Merge branch '3.4-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-flexiantxendom0-3.2.10.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 WARN_ON(transaction->delayed_refs.root.rb_node);
40                 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
41                 memset(transaction, 0, sizeof(*transaction));
42                 kmem_cache_free(btrfs_transaction_cachep, transaction);
43         }
44 }
45
46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48         free_extent_buffer(root->commit_root);
49         root->commit_root = btrfs_root_node(root);
50 }
51
52 /*
53  * either allocate a new transaction or hop into the existing one
54  */
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57         struct btrfs_transaction *cur_trans;
58
59         spin_lock(&root->fs_info->trans_lock);
60 loop:
61         /* The file system has been taken offline. No new transactions. */
62         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
63                 spin_unlock(&root->fs_info->trans_lock);
64                 return -EROFS;
65         }
66
67         if (root->fs_info->trans_no_join) {
68                 if (!nofail) {
69                         spin_unlock(&root->fs_info->trans_lock);
70                         return -EBUSY;
71                 }
72         }
73
74         cur_trans = root->fs_info->running_transaction;
75         if (cur_trans) {
76                 if (cur_trans->aborted) {
77                         spin_unlock(&root->fs_info->trans_lock);
78                         return cur_trans->aborted;
79                 }
80                 atomic_inc(&cur_trans->use_count);
81                 atomic_inc(&cur_trans->num_writers);
82                 cur_trans->num_joined++;
83                 spin_unlock(&root->fs_info->trans_lock);
84                 return 0;
85         }
86         spin_unlock(&root->fs_info->trans_lock);
87
88         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
89         if (!cur_trans)
90                 return -ENOMEM;
91
92         spin_lock(&root->fs_info->trans_lock);
93         if (root->fs_info->running_transaction) {
94                 /*
95                  * someone started a transaction after we unlocked.  Make sure
96                  * to redo the trans_no_join checks above
97                  */
98                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
99                 cur_trans = root->fs_info->running_transaction;
100                 goto loop;
101         }
102
103         atomic_set(&cur_trans->num_writers, 1);
104         cur_trans->num_joined = 0;
105         init_waitqueue_head(&cur_trans->writer_wait);
106         init_waitqueue_head(&cur_trans->commit_wait);
107         cur_trans->in_commit = 0;
108         cur_trans->blocked = 0;
109         /*
110          * One for this trans handle, one so it will live on until we
111          * commit the transaction.
112          */
113         atomic_set(&cur_trans->use_count, 2);
114         cur_trans->commit_done = 0;
115         cur_trans->start_time = get_seconds();
116
117         cur_trans->delayed_refs.root = RB_ROOT;
118         cur_trans->delayed_refs.num_entries = 0;
119         cur_trans->delayed_refs.num_heads_ready = 0;
120         cur_trans->delayed_refs.num_heads = 0;
121         cur_trans->delayed_refs.flushing = 0;
122         cur_trans->delayed_refs.run_delayed_start = 0;
123         cur_trans->delayed_refs.seq = 1;
124         init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
125         spin_lock_init(&cur_trans->commit_lock);
126         spin_lock_init(&cur_trans->delayed_refs.lock);
127         INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
128
129         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
130         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
131         extent_io_tree_init(&cur_trans->dirty_pages,
132                              root->fs_info->btree_inode->i_mapping);
133         root->fs_info->generation++;
134         cur_trans->transid = root->fs_info->generation;
135         root->fs_info->running_transaction = cur_trans;
136         cur_trans->aborted = 0;
137         spin_unlock(&root->fs_info->trans_lock);
138
139         return 0;
140 }
141
142 /*
143  * this does all the record keeping required to make sure that a reference
144  * counted root is properly recorded in a given transaction.  This is required
145  * to make sure the old root from before we joined the transaction is deleted
146  * when the transaction commits
147  */
148 static int record_root_in_trans(struct btrfs_trans_handle *trans,
149                                struct btrfs_root *root)
150 {
151         if (root->ref_cows && root->last_trans < trans->transid) {
152                 WARN_ON(root == root->fs_info->extent_root);
153                 WARN_ON(root->commit_root != root->node);
154
155                 /*
156                  * see below for in_trans_setup usage rules
157                  * we have the reloc mutex held now, so there
158                  * is only one writer in this function
159                  */
160                 root->in_trans_setup = 1;
161
162                 /* make sure readers find in_trans_setup before
163                  * they find our root->last_trans update
164                  */
165                 smp_wmb();
166
167                 spin_lock(&root->fs_info->fs_roots_radix_lock);
168                 if (root->last_trans == trans->transid) {
169                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
170                         return 0;
171                 }
172                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
173                            (unsigned long)root->root_key.objectid,
174                            BTRFS_ROOT_TRANS_TAG);
175                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
176                 root->last_trans = trans->transid;
177
178                 /* this is pretty tricky.  We don't want to
179                  * take the relocation lock in btrfs_record_root_in_trans
180                  * unless we're really doing the first setup for this root in
181                  * this transaction.
182                  *
183                  * Normally we'd use root->last_trans as a flag to decide
184                  * if we want to take the expensive mutex.
185                  *
186                  * But, we have to set root->last_trans before we
187                  * init the relocation root, otherwise, we trip over warnings
188                  * in ctree.c.  The solution used here is to flag ourselves
189                  * with root->in_trans_setup.  When this is 1, we're still
190                  * fixing up the reloc trees and everyone must wait.
