Merge branch '3.4-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-flexiantxendom0-3.2.10.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65                                       char nbuf[16])
66 {
67         char *errstr = NULL;
68
69         switch (errno) {
70         case -EIO:
71                 errstr = "IO failure";
72                 break;
73         case -ENOMEM:
74                 errstr = "Out of memory";
75                 break;
76         case -EROFS:
77                 errstr = "Readonly filesystem";
78                 break;
79         case -EEXIST:
80                 errstr = "Object already exists";
81                 break;
82         default:
83                 if (nbuf) {
84                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
85                                 errstr = nbuf;
86                 }
87                 break;
88         }
89
90         return errstr;
91 }
92
93 static void __save_error_info(struct btrfs_fs_info *fs_info)
94 {
95         /*
96          * today we only save the error info into ram.  Long term we'll
97          * also send it down to the disk
98          */
99         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
100 }
101
102 /* NOTE:
103  *      We move write_super stuff at umount in order to avoid deadlock
104  *      for umount hold all lock.
105  */
106 static void save_error_info(struct btrfs_fs_info *fs_info)
107 {
108         __save_error_info(fs_info);
109 }
110
111 /* btrfs handle error by forcing the filesystem readonly */
112 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
113 {
114         struct super_block *sb = fs_info->sb;
115
116         if (sb->s_flags & MS_RDONLY)
117                 return;
118
119         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
120                 sb->s_flags |= MS_RDONLY;
121                 printk(KERN_INFO "btrfs is forced readonly\n");
122                 __btrfs_scrub_cancel(fs_info);
123 //              WARN_ON(1);
124         }
125 }
126
127 /*
128  * __btrfs_std_error decodes expected errors from the caller and
129  * invokes the approciate error response.
130  */
131 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
132                        unsigned int line, int errno, const char *fmt, ...)
133 {
134         struct super_block *sb = fs_info->sb;
135         char nbuf[16];
136         const char *errstr;
137         va_list args;
138         va_start(args, fmt);
139
140         /*
141          * Special case: if the error is EROFS, and we're already
142          * under MS_RDONLY, then it is safe here.
143          */
144         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
145                 return;
146
147         errstr = btrfs_decode_error(fs_info, errno, nbuf);
148         if (fmt) {
149                 struct va_format vaf = {
150                         .fmt = fmt,
151                         .va = &args,
152                 };
153
154                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
155                         sb->s_id, function, line, errstr, &vaf);
156         } else {
157                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
158                         sb->s_id, function, line, errstr);
159         }
160
161         /* Don't go through full error handling during mount */
162         if (sb->s_flags & MS_BORN) {
163                 save_error_info(fs_info);
164                 btrfs_handle_error(fs_info);
165         }
166         va_end(args);
167 }
168
169 const char *logtypes[] = {
170         "emergency",
171         "alert",
172         "critical",
173         "error",
174         "warning",
175         "notice",
176         "info",
177         "debug",
178 };
179
180 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182         struct super_block *sb = fs_info->sb;
183         char lvl[4];
184         struct va_format vaf;
185         va_list args;
186         const char *type = logtypes[4];
187
188         va_start(args, fmt);
189
190         if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
191                 strncpy(lvl, fmt, 3);
192                 fmt += 3;
193                 type = logtypes[fmt[1] - '0'];
194         } else
195                 *lvl = '\0';
196
197         vaf.fmt = fmt;
198         vaf.va = &args;
199         printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
200 }
201
202 /*
203  * We only mark the transaction aborted and then set the file system read-only.
204  * This will prevent new transactions from starting or trying to join this
205  * one.
206  *
207  * This means that error recovery at the call site is limited to freeing
208  * any local memory allocations and passing the error code up without
209  * further cleanup. The transaction should complete as it normally would
210  * in the call path but will return -EIO.
211  *
212  * We'll complete the cleanup in btrfs_end_transaction and
213  * btrfs_commit_transaction.
214  */
215 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
216                                struct btrfs_root *root, const char *function,
217                                unsigned int line, int errno)
218 {
219         WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
220         trans->aborted = errno;
221         /* Nothing used. The other threads that have joined this
222          * transaction may be able to continue. */
223         if (!trans->blocks_used) {
224                 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
225                 return;
226         }
227         trans->transaction->aborted = errno;
228         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
229 }
230 /*
231  * __btrfs_panic decodes unexpected, fatal errors from the caller,
232  * issues an alert, and either panics or BUGs, depending on mount options.
233  */
234 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
235                    unsigned int line, int errno, const char *fmt, ...)
236 {
237         char nbuf[16];
238         char *s_id = "<unknown>";
239         const char *errstr;
240         struct va_format vaf = { .fmt = fmt };
241         va_list args;
242
243         if (fs_info)
244                 s_id = fs_info->sb->s_id;
245
246         va_start(args, fmt);
247         vaf.va = &args;
248
249         errstr = btrfs_decode_error(fs_info, errno, nbuf);
250         if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
251                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
252                         s_id, function, line, &vaf, errstr);
253
254         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
255                s_id, function, line, &vaf, errstr);
256         va_end(args);
257         /* Caller calls BUG() */
258 }
259
260 static void btrfs_put_super(struct super_block *sb)
261 {
262         (void)close_ctree(btrfs_sb(sb)->tree_root);
263         /* FIXME: need to fix VFS to return error? */
264         /* AV: return it _where_?  ->put_super() can be triggered by any number
265          * of async events, up to and including delivery of SIGKILL to the
266          * last process that kept it busy.  Or segfault in the aforementioned
267          * process...  Whom would you report that to?
