Merge branch '3.4-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/ipv6.h>
46 #include <linux/slab.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/ethtool.h>
50 #include <linux/if.h>
51 #include <linux/if_vlan.h>
52 #include <linux/prefetch.h>
53
54 #include "ixgbevf.h"
55
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59
60 #define DRV_VERSION "2.2.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63         "Copyright (c) 2009 - 2012 Intel Corporation.";
64
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66         [board_82599_vf] = &ixgbevf_82599_vf_info,
67         [board_X540_vf]  = &ixgbevf_X540_vf_info,
68 };
69
70 /* ixgbevf_pci_tbl - PCI Device ID Table
71  *
72  * Wildcard entries (PCI_ANY_ID) should come last
73  * Last entry must be all 0s
74  *
75  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
76  *   Class, Class Mask, private data (not used) }
77  */
78 static struct pci_device_id ixgbevf_pci_tbl[] = {
79         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
80         board_82599_vf},
81         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
82         board_X540_vf},
83
84         /* required last entry */
85         {0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93
94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95 static int debug = -1;
96 module_param(debug, int, 0);
97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98
99 /* forward decls */
100 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
101 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
102                                u32 itr_reg);
103
104 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
105                                            struct ixgbevf_ring *rx_ring,
106                                            u32 val)
107 {
108         /*
109          * Force memory writes to complete before letting h/w
110          * know there are new descriptors to fetch.  (Only
111          * applicable for weak-ordered memory model archs,
112          * such as IA-64).
113          */
114         wmb();
115         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
116 }
117
118 /*
119  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
120  * @adapter: pointer to adapter struct
121  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
122  * @queue: queue to map the corresponding interrupt to
123  * @msix_vector: the vector to map to the corresponding queue
124  *
125  */
126 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
127                              u8 queue, u8 msix_vector)
128 {
129         u32 ivar, index;
130         struct ixgbe_hw *hw = &adapter->hw;
131         if (direction == -1) {
132                 /* other causes */
133                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
134                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
135                 ivar &= ~0xFF;
136                 ivar |= msix_vector;
137                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
138         } else {
139                 /* tx or rx causes */
140                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
141                 index = ((16 * (queue & 1)) + (8 * direction));
142                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
143                 ivar &= ~(0xFF << index);
144                 ivar |= (msix_vector << index);
145                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
146         }
147 }
148
149 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
150                                                struct ixgbevf_tx_buffer
151                                                *tx_buffer_info)
152 {
153         if (tx_buffer_info->dma) {
154                 if (tx_buffer_info->mapped_as_page)
155                         dma_unmap_page(&adapter->pdev->dev,
156                                        tx_buffer_info->dma,
157                                        tx_buffer_info->length,
158                                        DMA_TO_DEVICE);
159                 else
160                         dma_unmap_single(&adapter->pdev->dev,
161                                          tx_buffer_info->dma,
162                                          tx_buffer_info->length,
163                                          DMA_TO_DEVICE);
164                 tx_buffer_info->dma = 0;
165         }
166         if (tx_buffer_info->skb) {
167                 dev_kfree_skb_any(tx_buffer_info->skb);
168                 tx_buffer_info->skb = NULL;
169         }
170         tx_buffer_info->time_stamp = 0;
171         /* tx_buffer_info must be completely set up in the transmit path */
172 }
173
174 #define IXGBE_MAX_TXD_PWR       14
175 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
176
177 /* Tx Descriptors needed, worst case */
178 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
179                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
180 #ifdef MAX_SKB_FRAGS
181 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
182         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
183 #else
184 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
185 #endif
186
187 static void ixgbevf_tx_timeout(struct net_device *netdev);
188
189 /**
190  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
191  * @adapter: board private structure
192  * @tx_ring: tx ring to clean
193  **/
194 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
195                                  struct ixgbevf_ring *tx_ring)
196 {
197         struct net_device *netdev = adapter->netdev;
198         struct ixgbe_hw *hw = &adapter->hw;
199         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
200         struct ixgbevf_tx_buffer *tx_buffer_info;
201         unsigned int i, eop, count = 0;
202         unsigned int total_bytes = 0, total_packets = 0;
203
204         i = tx_ring->next_to_clean;
205         eop = tx_ring->tx_buffer_info[i].next_to_watch;
206         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
207
208         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
209                (count < tx_ring->work_limit)) {
210                 bool cleaned = false;
211                 rmb(); /* read buffer_info after eop_desc */
212                 /* eop could change between read and DD-check */
213                 if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
214                         goto cont_loop;
215                 for ( ; !cleaned; count++) {
216                         struct sk_buff *skb;
217                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
218                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
219                         cleaned = (i == eop);
220                         skb = tx_buffer_info->skb;
221
222                         if (cleaned && skb) {
223                                 unsigned int segs, bytecount;
224
225                                 /* gso_segs is currently only valid for tcp */
226                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
227                                 /* multiply data chunks by size of headers */
228                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
229                                             skb->len;
230                                 total_packets += segs;
231                                 total_bytes += bytecount;
232                         }
233
234                         ixgbevf_unmap_and_free_tx_resource(adapter,
235                                                            tx_buffer_info);
236
237                         tx_desc->wb.status = 0;
238
239                         i++;
240                         if (i == tx_ring->count)
241                                 i = 0;
242                 }
243
244 cont_loop:
245                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
246                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
247         }
248
249         tx_ring->next_to_clean = i;
250
251 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
252         if (unlikely(count && netif_carrier_ok(netdev) &&
253                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
254                 /* Make sure that anybody stopping the queue after this
255                  * sees the new next_to_clean.