191                  *
192                  * When this is zero, they can trust root->last_trans and fly
193                  * through btrfs_record_root_in_trans without having to take the
194                  * lock.  smp_wmb() makes sure that all the writes above are
195                  * done before we pop in the zero below
196                  */
197                 btrfs_init_reloc_root(trans, root);
198                 smp_wmb();
199                 root->in_trans_setup = 0;
200         }
201         return 0;
202 }
203
204
205 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
206                                struct btrfs_root *root)
207 {
208         if (!root->ref_cows)
209                 return 0;
210
211         /*
212          * see record_root_in_trans for comments about in_trans_setup usage
213          * and barriers
214          */
215         smp_rmb();
216         if (root->last_trans == trans->transid &&
217             !root->in_trans_setup)
218                 return 0;
219
220         mutex_lock(&root->fs_info->reloc_mutex);
221         record_root_in_trans(trans, root);
222         mutex_unlock(&root->fs_info->reloc_mutex);
223
224         return 0;
225 }
226
227 /* wait for commit against the current transaction to become unblocked
228  * when this is done, it is safe to start a new transaction, but the current
229  * transaction might not be fully on disk.
230  */
231 static void wait_current_trans(struct btrfs_root *root)
232 {
233         struct btrfs_transaction *cur_trans;
234
235         spin_lock(&root->fs_info->trans_lock);
236         cur_trans = root->fs_info->running_transaction;
237         if (cur_trans && cur_trans->blocked) {
238                 atomic_inc(&cur_trans->use_count);
239                 spin_unlock(&root->fs_info->trans_lock);
240
241                 wait_event(root->fs_info->transaction_wait,
242                            !cur_trans->blocked);
243                 put_transaction(cur_trans);
244         } else {
245                 spin_unlock(&root->fs_info->trans_lock);
246         }
247 }
248
249 enum btrfs_trans_type {
250         TRANS_START,
251         TRANS_JOIN,
252         TRANS_USERSPACE,
253         TRANS_JOIN_NOLOCK,
254 };
255
256 static int may_wait_transaction(struct btrfs_root *root, int type)
257 {
258         if (root->fs_info->log_root_recovering)
259                 return 0;
260
261         if (type == TRANS_USERSPACE)
262                 return 1;
263
264         if (type == TRANS_START &&
265             !atomic_read(&root->fs_info->open_ioctl_trans))
266                 return 1;
267
268         return 0;
269 }
270
271 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
272                                                     u64 num_items, int type)
273 {
274         struct btrfs_trans_handle *h;
275         struct btrfs_transaction *cur_trans;
276         u64 num_bytes = 0;
277         int ret;
278
279         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
280                 return ERR_PTR(-EROFS);
281
282         if (current->journal_info) {
283                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
284                 h = current->journal_info;
285                 h->use_count++;
286                 h->orig_rsv = h->block_rsv;
287                 h->block_rsv = NULL;
288                 goto got_it;
289         }
290
291         /*
292          * Do the reservation before we join the transaction so we can do all
293          * the appropriate flushing if need be.
294          */
295         if (num_items > 0 && root != root->fs_info->chunk_root) {
296                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
297                 ret = btrfs_block_rsv_add(root,
298                                           &root->fs_info->trans_block_rsv,
299                                           num_bytes);
300                 if (ret)
301                         return ERR_PTR(ret);
302         }
303 again:
304         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
305         if (!h)
306                 return ERR_PTR(-ENOMEM);
307
308         if (may_wait_transaction(root, type))
309                 wait_current_trans(root);
310
311         do {
312                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
313                 if (ret == -EBUSY)
314                         wait_current_trans(root);
315         } while (ret == -EBUSY);
316
317         if (ret < 0) {
318                 kmem_cache_free(btrfs_trans_handle_cachep, h);
319                 return ERR_PTR(ret);
320         }
321
322         cur_trans = root->fs_info->running_transaction;
323
324         h->transid = cur_trans->transid;
325         h->transaction = cur_trans;
326         h->blocks_used = 0;
327         h->bytes_reserved = 0;
328         h->delayed_ref_updates = 0;
329         h->use_count = 1;
330         h->block_rsv = NULL;
331         h->orig_rsv = NULL;
332         h->aborted = 0;
333
334         smp_mb();
335         if (cur_trans->blocked && may_wait_transaction(root, type)) {
336                 btrfs_commit_transaction(h, root);
337                 goto again;
338         }
339
340         if (num_bytes) {
341                 trace_btrfs_space_reservation(root->fs_info, "transaction",
342                                               h->transid, num_bytes, 1);
343                 h->block_rsv = &root->fs_info->trans_block_rsv;
344                 h->bytes_reserved = num_bytes;
345         }
346
347 got_it:
348         btrfs_record_root_in_trans(h, root);
349
350         if (!current->journal_info && type != TRANS_USERSPACE)
351                 current->journal_info = h;
352         return h;
353 }
354
355 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
356                                                    int num_items)
357 {
358         return start_transaction(root, num_items, TRANS_START);
359 }
360 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
361 {
362         return start_transaction(root, 0, TRANS_JOIN);
363 }
364
365 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
366 {
367         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
368 }
369
370 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
371 {
372         return start_transaction(root, 0, TRANS_USERSPACE);
373 }
374
375 /* wait for a transaction commit to be fully complete */
376 static noinline void wait_for_commit(struct btrfs_root *root,
377                                     struct btrfs_transaction *commit)
378 {
379         wait_event(commit->commit_wait, commit->commit_done);
380 }
381
382 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
383 {
384         struct btrfs_transaction *cur_trans = NULL, *t;
385         int ret;
386
387         ret = 0;
388         if (transid) {
389                 if (transid <= root->fs_info->last_trans_committed)
390                         goto out;
391
392                 /* find specified transaction */
393                 spin_lock(&root->fs_info->trans_lock);
394                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
395                         if (t->transid == transid) {
396                                 cur_trans = t;
397                                 atomic_inc(&cur_trans->use_count);
398                                 break;
399                         }
400                         if (t->transid > transid)
401                                 break;
402                 }
403                 spin_unlock(&root->fs_info->trans_lock);
404                 ret = -EINVAL;
405                 if (!cur_trans)
406                         goto out;  /* bad transid */
407         } else {
408                 /* find newest transaction that is committing | committed */
409                 spin_lock(&root->fs_info->trans_lock);
410                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
411                                             list) {
412                         if (t->in_commit) {
413                                 if (t->commit_done)
414                                         break;
415                                 cur_trans = t;
416                                 atomic_inc(&cur_trans->use_count);
417                                 break;
418                         }
419                 }
420                 spin_unlock(&root->fs_info->trans_lock);
421                 if (!cur_trans)
422                         goto out;  /* nothing committing|committed */
423         }
424
425         wait_for_commit(root, cur_trans);
426
427         put_transaction(cur_trans);
428         ret = 0;
429 out:
430         return ret;
431 }
432
433 void btrfs_throttle(struct btrfs_root *root)
434 {
435         if (!atomic_read(&root->fs_info->open_ioctl_trans))
436                 wait_current_trans(root);
437 }
438
439 static int should_end_transaction(struct btrfs_trans_handle *trans,
440                                   struct btrfs_root *root)
441 {
442         int ret;
443
444         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
445         return ret ? 1 : 0;
446 }
447
448 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
449                                  struct btrfs_root *root)
450 {
451         struct btrfs_transaction *cur_trans = trans->transaction;
452         struct btrfs_block_rsv *rsv = trans->block_rsv;
453         int updates;
454         int err;
455
456         smp_mb();
457         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
458                 return 1;
459
460         /*
461          * We need to do this in case we're deleting csums so the global block
462          * rsv get's used instead of the csum block rsv.
