Merge branch '3.4-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-flexiantxendom0-3.2.10.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
16
17 #include "util/debug.h"
18
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
21
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
25
26 static const char               *input_name;
27
28 static char                     default_sort_order[] = "avg, max, switch, runtime";
29 static const char               *sort_order = default_sort_order;
30
31 static int                      profile_cpu = -1;
32
33 #define PR_SET_NAME             15               /* Set process name */
34 #define MAX_CPUS                4096
35
36 static u64                      run_measurement_overhead;
37 static u64                      sleep_measurement_overhead;
38
39 #define COMM_LEN                20
40 #define SYM_LEN                 129
41
42 #define MAX_PID                 65536
43
44 static unsigned long            nr_tasks;
45
46 struct sched_atom;
47
48 struct task_desc {
49         unsigned long           nr;
50         unsigned long           pid;
51         char                    comm[COMM_LEN];
52
53         unsigned long           nr_events;
54         unsigned long           curr_event;
55         struct sched_atom       **atoms;
56
57         pthread_t               thread;
58         sem_t                   sleep_sem;
59
60         sem_t                   ready_for_work;
61         sem_t                   work_done_sem;
62
63         u64                     cpu_usage;
64 };
65
66 enum sched_event_type {
67         SCHED_EVENT_RUN,
68         SCHED_EVENT_SLEEP,
69         SCHED_EVENT_WAKEUP,
70         SCHED_EVENT_MIGRATION,
71 };
72
73 struct sched_atom {
74         enum sched_event_type   type;
75         int                     specific_wait;
76         u64                     timestamp;
77         u64                     duration;
78         unsigned long           nr;
79         sem_t                   *wait_sem;
80         struct task_desc        *wakee;
81 };
82
83 static struct task_desc         *pid_to_task[MAX_PID];
84
85 static struct task_desc         **tasks;
86
87 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
88 static u64                      start_time;
89
90 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
91
92 static unsigned long            nr_run_events;
93 static unsigned long            nr_sleep_events;
94 static unsigned long            nr_wakeup_events;
95
96 static unsigned long            nr_sleep_corrections;
97 static unsigned long            nr_run_events_optimized;
98
99 static unsigned long            targetless_wakeups;
100 static unsigned long            multitarget_wakeups;
101
102 static u64                      cpu_usage;
103 static u64                      runavg_cpu_usage;
104 static u64                      parent_cpu_usage;
105 static u64                      runavg_parent_cpu_usage;
106
107 static unsigned long            nr_runs;
108 static u64                      sum_runtime;
109 static u64                      sum_fluct;
110 static u64                      run_avg;
111
112 static unsigned int             replay_repeat = 10;
113 static unsigned long            nr_timestamps;
114 static unsigned long            nr_unordered_timestamps;
115 static unsigned long            nr_state_machine_bugs;
116 static unsigned long            nr_context_switch_bugs;
117 static unsigned long            nr_events;
118 static unsigned long            nr_lost_chunks;
119 static unsigned long            nr_lost_events;
120
121 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
122
123 enum thread_state {
124         THREAD_SLEEPING = 0,
125         THREAD_WAIT_CPU,
126         THREAD_SCHED_IN,
127         THREAD_IGNORE
128 };
129
130 struct work_atom {
131         struct list_head        list;
132         enum thread_state       state;
133         u64                     sched_out_time;
134         u64                     wake_up_time;
135         u64                     sched_in_time;
136         u64                     runtime;
137 };
138
139 struct work_atoms {
140         struct list_head        work_list;
141         struct thread           *thread;
142         struct rb_node          node;
143         u64                     max_lat;
144         u64                     max_lat_at;
145         u64                     total_lat;
146         u64                     nb_atoms;
147         u64                     total_runtime;
148 };
149
150 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
151
152 static struct rb_root           atom_root, sorted_atom_root;
153
154 static u64                      all_runtime;
155 static u64                      all_count;
156
157
158 static u64 get_nsecs(void)
159 {
160         struct timespec ts;
161
162         clock_gettime(CLOCK_MONOTONIC, &ts);
163
164         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
165 }
166
167 static void burn_nsecs(u64 nsecs)
168 {
169         u64 T0 = get_nsecs(), T1;
170
171         do {
172                 T1 = get_nsecs();
173         } while (T1 + run_measurement_overhead < T0 + nsecs);
174 }
175
176 static void sleep_nsecs(u64 nsecs)
177 {
178         struct timespec ts;
179
180         ts.tv_nsec = nsecs % 999999999;
181         ts.tv_sec = nsecs / 999999999;
182
183         nanosleep(&ts, NULL);
184 }
185
186 static void calibrate_run_measurement_overhead(void)
187 {
188         u64 T0, T1, delta, min_delta = 1000000000ULL;
189         int i;
190
191         for (i = 0; i < 10; i++) {
192                 T0 = get_nsecs();
193                 burn_nsecs(0);
194                 T1 = get_nsecs();
195                 delta = T1-T0;
196                 min_delta = min(min_delta, delta);
197         }
198         run_measurement_overhead = min_delta;
199
200         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
201 }
202
203 static void calibrate_sleep_measurement_overhead(void)
204 {
205         u64 T0, T1, delta, min_delta = 1000000000ULL;
206         int i;
207
208         for (i = 0; i < 10; i++) {
209                 T0 = get_nsecs();
210                 sleep_nsecs(10000);
211                 T1 = get_nsecs();
212                 delta = T1-T0;
213                 min_delta = min(min_delta, delta);
214         }
215         min_delta -= 10000;
216         sleep_measurement_overhead = min_delta;
217
218         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
219 }
220
221 static struct sched_atom *
222 get_new_event(struct task_desc *task, u64 timestamp)
223 {
224         struct sched_atom *event = zalloc(sizeof(*event));
225         unsigned long idx = task->nr_events;
226         size_t size;
227
228         event->timestamp = timestamp;
229         event->nr = idx;
230
231         task->nr_events++;
232         size = sizeof(struct sched_atom *) * task->nr_events;
233         task->atoms = realloc(task->atoms, size);
234         BUG_ON(!task->atoms);
235
236         task->atoms[idx] = event;
237
238         return event;
239 }
240
241 static struct sched_atom *last_event(struct task_desc *task)
242 {
243         if (!task->nr_events)
244                 return NULL;
245
246         return task->atoms[task->nr_events - 1];
247 }
248
249 static void
250 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
251 {
252         struct sched_atom *event, *curr_event = last_event(task);
253
254         /*
255          * optimize an existing RUN event by merging this one
256          * to it:
257          */
258         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
259                 nr_run_events_optimized++;
260                 curr_event->duration += duration;
261                 return;
262         }
263
264         event = get_new_event(task, timestamp);
265
266         event->type = SCHED_EVENT_RUN;
267         event->duration = duration;
268
269         nr_run_events++;
270 }
271
272 static void
273 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
274                        struct task_desc *wakee)
275 {
276         struct sched_atom *event, *wakee_event;