256                  */
257                 smp_mb();
258 #ifdef HAVE_TX_MQ
259                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
260                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
261                         netif_wake_subqueue(netdev, tx_ring->queue_index);
262                         ++adapter->restart_queue;
263                 }
264 #else
265                 if (netif_queue_stopped(netdev) &&
266                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
267                         netif_wake_queue(netdev);
268                         ++adapter->restart_queue;
269                 }
270 #endif
271         }
272
273         /* re-arm the interrupt */
274         if ((count >= tx_ring->work_limit) &&
275             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
276                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
277         }
278
279         u64_stats_update_begin(&tx_ring->syncp);
280         tx_ring->total_bytes += total_bytes;
281         tx_ring->total_packets += total_packets;
282         u64_stats_update_end(&tx_ring->syncp);
283
284         return count < tx_ring->work_limit;
285 }
286
287 /**
288  * ixgbevf_receive_skb - Send a completed packet up the stack
289  * @q_vector: structure containing interrupt and ring information
290  * @skb: packet to send up
291  * @status: hardware indication of status of receive
292  * @rx_ring: rx descriptor ring (for a specific queue) to setup
293  * @rx_desc: rx descriptor
294  **/
295 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
296                                 struct sk_buff *skb, u8 status,
297                                 struct ixgbevf_ring *ring,
298                                 union ixgbe_adv_rx_desc *rx_desc)
299 {
300         struct ixgbevf_adapter *adapter = q_vector->adapter;
301         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
302         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
303
304         if (is_vlan && test_bit(tag, adapter->active_vlans))
305                 __vlan_hwaccel_put_tag(skb, tag);
306
307         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
308                         napi_gro_receive(&q_vector->napi, skb);
309         else
310                         netif_rx(skb);
311 }
312
313 /**
314  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
315  * @adapter: address of board private structure
316  * @status_err: hardware indication of status of receive
317  * @skb: skb currently being received and modified
318  **/
319 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
320                                        u32 status_err, struct sk_buff *skb)
321 {
322         skb_checksum_none_assert(skb);
323
324         /* Rx csum disabled */
325         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
326                 return;
327
328         /* if IP and error */
329         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
330             (status_err & IXGBE_RXDADV_ERR_IPE)) {
331                 adapter->hw_csum_rx_error++;
332                 return;
333         }
334
335         if (!(status_err & IXGBE_RXD_STAT_L4CS))
336                 return;
337
338         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
339                 adapter->hw_csum_rx_error++;
340                 return;
341         }
342
343         /* It must be a TCP or UDP packet with a valid checksum */
344         skb->ip_summed = CHECKSUM_UNNECESSARY;
345         adapter->hw_csum_rx_good++;
346 }
347
348 /**
349  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
350  * @adapter: address of board private structure
351  **/
352 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
353                                      struct ixgbevf_ring *rx_ring,
354                                      int cleaned_count)
355 {
356         struct pci_dev *pdev = adapter->pdev;
357         union ixgbe_adv_rx_desc *rx_desc;
358         struct ixgbevf_rx_buffer *bi;
359         struct sk_buff *skb;
360         unsigned int i;
361         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
362
363         i = rx_ring->next_to_use;
364         bi = &rx_ring->rx_buffer_info[i];
365
366         while (cleaned_count--) {
367                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
368
369                 if (!bi->page_dma &&
370                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
371                         if (!bi->page) {
372                                 bi->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
373                                 if (!bi->page) {
374                                         adapter->alloc_rx_page_failed++;
375                                         goto no_buffers;
376                                 }
377                                 bi->page_offset = 0;
378                         } else {
379                                 /* use a half page if we're re-using */
380                                 bi->page_offset ^= (PAGE_SIZE / 2);
381                         }
382
383                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
384                                                     bi->page_offset,
385                                                     (PAGE_SIZE / 2),
386                                                     DMA_FROM_DEVICE);
387                 }
388
389                 skb = bi->skb;
390                 if (!skb) {
391                         skb = netdev_alloc_skb(adapter->netdev,
392                                                                bufsz);
393
394                         if (!skb) {
395                                 adapter->alloc_rx_buff_failed++;
396                                 goto no_buffers;
397                         }
398
399                         /*
400                          * Make buffer alignment 2 beyond a 16 byte boundary
401                          * this will result in a 16 byte aligned IP header after
402                          * the 14 byte MAC header is removed
403                          */
404                         skb_reserve(skb, NET_IP_ALIGN);
405
406                         bi->skb = skb;
407                 }
408                 if (!bi->dma) {
409                         bi->dma = dma_map_single(&pdev->dev, skb->data,
410                                                  rx_ring->rx_buf_len,
411                                                  DMA_FROM_DEVICE);
412                 }
413                 /* Refresh the desc even if buffer_addrs didn't change because
414                  * each write-back erases this info. */
415                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
416                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
417                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
418                 } else {
419                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
420                 }
421
422                 i++;
423                 if (i == rx_ring->count)
424                         i = 0;
425                 bi = &rx_ring->rx_buffer_info[i];
426         }
427
428 no_buffers:
429         if (rx_ring->next_to_use != i) {
430                 rx_ring->next_to_use = i;
431                 if (i-- == 0)
432                         i = (rx_ring->count - 1);
433
434                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
435         }
436 }
437
438 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
439                                              u64 qmask)
440 {
441         u32 mask;
442         struct ixgbe_hw *hw = &adapter->hw;
443
444         mask = (qmask & 0xFFFFFFFF);
445         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
446 }
447
448 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
449 {
450         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
451 }
452
453 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
454 {
455         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
456 }
457
458 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
459                                  struct ixgbevf_ring *rx_ring,
460                                  int *work_done, int work_to_do)
461 {