463          */
464         trans->block_rsv = NULL;
465
466         updates = trans->delayed_ref_updates;
467         trans->delayed_ref_updates = 0;
468         if (updates) {
469                 err = btrfs_run_delayed_refs(trans, root, updates);
470                 if (err) /* Error code will also eval true */
471                         return err;
472         }
473
474         trans->block_rsv = rsv;
475
476         return should_end_transaction(trans, root);
477 }
478
479 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
480                           struct btrfs_root *root, int throttle, int lock)
481 {
482         struct btrfs_transaction *cur_trans = trans->transaction;
483         struct btrfs_fs_info *info = root->fs_info;
484         int count = 0;
485         int err = 0;
486
487         if (--trans->use_count) {
488                 trans->block_rsv = trans->orig_rsv;
489                 return 0;
490         }
491
492         btrfs_trans_release_metadata(trans, root);
493         trans->block_rsv = NULL;
494         while (count < 2) {
495                 unsigned long cur = trans->delayed_ref_updates;
496                 trans->delayed_ref_updates = 0;
497                 if (cur &&
498                     trans->transaction->delayed_refs.num_heads_ready > 64) {
499                         trans->delayed_ref_updates = 0;
500                         btrfs_run_delayed_refs(trans, root, cur);
501                 } else {
502                         break;
503                 }
504                 count++;
505         }
506
507         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
508             should_end_transaction(trans, root)) {
509                 trans->transaction->blocked = 1;
510                 smp_wmb();
511         }
512
513         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
514                 if (throttle) {
515                         /*
516                          * We may race with somebody else here so end up having
517                          * to call end_transaction on ourselves again, so inc
518                          * our use_count.
519                          */
520                         trans->use_count++;
521                         return btrfs_commit_transaction(trans, root);
522                 } else {
523                         wake_up_process(info->transaction_kthread);
524                 }
525         }
526
527         WARN_ON(cur_trans != info->running_transaction);
528         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
529         atomic_dec(&cur_trans->num_writers);
530
531         smp_mb();
532         if (waitqueue_active(&cur_trans->writer_wait))
533                 wake_up(&cur_trans->writer_wait);
534         put_transaction(cur_trans);
535
536         if (current->journal_info == trans)
537                 current->journal_info = NULL;
538
539         if (throttle)
540                 btrfs_run_delayed_iputs(root);
541
542         if (trans->aborted ||
543             root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
544                 err = -EIO;
545         }
546
547         memset(trans, 0, sizeof(*trans));
548         kmem_cache_free(btrfs_trans_handle_cachep, trans);
549         return err;
550 }
551
552 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
553                           struct btrfs_root *root)
554 {
555         int ret;
556
557         ret = __btrfs_end_transaction(trans, root, 0, 1);
558         if (ret)
559                 return ret;
560         return 0;
561 }
562
563 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
564                                    struct btrfs_root *root)
565 {
566         int ret;
567
568         ret = __btrfs_end_transaction(trans, root, 1, 1);
569         if (ret)
570                 return ret;
571         return 0;
572 }
573
574 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
575                                  struct btrfs_root *root)
576 {
577         int ret;
578
579         ret = __btrfs_end_transaction(trans, root, 0, 0);
580         if (ret)
581                 return ret;
582         return 0;
583 }
584
585 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
586                                 struct btrfs_root *root)
587 {
588         return __btrfs_end_transaction(trans, root, 1, 1);
589 }
590
591 /*
592  * when btree blocks are allocated, they have some corresponding bits set for
593  * them in one of two extent_io trees.  This is used to make sure all of
594  * those extents are sent to disk but does not wait on them
595  */
596 int btrfs_write_marked_extents(struct btrfs_root *root,
597                                struct extent_io_tree *dirty_pages, int mark)
598 {
599         int err = 0;
600         int werr = 0;
601         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
602         u64 start = 0;
603         u64 end;
604
605         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
606                                       mark)) {
607                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
608                                    GFP_NOFS);
609                 err = filemap_fdatawrite_range(mapping, start, end);
610                 if (err)
611                         werr = err;
612                 cond_resched();
613                 start = end + 1;
614         }
615         if (err)
616                 werr = err;
617         return werr;
618 }
619
620 /*
621  * when btree blocks are allocated, they have some corresponding bits set for
622  * them in one of two extent_io trees.  This is used to make sure all of
623  * those extents are on disk for transaction or log commit.  We wait
624  * on all the pages and clear them from the dirty pages state tree
625  */
626 int btrfs_wait_marked_extents(struct btrfs_root *root,
627                               struct extent_io_tree *dirty_pages, int mark)
628 {
629         int err = 0;
630         int werr = 0;
631         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
632         u64 start = 0;
633         u64 end;
634
635         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
636                                       EXTENT_NEED_WAIT)) {
637                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
638                 err = filemap_fdatawait_range(mapping, start, end);
639                 if (err)
640                         werr = err;
641                 cond_resched();
642                 start = end + 1;
643         }
644         if (err)
645                 werr = err;
646         return werr;
647 }
648
649 /*
650  * when btree blocks are allocated, they have some corresponding bits set for
651  * them in one of two extent_io trees.  This is used to make sure all of
652  * those extents are on disk for transaction or log commit
653  */
654 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
655                                 struct extent_io_tree *dirty_pages, int mark)
656 {
657         int ret;
658         int ret2;
659
660         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
661         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
662
663         if (ret)
664                 return ret;
665         if (ret2)
666                 return ret2;
667         return 0;
668 }
669
670 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
671                                      struct btrfs_root *root)
672 {
673         if (!trans || !trans->transaction) {
674                 struct inode *btree_inode;
675                 btree_inode = root->fs_info->btree_inode;
676                 return filemap_write_and_wait(btree_inode->i_mapping);
677         }
678         return btrfs_write_and_wait_marked_extents(root,
679                                            &trans->transaction->dirty_pages,
680                                            EXTENT_DIRTY);
681 }
682
683 /*
684  * this is used to update the root pointer in the tree of tree roots.