277
278         event = get_new_event(task, timestamp);
279         event->type = SCHED_EVENT_WAKEUP;
280         event->wakee = wakee;
281
282         wakee_event = last_event(wakee);
283         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
284                 targetless_wakeups++;
285                 return;
286         }
287         if (wakee_event->wait_sem) {
288                 multitarget_wakeups++;
289                 return;
290         }
291
292         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
293         sem_init(wakee_event->wait_sem, 0, 0);
294         wakee_event->specific_wait = 1;
295         event->wait_sem = wakee_event->wait_sem;
296
297         nr_wakeup_events++;
298 }
299
300 static void
301 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
302                       u64 task_state __used)
303 {
304         struct sched_atom *event = get_new_event(task, timestamp);
305
306         event->type = SCHED_EVENT_SLEEP;
307
308         nr_sleep_events++;
309 }
310
311 static struct task_desc *register_pid(unsigned long pid, const char *comm)
312 {
313         struct task_desc *task;
314
315         BUG_ON(pid >= MAX_PID);
316
317         task = pid_to_task[pid];
318
319         if (task)
320                 return task;
321
322         task = zalloc(sizeof(*task));
323         task->pid = pid;
324         task->nr = nr_tasks;
325         strcpy(task->comm, comm);
326         /*
327          * every task starts in sleeping state - this gets ignored
328          * if there's no wakeup pointing to this sleep state:
329          */
330         add_sched_event_sleep(task, 0, 0);
331
332         pid_to_task[pid] = task;
333         nr_tasks++;
334         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
335         BUG_ON(!tasks);
336         tasks[task->nr] = task;
337
338         if (verbose)
339                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
340
341         return task;
342 }
343
344
345 static void print_task_traces(void)
346 {
347         struct task_desc *task;
348         unsigned long i;
349
350         for (i = 0; i < nr_tasks; i++) {
351                 task = tasks[i];
352                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
353                         task->nr, task->comm, task->pid, task->nr_events);
354         }
355 }
356
357 static void add_cross_task_wakeups(void)
358 {
359         struct task_desc *task1, *task2;
360         unsigned long i, j;
361
362         for (i = 0; i < nr_tasks; i++) {
363                 task1 = tasks[i];
364                 j = i + 1;
365                 if (j == nr_tasks)
366                         j = 0;
367                 task2 = tasks[j];
368                 add_sched_event_wakeup(task1, 0, task2);
369         }
370 }
371
372 static void
373 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
374 {
375         int ret = 0;
376
377         switch (atom->type) {
378                 case SCHED_EVENT_RUN:
379                         burn_nsecs(atom->duration);
380                         break;
381                 case SCHED_EVENT_SLEEP:
382                         if (atom->wait_sem)
383                                 ret = sem_wait(atom->wait_sem);
384                         BUG_ON(ret);
385                         break;
386                 case SCHED_EVENT_WAKEUP:
387                         if (atom->wait_sem)
388                                 ret = sem_post(atom->wait_sem);
389                         BUG_ON(ret);
390                         break;
391                 case SCHED_EVENT_MIGRATION:
392                         break;
393                 default:
394                         BUG_ON(1);
395         }
396 }
397
398 static u64 get_cpu_usage_nsec_parent(void)
399 {
400         struct rusage ru;
401         u64 sum;
402         int err;
403
404         err = getrusage(RUSAGE_SELF, &ru);
405         BUG_ON(err);
406
407         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
408         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
409
410         return sum;
411 }
412
413 static int self_open_counters(void)
414 {
415         struct perf_event_attr attr;
416         int fd;
417
418         memset(&attr, 0, sizeof(attr));
419
420         attr.type = PERF_TYPE_SOFTWARE;
421         attr.config = PERF_COUNT_SW_TASK_CLOCK;
422
423         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
424
425         if (fd < 0)
426                 die("Error: sys_perf_event_open() syscall returned"
427                     "with %d (%s)\n", fd, strerror(errno));
428         return fd;
429 }
430
431 static u64 get_cpu_usage_nsec_self(int fd)
432 {
433         u64 runtime;
434         int ret;
435
436         ret = read(fd, &runtime, sizeof(runtime));
437         BUG_ON(ret != sizeof(runtime));
438
439         return runtime;
440 }
441
442 static void *thread_func(void *ctx)
443 {
444         struct task_desc *this_task = ctx;
445         u64 cpu_usage_0, cpu_usage_1;
446         unsigned long i, ret;
447         char comm2[22];
448         int fd;
449
450         sprintf(comm2, ":%s", this_task->comm);
451         prctl(PR_SET_NAME, comm2);
452         fd = self_open_counters();
453
454 again:
455         ret = sem_post(&this_task->ready_for_work);
456         BUG_ON(ret);
457         ret = pthread_mutex_lock(&start_work_mutex);
458         BUG_ON(ret);
459         ret = pthread_mutex_unlock(&start_work_mutex);
460         BUG_ON(ret);
461
462         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
463
464         for (i = 0; i < this_task->nr_events; i++) {
465                 this_task->curr_event = i;
466                 process_sched_event(this_task, this_task->atoms[i]);
467         }
468
469         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
470         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
471         ret = sem_post(&this_task->work_done_sem);
472         BUG_ON(ret);
473
474         ret = pthread_mutex_lock(&work_done_wait_mutex);
475         BUG_ON(ret);
476         ret = pthread_mutex_unlock(&work_done_wait_mutex);
477         BUG_ON(ret);
478
479         goto again;
480 }
481
482 static void create_tasks(void)
483 {
484         struct task_desc *task;
485         pthread_attr_t attr;
486         unsigned long i;
487         int err;
488
489         err = pthread_attr_init(&attr);
490         BUG_ON(err);
491         err = pthread_attr_setstacksize(&attr,
492                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
493         BUG_ON(err);
494         err = pthread_mutex_lock(&start_work_mutex);
495         BUG_ON(err);
496         err = pthread_mutex_lock(&work_done_wait_mutex);
497         BUG_ON(err);
498         for (i = 0; i < nr_tasks; i++) {
499                 task = tasks[i];
500                 sem_init(&task->sleep_sem, 0, 0);
501                 sem_init(&task->ready_for_work, 0, 0);
502                 sem_init(&task->work_done_sem, 0, 0);
503                 task->curr_event = 0;
504                 err = pthread_create(&task->thread, &attr, thread_func, task);
505                 BUG_ON(err);
506         }
507 }
508
509 static void wait_for_tasks(void)
510 {
511         u64 cpu_usage_0, cpu_usage_1;
512         struct task_desc *task;
513         unsigned long i, ret;
514
515         start_time = get_nsecs();
516         cpu_usage = 0;
517         pthread_mutex_unlock(&work_done_wait_mutex);
518
519         for (i = 0; i < nr_tasks; i++) {
520                 task = tasks[i];
521                 ret = sem_wait(&task->ready_for_work);
522                 BUG_ON(ret);
523                 sem_init(&task->ready_for_work, 0, 0);
524         }
525         ret = pthread_mutex_lock(&work_done_wait_mutex);
526         BUG_ON(ret);
527
528         cpu_usage_0 = get_cpu_usage_nsec_parent();
529
530         pthread_mutex_unlock(&start_work_mutex);
531
532         for (i = 0; i < nr_tasks; i++) {
533                 task = tasks[i];
534                 ret = sem_wait(&task->work_done_sem);
535                 BUG_ON(ret);