462         struct ixgbevf_adapter *adapter = q_vector->adapter;
463         struct pci_dev *pdev = adapter->pdev;
464         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
465         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
466         struct sk_buff *skb;
467         unsigned int i;
468         u32 len, staterr;
469         u16 hdr_info;
470         bool cleaned = false;
471         int cleaned_count = 0;
472         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
473
474         i = rx_ring->next_to_clean;
475         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
476         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
477         rx_buffer_info = &rx_ring->rx_buffer_info[i];
478
479         while (staterr & IXGBE_RXD_STAT_DD) {
480                 u32 upper_len = 0;
481                 if (*work_done >= work_to_do)
482                         break;
483                 (*work_done)++;
484
485                 rmb(); /* read descriptor and rx_buffer_info after status DD */
486                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
487                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
488                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
489                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
490                         if (hdr_info & IXGBE_RXDADV_SPH)
491                                 adapter->rx_hdr_split++;
492                         if (len > IXGBEVF_RX_HDR_SIZE)
493                                 len = IXGBEVF_RX_HDR_SIZE;
494                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
495                 } else {
496                         len = le16_to_cpu(rx_desc->wb.upper.length);
497                 }
498                 cleaned = true;
499                 skb = rx_buffer_info->skb;
500                 prefetch(skb->data - NET_IP_ALIGN);
501                 rx_buffer_info->skb = NULL;
502
503                 if (rx_buffer_info->dma) {
504                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
505                                          rx_ring->rx_buf_len,
506                                          DMA_FROM_DEVICE);
507                         rx_buffer_info->dma = 0;
508                         skb_put(skb, len);
509                 }
510
511                 if (upper_len) {
512                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
513                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
514                         rx_buffer_info->page_dma = 0;
515                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
516                                            rx_buffer_info->page,
517                                            rx_buffer_info->page_offset,
518                                            upper_len);
519
520                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
521                             (page_count(rx_buffer_info->page) != 1))
522                                 rx_buffer_info->page = NULL;
523                         else
524                                 get_page(rx_buffer_info->page);
525
526                         skb->len += upper_len;
527                         skb->data_len += upper_len;
528                         skb->truesize += upper_len;
529                 }
530
531                 i++;
532                 if (i == rx_ring->count)
533                         i = 0;
534
535                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
536                 prefetch(next_rxd);
537                 cleaned_count++;
538
539                 next_buffer = &rx_ring->rx_buffer_info[i];
540
541                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
542                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
543                                 rx_buffer_info->skb = next_buffer->skb;
544                                 rx_buffer_info->dma = next_buffer->dma;
545                                 next_buffer->skb = skb;
546                                 next_buffer->dma = 0;
547                         } else {
548                                 skb->next = next_buffer->skb;
549                                 skb->next->prev = skb;
550                         }
551                         adapter->non_eop_descs++;
552                         goto next_desc;
553                 }
554
555                 /* ERR_MASK will only have valid bits if EOP set */
556                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
557                         dev_kfree_skb_irq(skb);
558                         goto next_desc;
559                 }
560
561                 ixgbevf_rx_checksum(adapter, staterr, skb);
562
563                 /* probably a little skewed due to removing CRC */
564                 total_rx_bytes += skb->len;
565                 total_rx_packets++;
566
567                 /*
568                  * Work around issue of some types of VM to VM loop back
569                  * packets not getting split correctly
570                  */
571                 if (staterr & IXGBE_RXD_STAT_LB) {
572                         u32 header_fixup_len = skb_headlen(skb);
573                         if (header_fixup_len < 14)
574                                 skb_push(skb, header_fixup_len);
575                 }
576                 skb->protocol = eth_type_trans(skb, adapter->netdev);
577
578                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
579
580 next_desc:
581                 rx_desc->wb.upper.status_error = 0;
582
583                 /* return some buffers to hardware, one at a time is too slow */
584                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
585                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
586                                                  cleaned_count);
587                         cleaned_count = 0;
588                 }
589
590                 /* use prefetched values */
591                 rx_desc = next_rxd;
592                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
593
594                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
595         }
596
597         rx_ring->next_to_clean = i;
598         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
599
600         if (cleaned_count)
601                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
602
603         u64_stats_update_begin(&rx_ring->syncp);
604         rx_ring->total_packets += total_rx_packets;
605         rx_ring->total_bytes += total_rx_bytes;
606         u64_stats_update_end(&rx_ring->syncp);
607
608         return cleaned;
609 }
610
611 /**
612  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
613  * @napi: napi struct with our devices info in it
614  * @budget: amount of work driver is allowed to do this pass, in packets
615  *
616  * This function is optimized for cleaning one queue only on a single
617  * q_vector!!!
618  **/
619 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
620 {
621         struct ixgbevf_q_vector *q_vector =
622                 container_of(napi, struct ixgbevf_q_vector, napi);
623         struct ixgbevf_adapter *adapter = q_vector->adapter;
624         struct ixgbevf_ring *rx_ring = NULL;
625         int work_done = 0;
626         long r_idx;
627
628         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
629         rx_ring = &(adapter->rx_ring[r_idx]);
630
631         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
632
633         /* If all Rx work done, exit the polling mode */
634         if (work_done < budget) {
635                 napi_complete(napi);
636                 if (adapter->itr_setting & 1)
637                         ixgbevf_set_itr_msix(q_vector);
638                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
639                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
640         }
641
642         return work_done;
643 }
644
645 /**
646  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
647  * @napi: napi struct with our devices info in it
648  * @budget: amount of work driver is allowed to do this pass, in packets
649  *
650  * This function will clean more than one rx queue associated with a
651  * q_vector.