685  *
686  * But, in the case of the extent allocation tree, updating the root
687  * pointer may allocate blocks which may change the root of the extent
688  * allocation tree.
689  *
690  * So, this loops and repeats and makes sure the cowonly root didn't
691  * change while the root pointer was being updated in the metadata.
692  */
693 static int update_cowonly_root(struct btrfs_trans_handle *trans,
694                                struct btrfs_root *root)
695 {
696         int ret;
697         u64 old_root_bytenr;
698         u64 old_root_used;
699         struct btrfs_root *tree_root = root->fs_info->tree_root;
700
701         old_root_used = btrfs_root_used(&root->root_item);
702         btrfs_write_dirty_block_groups(trans, root);
703
704         while (1) {
705                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
706                 if (old_root_bytenr == root->node->start &&
707                     old_root_used == btrfs_root_used(&root->root_item))
708                         break;
709
710                 btrfs_set_root_node(&root->root_item, root->node);
711                 ret = btrfs_update_root(trans, tree_root,
712                                         &root->root_key,
713                                         &root->root_item);
714                 if (ret)
715                         return ret;
716
717                 old_root_used = btrfs_root_used(&root->root_item);
718                 ret = btrfs_write_dirty_block_groups(trans, root);
719                 if (ret)
720                         return ret;
721         }
722
723         if (root != root->fs_info->extent_root)
724                 switch_commit_root(root);
725
726         return 0;
727 }
728
729 /*
730  * update all the cowonly tree roots on disk
731  *
732  * The error handling in this function may not be obvious. Any of the
733  * failures will cause the file system to go offline. We still need
734  * to clean up the delayed refs.
735  */
736 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
737                                          struct btrfs_root *root)
738 {
739         struct btrfs_fs_info *fs_info = root->fs_info;
740         struct list_head *next;
741         struct extent_buffer *eb;
742         int ret;
743
744         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
745         if (ret)
746                 return ret;
747
748         eb = btrfs_lock_root_node(fs_info->tree_root);
749         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
750                               0, &eb);
751         btrfs_tree_unlock(eb);
752         free_extent_buffer(eb);
753
754         if (ret)
755                 return ret;
756
757         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
758         if (ret)
759                 return ret;
760
761         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
762                 next = fs_info->dirty_cowonly_roots.next;
763                 list_del_init(next);
764                 root = list_entry(next, struct btrfs_root, dirty_list);
765
766                 ret = update_cowonly_root(trans, root);
767                 if (ret)
768                         return ret;
769         }
770
771         down_write(&fs_info->extent_commit_sem);
772         switch_commit_root(fs_info->extent_root);
773         up_write(&fs_info->extent_commit_sem);
774
775         return 0;
776 }
777
778 /*
779  * dead roots are old snapshots that need to be deleted.  This allocates
780  * a dirty root struct and adds it into the list of dead roots that need to
781  * be deleted
782  */
783 int btrfs_add_dead_root(struct btrfs_root *root)
784 {
785         spin_lock(&root->fs_info->trans_lock);
786         list_add(&root->root_list, &root->fs_info->dead_roots);
787         spin_unlock(&root->fs_info->trans_lock);
788         return 0;
789 }
790
791 /*
792  * update all the cowonly tree roots on disk
793  */
794 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
795                                     struct btrfs_root *root)
796 {
797         struct btrfs_root *gang[8];
798         struct btrfs_fs_info *fs_info = root->fs_info;
799         int i;
800         int ret;
801         int err = 0;
802
803         spin_lock(&fs_info->fs_roots_radix_lock);
804         while (1) {
805                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
806                                                  (void **)gang, 0,
807                                                  ARRAY_SIZE(gang),
808                                                  BTRFS_ROOT_TRANS_TAG);
809                 if (ret == 0)
810                         break;
811                 for (i = 0; i < ret; i++) {
812                         root = gang[i];
813                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
814                                         (unsigned long)root->root_key.objectid,
815                                         BTRFS_ROOT_TRANS_TAG);
816                         spin_unlock(&fs_info->fs_roots_radix_lock);
817
818                         btrfs_free_log(trans, root);
819                         btrfs_update_reloc_root(trans, root);
820                         btrfs_orphan_commit_root(trans, root);
821
822                         btrfs_save_ino_cache(root, trans);
823
824                         /* see comments in should_cow_block() */
825                         root->force_cow = 0;
826                         smp_wmb();
827
828                         if (root->commit_root != root->node) {
829                                 mutex_lock(&root->fs_commit_mutex);
830                                 switch_commit_root(root);
831                                 btrfs_unpin_free_ino(root);
832                                 mutex_unlock(&root->fs_commit_mutex);
833
834                                 btrfs_set_root_node(&root->root_item,
835                                                     root->node);
836                         }
837
838                         err = btrfs_update_root(trans, fs_info->tree_root,
839                                                 &root->root_key,
840                                                 &root->root_item);
841                         spin_lock(&fs_info->fs_roots_radix_lock);
842                         if (err)
843                                 break;
844                 }
845         }
846         spin_unlock(&fs_info->fs_roots_radix_lock);
847         return err;
848 }
849
850 /*
851  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
852  * otherwise every leaf in the btree is read and defragged.
