set_state);
2179
2180 /**
2181  *      sdev_evt_emit - emit a single SCSI device uevent
2182  *      @sdev: associated SCSI device
2183  *      @evt: event to emit
2184  *
2185  *      Send a single uevent (scsi_event) to the associated scsi_device.
2186  */
2187 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2188 {
2189         int idx = 0;
2190         char *envp[3];
2191
2192         switch (evt->evt_type) {
2193         case SDEV_EVT_MEDIA_CHANGE:
2194                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2195                 break;
2196
2197         default:
2198                 /* do nothing */
2199                 break;
2200         }
2201
2202         envp[idx++] = NULL;
2203
2204         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2205 }
2206
2207 /**
2208  *      sdev_evt_thread - send a uevent for each scsi event
2209  *      @work: work struct for scsi_device
2210  *
2211  *      Dispatch queued events to their associated scsi_device kobjects
2212  *      as uevents.
2213  */
2214 void scsi_evt_thread(struct work_struct *work)
2215 {
2216         struct scsi_device *sdev;
2217         LIST_HEAD(event_list);
2218
2219         sdev = container_of(work, struct scsi_device, event_work);
2220
2221         while (1) {
2222                 struct scsi_event *evt;
2223                 struct list_head *this, *tmp;
2224                 unsigned long flags;
2225
2226                 spin_lock_irqsave(&sdev->list_lock, flags);
2227                 list_splice_init(&sdev->event_list, &event_list);
2228                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2229
2230                 if (list_empty(&event_list))
2231                         break;
2232
2233                 list_for_each_safe(this, tmp, &event_list) {
2234                         evt = list_entry(this, struct scsi_event, node);
2235                         list_del(&evt->node);
2236                         scsi_evt_emit(sdev, evt);
2237                         kfree(evt);
2238                 }
2239         }
2240 }
2241
2242 /**
2243  *      sdev_evt_send - send asserted event to uevent thread
2244  *      @sdev: scsi_device event occurred on
2245  *      @evt: event to send
2246  *
2247  *      Assert scsi device event asynchronously.
2248  */
2249 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2250 {
2251         unsigned long flags;
2252
2253 #if 0
2254         /* FIXME: currently this check eliminates all media change events
2255          * for polled devices.  Need to update to discriminate between AN
2256          * and polled events */
2257         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2258                 kfree(evt);
2259                 return;
2260         }
2261 #endif
2262
2263         spin_lock_irqsave(&sdev->list_lock, flags);
2264         list_add_tail(&evt->node, &sdev->event_list);
2265         schedule_work(&sdev->event_work);
2266         spin_unlock_irqrestore(&sdev->list_lock, flags);
2267 }
2268 EXPORT_SYMBOL_GPL(sdev_evt_send);
2269
2270 /**
2271  *      sdev_evt_alloc - allocate a new scsi event
2272  *      @evt_type: type of event to allocate
2273  *      @gfpflags: GFP flags for allocation
2274  *
2275  *      Allocates and returns a new scsi_event.
2276  */
2277 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2278                                   gfp_t gfpflags)
2279 {
2280         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2281         if (!evt)
2282                 return NULL;
2283
2284         evt->evt_type = evt_type;
2285         INIT_LIST_HEAD(&evt->node);
2286
2287         /* evt_type-specific initialization, if any */
2288         switch (evt_type) {
2289         case SDEV_EVT_MEDIA_CHANGE:
2290         default:
2291                 /* do nothing */
2292                 break;
2293         }
2294
2295         return evt;
2296 }
2297 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2298
2299 /**
2300  *      sdev_evt_send_simple - send asserted event to uevent thread
2301  *      @sdev: scsi_device event occurred on
2302  *      @evt_type: type of event to send
2303  *      @gfpflags: GFP flags for allocation
2304  *
2305  *      Assert scsi device event asynchronously, given an event type.
2306  */
2307 void sdev_evt_send_simple(struct scsi_device *sdev,
2308                           enum scsi_device_event evt_type, gfp_t gfpflags)
2309 {
2310         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2311         if (!evt) {
2312                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2313                             evt_type);
2314                 return;
2315         }
2316
2317         sdev_evt_send(sdev, evt);
2318 }
2319 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2320
2321 /**
2322  *      scsi_device_quiesce - Block user issued commands.
2323  *      @sdev:  scsi device to quiesce.