652  **/
653 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
654 {
655         struct ixgbevf_q_vector *q_vector =
656                 container_of(napi, struct ixgbevf_q_vector, napi);
657         struct ixgbevf_adapter *adapter = q_vector->adapter;
658         struct ixgbevf_ring *rx_ring = NULL;
659         int work_done = 0, i;
660         long r_idx;
661         u64 enable_mask = 0;
662
663         /* attempt to distribute budget to each queue fairly, but don't allow
664          * the budget to go below 1 because we'll exit polling */
665         budget /= (q_vector->rxr_count ?: 1);
666         budget = max(budget, 1);
667         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
668         for (i = 0; i < q_vector->rxr_count; i++) {
669                 rx_ring = &(adapter->rx_ring[r_idx]);
670                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
671                 enable_mask |= rx_ring->v_idx;
672                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
673                                       r_idx + 1);
674         }
675
676 #ifndef HAVE_NETDEV_NAPI_LIST
677         if (!netif_running(adapter->netdev))
678                 work_done = 0;
679
680 #endif
681         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
682         rx_ring = &(adapter->rx_ring[r_idx]);
683
684         /* If all Rx work done, exit the polling mode */
685         if (work_done < budget) {
686                 napi_complete(napi);
687                 if (adapter->itr_setting & 1)
688                         ixgbevf_set_itr_msix(q_vector);
689                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
690                         ixgbevf_irq_enable_queues(adapter, enable_mask);
691         }
692
693         return work_done;
694 }
695
696
697 /**
698  * ixgbevf_configure_msix - Configure MSI-X hardware
699  * @adapter: board private structure
700  *
701  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
702  * interrupts.
703  **/
704 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
705 {
706         struct ixgbevf_q_vector *q_vector;
707         struct ixgbe_hw *hw = &adapter->hw;
708         int i, j, q_vectors, v_idx, r_idx;
709         u32 mask;
710
711         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
712
713         /*
714          * Populate the IVAR table and set the ITR values to the
715          * corresponding register.
716          */
717         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
718                 q_vector = adapter->q_vector[v_idx];
719                 /* XXX for_each_set_bit(...) */
720                 r_idx = find_first_bit(q_vector->rxr_idx,
721                                        adapter->num_rx_queues);
722
723                 for (i = 0; i < q_vector->rxr_count; i++) {
724                         j = adapter->rx_ring[r_idx].reg_idx;
725                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
726                         r_idx = find_next_bit(q_vector->rxr_idx,
727                                               adapter->num_rx_queues,
728                                               r_idx + 1);
729                 }
730                 r_idx = find_first_bit(q_vector->txr_idx,
731                                        adapter->num_tx_queues);
732
733                 for (i = 0; i < q_vector->txr_count; i++) {
734                         j = adapter->tx_ring[r_idx].reg_idx;
735                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
736                         r_idx = find_next_bit(q_vector->txr_idx,
737                                               adapter->num_tx_queues,
738                                               r_idx + 1);
739                 }
740
741                 /* if this is a tx only vector halve the interrupt rate */
742                 if (q_vector->txr_count && !q_vector->rxr_count)
743                         q_vector->eitr = (adapter->eitr_param >> 1);
744                 else if (q_vector->rxr_count)
745                         /* rx only */
746                         q_vector->eitr = adapter->eitr_param;
747
748                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
749         }
750
751         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
752
753         /* set up to autoclear timer, and the vectors */
754         mask = IXGBE_EIMS_ENABLE_MASK;
755         mask &= ~IXGBE_EIMS_OTHER;
756         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
757 }
758
759 enum latency_range {
760         lowest_latency = 0,
761         low_latency = 1,
762         bulk_latency = 2,
763         latency_invalid = 255
764 };
765
766 /**
767  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
768  * @adapter: pointer to adapter
769  * @eitr: eitr setting (ints per sec) to give last timeslice
770  * @itr_setting: current throttle rate in ints/second
771  * @packets: the number of packets during this measurement interval
772  * @bytes: the number of bytes during this measurement interval
773  *
774  *      Stores a new ITR value based on packets and byte
775  *      counts during the last interrupt.  The advantage of per interrupt
776  *      computation is faster updates and more accurate ITR for the current
777  *      traffic pattern.  Constants in this function were computed
778  *      based on theoretical maximum wire speed and thresholds were set based
779  *      on testing data as well as attempting to minimize response time
780  *      while increasing bulk throughput.
781  **/
782 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
783                              u32 eitr, u8 itr_setting,
784                              int packets, int bytes)
785 {
786         unsigned int retval = itr_setting;
787         u32 timepassed_us;
788         u64 bytes_perint;
789
790         if (packets == 0)
791                 goto update_itr_done;
792
793
794         /* simple throttlerate management
795          *    0-20MB/s lowest (100000 ints/s)
796          *   20-100MB/s low   (20000 ints/s)
797          *  100-1249MB/s bulk (8000 ints/s)
798          */
799         /* what was last interrupt timeslice? */
800         timepassed_us = 1000000/eitr;
801         bytes_perint = bytes / timepassed_us; /* bytes/usec */
802
803         switch (itr_setting) {
804         case lowest_latency:
805                 if (bytes_perint > adapter->eitr_low)
806                         retval = low_latency;
807                 break;
808         case low_latency:
809                 if (bytes_perint > adapter->eitr_high)
810                         retval = bulk_latency;
811                 else if (bytes_perint <= adapter->eitr_low)
812                         retval = lowest_latency;
813                 break;
814         case bulk_latency:
815                 if (bytes_perint <= adapter->eitr_high)
816                         retval = low_latency;
817                 break;
818         }
819
820 update_itr_done:
821         return retval;
822 }
823
824 /**
825  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
826  * @adapter: pointer to adapter struct
827  * @v_idx: vector index into q_vector array
828  * @itr_reg: new value to be written in *register* format, not ints/s
829  *
830  * This function is made to be called by ethtool and by the driver
831  * when it needs to update VTEITR registers at runtime.  Hardware
832  * specific quirks/differences are taken care of here.