853  */
854 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
855 {
856         struct btrfs_fs_info *info = root->fs_info;
857         struct btrfs_trans_handle *trans;
858         int ret;
859         unsigned long nr;
860
861         if (xchg(&root->defrag_running, 1))
862                 return 0;
863
864         while (1) {
865                 trans = btrfs_start_transaction(root, 0);
866                 if (IS_ERR(trans))
867                         return PTR_ERR(trans);
868
869                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
870
871                 nr = trans->blocks_used;
872                 btrfs_end_transaction(trans, root);
873                 btrfs_btree_balance_dirty(info->tree_root, nr);
874                 cond_resched();
875
876                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
877                         break;
878         }
879         root->defrag_running = 0;
880         return ret;
881 }
882
883 /*
884  * new snapshots need to be created at a very specific time in the
885  * transaction commit.  This does the actual creation
886  */
887 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
888                                    struct btrfs_fs_info *fs_info,
889                                    struct btrfs_pending_snapshot *pending)
890 {
891         struct btrfs_key key;
892         struct btrfs_root_item *new_root_item;
893         struct btrfs_root *tree_root = fs_info->tree_root;
894         struct btrfs_root *root = pending->root;
895         struct btrfs_root *parent_root;
896         struct btrfs_block_rsv *rsv;
897         struct inode *parent_inode;
898         struct dentry *parent;
899         struct dentry *dentry;
900         struct extent_buffer *tmp;
901         struct extent_buffer *old;
902         int ret;
903         u64 to_reserve = 0;
904         u64 index = 0;
905         u64 objectid;
906         u64 root_flags;
907
908         rsv = trans->block_rsv;
909
910         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
911         if (!new_root_item) {
912                 ret = pending->error = -ENOMEM;
913                 goto fail;
914         }
915
916         ret = btrfs_find_free_objectid(tree_root, &objectid);
917         if (ret) {
918                 pending->error = ret;
919                 goto fail;
920         }
921
922         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
923
924         if (to_reserve > 0) {
925                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
926                                                   to_reserve);
927                 if (ret) {
928                         pending->error = ret;
929                         goto fail;
930                 }
931         }
932
933         key.objectid = objectid;
934         key.offset = (u64)-1;
935         key.type = BTRFS_ROOT_ITEM_KEY;
936
937         trans->block_rsv = &pending->block_rsv;
938
939         dentry = pending->dentry;
940         parent = dget_parent(dentry);
941         parent_inode = parent->d_inode;
942         parent_root = BTRFS_I(parent_inode)->root;
943         record_root_in_trans(trans, parent_root);
944
945         /*
946          * insert the directory item
947          */
948         ret = btrfs_set_inode_index(parent_inode, &index);
949         BUG_ON(ret); /* -ENOMEM */
950         ret = btrfs_insert_dir_item(trans, parent_root,
951                                 dentry->d_name.name, dentry->d_name.len,
952                                 parent_inode, &key,
953                                 BTRFS_FT_DIR, index);
954         if (ret == -EEXIST) {
955                 pending->error = -EEXIST;
956                 dput(parent);
957                 goto fail;
958         } else if (ret) {
959                 goto abort_trans_dput;
960         }
961
962         btrfs_i_size_write(parent_inode, parent_inode->i_size +
963                                          dentry->d_name.len * 2);
964         ret = btrfs_update_inode(trans, parent_root, parent_inode);
965         if (ret)
966                 goto abort_trans_dput;
967
968         /*
969          * pull in the delayed directory update
970          * and the delayed inode item
971          * otherwise we corrupt the FS during
972          * snapshot
973          */
974         ret = btrfs_run_delayed_items(trans, root);
975         if (ret) { /* Transaction aborted */
976                 dput(parent);
977                 goto fail;
978         }
979
980         record_root_in_trans(trans, root);
981         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
982         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
983         btrfs_check_and_init_root_item(new_root_item);
984
985         root_flags = btrfs_root_flags(new_root_item);
986         if (pending->readonly)
987                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
988         else
989                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
990         btrfs_set_root_flags(new_root_item, root_flags);
991
992         old = btrfs_lock_root_node(root);
993         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
994         if (ret) {
995                 btrfs_tree_unlock(old);
996                 free_extent_buffer(old);
997                 goto abort_trans_dput;
998         }
999
1000         btrfs_set_lock_blocking(old);
1001
1002         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1003         /* clean up in any case */
1004         btrfs_tree_unlock(old);
1005         free_extent_buffer(old);
1006         if (ret)
1007                 goto abort_trans_dput;
1008
1009         /* see comments in should_cow_block() */
1010         root->force_cow = 1;
1011         smp_wmb();
1012
1013         btrfs_set_root_node(new_root_item, tmp);
1014         /* record when the snapshot was created in key.offset */
1015         key.offset = trans->transid;
1016         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1017         btrfs_tree_unlock(tmp);
1018         free_extent_buffer(tmp);
1019         if (ret)
1020                 goto abort_trans_dput;
1021
1022         /*
1023          * insert root back/forward references
1024          */
1025         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1026                                  parent_root->root_key.objectid,
1027                                  btrfs_ino(parent_inode), index,
1028                                  dentry->d_name.name, dentry->d_name.len);
1029         dput(parent);
1030         if (ret)
1031                 goto fail;
1032
1033         key.offset = (u64)-1;
1034         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1035         if (IS_ERR(pending->snap)) {
1036                 ret = PTR_ERR(pending->snap);
1037                 goto abort_trans;
1038         }
1039
1040         ret = btrfs_reloc_post_snapshot(trans, pending);
1041         if (ret)
1042                 goto abort_trans;
1043         ret = 0;
1044 fail:
1045         kfree(new_root_item);
1046         trans->block_rsv = rsv;
1047         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1048         return ret;
1049
1050 abort_trans_dput:
1051         dput(parent);