2324  *
2325  *      This works by trying to transition to the SDEV_QUIESCE state
2326  *      (which must be a legal transition).  When the device is in this
2327  *      state, only special requests will be accepted, all others will
2328  *      be deferred.  Since special requests may also be requeued requests,
2329  *      a successful return doesn't guarantee the device will be 
2330  *      totally quiescent.
2331  *
2332  *      Must be called with user context, may sleep.
2333  *
2334  *      Returns zero if unsuccessful or an error if not.
2335  */
2336 int
2337 scsi_device_quiesce(struct scsi_device *sdev)
2338 {
2339         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2340         if (err)
2341                 return err;
2342
2343         scsi_run_queue(sdev->request_queue);
2344         while (sdev->device_busy) {
2345                 msleep_interruptible(200);
2346                 scsi_run_queue(sdev->request_queue);
2347         }
2348         return 0;
2349 }
2350 EXPORT_SYMBOL(scsi_device_quiesce);
2351
2352 /**
2353  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2354  *      @sdev:  scsi device to resume.
2355  *
2356  *      Moves the device from quiesced back to running and restarts the
2357  *      queues.
2358  *
2359  *      Must be called with user context, may sleep.
2360  */
2361 void
2362 scsi_device_resume(struct scsi_device *sdev)
2363 {
2364         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2365                 return;
2366         scsi_run_queue(sdev->request_queue);
2367 }
2368 EXPORT_SYMBOL(scsi_device_resume);
2369
2370 static void
2371 device_quiesce_fn(struct scsi_device *sdev, void *data)
2372 {
2373         scsi_device_quiesce(sdev);
2374 }
2375
2376 void
2377 scsi_target_quiesce(struct scsi_target *starget)
2378 {
2379         starget_for_each_device(starget, NULL, device_quiesce_fn);
2380 }
2381 EXPORT_SYMBOL(scsi_target_quiesce);
2382
2383 static void
2384 device_resume_fn(struct scsi_device *sdev, void *data)
2385 {
2386         scsi_device_resume(sdev);
2387 }
2388
2389 void
2390 scsi_target_resume(struct scsi_target *starget)
2391 {
2392         starget_for_each_device(starget, NULL, device_resume_fn);
2393 }
2394 EXPORT_SYMBOL(scsi_target_resume);
2395
2396 /**
2397  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2398  * @sdev:       device to block
2399  *
2400  * Block request made by scsi lld's to temporarily stop all
2401  * scsi commands on the specified device.  Called from interrupt
2402  * or normal process context.
2403  *
2404  * Returns zero if successful or error if not
2405  *
2406  * Notes:       
2407  *      This routine transitions the device to the SDEV_BLOCK state
2408  *      (which must be a legal transition).  When the device is in this
2409  *      state, all commands are deferred until the scsi lld reenables
2410  *      the device with scsi_device_unblock or device_block_tmo fires.
2411  *      This routine assumes the host_lock is held on entry.
2412  */
2413 int
2414 scsi_internal_device_block(struct scsi_device *sdev)
2415 {
2416         struct request_queue *q = sdev->request_queue;
2417         unsigned long flags;
2418         int err = 0;
2419
2420         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2421         if (err) {
2422                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2423
2424                 if (err)
2425                         return err;
2426         }
2427
2428         /* 
2429          * The device has transitioned to SDEV_BLOCK.  Stop the
2430          * block layer from calling the midlayer with this device's
2431          * request queue. 
2432          */
2433         spin_lock_irqsave(q->queue_lock, flags);
2434         blk_stop_queue(q);
2435         spin_unlock_irqrestore(q->queue_lock, flags);
2436
2437         return 0;
2438 }
2439 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2440  
2441 /**
2442  * scsi_internal_device_unblock - resume a device after a block request
2443  * @sdev:       device to resume
2444  *
2445  * Called by scsi lld's or the midlayer to restart the device queue
2446  * for the previously suspended scsi device.  Called from interrupt or
2447  * normal process context.
2448  *
2449  * Returns zero if successful or error if not.
2450  *
2451  * Notes:       
2452  *      This routine transitions the device to the SDEV_RUNNING state
2453  *      (which must be a legal transition) allowing the midlayer to
2454  *      goose the queue for this device.  This routine assumes the 
2455  *      host_lock is held upon entry.