833  */
834 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
835                                u32 itr_reg)
836 {
837         struct ixgbe_hw *hw = &adapter->hw;
838
839         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
840
841         /*
842          * set the WDIS bit to not clear the timer bits and cause an
843          * immediate assertion of the interrupt
844          */
845         itr_reg |= IXGBE_EITR_CNT_WDIS;
846
847         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
848 }
849
850 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
851 {
852         struct ixgbevf_adapter *adapter = q_vector->adapter;
853         u32 new_itr;
854         u8 current_itr, ret_itr;
855         int i, r_idx, v_idx = q_vector->v_idx;
856         struct ixgbevf_ring *rx_ring, *tx_ring;
857
858         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
859         for (i = 0; i < q_vector->txr_count; i++) {
860                 tx_ring = &(adapter->tx_ring[r_idx]);
861                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
862                                              q_vector->tx_itr,
863                                              tx_ring->total_packets,
864                                              tx_ring->total_bytes);
865                 /* if the result for this queue would decrease interrupt
866                  * rate for this vector then use that result */
867                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
868                                     q_vector->tx_itr - 1 : ret_itr);
869                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
870                                       r_idx + 1);
871         }
872
873         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
874         for (i = 0; i < q_vector->rxr_count; i++) {
875                 rx_ring = &(adapter->rx_ring[r_idx]);
876                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
877                                              q_vector->rx_itr,
878                                              rx_ring->total_packets,
879                                              rx_ring->total_bytes);
880                 /* if the result for this queue would decrease interrupt
881                  * rate for this vector then use that result */
882                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
883                                     q_vector->rx_itr - 1 : ret_itr);
884                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
885                                       r_idx + 1);
886         }
887
888         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
889
890         switch (current_itr) {
891         /* counts and packets in update_itr are dependent on these numbers */
892         case lowest_latency:
893                 new_itr = 100000;
894                 break;
895         case low_latency:
896                 new_itr = 20000; /* aka hwitr = ~200 */
897                 break;
898         case bulk_latency:
899         default:
900                 new_itr = 8000;
901                 break;
902         }
903
904         if (new_itr != q_vector->eitr) {
905                 u32 itr_reg;
906
907                 /* save the algorithm value here, not the smoothed one */
908                 q_vector->eitr = new_itr;
909                 /* do an exponential smoothing */
910                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
911                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
912                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
913         }
914 }
915
916 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
917 {
918         struct net_device *netdev = data;
919         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
920         struct ixgbe_hw *hw = &adapter->hw;
921         u32 eicr;
922         u32 msg;
923         bool got_ack = false;
924
925         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
926         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
927
928         if (!hw->mbx.ops.check_for_ack(hw))
929                 got_ack = true;
930
931         if (!hw->mbx.ops.check_for_msg(hw)) {
932                 hw->mbx.ops.read(hw, &msg, 1);
933
934                 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
935                         mod_timer(&adapter->watchdog_timer,
936                                   round_jiffies(jiffies + 1));
937
938                 if (msg & IXGBE_VT_MSGTYPE_NACK)
939                         pr_warn("Last Request of type %2.2x to PF Nacked\n",
940                                 msg & 0xFF);
941                 /*
942                  * Restore the PFSTS bit in case someone is polling for a
943                  * return message from the PF
944                  */
945                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
946         }
947
948         /*
949          * checking for the ack clears the PFACK bit.  Place
950          * it back in the v2p_mailbox cache so that anyone
951          * polling for an ack will not miss it
952          */
953         if (got_ack)
954                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
955
956         return IRQ_HANDLED;
957 }
958
959 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
960 {
961         struct ixgbevf_q_vector *q_vector = data;
962         struct ixgbevf_adapter  *adapter = q_vector->adapter;
963         struct ixgbevf_ring     *tx_ring;
964         int i, r_idx;
965
966         if (!q_vector->txr_count)
967                 return IRQ_HANDLED;
968
969         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
970         for (i = 0; i < q_vector->txr_count; i++) {
971                 tx_ring = &(adapter->tx_ring[r_idx]);
972                 tx_ring->total_bytes = 0;
973                 tx_ring->total_packets = 0;
974                 ixgbevf_clean_tx_irq(adapter, tx_ring);
975                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
976                                       r_idx + 1);
977         }
978
979         if (adapter->itr_setting & 1)
980                 ixgbevf_set_itr_msix(q_vector);
981
982         return IRQ_HANDLED;
983 }
984
985 /**
986  * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
987  * @irq: unused
988  * @data: pointer to our q_vector struct for this interrupt vector
989  **/
990 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
991 {
992         struct ixgbevf_q_vector *q_vector = data;
993         struct ixgbevf_adapter  *adapter = q_vector->adapter;
994         struct ixgbe_hw *hw = &adapter->hw;
995         struct ixgbevf_ring  *rx_ring;
996         int r_idx;
997         int i;
998
999         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1000         for (i = 0; i < q_vector->rxr_count; i++) {
1001                 rx_ring = &(adapter->rx_ring[r_idx]);
1002                 rx_ring->total_bytes = 0;
1003                 rx_ring->total_packets = 0;
1004                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1005                                       r_idx + 1);
1006         }
1007
1008         if (!q_vector->rxr_count)
1009                 return IRQ_HANDLED;
1010
1011         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1012         rx_ring = &(adapter->rx_ring[r_idx]);
1013         /* disable interrupts on this vector only */
1014         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1015         napi_schedule(&q_vector->napi);
1016
1017
1018         return IRQ_HANDLED;
1019 }
1020
1021 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1022 {
1023         ixgbevf_msix_clean_rx(irq, data);
1024         ixgbevf_msix_clean_tx(irq, data);
1025
1026         return IRQ_HANDLED;
1027 }
1028
1029 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1030                                      int r_idx)
1031 {
1032         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1033
1034         set_bit(r_idx, q_vector->rxr_idx);
1035         q_vector->rxr_count++;
1036         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1037 }
1038
1039 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1040                                      int t_idx)
1041 {
1042         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1043
1044         set_bit(t_idx, q_vector->txr_idx);
1045         q_vector->txr_count++;
1046         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1047 }
1048
1049 /**
1050  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1051  * @adapter: board private structure to initialize
1052  *
1053  * This function maps descriptor rings to the queue-specific vectors
1054  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1055  * one vector per ring/queue, but on a constrained vector budget, we
1056  * group the rings as "efficiently" as possible.  You would add new
1057  * mapping configurations in here.