268          */
269 }
270
271 enum {
272         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
273         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
274         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
275         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
276         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
277         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
278         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
279         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
280         Opt_check_integrity, Opt_check_integrity_including_extent_data,
281         Opt_check_integrity_print_mask, Opt_fatal_errors,
282         Opt_err,
283 };
284
285 static match_table_t tokens = {
286         {Opt_degraded, "degraded"},
287         {Opt_subvol, "subvol=%s"},
288         {Opt_subvolid, "subvolid=%d"},
289         {Opt_device, "device=%s"},
290         {Opt_nodatasum, "nodatasum"},
291         {Opt_nodatacow, "nodatacow"},
292         {Opt_nobarrier, "nobarrier"},
293         {Opt_max_inline, "max_inline=%s"},
294         {Opt_alloc_start, "alloc_start=%s"},
295         {Opt_thread_pool, "thread_pool=%d"},
296         {Opt_compress, "compress"},
297         {Opt_compress_type, "compress=%s"},
298         {Opt_compress_force, "compress-force"},
299         {Opt_compress_force_type, "compress-force=%s"},
300         {Opt_ssd, "ssd"},
301         {Opt_ssd_spread, "ssd_spread"},
302         {Opt_nossd, "nossd"},
303         {Opt_noacl, "noacl"},
304         {Opt_notreelog, "notreelog"},
305         {Opt_flushoncommit, "flushoncommit"},
306         {Opt_ratio, "metadata_ratio=%d"},
307         {Opt_discard, "discard"},
308         {Opt_space_cache, "space_cache"},
309         {Opt_clear_cache, "clear_cache"},
310         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
311         {Opt_enospc_debug, "enospc_debug"},
312         {Opt_subvolrootid, "subvolrootid=%d"},
313         {Opt_defrag, "autodefrag"},
314         {Opt_inode_cache, "inode_cache"},
315         {Opt_no_space_cache, "nospace_cache"},
316         {Opt_recovery, "recovery"},
317         {Opt_skip_balance, "skip_balance"},
318         {Opt_check_integrity, "check_int"},
319         {Opt_check_integrity_including_extent_data, "check_int_data"},
320         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
321         {Opt_fatal_errors, "fatal_errors=%s"},
322         {Opt_err, NULL},
323 };
324
325 /*
326  * Regular mount options parser.  Everything that is needed only when
327  * reading in a new superblock is parsed here.
328  * XXX JDM: This needs to be cleaned up for remount.
329  */
330 int btrfs_parse_options(struct btrfs_root *root, char *options)
331 {
332         struct btrfs_fs_info *info = root->fs_info;
333         substring_t args[MAX_OPT_ARGS];
334         char *p, *num, *orig = NULL;
335         u64 cache_gen;
336         int intarg;
337         int ret = 0;
338         char *compress_type;
339         bool compress_force = false;
340
341         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
342         if (cache_gen)
343                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
344
345         if (!options)
346                 goto out;
347
348         /*
349          * strsep changes the string, duplicate it because parse_options
350          * gets called twice
351          */
352         options = kstrdup(options, GFP_NOFS);
353         if (!options)
354                 return -ENOMEM;
355
356         orig = options;
357
358         while ((p = strsep(&options, ",")) != NULL) {
359                 int token;
360                 if (!*p)
361                         continue;
362
363                 token = match_token(p, tokens, args);
364                 switch (token) {
365                 case Opt_degraded:
366                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
367                         btrfs_set_opt(info->mount_opt, DEGRADED);
368                         break;
369                 case Opt_subvol:
370                 case Opt_subvolid:
371                 case Opt_subvolrootid:
372                 case Opt_device:
373                         /*
374                          * These are parsed by btrfs_parse_early_options
375                          * and can be happily ignored here.
376                          */
377                         break;
378                 case Opt_nodatasum:
379                         printk(KERN_INFO "btrfs: setting nodatasum\n");
380                         btrfs_set_opt(info->mount_opt, NODATASUM);
381                         break;
382                 case Opt_nodatacow:
383                         printk(KERN_INFO "btrfs: setting nodatacow\n");
384                         btrfs_set_opt(info->mount_opt, NODATACOW);
385                         btrfs_set_opt(info->mount_opt, NODATASUM);
386                         break;
387                 case Opt_compress_force:
388                 case Opt_compress_force_type:
389                         compress_force = true;
390                 case Opt_compress:
391                 case Opt_compress_type:
392                         if (token == Opt_compress ||
393                             token == Opt_compress_force ||
394                             strcmp(args[0].from, "zlib") == 0) {
395                                 compress_type = "zlib";
396                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
397                         } else if (strcmp(args[0].from, "lzo") == 0) {
398                                 compress_type = "lzo";
399                                 info->compress_type = BTRFS_COMPRESS_LZO;
400                         } else {
401                                 ret = -EINVAL;
402                                 goto out;
403                         }
404
405                         btrfs_set_opt(info->mount_opt, COMPRESS);
406                         if (compress_force) {
407                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
408                                 pr_info("btrfs: force %s compression\n",
409                                         compress_type);
410                         } else
411                                 pr_info("btrfs: use %s compression\n",
412                                         compress_type);
413                         break;
414                 case Opt_ssd:
415                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
416                         btrfs_set_opt(info->mount_opt, SSD);
417                         break;
418                 case Opt_ssd_spread:
419                         printk(KERN_INFO "btrfs: use spread ssd "
420                                "allocation scheme\n");
421                         btrfs_set_opt(info->mount_opt, SSD);
422                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
423                         break;
424                 case Opt_nossd:
425                         printk(KERN_INFO "btrfs: not using ssd allocation "
426                                "scheme\n");
427                         btrfs_set_opt(info->mount_opt, NOSSD);
428                         btrfs_clear_opt(info->mount_opt, SSD);
429                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
430                         break;
431                 case Opt_nobarrier:
432                         printk(KERN_INFO "btrfs: turning off barriers\n");
433                         btrfs_set_opt(info->mount_opt, NOBARRIER);
434                         break;
435                 case Opt_thread_pool:
436                         intarg = 0;
437                         match_int(&args[0], &intarg);
438                         if (intarg) {
439                                 info->thread_pool_size = intarg;
440                                 printk(KERN_INFO "btrfs: thread pool %d\n",
441                                        info->thread_pool_size);
442                         }
443                         break;
444                 case Opt_max_inline:
445                         num = match_strdup(&args[0]);
446                         if (num) {
447                                 info->max_inline = memparse(num, NULL);
448                                 kfree(num);
449
450                                 if (info->max_inline) {
451                                         info->max_inline = max_t(u64,
452                                                 info->max_inline,
453                                                 root->sectorsize);
454                                 }
455                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
456                                         (unsigned long long)info->max_inline);
457                         }
458                         break;
459                 case Opt_alloc_start:
460                         num = match_strdup(&args[0]);
461                         if (num) {
462                                 info->alloc_start = memparse(num, NULL);
463                                 kfree(num);
464                                 printk(KERN_INFO
465                                         "btrfs: allocations start at %llu\n",
466                                         (unsigned long long)info->alloc_start);
467                         }
468                         break;
469                 case Opt_noacl:
470                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
471                         break;
472                 case Opt_notreelog:
473                         printk(KERN_INFO "btrfs: disabling tree log\n");