536                 sem_init(&task->work_done_sem, 0, 0);
537                 cpu_usage += task->cpu_usage;
538                 task->cpu_usage = 0;
539         }
540
541         cpu_usage_1 = get_cpu_usage_nsec_parent();
542         if (!runavg_cpu_usage)
543                 runavg_cpu_usage = cpu_usage;
544         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
545
546         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
547         if (!runavg_parent_cpu_usage)
548                 runavg_parent_cpu_usage = parent_cpu_usage;
549         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
550                                    parent_cpu_usage)/10;
551
552         ret = pthread_mutex_lock(&start_work_mutex);
553         BUG_ON(ret);
554
555         for (i = 0; i < nr_tasks; i++) {
556                 task = tasks[i];
557                 sem_init(&task->sleep_sem, 0, 0);
558                 task->curr_event = 0;
559         }
560 }
561
562 static void run_one_test(void)
563 {
564         u64 T0, T1, delta, avg_delta, fluct;
565
566         T0 = get_nsecs();
567         wait_for_tasks();
568         T1 = get_nsecs();
569
570         delta = T1 - T0;
571         sum_runtime += delta;
572         nr_runs++;
573
574         avg_delta = sum_runtime / nr_runs;
575         if (delta < avg_delta)
576                 fluct = avg_delta - delta;
577         else
578                 fluct = delta - avg_delta;
579         sum_fluct += fluct;
580         if (!run_avg)
581                 run_avg = delta;
582         run_avg = (run_avg*9 + delta)/10;
583
584         printf("#%-3ld: %0.3f, ",
585                 nr_runs, (double)delta/1000000.0);
586
587         printf("ravg: %0.2f, ",
588                 (double)run_avg/1e6);
589
590         printf("cpu: %0.2f / %0.2f",
591                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
592
593 #if 0
594         /*
595          * rusage statistics done by the parent, these are less
596          * accurate than the sum_exec_runtime based statistics:
597          */
598         printf(" [%0.2f / %0.2f]",
599                 (double)parent_cpu_usage/1e6,
600                 (double)runavg_parent_cpu_usage/1e6);
601 #endif
602
603         printf("\n");
604
605         if (nr_sleep_corrections)
606                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
607         nr_sleep_corrections = 0;
608 }
609
610 static void test_calibrations(void)
611 {
612         u64 T0, T1;
613
614         T0 = get_nsecs();
615         burn_nsecs(1e6);
616         T1 = get_nsecs();
617
618         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
619
620         T0 = get_nsecs();
621         sleep_nsecs(1e6);
622         T1 = get_nsecs();
623
624         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
625 }
626
627 #define FILL_FIELD(ptr, field, event, data)     \
628         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
629
630 #define FILL_ARRAY(ptr, array, event, data)                     \
631 do {                                                            \
632         void *__array = raw_field_ptr(event, #array, data);     \
633         memcpy(ptr.array, __array, sizeof(ptr.array));  \
634 } while(0)
635
636 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
637 do {                                                            \
638         FILL_FIELD(ptr, common_type, event, data);              \
639         FILL_FIELD(ptr, common_flags, event, data);             \
640         FILL_FIELD(ptr, common_preempt_count, event, data);     \
641         FILL_FIELD(ptr, common_pid, event, data);               \
642         FILL_FIELD(ptr, common_tgid, event, data);              \
643 } while (0)
644
645
646
647 struct trace_switch_event {
648         u32 size;
649
650         u16 common_type;
651         u8 common_flags;
652         u8 common_preempt_count;
653         u32 common_pid;
654         u32 common_tgid;
655
656         char prev_comm[16];
657         u32 prev_pid;
658         u32 prev_prio;
659         u64 prev_state;
660         char next_comm[16];
661         u32 next_pid;
662         u32 next_prio;
663 };
664
665 struct trace_runtime_event {
666         u32 size;
667
668         u16 common_type;
669         u8 common_flags;
670         u8 common_preempt_count;
671         u32 common_pid;
672         u32 common_tgid;
673
674         char comm[16];
675         u32 pid;
676         u64 runtime;
677         u64 vruntime;
678 };
679
680 struct trace_wakeup_event {
681         u32 size;
682
683         u16 common_type;
684         u8 common_flags;
685         u8 common_preempt_count;
686         u32 common_pid;
687         u32 common_tgid;
688
689         char comm[16];
690         u32 pid;
691
692         u32 prio;
693         u32 success;
694         u32 cpu;
695 };
696
697 struct trace_fork_event {
698         u32 size;
699
700         u16 common_type;
701         u8 common_flags;
702         u8 common_preempt_count;
703         u32 common_pid;
704         u32 common_tgid;
705
706         char parent_comm[16];
707         u32 parent_pid;
708         char child_comm[16];
709         u32 child_pid;
710 };
711
712 struct trace_migrate_task_event {
713         u32 size;
714
715         u16 common_type;
716         u8 common_flags;
717         u8 common_preempt_count;
718         u32 common_pid;
719         u32 common_tgid;
720
721         char comm[16];
722         u32 pid;
723
724         u32 prio;
725         u32 cpu;
726 };
727
728 struct trace_sched_handler {
729         void (*switch_event)(struct trace_switch_event *,
730                              struct machine *,
731                              struct event *,
732                              int cpu,
733                              u64 timestamp,
734                              struct thread *thread);
735
736         void (*runtime_event)(struct trace_runtime_event *,
737                               struct machine *,
738                               struct event *,
739                               int cpu,
740                               u64 timestamp,
741                               struct thread *thread);
742
743         void (*wakeup_event)(struct trace_wakeup_event *,
744                              struct machine *,
745                              struct event *,
746                              int cpu,
747                              u64 timestamp,
748                              struct thread *thread);
749
750         void (*fork_event)(struct trace_fork_event *,
751                            struct event *,
752                            int cpu,
753                            u64 timestamp,
754                            struct thread *thread);
755
756         void (*migrate_task_event)(struct trace_migrate_task_event *,
757                            struct machine *machine,
758                            struct event *,
759                            int cpu,
760                            u64 timestamp,
761                            struct thread *thread);
762 };
763
764
765 static void
766 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
767                     struct machine *machine __used,
768                     struct event *event,
769                     int cpu __used,
770                     u64 timestamp __used,
771                     struct thread *thread __used)
772 {
773         struct task_desc *waker, *wakee;
774
775         if (verbose) {
776                 printf("sched_wakeup event %p\n", event);
777
778                 printf(" ... pid %d woke up %s/%d\n",
779                         wakeup_event->common_pid,
780                         wakeup_event->comm,
781                         wakeup_event->pid);
782         }
783
784         waker = register_pid(wakeup_event->common_pid, "<unknown>");
785         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
786
787         add_sched_event_wakeup(waker, timestamp, wakee);
788 }
789
790 static u64 cpu_last_switched[MAX_CPUS];
791
792 static void
793 replay_switch_event(struct trace_switch_event *switch_event,