1052 abort_trans:
1053         btrfs_abort_transaction(trans, root, ret);
1054         goto fail;
1055 }
1056
1057 /*
1058  * create all the snapshots we've scheduled for creation
1059  */
1060 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1061                                              struct btrfs_fs_info *fs_info)
1062 {
1063         struct btrfs_pending_snapshot *pending;
1064         struct list_head *head = &trans->transaction->pending_snapshots;
1065
1066         list_for_each_entry(pending, head, list)
1067                 create_pending_snapshot(trans, fs_info, pending);
1068         return 0;
1069 }
1070
1071 static void update_super_roots(struct btrfs_root *root)
1072 {
1073         struct btrfs_root_item *root_item;
1074         struct btrfs_super_block *super;
1075
1076         super = root->fs_info->super_copy;
1077
1078         root_item = &root->fs_info->chunk_root->root_item;
1079         super->chunk_root = root_item->bytenr;
1080         super->chunk_root_generation = root_item->generation;
1081         super->chunk_root_level = root_item->level;
1082
1083         root_item = &root->fs_info->tree_root->root_item;
1084         super->root = root_item->bytenr;
1085         super->generation = root_item->generation;
1086         super->root_level = root_item->level;
1087         if (btrfs_test_opt(root, SPACE_CACHE))
1088                 super->cache_generation = root_item->generation;
1089 }
1090
1091 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1092 {
1093         int ret = 0;
1094         spin_lock(&info->trans_lock);
1095         if (info->running_transaction)
1096                 ret = info->running_transaction->in_commit;
1097         spin_unlock(&info->trans_lock);
1098         return ret;
1099 }
1100
1101 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1102 {
1103         int ret = 0;
1104         spin_lock(&info->trans_lock);
1105         if (info->running_transaction)
1106                 ret = info->running_transaction->blocked;
1107         spin_unlock(&info->trans_lock);
1108         return ret;
1109 }
1110
1111 /*
1112  * wait for the current transaction commit to start and block subsequent
1113  * transaction joins
1114  */
1115 static void wait_current_trans_commit_start(struct btrfs_root *root,
1116                                             struct btrfs_transaction *trans)
1117 {
1118         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1119 }
1120
1121 /*
1122  * wait for the current transaction to start and then become unblocked.
1123  * caller holds ref.
1124  */
1125 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1126                                          struct btrfs_transaction *trans)
1127 {
1128         wait_event(root->fs_info->transaction_wait,
1129                    trans->commit_done || (trans->in_commit && !trans->blocked));
1130 }
1131
1132 /*
1133  * commit transactions asynchronously. once btrfs_commit_transaction_async
1134  * returns, any subsequent transaction will not be allowed to join.
1135  */
1136 struct btrfs_async_commit {
1137         struct btrfs_trans_handle *newtrans;
1138         struct btrfs_root *root;
1139         struct delayed_work work;
1140 };
1141
1142 static void do_async_commit(struct work_struct *work)
1143 {
1144         struct btrfs_async_commit *ac =
1145                 container_of(work, struct btrfs_async_commit, work.work);
1146
1147         btrfs_commit_transaction(ac->newtrans, ac->root);
1148         kfree(ac);
1149 }
1150
1151 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1152                                    struct btrfs_root *root,
1153                                    int wait_for_unblock)
1154 {
1155         struct btrfs_async_commit *ac;
1156         struct btrfs_transaction *cur_trans;
1157
1158         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1159         if (!ac)
1160                 return -ENOMEM;
1161
1162         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1163         ac->root = root;
1164         ac->newtrans = btrfs_join_transaction(root);
1165         if (IS_ERR(ac->newtrans)) {
1166                 int err = PTR_ERR(ac->newtrans);
1167                 kfree(ac);
1168                 return err;
1169         }
1170
1171         /* take transaction reference */
1172         cur_trans = trans->transaction;
1173         atomic_inc(&cur_trans->use_count);
1174
1175         btrfs_end_transaction(trans, root);
1176         schedule_delayed_work(&ac->work, 0);
1177
1178         /* wait for transaction to start and unblock */
1179         if (wait_for_unblock)
1180                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1181         else
1182                 wait_current_trans_commit_start(root, cur_trans);
1183
1184         if (current->journal_info == trans)
1185                 current->journal_info = NULL;
1186
1187         put_transaction(cur_trans);
1188         return 0;
1189 }
1190
1191
1192 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1193                                 struct btrfs_root *root)
1194 {
1195         struct btrfs_transaction *cur_trans = trans->transaction;
1196
1197         WARN_ON(trans->use_count > 1);
1198
1199         spin_lock(&root->fs_info->trans_lock);
1200         list_del_init(&cur_trans->list);
1201         spin_unlock(&root->fs_info->trans_lock);
1202
1203         btrfs_cleanup_one_transaction(trans->transaction, root);
1204
1205         put_transaction(cur_trans);
1206         put_transaction(cur_trans);
1207
1208         trace_btrfs_transaction_commit(root);
1209
1210         btrfs_scrub_continue(root);
1211
1212         if (current->journal_info == trans)
1213                 current->journal_info = NULL;
1214
1215         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1216 }
1217
1218 /*
1219  * btrfs_transaction state sequence:
1220  *    in_commit = 0, blocked = 0  (initial)
1221  *    in_commit = 1, blocked = 1
1222  *    blocked = 0
1223  *    commit_done = 1
1224  */
1225 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1226                              struct btrfs_root *root)
1227 {
1228         unsigned long joined = 0;
1229         struct btrfs_transaction *cur_trans = trans->transaction;
1230         struct btrfs_transaction *prev_trans = NULL;
1231         DEFINE_WAIT(wait);
1232         int ret = -EIO;
1233         int should_grow = 0;
1234         unsigned long now = get_seconds();
1235         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1236
1237         btrfs_run_ordered_operations(root, 0);
1238
1239         btrfs_trans_release_metadata(trans, root);
1240         trans->block_rsv = NULL;
1241
1242         if (cur_trans->aborted)
1243                 goto cleanup_transaction;
1244
1245         /* make a pass through all the delayed refs we have so far
1246          * any runnings procs may add more while we are here
1247          */
1248         ret = btrfs_run_delayed_refs(trans, root, 0);
1249         if (ret)
1250                 goto cleanup_transaction;
1251
1252         cur_trans = trans->transaction;
1253
1254         /*
1255          * set the flushing flag so procs in this transaction have to
1256          * start sending their work down.