1058  **/
1059 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1060 {
1061         int q_vectors;
1062         int v_start = 0;
1063         int rxr_idx = 0, txr_idx = 0;
1064         int rxr_remaining = adapter->num_rx_queues;
1065         int txr_remaining = adapter->num_tx_queues;
1066         int i, j;
1067         int rqpv, tqpv;
1068         int err = 0;
1069
1070         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1071
1072         /*
1073          * The ideal configuration...
1074          * We have enough vectors to map one per queue.
1075          */
1076         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1077                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1078                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1079
1080                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1081                         map_vector_to_txq(adapter, v_start, txr_idx);
1082                 goto out;
1083         }
1084
1085         /*
1086          * If we don't have enough vectors for a 1-to-1
1087          * mapping, we'll have to group them so there are
1088          * multiple queues per vector.
1089          */
1090         /* Re-adjusting *qpv takes care of the remainder. */
1091         for (i = v_start; i < q_vectors; i++) {
1092                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1093                 for (j = 0; j < rqpv; j++) {
1094                         map_vector_to_rxq(adapter, i, rxr_idx);
1095                         rxr_idx++;
1096                         rxr_remaining--;
1097                 }
1098         }
1099         for (i = v_start; i < q_vectors; i++) {
1100                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1101                 for (j = 0; j < tqpv; j++) {
1102                         map_vector_to_txq(adapter, i, txr_idx);
1103                         txr_idx++;
1104                         txr_remaining--;
1105                 }
1106         }
1107
1108 out:
1109         return err;
1110 }
1111
1112 /**
1113  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1114  * @adapter: board private structure
1115  *
1116  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1117  * interrupts from the kernel.
1118  **/
1119 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1120 {
1121         struct net_device *netdev = adapter->netdev;
1122         irqreturn_t (*handler)(int, void *);
1123         int i, vector, q_vectors, err;
1124         int ri = 0, ti = 0;
1125
1126         /* Decrement for Other and TCP Timer vectors */
1127         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1128
1129 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1130                                           ? &ixgbevf_msix_clean_many : \
1131                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1132                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1133                           NULL)
1134         for (vector = 0; vector < q_vectors; vector++) {
1135                 handler = SET_HANDLER(adapter->q_vector[vector]);
1136
1137                 if (handler == &ixgbevf_msix_clean_rx) {
1138                         sprintf(adapter->name[vector], "%s-%s-%d",
1139                                 netdev->name, "rx", ri++);
1140                 } else if (handler == &ixgbevf_msix_clean_tx) {
1141                         sprintf(adapter->name[vector], "%s-%s-%d",
1142                                 netdev->name, "tx", ti++);
1143                 } else if (handler == &ixgbevf_msix_clean_many) {
1144                         sprintf(adapter->name[vector], "%s-%s-%d",
1145                                 netdev->name, "TxRx", vector);
1146                 } else {
1147                         /* skip this unused q_vector */
1148                         continue;
1149                 }
1150                 err = request_irq(adapter->msix_entries[vector].vector,
1151                                   handler, 0, adapter->name[vector],
1152                                   adapter->q_vector[vector]);
1153                 if (err) {
1154                         hw_dbg(&adapter->hw,
1155                                "request_irq failed for MSIX interrupt "
1156                                "Error: %d\n", err);
1157                         goto free_queue_irqs;
1158                 }
1159         }
1160
1161         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1162         err = request_irq(adapter->msix_entries[vector].vector,
1163                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1164         if (err) {
1165                 hw_dbg(&adapter->hw,
1166                        "request_irq for msix_mbx failed: %d\n", err);
1167                 goto free_queue_irqs;
1168         }
1169
1170         return 0;
1171
1172 free_queue_irqs:
1173         for (i = vector - 1; i >= 0; i--)
1174                 free_irq(adapter->msix_entries[--vector].vector,
1175                          &(adapter->q_vector[i]));
1176         pci_disable_msix(adapter->pdev);
1177         kfree(adapter->msix_entries);
1178         adapter->msix_entries = NULL;
1179         return err;
1180 }
1181
1182 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1183 {
1184         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1185
1186         for (i = 0; i < q_vectors; i++) {
1187                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1188                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1189                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1190                 q_vector->rxr_count = 0;
1191                 q_vector->txr_count = 0;
1192                 q_vector->eitr = adapter->eitr_param;
1193         }
1194 }
1195
1196 /**
1197  * ixgbevf_request_irq - initialize interrupts
1198  * @adapter: board private structure
1199  *
1200  * Attempts to configure interrupts using the best available
1201  * capabilities of the hardware and kernel.