794                     struct machine *machine __used,
795                     struct event *event,
796                     int cpu,
797                     u64 timestamp,
798                     struct thread *thread __used)
799 {
800         struct task_desc *prev, __used *next;
801         u64 timestamp0;
802         s64 delta;
803
804         if (verbose)
805                 printf("sched_switch event %p\n", event);
806
807         if (cpu >= MAX_CPUS || cpu < 0)
808                 return;
809
810         timestamp0 = cpu_last_switched[cpu];
811         if (timestamp0)
812                 delta = timestamp - timestamp0;
813         else
814                 delta = 0;
815
816         if (delta < 0)
817                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
818
819         if (verbose) {
820                 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
821                         switch_event->prev_comm, switch_event->prev_pid,
822                         switch_event->next_comm, switch_event->next_pid,
823                         delta);
824         }
825
826         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
827         next = register_pid(switch_event->next_pid, switch_event->next_comm);
828
829         cpu_last_switched[cpu] = timestamp;
830
831         add_sched_event_run(prev, timestamp, delta);
832         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
833 }
834
835
836 static void
837 replay_fork_event(struct trace_fork_event *fork_event,
838                   struct event *event,
839                   int cpu __used,
840                   u64 timestamp __used,
841                   struct thread *thread __used)
842 {
843         if (verbose) {
844                 printf("sched_fork event %p\n", event);
845                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
846                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
847         }
848         register_pid(fork_event->parent_pid, fork_event->parent_comm);
849         register_pid(fork_event->child_pid, fork_event->child_comm);
850 }
851
852 static struct trace_sched_handler replay_ops  = {
853         .wakeup_event           = replay_wakeup_event,
854         .switch_event           = replay_switch_event,
855         .fork_event             = replay_fork_event,
856 };
857
858 struct sort_dimension {
859         const char              *name;
860         sort_fn_t               cmp;
861         struct list_head        list;
862 };
863
864 static LIST_HEAD(cmp_pid);
865
866 static int
867 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
868 {
869         struct sort_dimension *sort;
870         int ret = 0;
871
872         BUG_ON(list_empty(list));
873
874         list_for_each_entry(sort, list, list) {
875                 ret = sort->cmp(l, r);
876                 if (ret)
877                         return ret;
878         }
879
880         return ret;
881 }
882
883 static struct work_atoms *
884 thread_atoms_search(struct rb_root *root, struct thread *thread,
885                          struct list_head *sort_list)
886 {
887         struct rb_node *node = root->rb_node;
888         struct work_atoms key = { .thread = thread };
889
890         while (node) {
891                 struct work_atoms *atoms;
892                 int cmp;
893
894                 atoms = container_of(node, struct work_atoms, node);
895
896                 cmp = thread_lat_cmp(sort_list, &key, atoms);
897                 if (cmp > 0)
898                         node = node->rb_left;
899                 else if (cmp < 0)
900                         node = node->rb_right;
901                 else {
902                         BUG_ON(thread != atoms->thread);
903                         return atoms;
904                 }
905         }
906         return NULL;
907 }
908
909 static void
910 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
911                          struct list_head *sort_list)
912 {
913         struct rb_node **new = &(root->rb_node), *parent = NULL;
914
915         while (*new) {
916                 struct work_atoms *this;
917                 int cmp;
918
919                 this = container_of(*new, struct work_atoms, node);
920                 parent = *new;
921
922                 cmp = thread_lat_cmp(sort_list, data, this);
923
924                 if (cmp > 0)
925                         new = &((*new)->rb_left);
926                 else
927                         new = &((*new)->rb_right);
928         }
929
930         rb_link_node(&data->node, parent, new);
931         rb_insert_color(&data->node, root);
932 }
933
934 static void thread_atoms_insert(struct thread *thread)
935 {
936         struct work_atoms *atoms = zalloc(sizeof(*atoms));
937         if (!atoms)
938                 die("No memory");
939
940         atoms->thread = thread;
941         INIT_LIST_HEAD(&atoms->work_list);
942         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
943 }
944
945 static void
946 latency_fork_event(struct trace_fork_event *fork_event __used,
947                    struct event *event __used,
948                    int cpu __used,
949                    u64 timestamp __used,
950                    struct thread *thread __used)
951 {
952         /* should insert the newcomer */
953 }
954
955 __used
956 static char sched_out_state(struct trace_switch_event *switch_event)
957 {
958         const char *str = TASK_STATE_TO_CHAR_STR;
959
960         return str[switch_event->prev_state];
961 }
962
963 static void
964 add_sched_out_event(struct work_atoms *atoms,
965                     char run_state,
966                     u64 timestamp)
967 {
968         struct work_atom *atom = zalloc(sizeof(*atom));
969         if (!atom)
970                 die("Non memory");
971
972         atom->sched_out_time = timestamp;
973
974         if (run_state == 'R') {
975                 atom->state = THREAD_WAIT_CPU;
976                 atom->wake_up_time = atom->sched_out_time;
977         }
978
979         list_add_tail(&atom->list, &atoms->work_list);
980 }
981
982 static void
983 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
984 {
985         struct work_atom *atom;
986
987         BUG_ON(list_empty(&atoms->work_list));
988
989         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
990
991         atom->runtime += delta;
992         atoms->total_runtime += delta;
993 }
994
995 static void
996 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
997 {
998         struct work_atom *atom;
999         u64 delta;
1000
1001         if (list_empty(&atoms->work_list))
1002                 return;
1003
1004         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1005
1006         if (atom->state != THREAD_WAIT_CPU)
1007                 return;
1008
1009         if (timestamp < atom->wake_up_time) {
1010                 atom->state = THREAD_IGNORE;
1011                 return;
1012         }
1013
1014         atom->state = THREAD_SCHED_IN;
1015         atom->sched_in_time = timestamp;
1016
1017         delta = atom->sched_in_time - atom->wake_up_time;
1018         atoms->total_lat += delta;
1019         if (delta > atoms->max_lat) {
1020                 atoms->max_lat = delta;
1021                 atoms->max_lat_at = timestamp;
1022         }
1023         atoms->nb_atoms++;
1024 }
1025
1026 static void
1027 latency_switch_event(struct trace_switch_event *switch_event,
1028                      struct machine *machine,
1029                      struct event *event __used,
1030                      int cpu,
1031                      u64 timestamp,
1032                      struct thread *thread __used)
1033 {
1034         struct work_atoms *out_events, *in_events;
1035         struct thread *sched_out, *sched_in;
1036         u64 timestamp0;
1037         s64 delta;
1038
1039         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041         timestamp0 = cpu_last_switched[cpu];
1042         cpu_last_switched[cpu] = timestamp;
1043         if (timestamp0)
1044                 delta = timestamp - timestamp0;