474                         btrfs_set_opt(info->mount_opt, NOTREELOG);
475                         break;
476                 case Opt_flushoncommit:
477                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
478                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
479                         break;
480                 case Opt_ratio:
481                         intarg = 0;
482                         match_int(&args[0], &intarg);
483                         if (intarg) {
484                                 info->metadata_ratio = intarg;
485                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
486                                        info->metadata_ratio);
487                         }
488                         break;
489                 case Opt_discard:
490                         btrfs_set_opt(info->mount_opt, DISCARD);
491                         break;
492                 case Opt_space_cache:
493                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
494                         break;
495                 case Opt_no_space_cache:
496                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
497                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
498                         break;
499                 case Opt_inode_cache:
500                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
501                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
502                         break;
503                 case Opt_clear_cache:
504                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
505                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
506                         break;
507                 case Opt_user_subvol_rm_allowed:
508                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
509                         break;
510                 case Opt_enospc_debug:
511                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
512                         break;
513                 case Opt_defrag:
514                         printk(KERN_INFO "btrfs: enabling auto defrag");
515                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
516                         break;
517                 case Opt_recovery:
518                         printk(KERN_INFO "btrfs: enabling auto recovery");
519                         btrfs_set_opt(info->mount_opt, RECOVERY);
520                         break;
521                 case Opt_skip_balance:
522                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
523                         break;
524 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
525                 case Opt_check_integrity_including_extent_data:
526                         printk(KERN_INFO "btrfs: enabling check integrity"
527                                " including extent data\n");
528                         btrfs_set_opt(info->mount_opt,
529                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
530                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
531                         break;
532                 case Opt_check_integrity:
533                         printk(KERN_INFO "btrfs: enabling check integrity\n");
534                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
535                         break;
536                 case Opt_check_integrity_print_mask:
537                         intarg = 0;
538                         match_int(&args[0], &intarg);
539                         if (intarg) {
540                                 info->check_integrity_print_mask = intarg;
541                                 printk(KERN_INFO "btrfs:"
542                                        " check_integrity_print_mask 0x%x\n",
543                                        info->check_integrity_print_mask);
544                         }
545                         break;
546 #else
547                 case Opt_check_integrity_including_extent_data:
548                 case Opt_check_integrity:
549                 case Opt_check_integrity_print_mask:
550                         printk(KERN_ERR "btrfs: support for check_integrity*"
551                                " not compiled in!\n");
552                         ret = -EINVAL;
553                         goto out;
554 #endif
555                 case Opt_fatal_errors:
556                         if (strcmp(args[0].from, "panic") == 0)
557                                 btrfs_set_opt(info->mount_opt,
558                                               PANIC_ON_FATAL_ERROR);
559                         else if (strcmp(args[0].from, "bug") == 0)
560                                 btrfs_clear_opt(info->mount_opt,
561                                               PANIC_ON_FATAL_ERROR);
562                         else {
563                                 ret = -EINVAL;
564                                 goto out;
565                         }
566                         break;
567                 case Opt_err:
568                         printk(KERN_INFO "btrfs: unrecognized mount option "
569                                "'%s'\n", p);
570                         ret = -EINVAL;
571                         goto out;
572                 default:
573                         break;
574                 }
575         }
576 out:
577         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
578                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
579         kfree(orig);
580         return ret;
581 }
582
583 /*
584  * Parse mount options that are required early in the mount process.
585  *
586  * All other options will be parsed on much later in the mount process and
587  * only when we need to allocate a new super block.
588  */
589 static int btrfs_parse_early_options(const char *options, fmode_t flags,
590                 void *holder, char **subvol_name, u64 *subvol_objectid,
591                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
592 {
593         substring_t args[MAX_OPT_ARGS];
594         char *device_name, *opts, *orig, *p;
595         int error = 0;
596         int intarg;
597
598         if (!options)
599                 return 0;
600
601         /*
602          * strsep changes the string, duplicate it because parse_options
603          * gets called twice
604          */
605         opts = kstrdup(options, GFP_KERNEL);
606         if (!opts)
607                 return -ENOMEM;
608         orig = opts;
609
610         while ((p = strsep(&opts, ",")) != NULL) {
611                 int token;
612                 if (!*p)
613                         continue;
614
615                 token = match_token(p, tokens, args);
616                 switch (token) {
617                 case Opt_subvol:
618                         kfree(*subvol_name);
619                         *subvol_name = match_strdup(&args[0]);
620                         break;
621                 case Opt_subvolid:
622                         intarg = 0;
623                         error = match_int(&args[0], &intarg);
624                         if (!error) {
625                                 /* we want the original fs_tree */
626                                 if (!intarg)
627                                         *subvol_objectid =
628                                                 BTRFS_FS_TREE_OBJECTID;
629                                 else
630                                         *subvol_objectid = intarg;
631                         }
632                         break;
633                 case Opt_subvolrootid:
634                         intarg = 0;
635                         error = match_int(&args[0], &intarg);
636                         if (!error) {
637                                 /* we want the original fs_tree */
638                                 if (!intarg)
639                                         *subvol_rootid =
640                                                 BTRFS_FS_TREE_OBJECTID;
641                                 else
642                                         *subvol_rootid = intarg;
643                         }
644                         break;
645                 case Opt_device:
646                         device_name = match_strdup(&args[0]);
647                         if (!device_name) {
648                                 error = -ENOMEM;
649                                 goto out;
650                         }
651                         error = btrfs_scan_one_device(device_name,
652                                         flags, holder, fs_devices);
653                         kfree(device_name);
654                         if (error)
655                                 goto out;
656                         break;
657                 default:
658                         break;
659                 }
660         }
661
662 out:
663         kfree(orig);
664         return error;
665 }
666
667 static struct dentry *get_default_root(struct super_block *sb,
668                                        u64 subvol_objectid)
669 {
670         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
671         struct btrfs_root *root = fs_info->tree_root;
672         struct btrfs_root *new_root;
673         struct btrfs_dir_item *di;
674         struct btrfs_path *path;
675         struct btrfs_key location;
676         struct inode *inode;
677         u64 dir_id;
678         int new = 0;
679
680         /*
681          * We have a specific subvol we want to mount, just setup location and
682          * go look up the root.