1257          */
1258         cur_trans->delayed_refs.flushing = 1;
1259
1260         ret = btrfs_run_delayed_refs(trans, root, 0);
1261         if (ret)
1262                 goto cleanup_transaction;
1263
1264         spin_lock(&cur_trans->commit_lock);
1265         if (cur_trans->in_commit) {
1266                 spin_unlock(&cur_trans->commit_lock);
1267                 atomic_inc(&cur_trans->use_count);
1268                 ret = btrfs_end_transaction(trans, root);
1269
1270                 wait_for_commit(root, cur_trans);
1271
1272                 put_transaction(cur_trans);
1273
1274                 return ret;
1275         }
1276
1277         trans->transaction->in_commit = 1;
1278         trans->transaction->blocked = 1;
1279         spin_unlock(&cur_trans->commit_lock);
1280         wake_up(&root->fs_info->transaction_blocked_wait);
1281
1282         spin_lock(&root->fs_info->trans_lock);
1283         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1284                 prev_trans = list_entry(cur_trans->list.prev,
1285                                         struct btrfs_transaction, list);
1286                 if (!prev_trans->commit_done) {
1287                         atomic_inc(&prev_trans->use_count);
1288                         spin_unlock(&root->fs_info->trans_lock);
1289
1290                         wait_for_commit(root, prev_trans);
1291
1292                         put_transaction(prev_trans);
1293                 } else {
1294                         spin_unlock(&root->fs_info->trans_lock);
1295                 }
1296         } else {
1297                 spin_unlock(&root->fs_info->trans_lock);
1298         }
1299
1300         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1301                 should_grow = 1;
1302
1303         do {
1304                 int snap_pending = 0;
1305
1306                 joined = cur_trans->num_joined;
1307                 if (!list_empty(&trans->transaction->pending_snapshots))
1308                         snap_pending = 1;
1309
1310                 WARN_ON(cur_trans != trans->transaction);
1311
1312                 if (flush_on_commit || snap_pending) {
1313                         btrfs_start_delalloc_inodes(root, 1);
1314                         btrfs_wait_ordered_extents(root, 0, 1);
1315                 }
1316
1317                 ret = btrfs_run_delayed_items(trans, root);
1318                 if (ret)
1319                         goto cleanup_transaction;
1320
1321                 /*
1322                  * rename don't use btrfs_join_transaction, so, once we
1323                  * set the transaction to blocked above, we aren't going
1324                  * to get any new ordered operations.  We can safely run
1325                  * it here and no for sure that nothing new will be added
1326                  * to the list
1327                  */
1328                 btrfs_run_ordered_operations(root, 1);
1329
1330                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1331                                 TASK_UNINTERRUPTIBLE);
1332
1333                 if (atomic_read(&cur_trans->num_writers) > 1)
1334                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1335                 else if (should_grow)
1336                         schedule_timeout(1);
1337
1338                 finish_wait(&cur_trans->writer_wait, &wait);
1339         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1340                  (should_grow && cur_trans->num_joined != joined));
1341
1342         /*
1343          * Ok now we need to make sure to block out any other joins while we
1344          * commit the transaction.  We could have started a join before setting
1345          * no_join so make sure to wait for num_writers to == 1 again.
1346          */
1347         spin_lock(&root->fs_info->trans_lock);
1348         root->fs_info->trans_no_join = 1;
1349         spin_unlock(&root->fs_info->trans_lock);
1350         wait_event(cur_trans->writer_wait,
1351                    atomic_read(&cur_trans->num_writers) == 1);
1352
1353         /*
1354          * the reloc mutex makes sure that we stop
1355          * the balancing code from coming in and moving
1356          * extents around in the middle of the commit
1357          */
1358         mutex_lock(&root->fs_info->reloc_mutex);
1359
1360         ret = btrfs_run_delayed_items(trans, root);
1361         if (ret) {
1362                 mutex_unlock(&root->fs_info->reloc_mutex);
1363                 goto cleanup_transaction;
1364         }
1365
1366         ret = create_pending_snapshots(trans, root->fs_info);
1367         if (ret) {
1368                 mutex_unlock(&root->fs_info->reloc_mutex);
1369                 goto cleanup_transaction;
1370         }
1371
1372         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1373         if (ret) {
1374                 mutex_unlock(&root->fs_info->reloc_mutex);
1375                 goto cleanup_transaction;
1376         }
1377
1378         /*
1379          * make sure none of the code above managed to slip in a
1380          * delayed item
1381          */
1382         btrfs_assert_delayed_root_empty(root);
1383
1384         WARN_ON(cur_trans != trans->transaction);
1385
1386         btrfs_scrub_pause(root);
1387         /* btrfs_commit_tree_roots is responsible for getting the
1388          * various roots consistent with each other.  Every pointer
1389          * in the tree of tree roots has to point to the most up to date
1390          * root for every subvolume and other tree.  So, we have to keep
1391          * the tree logging code from jumping in and changing any
1392          * of the trees.