1045         else
1046                 delta = 0;
1047
1048         if (delta < 0)
1049                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050
1051
1052         sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1053         sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1054
1055         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1056         if (!out_events) {
1057                 thread_atoms_insert(sched_out);
1058                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1059                 if (!out_events)
1060                         die("out-event: Internal tree error");
1061         }
1062         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1063
1064         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1065         if (!in_events) {
1066                 thread_atoms_insert(sched_in);
1067                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1068                 if (!in_events)
1069                         die("in-event: Internal tree error");
1070                 /*
1071                  * Take came in we have not heard about yet,
1072                  * add in an initial atom in runnable state:
1073                  */
1074                 add_sched_out_event(in_events, 'R', timestamp);
1075         }
1076         add_sched_in_event(in_events, timestamp);
1077 }
1078
1079 static void
1080 latency_runtime_event(struct trace_runtime_event *runtime_event,
1081                      struct machine *machine,
1082                      struct event *event __used,
1083                      int cpu,
1084                      u64 timestamp,
1085                      struct thread *this_thread __used)
1086 {
1087         struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
1088         struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1089
1090         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1091         if (!atoms) {
1092                 thread_atoms_insert(thread);
1093                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1094                 if (!atoms)
1095                         die("in-event: Internal tree error");
1096                 add_sched_out_event(atoms, 'R', timestamp);
1097         }
1098
1099         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1100 }
1101
1102 static void
1103 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1104                      struct machine *machine,
1105                      struct event *__event __used,
1106                      int cpu __used,
1107                      u64 timestamp,
1108                      struct thread *thread __used)
1109 {
1110         struct work_atoms *atoms;
1111         struct work_atom *atom;
1112         struct thread *wakee;
1113
1114         /* Note for later, it may be interesting to observe the failing cases */
1115         if (!wakeup_event->success)
1116                 return;
1117
1118         wakee = machine__findnew_thread(machine, wakeup_event->pid);
1119         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1120         if (!atoms) {
1121                 thread_atoms_insert(wakee);
1122                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1123                 if (!atoms)
1124                         die("wakeup-event: Internal tree error");
1125                 add_sched_out_event(atoms, 'S', timestamp);
1126         }
1127
1128         BUG_ON(list_empty(&atoms->work_list));
1129
1130         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1131
1132         /*
1133          * You WILL be missing events if you've recorded only
1134          * one CPU, or are only looking at only one, so don't
1135          * make useless noise.
1136          */
1137         if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1138                 nr_state_machine_bugs++;
1139
1140         nr_timestamps++;
1141         if (atom->sched_out_time > timestamp) {
1142                 nr_unordered_timestamps++;
1143                 return;
1144         }
1145
1146         atom->state = THREAD_WAIT_CPU;
1147         atom->wake_up_time = timestamp;
1148 }
1149
1150 static void
1151 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1152                      struct machine *machine,
1153                      struct event *__event __used,
1154                      int cpu __used,
1155                      u64 timestamp,
1156                      struct thread *thread __used)
1157 {
1158         struct work_atoms *atoms;
1159         struct work_atom *atom;
1160         struct thread *migrant;
1161
1162         /*
1163          * Only need to worry about migration when profiling one CPU.
1164          */
1165         if (profile_cpu == -1)
1166                 return;
1167
1168         migrant = machine__findnew_thread(machine, migrate_task_event->pid);
1169         atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1170         if (!atoms) {
1171                 thread_atoms_insert(migrant);
1172                 register_pid(migrant->pid, migrant->comm);
1173                 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1174                 if (!atoms)
1175                         die("migration-event: Internal tree error");
1176                 add_sched_out_event(atoms, 'R', timestamp);
1177         }
1178
1179         BUG_ON(list_empty(&atoms->work_list));
1180
1181         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1182         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1183
1184         nr_timestamps++;
1185
1186         if (atom->sched_out_time > timestamp)
1187                 nr_unordered_timestamps++;
1188 }
1189
1190 static struct trace_sched_handler lat_ops  = {
1191         .wakeup_event           = latency_wakeup_event,
1192         .switch_event           = latency_switch_event,
1193         .runtime_event          = latency_runtime_event,
1194         .fork_event             = latency_fork_event,
1195         .migrate_task_event     = latency_migrate_task_event,
1196 };
1197
1198 static void output_lat_thread(struct work_atoms *work_list)
1199 {
1200         int i;
1201         int ret;
1202         u64 avg;
1203
1204         if (!work_list->nb_atoms)
1205                 return;
1206         /*
1207          * Ignore idle threads:
1208          */
1209         if (!strcmp(work_list->thread->comm, "swapper"))
1210                 return;
1211
1212         all_runtime += work_list->total_runtime;
1213         all_count += work_list->nb_atoms;
1214
1215         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1216
1217         for (i = 0; i < 24 - ret; i++)
1218                 printf(" ");
1219
1220         avg = work_list->total_lat / work_list->nb_atoms;
1221
1222         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1223               (double)work_list->total_runtime / 1e6,
1224                  work_list->nb_atoms, (double)avg / 1e6,
1225                  (double)work_list->max_lat / 1e6,
1226                  (double)work_list->max_lat_at / 1e9);
1227 }
1228
1229 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1230 {
1231         if (l->thread->pid < r->thread->pid)
1232                 return -1;
1233         if (l->thread->pid > r->thread->pid)
1234                 return 1;
1235
1236         return 0;
1237 }
1238
1239 static struct sort_dimension pid_sort_dimension = {
1240         .name                   = "pid",
1241         .cmp                    = pid_cmp,
1242 };
1243
1244 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1245 {
1246         u64 avgl, avgr;
1247
1248         if (!l->nb_atoms)
1249                 return -1;
1250
1251         if (!r->nb_atoms)
1252                 return 1;
1253
1254         avgl = l->total_lat / l->nb_atoms;
1255         avgr = r->total_lat / r->nb_atoms;
1256
1257         if (avgl < avgr)
1258                 return -1;
1259         if (avgl > avgr)
1260                 return 1;
1261
1262         return 0;
1263 }
1264
1265 static struct sort_dimension avg_sort_dimension = {
1266         .name                   = "avg",