683          */
684         if (subvol_objectid) {
685                 location.objectid = subvol_objectid;
686                 location.type = BTRFS_ROOT_ITEM_KEY;
687                 location.offset = (u64)-1;
688                 goto find_root;
689         }
690
691         path = btrfs_alloc_path();
692         if (!path)
693                 return ERR_PTR(-ENOMEM);
694         path->leave_spinning = 1;
695
696         /*
697          * Find the "default" dir item which points to the root item that we
698          * will mount by default if we haven't been given a specific subvolume
699          * to mount.
700          */
701         dir_id = btrfs_super_root_dir(fs_info->super_copy);
702         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
703         if (IS_ERR(di)) {
704                 btrfs_free_path(path);
705                 return ERR_CAST(di);
706         }
707         if (!di) {
708                 /*
709                  * Ok the default dir item isn't there.  This is weird since
710                  * it's always been there, but don't freak out, just try and
711                  * mount to root most subvolume.
712                  */
713                 btrfs_free_path(path);
714                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
715                 new_root = fs_info->fs_root;
716                 goto setup_root;
717         }
718
719         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
720         btrfs_free_path(path);
721
722 find_root:
723         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
724         if (IS_ERR(new_root))
725                 return ERR_CAST(new_root);
726
727         if (btrfs_root_refs(&new_root->root_item) == 0)
728                 return ERR_PTR(-ENOENT);
729
730         dir_id = btrfs_root_dirid(&new_root->root_item);
731 setup_root:
732         location.objectid = dir_id;
733         location.type = BTRFS_INODE_ITEM_KEY;
734         location.offset = 0;
735
736         inode = btrfs_iget(sb, &location, new_root, &new);
737         if (IS_ERR(inode))
738                 return ERR_CAST(inode);
739
740         /*
741          * If we're just mounting the root most subvol put the inode and return
742          * a reference to the dentry.  We will have already gotten a reference
743          * to the inode in btrfs_fill_super so we're good to go.
744          */
745         if (!new && sb->s_root->d_inode == inode) {
746                 iput(inode);
747                 return dget(sb->s_root);
748         }
749
750         return d_obtain_alias(inode);
751 }
752
753 static int btrfs_fill_super(struct super_block *sb,
754                             struct btrfs_fs_devices *fs_devices,
755                             void *data, int silent)
756 {
757         struct inode *inode;
758         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
759         struct btrfs_key key;
760         int err;
761
762         sb->s_maxbytes = MAX_LFS_FILESIZE;
763         sb->s_magic = BTRFS_SUPER_MAGIC;
764         sb->s_op = &btrfs_super_ops;
765         sb->s_d_op = &btrfs_dentry_operations;
766         sb->s_export_op = &btrfs_export_ops;
767         sb->s_xattr = btrfs_xattr_handlers;
768         sb->s_time_gran = 1;
769 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
770         sb->s_flags |= MS_POSIXACL;
771 #endif
772
773         err = open_ctree(sb, fs_devices, (char *)data);
774         if (err) {
775                 printk("btrfs: open_ctree failed\n");
776                 return err;
777         }
778
779         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
780         key.type = BTRFS_INODE_ITEM_KEY;
781         key.offset = 0;
782         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
783         if (IS_ERR(inode)) {
784                 err = PTR_ERR(inode);
785                 goto fail_close;
786         }
787
788         sb->s_root = d_make_root(inode);
789         if (!sb->s_root) {
790                 err = -ENOMEM;
791                 goto fail_close;
792         }
793
794         save_mount_options(sb, data);
795         cleancache_init_fs(sb);
796         sb->s_flags |= MS_ACTIVE;
797         return 0;
798
799 fail_close:
800         close_ctree(fs_info->tree_root);
801         return err;
802 }
803
804 int btrfs_sync_fs(struct super_block *sb, int wait)
805 {
806         struct btrfs_trans_handle *trans;
807         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
808         struct btrfs_root *root = fs_info->tree_root;
809         int ret;
810
811         trace_btrfs_sync_fs(wait);
812
813         if (!wait) {
814                 filemap_flush(fs_info->btree_inode->i_mapping);
815                 return 0;
816         }
817
818         btrfs_wait_ordered_extents(root, 0, 0);
819
820         trans = btrfs_start_transaction(root, 0);
821         if (IS_ERR(trans))
822                 return PTR_ERR(trans);
823         ret = btrfs_commit_transaction(trans, root);
824         return ret;
825 }
826
827 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
828 {
829         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
830         struct btrfs_root *root = info->tree_root;
831         char *compress_type;
832
833         if (btrfs_test_opt(root, DEGRADED))
834                 seq_puts(seq, ",degraded");
835         if (btrfs_test_opt(root, NODATASUM))
836                 seq_puts(seq, ",nodatasum");
837         if (btrfs_test_opt(root, NODATACOW))
838                 seq_puts(seq, ",nodatacow");
839         if (btrfs_test_opt(root, NOBARRIER))
840                 seq_puts(seq, ",nobarrier");
841         if (info->max_inline != 8192 * 1024)
842                 seq_printf(seq, ",max_inline=%llu",
843                            (unsigned long long)info->max_inline);
844         if (info->alloc_start != 0)
845                 seq_printf(seq, ",alloc_start=%llu",
846                            (unsigned long long)info->alloc_start);
847         if (info->thread_pool_size !=  min_t(unsigned long,
848                                              num_online_cpus() + 2, 8))