1202  **/
1203 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1204 {
1205         int err = 0;
1206
1207         err = ixgbevf_request_msix_irqs(adapter);
1208
1209         if (err)
1210                 hw_dbg(&adapter->hw,
1211                        "request_irq failed, Error %d\n", err);
1212
1213         return err;
1214 }
1215
1216 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1217 {
1218         struct net_device *netdev = adapter->netdev;
1219         int i, q_vectors;
1220
1221         q_vectors = adapter->num_msix_vectors;
1222
1223         i = q_vectors - 1;
1224
1225         free_irq(adapter->msix_entries[i].vector, netdev);
1226         i--;
1227
1228         for (; i >= 0; i--) {
1229                 free_irq(adapter->msix_entries[i].vector,
1230                          adapter->q_vector[i]);
1231         }
1232
1233         ixgbevf_reset_q_vectors(adapter);
1234 }
1235
1236 /**
1237  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1238  * @adapter: board private structure
1239  **/
1240 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1241 {
1242         int i;
1243         struct ixgbe_hw *hw = &adapter->hw;
1244
1245         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1246
1247         IXGBE_WRITE_FLUSH(hw);
1248
1249         for (i = 0; i < adapter->num_msix_vectors; i++)
1250                 synchronize_irq(adapter->msix_entries[i].vector);
1251 }
1252
1253 /**
1254  * ixgbevf_irq_enable - Enable default interrupt generation settings
1255  * @adapter: board private structure
1256  **/
1257 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1258                                       bool queues, bool flush)
1259 {
1260         struct ixgbe_hw *hw = &adapter->hw;
1261         u32 mask;
1262         u64 qmask;
1263
1264         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1265         qmask = ~0;
1266
1267         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1268
1269         if (queues)
1270                 ixgbevf_irq_enable_queues(adapter, qmask);
1271
1272         if (flush)
1273                 IXGBE_WRITE_FLUSH(hw);
1274 }
1275
1276 /**
1277  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1278  * @adapter: board private structure
1279  *
1280  * Configure the Tx unit of the MAC after a reset.
1281  **/
1282 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1283 {
1284         u64 tdba;
1285         struct ixgbe_hw *hw = &adapter->hw;
1286         u32 i, j, tdlen, txctrl;
1287
1288         /* Setup the HW Tx Head and Tail descriptor pointers */
1289         for (i = 0; i < adapter->num_tx_queues; i++) {
1290                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1291                 j = ring->reg_idx;
1292                 tdba = ring->dma;
1293                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1294                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1295                                 (tdba & DMA_BIT_MASK(32)));
1296                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1297                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1298                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1299                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1300                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1301                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1302                 /* Disable Tx Head Writeback RO bit, since this hoses
1303                  * bookkeeping if things aren't delivered in order.
1304                  */
1305                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1306                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1307                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1308         }
1309 }
1310
1311 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1312
1313 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1314 {
1315         struct ixgbevf_ring *rx_ring;
1316         struct ixgbe_hw *hw = &adapter->hw;
1317         u32 srrctl;
1318
1319         rx_ring = &adapter->rx_ring[index];
1320
1321         srrctl = IXGBE_SRRCTL_DROP_EN;
1322
1323         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1324                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1325                 /* grow the amount we can receive on large page machines */
1326                 if (bufsz < (PAGE_SIZE / 2))
1327                         bufsz = (PAGE_SIZE / 2);
1328                 /* cap the bufsz at our largest descriptor size */
1329                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1330
1331                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1332                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1333                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1334                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1335                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1336         } else {
1337                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1338
1339                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1340                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1341                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1342                 else
1343                         srrctl |= rx_ring->rx_buf_len >>
1344                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1345         }
1346         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1347 }
1348
1349 /**
1350  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1351  * @adapter: board private structure
1352  *
1353  * Configure the Rx unit of the MAC after a reset.
1354  **/
1355 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1356 {
1357         u64 rdba;
1358         struct ixgbe_hw *hw = &adapter->hw;
1359         struct net_device *netdev = adapter->netdev;
1360         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1361         int i, j;
1362         u32 rdlen;
1363         int rx_buf_len;
1364
1365         /* Decide whether to use packet split mode or not */
1366         if (netdev->mtu > ETH_DATA_LEN) {
1367                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1368                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1369                 else
1370                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1371         } else {
1372                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1373                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1374                 else
1375                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1376         }
1377
1378         /* Set the RX buffer length according to the mode */
1379         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1380                 /* PSRTYPE must be initialized in 82599 */
1381                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1382                         IXGBE_PSRTYPE_UDPHDR |
1383                         IXGBE_PSRTYPE_IPV4HDR |
1384                         IXGBE_PSRTYPE_IPV6HDR |
1385                         IXGBE_PSRTYPE_L2HDR;
1386                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1387                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1388         } else {
1389                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1390                 if (netdev->mtu <= ETH_DATA_LEN)
1391                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1392                 else
1393                         rx_buf_len = ALIGN(max_frame, 1024);
1394         }
1395
1396         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1397         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1398          * the Base and Length of the Rx Descriptor Ring */
1399         for (i = 0; i < adapter->num_rx_queues; i++) {
1400                 rdba = adapter->rx_ring[i].dma;
1401                 j = adapter->rx_ring[i].reg_idx;
1402                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1403                                 (rdba & DMA_BIT_MASK(32)));
1404                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1405                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1406                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1407                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1408                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1409                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1410                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1411
1412                 ixgbevf_configure_srrctl(adapter, j);
1413         }
1414 }
1415
1416 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1417 {
1418         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1419         struct ixgbe_hw *hw = &adapter->hw;
1420
1421         /* add VID to filter table */
1422         if (hw->mac.ops.set_vfta)
1423                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1424         set_bit(vid, adapter->active_vlans);
1425
1426         return 0;
1427 }
1428
1429 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1430 {
1431         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1432         struct ixgbe_hw *hw = &adapter->hw;
1433
1434         /* remove VID from filter table */
1435         if (hw->mac.ops.set_vfta)
1436                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1437         clear_bit(vid, adapter->active_vlans);
1438
1439         return 0;
1440 }
1441
1442 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1443 {
1444         u16 vid;
1445
1446         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1447                 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1448 }
1449
1450 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1451 {
1452         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1453         struct ixgbe_hw *hw = &adapter->hw;
1454         int count = 0;
1455
1456         if ((netdev_uc_count(netdev)) > 10) {
1457                 pr_err("Too many unicast filters - No Space\n");
1458                 return -ENOSPC;
1459         }
1460
1461         if (!netdev_uc_empty(netdev)) {
1462                 struct netdev_hw_addr *ha;
1463                 netdev_for_each_uc_addr(ha, netdev) {
1464                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1465                         udelay(200);
1466                 }
1467         } else {
1468                 /*
1469                  * If the list is empty then send message to PF driver to
1470                  * clear all macvlans on this VF.