1267         .cmp                    = avg_cmp,
1268 };
1269
1270 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1271 {
1272         if (l->max_lat < r->max_lat)
1273                 return -1;
1274         if (l->max_lat > r->max_lat)
1275                 return 1;
1276
1277         return 0;
1278 }
1279
1280 static struct sort_dimension max_sort_dimension = {
1281         .name                   = "max",
1282         .cmp                    = max_cmp,
1283 };
1284
1285 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1286 {
1287         if (l->nb_atoms < r->nb_atoms)
1288                 return -1;
1289         if (l->nb_atoms > r->nb_atoms)
1290                 return 1;
1291
1292         return 0;
1293 }
1294
1295 static struct sort_dimension switch_sort_dimension = {
1296         .name                   = "switch",
1297         .cmp                    = switch_cmp,
1298 };
1299
1300 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1301 {
1302         if (l->total_runtime < r->total_runtime)
1303                 return -1;
1304         if (l->total_runtime > r->total_runtime)
1305                 return 1;
1306
1307         return 0;
1308 }
1309
1310 static struct sort_dimension runtime_sort_dimension = {
1311         .name                   = "runtime",
1312         .cmp                    = runtime_cmp,
1313 };
1314
1315 static struct sort_dimension *available_sorts[] = {
1316         &pid_sort_dimension,
1317         &avg_sort_dimension,
1318         &max_sort_dimension,
1319         &switch_sort_dimension,
1320         &runtime_sort_dimension,
1321 };
1322
1323 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1324
1325 static LIST_HEAD(sort_list);
1326
1327 static int sort_dimension__add(const char *tok, struct list_head *list)
1328 {
1329         int i;
1330
1331         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1332                 if (!strcmp(available_sorts[i]->name, tok)) {
1333                         list_add_tail(&available_sorts[i]->list, list);
1334
1335                         return 0;
1336                 }
1337         }
1338
1339         return -1;
1340 }
1341
1342 static void setup_sorting(void);
1343
1344 static void sort_lat(void)
1345 {
1346         struct rb_node *node;
1347
1348         for (;;) {
1349                 struct work_atoms *data;
1350                 node = rb_first(&atom_root);
1351                 if (!node)
1352                         break;
1353
1354                 rb_erase(node, &atom_root);
1355                 data = rb_entry(node, struct work_atoms, node);
1356                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1357         }
1358 }
1359
1360 static struct trace_sched_handler *trace_handler;
1361
1362 static void
1363 process_sched_wakeup_event(struct perf_tool *tool __used,
1364                            struct event *event,
1365                            struct perf_sample *sample,
1366                            struct machine *machine,
1367                            struct thread *thread)
1368 {
1369         void *data = sample->raw_data;
1370         struct trace_wakeup_event wakeup_event;
1371
1372         FILL_COMMON_FIELDS(wakeup_event, event, data);
1373
1374         FILL_ARRAY(wakeup_event, comm, event, data);
1375         FILL_FIELD(wakeup_event, pid, event, data);
1376         FILL_FIELD(wakeup_event, prio, event, data);
1377         FILL_FIELD(wakeup_event, success, event, data);
1378         FILL_FIELD(wakeup_event, cpu, event, data);
1379
1380         if (trace_handler->wakeup_event)
1381                 trace_handler->wakeup_event(&wakeup_event, machine, event,
1382                                             sample->cpu, sample->time, thread);
1383 }
1384
1385 /*
1386  * Track the current task - that way we can know whether there's any
1387  * weird events, such as a task being switched away that is not current.
1388  */
1389 static int max_cpu;
1390
1391 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1392
1393 static struct thread *curr_thread[MAX_CPUS];
1394
1395 static char next_shortname1 = 'A';
1396 static char next_shortname2 = '0';
1397
1398 static void
1399 map_switch_event(struct trace_switch_event *switch_event,
1400                  struct machine *machine,
1401                  struct event *event __used,
1402                  int this_cpu,
1403                  u64 timestamp,
1404                  struct thread *thread __used)
1405 {
1406         struct thread *sched_out __used, *sched_in;
1407         int new_shortname;
1408         u64 timestamp0;
1409         s64 delta;
1410         int cpu;
1411
1412         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1413
1414         if (this_cpu > max_cpu)
1415                 max_cpu = this_cpu;
1416
1417         timestamp0 = cpu_last_switched[this_cpu];
1418         cpu_last_switched[this_cpu] = timestamp;
1419         if (timestamp0)
1420                 delta = timestamp - timestamp0;
1421         else
1422                 delta = 0;
1423
1424         if (delta < 0)
1425                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1426
1427
1428         sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1429         sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1430
1431         curr_thread[this_cpu] = sched_in;
1432
1433         printf("  ");
1434
1435         new_shortname = 0;
1436         if (!sched_in->shortname[0]) {
1437                 sched_in->shortname[0] = next_shortname1;
1438                 sched_in->shortname[1] = next_shortname2;
1439
1440                 if (next_shortname1 < 'Z') {
1441                         next_shortname1++;
1442                 } else {
1443                         next_shortname1='A';
1444                         if (next_shortname2 < '9') {
1445                                 next_shortname2++;
1446                         } else {
1447                                 next_shortname2='0';
1448                         }
1449                 }
1450                 new_shortname = 1;
1451         }
1452
1453         for (cpu = 0; cpu <= max_cpu; cpu++) {
1454                 if (cpu != this_cpu)
1455                         printf(" ");
1456                 else
1457                         printf("*");
1458
1459                 if (curr_thread[cpu]) {
1460                         if (curr_thread[cpu]->pid)
1461                                 printf("%2s ", curr_thread[cpu]->shortname);
1462                         else
1463                                 printf(".  ");
1464                 } else
1465                         printf("   ");
1466         }
1467
1468         printf("  %12.6f secs ", (double)timestamp/1e9);
1469         if (new_shortname) {
1470                 printf("%s => %s:%d\n",
1471                         sched_in->shortname, sched_in->comm, sched_in->pid);
1472         } else {
1473                 printf("\n");
1474         }
1475 }
1476
1477 static void
1478 process_sched_switch_event(struct perf_tool *tool __used,
1479                            struct event *event,
1480                            struct perf_sample *sample,
1481                            struct machine *machine,
1482                            struct thread *thread)
1483 {
1484         int this_cpu = sample->cpu;
1485         void *data = sample->raw_data;
1486         struct trace_switch_event switch_event;
1487
1488         FILL_COMMON_FIELDS(switch_event, event, data);
1489
1490         FILL_ARRAY(switch_event, prev_comm, event, data);
1491         FILL_FIELD(switch_event, prev_pid, event, data);
1492         FILL_FIELD(switch_event, prev_prio, event, data);
1493         FILL_FIELD(switch_event, prev_state, event, data);
1494         FILL_ARRAY(switch_event, next_comm, event, data);
1495         FILL_FIELD(switch_event, next_pid, event, data);
1496         FILL_FIELD(switch_event, next_prio, event, data);
1497
1498         if (curr_pid[this_cpu] != (u32)-1) {
1499                 /*
1500                  * Are we trying to switch away a PID that is
1501                  * not current?