849                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
850         if (btrfs_test_opt(root, COMPRESS)) {
851                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
852                         compress_type = "zlib";
853                 else
854                         compress_type = "lzo";
855                 if (btrfs_test_opt(root, FORCE_COMPRESS))
856                         seq_printf(seq, ",compress-force=%s", compress_type);
857                 else
858                         seq_printf(seq, ",compress=%s", compress_type);
859         }
860         if (btrfs_test_opt(root, NOSSD))
861                 seq_puts(seq, ",nossd");
862         if (btrfs_test_opt(root, SSD_SPREAD))
863                 seq_puts(seq, ",ssd_spread");
864         else if (btrfs_test_opt(root, SSD))
865                 seq_puts(seq, ",ssd");
866         if (btrfs_test_opt(root, NOTREELOG))
867                 seq_puts(seq, ",notreelog");
868         if (btrfs_test_opt(root, FLUSHONCOMMIT))
869                 seq_puts(seq, ",flushoncommit");
870         if (btrfs_test_opt(root, DISCARD))
871                 seq_puts(seq, ",discard");
872         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
873                 seq_puts(seq, ",noacl");
874         if (btrfs_test_opt(root, SPACE_CACHE))
875                 seq_puts(seq, ",space_cache");
876         else
877                 seq_puts(seq, ",nospace_cache");
878         if (btrfs_test_opt(root, CLEAR_CACHE))
879                 seq_puts(seq, ",clear_cache");
880         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
881                 seq_puts(seq, ",user_subvol_rm_allowed");
882         if (btrfs_test_opt(root, ENOSPC_DEBUG))
883                 seq_puts(seq, ",enospc_debug");
884         if (btrfs_test_opt(root, AUTO_DEFRAG))
885                 seq_puts(seq, ",autodefrag");
886         if (btrfs_test_opt(root, INODE_MAP_CACHE))
887                 seq_puts(seq, ",inode_cache");
888         if (btrfs_test_opt(root, SKIP_BALANCE))
889                 seq_puts(seq, ",skip_balance");
890         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
891                 seq_puts(seq, ",fatal_errors=panic");
892         return 0;
893 }
894
895 static int btrfs_test_super(struct super_block *s, void *data)
896 {
897         struct btrfs_fs_info *p = data;
898         struct btrfs_fs_info *fs_info = btrfs_sb(s);
899
900         return fs_info->fs_devices == p->fs_devices;
901 }
902
903 static int btrfs_set_super(struct super_block *s, void *data)
904 {
905         int err = set_anon_super(s, data);
906         if (!err)
907                 s->s_fs_info = data;
908         return err;
909 }
910
911 /*
912  * subvolumes are identified by ino 256
913  */
914 static inline int is_subvolume_inode(struct inode *inode)
915 {
916         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
917                 return 1;
918         return 0;
919 }
920
921 /*
922  * This will strip out the subvol=%s argument for an argument string and add
923  * subvolid=0 to make sure we get the actual tree root for path walking to the
924  * subvol we want.
925  */
926 static char *setup_root_args(char *args)
927 {
928         unsigned copied = 0;
929         unsigned len = strlen(args) + 2;
930         char *pos;
931         char *ret;
932
933         /*
934          * We need the same args as before, but minus
935          *
936          * subvol=a
937          *
938          * and add
939          *
940          * subvolid=0
941          *
942          * which is a difference of 2 characters, so we allocate strlen(args) +
943          * 2 characters.
944          */
945         ret = kzalloc(len * sizeof(char), GFP_NOFS);
946         if (!ret)
947                 return NULL;
948         pos = strstr(args, "subvol=");
949
950         /* This shouldn't happen, but just in case.. */
951         if (!pos) {
952                 kfree(ret);
953                 return NULL;
954         }
955
956         /*
957          * The subvol=<> arg is not at the front of the string, copy everybody
958          * up to that into ret.
959          */
960         if (pos != args) {
961                 *pos = '\0';
962                 strcpy(ret, args);
963                 copied += strlen(args);
964                 pos++;
965         }
966
967         strncpy(ret + copied, "subvolid=0", len - copied);
968
969         /* Length of subvolid=0 */
970         copied += 10;
971
972         /*
973          * If there is no , after the subvol= option then we know there's no
974          * other options and we can just return.
975          */
976         pos = strchr(pos, ',');
977         if (!pos)
978                 return ret;
979
980         /* Copy the rest of the arguments into our buffer */
981         strncpy(ret + copied, pos, len - copied);
982         copied += strlen(pos);
983
984         return ret;
985 }
986
987 static struct dentry *mount_subvol(const char *subvol_name, int flags,
988                                    const char *device_name, char *data)
989 {
990         struct dentry *root;
991         struct vfsmount *mnt;
992         char *newargs;
993
994         newargs = setup_root_args(data);
995         if (!newargs)
996                 return ERR_PTR(-ENOMEM);
997         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
998                              newargs);
999         kfree(newargs);
1000         if (IS_ERR(mnt))
1001                 return ERR_CAST(mnt);
1002
1003         root = mount_subtree(mnt, subvol_name);
1004
1005         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1006                 struct super_block *s = root->d_sb;
1007                 dput(root);
1008                 root = ERR_PTR(-EINVAL);
1009                 deactivate_locked_super(s);
1010                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1011                                 subvol_name);
1012         }
1013
1014         return root;
1015 }
1016
1017 /*
1018  * Find a superblock for the given device / mount point.