1393          *
1394          * At this point in the commit, there can't be any tree-log
1395          * writers, but a little lower down we drop the trans mutex
1396          * and let new people in.  By holding the tree_log_mutex
1397          * from now until after the super is written, we avoid races
1398          * with the tree-log code.
1399          */
1400         mutex_lock(&root->fs_info->tree_log_mutex);
1401
1402         ret = commit_fs_roots(trans, root);
1403         if (ret) {
1404                 mutex_unlock(&root->fs_info->tree_log_mutex);
1405                 mutex_unlock(&root->fs_info->reloc_mutex);
1406                 goto cleanup_transaction;
1407         }
1408
1409         /* commit_fs_roots gets rid of all the tree log roots, it is now
1410          * safe to free the root of tree log roots
1411          */
1412         btrfs_free_log_root_tree(trans, root->fs_info);
1413
1414         ret = commit_cowonly_roots(trans, root);
1415         if (ret) {
1416                 mutex_unlock(&root->fs_info->tree_log_mutex);
1417                 mutex_unlock(&root->fs_info->reloc_mutex);
1418                 goto cleanup_transaction;
1419         }
1420
1421         btrfs_prepare_extent_commit(trans, root);
1422
1423         cur_trans = root->fs_info->running_transaction;
1424
1425         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1426                             root->fs_info->tree_root->node);
1427         switch_commit_root(root->fs_info->tree_root);
1428
1429         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1430                             root->fs_info->chunk_root->node);
1431         switch_commit_root(root->fs_info->chunk_root);
1432
1433         update_super_roots(root);
1434
1435         if (!root->fs_info->log_root_recovering) {
1436                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1437                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1438         }
1439
1440         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1441                sizeof(*root->fs_info->super_copy));
1442
1443         trans->transaction->blocked = 0;
1444         spin_lock(&root->fs_info->trans_lock);
1445         root->fs_info->running_transaction = NULL;
1446         root->fs_info->trans_no_join = 0;
1447         spin_unlock(&root->fs_info->trans_lock);
1448         mutex_unlock(&root->fs_info->reloc_mutex);
1449
1450         wake_up(&root->fs_info->transaction_wait);
1451
1452         ret = btrfs_write_and_wait_transaction(trans, root);
1453         if (ret) {
1454                 btrfs_error(root->fs_info, ret,
1455                             "Error while writing out transaction.");
1456                 mutex_unlock(&root->fs_info->tree_log_mutex);
1457                 goto cleanup_transaction;
1458         }
1459
1460         ret = write_ctree_super(trans, root, 0);
1461         if (ret) {
1462                 mutex_unlock(&root->fs_info->tree_log_mutex);
1463                 goto cleanup_transaction;
1464         }
1465
1466         /*
1467          * the super is written, we can safely allow the tree-loggers
1468          * to go about their business
1469          */
1470         mutex_unlock(&root->fs_info->tree_log_mutex);
1471
1472         btrfs_finish_extent_commit(trans, root);
1473
1474         cur_trans->commit_done = 1;
1475
1476         root->fs_info->last_trans_committed = cur_trans->transid;
1477
1478         wake_up(&cur_trans->commit_wait);
1479
1480         spin_lock(&root->fs_info->trans_lock);
1481         list_del_init(&cur_trans->list);
1482         spin_unlock(&root->fs_info->trans_lock);
1483
1484         put_transaction(cur_trans);
1485         put_transaction(cur_trans);
1486
1487         trace_btrfs_transaction_commit(root);
1488
1489         btrfs_scrub_continue(root);
1490
1491         if (current->journal_info == trans)
1492                 current->journal_info = NULL;
1493
1494         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1495
1496         if (current != root->fs_info->transaction_kthread)
1497                 btrfs_run_delayed_iputs(root);
1498
1499         return ret;
1500
1501 cleanup_transaction:
1502         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1503 //      WARN_ON(1);
1504         if (current->journal_info == trans)
1505                 current->journal_info = NULL;
1506         cleanup_transaction(trans, root);
1507
1508         return ret;
1509 }
1510
1511 /*
1512  * interface function to delete all the snapshots we have scheduled for deletion
1513  */
1514 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1515 {
1516         LIST_HEAD(list);
1517         struct btrfs_fs_info *fs_info = root->fs_info;
1518
1519         spin_lock(&fs_info->trans_lock);
1520         list_splice_init(&fs_info->dead_roots, &list);
1521         spin_unlock(&fs_info->trans_lock);
1522
1523         while (!list_empty(&list)) {
1524                 int ret;
1525
1526                 root = list_entry(list.next, struct btrfs_root, root_list);
1527                 list_del(&root->root_list);
1528
1529                 btrfs_kill_all_delayed_nodes(root);
1530
1531                 if (btrfs_header_backref_rev(root->node) <
1532                     BTRFS_MIXED_BACKREF_REV)
1533                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1534                 else
1535                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1536                 BUG_ON(ret < 0);
1537         }
1538         return 0;
1539 }