1502                  */
1503                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1504                         nr_context_switch_bugs++;
1505         }
1506         if (trace_handler->switch_event)
1507                 trace_handler->switch_event(&switch_event, machine, event,
1508                                             this_cpu, sample->time, thread);
1509
1510         curr_pid[this_cpu] = switch_event.next_pid;
1511 }
1512
1513 static void
1514 process_sched_runtime_event(struct perf_tool *tool __used,
1515                             struct event *event,
1516                             struct perf_sample *sample,
1517                             struct machine *machine,
1518                             struct thread *thread)
1519 {
1520         void *data = sample->raw_data;
1521         struct trace_runtime_event runtime_event;
1522
1523         FILL_ARRAY(runtime_event, comm, event, data);
1524         FILL_FIELD(runtime_event, pid, event, data);
1525         FILL_FIELD(runtime_event, runtime, event, data);
1526         FILL_FIELD(runtime_event, vruntime, event, data);
1527
1528         if (trace_handler->runtime_event)
1529                 trace_handler->runtime_event(&runtime_event, machine, event,
1530                                              sample->cpu, sample->time, thread);
1531 }
1532
1533 static void
1534 process_sched_fork_event(struct perf_tool *tool __used,
1535                          struct event *event,
1536                          struct perf_sample *sample,
1537                          struct machine *machine __used,
1538                          struct thread *thread)
1539 {
1540         void *data = sample->raw_data;
1541         struct trace_fork_event fork_event;
1542
1543         FILL_COMMON_FIELDS(fork_event, event, data);
1544
1545         FILL_ARRAY(fork_event, parent_comm, event, data);
1546         FILL_FIELD(fork_event, parent_pid, event, data);
1547         FILL_ARRAY(fork_event, child_comm, event, data);
1548         FILL_FIELD(fork_event, child_pid, event, data);
1549
1550         if (trace_handler->fork_event)
1551                 trace_handler->fork_event(&fork_event, event,
1552                                           sample->cpu, sample->time, thread);
1553 }
1554
1555 static void
1556 process_sched_exit_event(struct perf_tool *tool __used,
1557                          struct event *event,
1558                          struct perf_sample *sample __used,
1559                          struct machine *machine __used,
1560                          struct thread *thread __used)
1561 {
1562         if (verbose)
1563                 printf("sched_exit event %p\n", event);
1564 }
1565
1566 static void
1567 process_sched_migrate_task_event(struct perf_tool *tool __used,
1568                                  struct event *event,
1569                                  struct perf_sample *sample,
1570                                  struct machine *machine,
1571                                  struct thread *thread)
1572 {
1573         void *data = sample->raw_data;
1574         struct trace_migrate_task_event migrate_task_event;
1575
1576         FILL_COMMON_FIELDS(migrate_task_event, event, data);
1577
1578         FILL_ARRAY(migrate_task_event, comm, event, data);
1579         FILL_FIELD(migrate_task_event, pid, event, data);
1580         FILL_FIELD(migrate_task_event, prio, event, data);
1581         FILL_FIELD(migrate_task_event, cpu, event, data);
1582
1583         if (trace_handler->migrate_task_event)
1584                 trace_handler->migrate_task_event(&migrate_task_event, machine,
1585                                                   event, sample->cpu,
1586                                                   sample->time, thread);
1587 }
1588
1589 typedef void (*tracepoint_handler)(struct perf_tool *tool, struct event *event,
1590                                    struct perf_sample *sample,
1591                                    struct machine *machine,
1592                                    struct thread *thread);
1593
1594 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool,
1595                                                  union perf_event *event __used,
1596                                                  struct perf_sample *sample,
1597                                                  struct perf_evsel *evsel,
1598                                                  struct machine *machine)
1599 {
1600         struct thread *thread = machine__findnew_thread(machine, sample->pid);
1601
1602         if (thread == NULL) {
1603                 pr_debug("problem processing %s event, skipping it.\n",
1604                          evsel->name);
1605                 return -1;
1606         }
1607
1608         evsel->hists.stats.total_period += sample->period;
1609         hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1610
1611         if (evsel->handler.func != NULL) {
1612                 tracepoint_handler f = evsel->handler.func;
1613
1614                 if (evsel->handler.data == NULL)
1615                         evsel->handler.data = trace_find_event(evsel->attr.config);
1616
1617                 f(tool, evsel->handler.data, sample, machine, thread);
1618         }
1619
1620         return 0;
1621 }
1622
1623 static struct perf_tool perf_sched = {
1624         .sample                 = perf_sched__process_tracepoint_sample,
1625         .comm                   = perf_event__process_comm,
1626         .lost                   = perf_event__process_lost,
1627         .fork                   = perf_event__process_task,
1628         .ordered_samples        = true,
1629 };
1630
1631 static void read_events(bool destroy, struct perf_session **psession)
1632 {
1633         int err = -EINVAL;
1634         const struct perf_evsel_str_handler handlers[] = {
1635                 { "sched:sched_switch",       process_sched_switch_event, },
1636                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1637                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1638                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1639                 { "sched:sched_process_fork", process_sched_fork_event, },
1640                 { "sched:sched_process_exit", process_sched_exit_event, },
1641                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1642         };
1643         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1644                                                          0, false, &perf_sched);
1645         if (session == NULL)
1646                 die("No Memory");
1647
1648         err = perf_evlist__set_tracepoints_handlers_array(session->evlist, handlers);
1649         assert(err == 0);
1650
1651         if (perf_session__has_traces(session, "record -R")) {
1652                 err = perf_session__process_events(session, &perf_sched);
1653                 if (err)
1654                         die("Failed to process events, error %d", err);
1655
1656                 nr_events      = session->hists.stats.nr_events[0];
1657                 nr_lost_events = session->hists.stats.total_lost;
1658                 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1659         }
1660
1661         if (destroy)
1662                 perf_session__delete(session);
1663
1664         if (psession)
1665                 *psession = session;
1666 }
1667
1668 static void print_bad_events(void)
1669 {
1670         if (nr_unordered_timestamps && nr_timestamps) {
1671                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1672                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1673                         nr_unordered_timestamps, nr_timestamps);
1674         }
1675         if (nr_lost_events && nr_events) {
1676                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1677                         (double)nr_lost_events/(double)nr_events*100.0,
1678                         nr_lost_events, nr_events, nr_lost_chunks);
1679         }
1680         if (nr_state_machine_bugs && nr_timestamps) {
1681                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1682                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1683                         nr_state_machine_bugs, nr_timestamps);
1684                 if (nr_lost_events)
1685                         printf(" (due to lost events?)");
1686                 printf("\n");
1687         }
1688         if (nr_context_switch_bugs && nr_timestamps) {