1019  *
1020  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1021  *        for multiple device setup.  Make sure to keep it in sync.
1022  */
1023 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1024                 const char *device_name, void *data)
1025 {
1026         struct block_device *bdev = NULL;
1027         struct super_block *s;
1028         struct dentry *root;
1029         struct btrfs_fs_devices *fs_devices = NULL;
1030         struct btrfs_fs_info *fs_info = NULL;
1031         fmode_t mode = FMODE_READ;
1032         char *subvol_name = NULL;
1033         u64 subvol_objectid = 0;
1034         u64 subvol_rootid = 0;
1035         int error = 0;
1036
1037         if (!(flags & MS_RDONLY))
1038                 mode |= FMODE_WRITE;
1039
1040         error = btrfs_parse_early_options(data, mode, fs_type,
1041                                           &subvol_name, &subvol_objectid,
1042                                           &subvol_rootid, &fs_devices);
1043         if (error) {
1044                 kfree(subvol_name);
1045                 return ERR_PTR(error);
1046         }
1047
1048         if (subvol_name) {
1049                 root = mount_subvol(subvol_name, flags, device_name, data);
1050                 kfree(subvol_name);
1051                 return root;
1052         }
1053
1054         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1055         if (error)
1056                 return ERR_PTR(error);
1057
1058         /*
1059          * Setup a dummy root and fs_info for test/set super.  This is because
1060          * we don't actually fill this stuff out until open_ctree, but we need
1061          * it for searching for existing supers, so this lets us do that and
1062          * then open_ctree will properly initialize everything later.
1063          */
1064         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1065         if (!fs_info)
1066                 return ERR_PTR(-ENOMEM);
1067
1068         fs_info->fs_devices = fs_devices;
1069
1070         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1071         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1072         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1073                 error = -ENOMEM;
1074                 goto error_fs_info;
1075         }
1076
1077         error = btrfs_open_devices(fs_devices, mode, fs_type);
1078         if (error)
1079                 goto error_fs_info;
1080
1081         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1082                 error = -EACCES;
1083                 goto error_close_devices;
1084         }
1085
1086         bdev = fs_devices->latest_bdev;
1087         s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1088         if (IS_ERR(s)) {
1089                 error = PTR_ERR(s);
1090                 goto error_close_devices;
1091         }
1092
1093         if (s->s_root) {
1094                 btrfs_close_devices(fs_devices);
1095                 free_fs_info(fs_info);
1096                 if ((flags ^ s->s_flags) & MS_RDONLY)
1097                         error = -EBUSY;
1098         } else {
1099                 char b[BDEVNAME_SIZE];
1100
1101                 s->s_flags = flags | MS_NOSEC;
1102                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1103                 btrfs_sb(s)->bdev_holder = fs_type;
1104                 error = btrfs_fill_super(s, fs_devices, data,
1105                                          flags & MS_SILENT ? 1 : 0);
1106         }
1107
1108         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1109         if (IS_ERR(root))
1110                 deactivate_locked_super(s);
1111
1112         return root;
1113
1114 error_close_devices:
1115         btrfs_close_devices(fs_devices);
1116 error_fs_info:
1117         free_fs_info(fs_info);
1118         return ERR_PTR(error);
1119 }
1120
1121 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1122 {
1123         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1124         struct btrfs_root *root = fs_info->tree_root;
1125         unsigned old_flags = sb->s_flags;
1126         unsigned long old_opts = fs_info->mount_opt;
1127         unsigned long old_compress_type = fs_info->compress_type;
1128         u64 old_max_inline = fs_info->max_inline;
1129         u64 old_alloc_start = fs_info->alloc_start;
1130         int old_thread_pool_size = fs_info->thread_pool_size;
1131         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1132         int ret;
1133
1134         ret = btrfs_parse_options(root, data);
1135         if (ret) {
1136                 ret = -EINVAL;
1137                 goto restore;
1138         }
1139
1140         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1141                 return 0;
1142
1143         if (*flags & MS_RDONLY) {
1144                 sb->s_flags |= MS_RDONLY;
1145
1146                 ret = btrfs_commit_super(root);
1147                 if (ret)
1148                         goto restore;
1149         } else {
1150                 if (fs_info->fs_devices->rw_devices == 0) {
1151                         ret = -EACCES;
1152                         goto restore;
1153                 }
1154
1155                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1156                         ret = -EINVAL;
1157                         goto restore;
1158                 }
1159
1160                 ret = btrfs_cleanup_fs_roots(fs_info);
1161                 if (ret)
1162                         goto restore;
1163
1164                 /* recover relocation */
1165                 ret = btrfs_recover_relocation(root);
1166                 if (ret)
1167                         goto restore;
1168
1169                 sb->s_flags &= ~MS_RDONLY;
1170         }
1171
1172         return 0;
1173
1174 restore:
1175         /* We've hit an error - don't reset MS_RDONLY */
1176         if (sb->s_flags & MS_RDONLY)
1177                 old_flags |= MS_RDONLY;
1178         sb->s_flags = old_flags;
1179         fs_info->mount_opt = old_opts;
1180         fs_info->compress_type = old_compress_type;
1181         fs_info->max_inline = old_max_inline;
1182         fs_info->alloc_start = old_alloc_start;
1183         fs_info->thread_pool_size = old_thread_pool_size;
1184         fs_info->metadata_ratio = old_metadata_ratio;
1185         return ret;
1186 }
1187
1188 /* Used to sort the devices by max_avail(descending sort) */
1189 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1190                                        const void *dev_info2)
1191 {
1192         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1193             ((struct btrfs_device_info *)dev_info2)->max_avail)
1194                 return -1;
1195         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1196                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1197                 return 1;
1198         else
1199         return 0;
1200 }
1201
1202 /*
1203  * sort the devices by max_avail, in which max free extent size of each device
1204  * is stored.(Descending Sort)
1205  */
1206 static inline void btrfs_descending_sort_devices(
1207                                         struct btrfs_device_info *devices,
1208                                         size_t nr_devices)
1209 {
1210         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1211              btrfs_cmp_device_free_bytes, NULL);
1212 }
1213
1214 /*
1215  * The helper to calc the free space on the devices that can be used to store
1216  * file data.