2456  */
2457 int
2458 scsi_internal_device_unblock(struct scsi_device *sdev)
2459 {
2460         struct request_queue *q = sdev->request_queue; 
2461         unsigned long flags;
2462         
2463         /* 
2464          * Try to transition the scsi device to SDEV_RUNNING
2465          * and goose the device queue if successful.  
2466          */
2467         if (sdev->sdev_state == SDEV_BLOCK)
2468                 sdev->sdev_state = SDEV_RUNNING;
2469         else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2470                 sdev->sdev_state = SDEV_CREATED;
2471         else if (sdev->sdev_state != SDEV_CANCEL &&
2472                  sdev->sdev_state != SDEV_OFFLINE)
2473                 return -EINVAL;
2474
2475         spin_lock_irqsave(q->queue_lock, flags);
2476         blk_start_queue(q);
2477         spin_unlock_irqrestore(q->queue_lock, flags);
2478
2479         return 0;
2480 }
2481 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2482
2483 static void
2484 device_block(struct scsi_device *sdev, void *data)
2485 {
2486         scsi_internal_device_block(sdev);
2487 }
2488
2489 static int
2490 target_block(struct device *dev, void *data)
2491 {
2492         if (scsi_is_target_device(dev))
2493                 starget_for_each_device(to_scsi_target(dev), NULL,
2494                                         device_block);
2495         return 0;
2496 }
2497
2498 void
2499 scsi_target_block(struct device *dev)
2500 {
2501         if (scsi_is_target_device(dev))
2502                 starget_for_each_device(to_scsi_target(dev), NULL,
2503                                         device_block);
2504         else
2505                 device_for_each_child(dev, NULL, target_block);
2506 }
2507 EXPORT_SYMBOL_GPL(scsi_target_block);
2508
2509 static void
2510 device_unblock(struct scsi_device *sdev, void *data)
2511 {
2512         scsi_internal_device_unblock(sdev);
2513 }
2514
2515 static int
2516 target_unblock(struct device *dev, void *data)
2517 {
2518         if (scsi_is_target_device(dev))
2519                 starget_for_each_device(to_scsi_target(dev), NULL,
2520                                         device_unblock);
2521         return 0;
2522 }
2523
2524 void
2525 scsi_target_unblock(struct device *dev)
2526 {
2527         if (scsi_is_target_device(dev))
2528                 starget_for_each_device(to_scsi_target(dev), NULL,
2529                                         device_unblock);
2530         else
2531                 device_for_each_child(dev, NULL, target_unblock);
2532 }
2533 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2534
2535 /**
2536  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2537  * @sgl:        scatter-gather list
2538  * @sg_count:   number of segments in sg
2539  * @offset:     offset in bytes into sg, on return offset into the mapped area
2540  * @len:        bytes to map, on return number of bytes mapped
2541  *
2542  * Returns virtual address of the start of the mapped page
2543  */
2544 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2545                           size_t *offset, size_t *len)
2546 {
2547         int i;
2548         size_t sg_len = 0, len_complete = 0;
2549         struct scatterlist *sg;
2550         struct page *page;
2551
2552         WARN_ON(!irqs_disabled());
2553
2554         for_each_sg(sgl, sg, sg_count, i) {
2555                 len_complete = sg_len; /* Complete sg-entries */
2556                 sg_len += sg->length;
2557                 if (sg_len > *offset)
2558                         break;
2559         }
2560
2561         if (unlikely(i == sg_count)) {
2562                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2563                         "elements %d\n",
2564                        __func__, sg_len, *offset, sg_count);
2565                 WARN_ON(1);
2566                 return NULL;
2567         }
2568
2569         /* Offset starting from the beginning of first page in this sg-entry */
2570         *offset = *offset - len_complete + sg->offset;
2571
2572         /* Assumption: contiguous pages can be accessed as "page + i" */
2573         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2574         *offset &= ~PAGE_MASK;
2575
2576         /* Bytes in this sg-entry from *offset to the end of the page */
2577         sg_len = PAGE_SIZE - *offset;
2578         if (*len > sg_len)
2579                 *len = sg_len;
2580
2581         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2582 }
2583 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2584
2585 /**
2586  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2587  * @virt:       virtual address to be unmapped
2588  */
2589 void scsi_kunmap_atomic_sg(void *virt)
2590 {
2591         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2592 }
2593 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);