1689                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1690                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1691                         nr_context_switch_bugs, nr_timestamps);
1692                 if (nr_lost_events)
1693                         printf(" (due to lost events?)");
1694                 printf("\n");
1695         }
1696 }
1697
1698 static void __cmd_lat(void)
1699 {
1700         struct rb_node *next;
1701         struct perf_session *session;
1702
1703         setup_pager();
1704         read_events(false, &session);
1705         sort_lat();
1706
1707         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1708         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1709         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1710
1711         next = rb_first(&sorted_atom_root);
1712
1713         while (next) {
1714                 struct work_atoms *work_list;
1715
1716                 work_list = rb_entry(next, struct work_atoms, node);
1717                 output_lat_thread(work_list);
1718                 next = rb_next(next);
1719         }
1720
1721         printf(" -----------------------------------------------------------------------------------------\n");
1722         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1723                 (double)all_runtime/1e6, all_count);
1724
1725         printf(" ---------------------------------------------------\n");
1726
1727         print_bad_events();
1728         printf("\n");
1729
1730         perf_session__delete(session);
1731 }
1732
1733 static struct trace_sched_handler map_ops  = {
1734         .wakeup_event           = NULL,
1735         .switch_event           = map_switch_event,
1736         .runtime_event          = NULL,
1737         .fork_event             = NULL,
1738 };
1739
1740 static void __cmd_map(void)
1741 {
1742         max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743
1744         setup_pager();
1745         read_events(true, NULL);
1746         print_bad_events();
1747 }
1748
1749 static void __cmd_replay(void)
1750 {
1751         unsigned long i;
1752
1753         calibrate_run_measurement_overhead();
1754         calibrate_sleep_measurement_overhead();
1755
1756         test_calibrations();
1757
1758         read_events(true, NULL);
1759
1760         printf("nr_run_events:        %ld\n", nr_run_events);
1761         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1762         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1763
1764         if (targetless_wakeups)
1765                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1766         if (multitarget_wakeups)
1767                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1768         if (nr_run_events_optimized)
1769                 printf("run atoms optimized: %ld\n",
1770                         nr_run_events_optimized);
1771
1772         print_task_traces();
1773         add_cross_task_wakeups();
1774
1775         create_tasks();
1776         printf("------------------------------------------------------------\n");
1777         for (i = 0; i < replay_repeat; i++)
1778                 run_one_test();
1779 }
1780
1781
1782 static const char * const sched_usage[] = {
1783         "perf sched [<options>] {record|latency|map|replay|script}",
1784         NULL
1785 };
1786
1787 static const struct option sched_options[] = {
1788         OPT_STRING('i', "input", &input_name, "file",
1789                     "input file name"),
1790         OPT_INCR('v', "verbose", &verbose,
1791                     "be more verbose (show symbol address, etc)"),
1792         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1793                     "dump raw trace in ASCII"),
1794         OPT_END()
1795 };
1796
1797 static const char * const latency_usage[] = {
1798         "perf sched latency [<options>]",
1799         NULL
1800 };
1801
1802 static const struct option latency_options[] = {
1803         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1804                    "sort by key(s): runtime, switch, avg, max"),
1805         OPT_INCR('v', "verbose", &verbose,
1806                     "be more verbose (show symbol address, etc)"),
1807         OPT_INTEGER('C', "CPU", &profile_cpu,
1808                     "CPU to profile on"),
1809         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1810                     "dump raw trace in ASCII"),
1811         OPT_END()
1812 };
1813
1814 static const char * const replay_usage[] = {
1815         "perf sched replay [<options>]",
1816         NULL
1817 };
1818
1819 static const struct option replay_options[] = {
1820         OPT_UINTEGER('r', "repeat", &replay_repeat,
1821                      "repeat the workload replay N times (-1: infinite)"),
1822         OPT_INCR('v', "verbose", &verbose,
1823                     "be more verbose (show symbol address, etc)"),
1824         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1825                     "dump raw trace in ASCII"),
1826         OPT_END()
1827 };
1828
1829 static void setup_sorting(void)
1830 {
1831         char *tmp, *tok, *str = strdup(sort_order);
1832
1833         for (tok = strtok_r(str, ", ", &tmp);
1834                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1835                 if (sort_dimension__add(tok, &sort_list) < 0) {
1836                         error("Unknown --sort key: `%s'", tok);
1837                         usage_with_options(latency_usage, latency_options);
1838                 }
1839         }
1840
1841         free(str);
1842
1843         sort_dimension__add("pid", &cmp_pid);
1844 }
1845
1846 static const char *record_args[] = {
1847         "record",
1848         "-a",
1849         "-R",
1850         "-f",
1851         "-m", "1024",
1852         "-c", "1",
1853         "-e", "sched:sched_switch",
1854         "-e", "sched:sched_stat_wait",
1855         "-e", "sched:sched_stat_sleep",
1856         "-e", "sched:sched_stat_iowait",
1857         "-e", "sched:sched_stat_runtime",
1858         "-e", "sched:sched_process_exit",
1859         "-e", "sched:sched_process_fork",
1860         "-e", "sched:sched_wakeup",
1861         "-e", "sched:sched_migrate_task",
1862 };
1863
1864 static int __cmd_record(int argc, const char **argv)
1865 {
1866         unsigned int rec_argc, i, j;
1867         const char **rec_argv;
1868
1869         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1870         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871
1872         if (rec_argv == NULL)
1873                 return -ENOMEM;
1874
1875         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1876                 rec_argv[i] = strdup(record_args[i]);
1877
1878         for (j = 1; j < (unsigned int)argc; j++, i++)
1879                 rec_argv[i] = argv[j];
1880
1881         BUG_ON(i != rec_argc);
1882
1883         return cmd_record(i, rec_argv, NULL);
1884 }
1885
1886 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1887 {
1888         argc = parse_options(argc, argv, sched_options, sched_usage,
1889                              PARSE_OPT_STOP_AT_NON_OPTION);
1890         if (!argc)
1891                 usage_with_options(sched_usage, sched_options);
1892
1893         /*
1894          * Aliased to 'perf script' for now:
1895          */
1896         if (!strcmp(argv[0], "script"))
1897                 return cmd_script(argc, argv, prefix);
1898
1899         symbol__init();
1900         if (!strncmp(argv[0], "rec", 3)) {
1901                 return __cmd_record(argc, argv);
1902         } else if (!strncmp(argv[0], "lat", 3)) {
1903                 trace_handler = &lat_ops;
1904                 if (argc > 1) {
1905                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1906                         if (argc)
1907                                 usage_with_options(latency_usage, latency_options);
1908                 }
1909                 setup_sorting();
1910                 __cmd_lat();
1911         } else if (!strcmp(argv[0], "map")) {
1912                 trace_handler = &map_ops;
1913                 setup_sorting();
1914                 __cmd_map();
1915         } else if (!strncmp(argv[0], "rep", 3)) {
1916                 trace_handler = &replay_ops;
1917                 if (argc) {
1918                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1919                         if (argc)
1920                                 usage_with_options(replay_usage, replay_options);
1921                 }
1922                 __cmd_replay();
1923         } else {
1924                 usage_with_options(sched_usage, sched_options);
1925         }
1926
1927         return 0;
1928 }