1217  */
1218 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1219 {
1220         struct btrfs_fs_info *fs_info = root->fs_info;
1221         struct btrfs_device_info *devices_info;
1222         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1223         struct btrfs_device *device;
1224         u64 skip_space;
1225         u64 type;
1226         u64 avail_space;
1227         u64 used_space;
1228         u64 min_stripe_size;
1229         int min_stripes = 1, num_stripes = 1;
1230         int i = 0, nr_devices;
1231         int ret;
1232
1233         nr_devices = fs_info->fs_devices->open_devices;
1234         BUG_ON(!nr_devices);
1235
1236         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1237                                GFP_NOFS);
1238         if (!devices_info)
1239                 return -ENOMEM;
1240
1241         /* calc min stripe number for data space alloction */
1242         type = btrfs_get_alloc_profile(root, 1);
1243         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1244                 min_stripes = 2;
1245                 num_stripes = nr_devices;
1246         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1247                 min_stripes = 2;
1248                 num_stripes = 2;
1249         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1250                 min_stripes = 4;
1251                 num_stripes = 4;
1252         }
1253
1254         if (type & BTRFS_BLOCK_GROUP_DUP)
1255                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1256         else
1257                 min_stripe_size = BTRFS_STRIPE_LEN;
1258
1259         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1260                 if (!device->in_fs_metadata || !device->bdev)
1261                         continue;
1262
1263                 avail_space = device->total_bytes - device->bytes_used;
1264
1265                 /* align with stripe_len */
1266                 do_div(avail_space, BTRFS_STRIPE_LEN);
1267                 avail_space *= BTRFS_STRIPE_LEN;
1268
1269                 /*
1270                  * In order to avoid overwritting the superblock on the drive,
1271                  * btrfs starts at an offset of at least 1MB when doing chunk
1272                  * allocation.
1273                  */
1274                 skip_space = 1024 * 1024;
1275
1276                 /* user can set the offset in fs_info->alloc_start. */
1277                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1278                     device->total_bytes)
1279                         skip_space = max(fs_info->alloc_start, skip_space);
1280
1281                 /*
1282                  * btrfs can not use the free space in [0, skip_space - 1],
1283                  * we must subtract it from the total. In order to implement
1284                  * it, we account the used space in this range first.
1285                  */
1286                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1287                                                      &used_space);
1288                 if (ret) {
1289                         kfree(devices_info);
1290                         return ret;
1291                 }
1292
1293                 /* calc the free space in [0, skip_space - 1] */
1294                 skip_space -= used_space;
1295
1296                 /*
1297                  * we can use the free space in [0, skip_space - 1], subtract
1298                  * it from the total.
1299                  */
1300                 if (avail_space && avail_space >= skip_space)
1301                         avail_space -= skip_space;
1302                 else
1303                         avail_space = 0;
1304
1305                 if (avail_space < min_stripe_size)
1306                         continue;
1307
1308                 devices_info[i].dev = device;
1309                 devices_info[i].max_avail = avail_space;
1310
1311                 i++;
1312         }
1313
1314         nr_devices = i;
1315
1316         btrfs_descending_sort_devices(devices_info, nr_devices);
1317
1318         i = nr_devices - 1;
1319         avail_space = 0;
1320         while (nr_devices >= min_stripes) {
1321                 if (num_stripes > nr_devices)
1322                         num_stripes = nr_devices;
1323
1324                 if (devices_info[i].max_avail >= min_stripe_size) {
1325                         int j;
1326                         u64 alloc_size;
1327
1328                         avail_space += devices_info[i].max_avail * num_stripes;
1329                         alloc_size = devices_info[i].max_avail;
1330                         for (j = i + 1 - num_stripes; j <= i; j++)
1331                                 devices_info[j].max_avail -= alloc_size;
1332                 }
1333                 i--;
1334                 nr_devices--;
1335         }
1336
1337         kfree(devices_info);
1338         *free_bytes = avail_space;
1339         return 0;
1340 }
1341
1342 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1343 {
1344         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1345         struct btrfs_super_block *disk_super = fs_info->super_copy;
1346         struct list_head *head = &fs_info->space_info;
1347         struct btrfs_space_info *found;
1348         u64 total_used = 0;
1349         u64 total_free_data = 0;
1350         int bits = dentry->d_sb->s_blocksize_bits;
1351         __be32 *fsid = (__be32 *)fs_info->fsid;
1352         int ret;
1353
1354         /* holding chunk_muext to avoid allocating new chunks */
1355         mutex_lock(&fs_info->chunk_mutex);
1356         rcu_read_lock();
1357         list_for_each_entry_rcu(found, head, list) {
1358                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1359                         total_free_data += found->disk_total - found->disk_used;
1360                         total_free_data -=
1361                                 btrfs_account_ro_block_groups_free_space(found);
1362                 }
1363
1364                 total_used += found->disk_used;
1365         }
1366         rcu_read_unlock();
1367
1368         buf->f_namelen = BTRFS_NAME_LEN;
1369         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1370         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1371         buf->f_bsize = dentry->d_sb->s_blocksize;
1372         buf->f_type = BTRFS_SUPER_MAGIC;
1373         buf->f_bavail = total_free_data;
1374         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1375         if (ret) {
1376                 mutex_unlock(&fs_info->chunk_mutex);
1377                 return ret;
1378         }
1379         buf->f_bavail += total_free_data;
1380         buf->f_bavail = buf->f_bavail >> bits;
1381         mutex_unlock(&fs_info->chunk_mutex);
1382
1383         /* We treat it as constant endianness (it doesn't matter _which_)
1384            because we want the fsid to come out the same whether mounted
1385            on a big-endian or little-endian host */
1386         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1387         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1388         /* Mask in the root object ID too, to disambiguate subvols */
1389         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1390         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1391
1392         return 0;
1393 }
1394
1395 static void btrfs_kill_super(struct super_block *sb)
1396 {
1397         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1398         kill_anon_super(sb);
1399         free_fs_info(fs_info);
1400 }
1401
1402 static struct file_system_type btrfs_fs_type = {
1403         .owner          = THIS_MODULE,
1404         .name           = "btrfs",
1405         .mount          = btrfs_mount,
1406         .kill_sb        = btrfs_kill_super,
1407         .fs_flags       = FS_REQUIRES_DEV,
1408 };
1409
1410 /*
1411  * used by btrfsctl to scan devices when no FS is mounted
1412  */
1413 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1414                                 unsigned long arg)
1415 {
1416         struct btrfs_ioctl_vol_args *vol;
1417         struct btrfs_fs_devices *fs_devices;
1418         int ret = -ENOTTY;
1419
1420         if (!capable(CAP_SYS_ADMIN))
1421                 return -EPERM;
1422
1423         vol = memdup_user((void __user *)arg, sizeof(*vol));
1424         if (IS_ERR(vol))
1425                 return PTR_ERR(vol);
1426
1427         switch (cmd) {
1428         case BTRFS_IOC_SCAN_DEV:
1429                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1430                                             &btrfs_fs_type, &fs_devices);
1431                 break;
1432         }
1433
1434         kfree(vol);
1435         return ret;
1436 }
1437
1438 static int btrfs_freeze(struct super_block *sb)
1439 {
1440         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1441         mutex_lock(&fs_info->transaction_kthread_mutex);
1442         mutex_lock(&fs_info->cleaner_mutex);
1443         return 0;
1444 }
1445
1446 static int btrfs_unfreeze(struct super_block *sb)
1447 {
1448         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1449         mutex_unlock(&fs_info->cleaner_mutex);
1450         mutex_unlock(&fs_info->transaction_kthread_mutex);
1451         return 0;
1452 }
1453
1454 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1455 {
1456         int ret;
1457
1458         ret = btrfs_dirty_inode(inode);
1459         if (ret)
1460                 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1461                                    "error %d\n", btrfs_ino(inode), ret);
1462 }
1463
1464 static const struct super_operations btrfs_super_ops = {
1465         .drop_inode     = btrfs_drop_inode,
1466         .evict_inode    = btrfs_evict_inode,
1467         .put_super      = btrfs_put_super,
1468         .sync_fs        = btrfs_sync_fs,
1469         .show_options   = btrfs_show_options,
1470         .write_inode    = btrfs_write_inode,
1471         .dirty_inode    = btrfs_fs_dirty_inode,
1472         .alloc_inode    = btrfs_alloc_inode,
1473         .destroy_inode  = btrfs_destroy_inode,
1474         .statfs         = btrfs_statfs,
1475         .remount_fs     = btrfs_remount,
1476         .freeze_fs      = btrfs_freeze,
1477         .unfreeze_fs    = btrfs_unfreeze,
1478 };
1479
1480 static const struct file_operations btrfs_ctl_fops = {
1481         .unlocked_ioctl  = btrfs_control_ioctl,
1482         .compat_ioctl = btrfs_control_ioctl,
1483         .owner   = THIS_MODULE,
1484         .llseek = noop_llseek,
1485 };
1486
1487 static struct miscdevice btrfs_misc = {
1488         .minor          = BTRFS_MINOR,
1489         .name           = "btrfs-control",
1490         .fops           = &btrfs_ctl_fops
1491 };
1492
1493 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1494 MODULE_ALIAS("devname:btrfs-control");
1495
1496 static int btrfs_interface_init(void)
1497 {
1498         return misc_register(&btrfs_misc);
1499 }
1500
1501 static void btrfs_interface_exit(void)
1502 {
1503         if (misc_deregister(&btrfs_misc) < 0)
1504                 printk(KERN_INFO "misc_deregister failed for control device");
1505 }
1506
1507 static int __init init_btrfs_fs(void)
1508 {
1509         int err;
1510
1511         err = btrfs_init_sysfs();
1512         if (err)
1513                 return err;
1514
1515         btrfs_init_compress();
1516
1517         err = btrfs_init_cachep();
1518         if (err)
1519                 goto free_compress;
1520
1521         err = extent_io_init();
1522         if (err)
1523                 goto free_cachep;
1524
1525         err = extent_map_init();
1526         if (err)
1527                 goto free_extent_io;
1528
1529         err = btrfs_delayed_inode_init();
1530         if (err)
1531                 goto free_extent_map;
1532
1533         err = btrfs_interface_init();
1534         if (err)
1535                 goto free_delayed_inode;
1536
1537         err = register_filesystem(&btrfs_fs_type);
1538         if (err)
1539                 goto unregister_ioctl;
1540
1541         btrfs_init_lockdep();
1542
1543         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1544         return 0;
1545
1546 unregister_ioctl:
1547         btrfs_interface_exit();
1548 free_delayed_inode:
1549         btrfs_delayed_inode_exit();
1550 free_extent_map:
1551         extent_map_exit();
1552 free_extent_io:
1553         extent_io_exit();
1554 free_cachep:
1555         btrfs_destroy_cachep();
1556 free_compress:
1557         btrfs_exit_compress();
1558         btrfs_exit_sysfs();
1559         return err;
1560 }
1561
1562 static void __exit exit_btrfs_fs(void)
1563 {
1564         btrfs_destroy_cachep();
1565         btrfs_delayed_inode_exit();
1566         extent_map_exit();
1567         extent_io_exit();
1568         btrfs_interface_exit();
1569         unregister_filesystem(&btrfs_fs_type);
1570         btrfs_exit_sysfs();
1571         btrfs_cleanup_fs_uuids();
1572         btrfs_exit_compress();
1573 }
1574
1575 module_init(init_btrfs_fs)
1576 module_exit(exit_btrfs_fs)
1577
1578 MODULE_LICENSE("GPL");