1471                  */
1472                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1473         }
1474
1475         return count;
1476 }
1477
1478 /**
1479  * ixgbevf_set_rx_mode - Multicast set
1480  * @netdev: network interface device structure
1481  *
1482  * The set_rx_method entry point is called whenever the multicast address
1483  * list or the network interface flags are updated.  This routine is
1484  * responsible for configuring the hardware for proper multicast mode.
1485  **/
1486 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1487 {
1488         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1489         struct ixgbe_hw *hw = &adapter->hw;
1490
1491         /* reprogram multicast list */
1492         if (hw->mac.ops.update_mc_addr_list)
1493                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1494
1495         ixgbevf_write_uc_addr_list(netdev);
1496 }
1497
1498 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1499 {
1500         int q_idx;
1501         struct ixgbevf_q_vector *q_vector;
1502         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1503
1504         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1505                 struct napi_struct *napi;
1506                 q_vector = adapter->q_vector[q_idx];
1507                 if (!q_vector->rxr_count)
1508                         continue;
1509                 napi = &q_vector->napi;
1510                 if (q_vector->rxr_count > 1)
1511                         napi->poll = &ixgbevf_clean_rxonly_many;
1512
1513                 napi_enable(napi);
1514         }
1515 }
1516
1517 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1518 {
1519         int q_idx;
1520         struct ixgbevf_q_vector *q_vector;
1521         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1522
1523         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1524                 q_vector = adapter->q_vector[q_idx];
1525                 if (!q_vector->rxr_count)
1526                         continue;
1527                 napi_disable(&q_vector->napi);
1528         }
1529 }
1530
1531 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1532 {
1533         struct net_device *netdev = adapter->netdev;
1534         int i;
1535
1536         ixgbevf_set_rx_mode(netdev);
1537
1538         ixgbevf_restore_vlan(adapter);
1539
1540         ixgbevf_configure_tx(adapter);
1541         ixgbevf_configure_rx(adapter);
1542         for (i = 0; i < adapter->num_rx_queues; i++) {
1543                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1544                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1545                 ring->next_to_use = ring->count - 1;
1546                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1547         }
1548 }
1549
1550 #define IXGBE_MAX_RX_DESC_POLL 10
1551 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1552                                                 int rxr)
1553 {
1554         struct ixgbe_hw *hw = &adapter->hw;
1555         int j = adapter->rx_ring[rxr].reg_idx;
1556         int k;
1557
1558         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1559                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1560                         break;
1561                 else
1562                         msleep(1);
1563         }
1564         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1565                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1566                        "not set within the polling period\n", rxr);
1567         }
1568
1569         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1570                                 (adapter->rx_ring[rxr].count - 1));
1571 }
1572
1573 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1574 {
1575         /* Only save pre-reset stats if there are some */
1576         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1577                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1578                         adapter->stats.base_vfgprc;
1579                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1580                         adapter->stats.base_vfgptc;
1581                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1582                         adapter->stats.base_vfgorc;
1583                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1584                         adapter->stats.base_vfgotc;
1585                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1586                         adapter->stats.base_vfmprc;
1587         }
1588 }
1589
1590 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1591 {
1592         struct ixgbe_hw *hw = &adapter->hw;
1593
1594         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1595         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1596         adapter->stats.last_vfgorc |=
1597                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1598         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1599         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1600         adapter->stats.last_vfgotc |=
1601                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1602         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1603
1604         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1605         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1606         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1607         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1608         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1609 }
1610
1611 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1612 {
1613         struct net_device *netdev = adapter->netdev;
1614         struct ixgbe_hw *hw = &adapter->hw;
1615         int i, j = 0;
1616         int num_rx_rings = adapter->num_rx_queues;
1617         u32 txdctl, rxdctl;
1618
1619         for (i = 0; i < adapter->num_tx_queues; i++) {
1620                 j = adapter->tx_ring[i].reg_idx;
1621                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1622                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1623                 txdctl |= (8 << 16);
1624                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1625         }
1626
1627         for (i = 0; i < adapter->num_tx_queues; i++) {
1628                 j = adapter->tx_ring[i].reg_idx;
1629                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1630                 txdctl |= IXGBE_TXDCTL_ENABLE;
1631                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1632         }
1633
1634         for (i = 0; i < num_rx_rings; i++) {
1635                 j = adapter->rx_ring[i].reg_idx;
1636                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1637                 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1638                 if (hw->mac.type == ixgbe_mac_X540_vf) {
1639                         rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1640                         rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1641                                    IXGBE_RXDCTL_RLPML_EN);
1642                 }
1643                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1644                 ixgbevf_rx_desc_queue_enable(adapter, i);
1645         }
1646
1647         ixgbevf_configure_msix(adapter);
1648
1649         if (hw->mac.ops.set_rar) {
1650                 if (is_valid_ether_addr(hw->mac.addr))
1651                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1652                 else
1653                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1654         }
1655
1656         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1657         ixgbevf_napi_enable_all(adapter);
1658
1659         /* enable transmits */
1660         netif_tx_start_all_queues(netdev);
1661
1662         ixgbevf_save_reset_stats(adapter);
1663         ixgbevf_init_last_counter_stats(adapter);
1664
1665         /* bring the link up in the watchdog, this could race with our first
1666          * link up interrupt but shouldn't be a problem */
1667         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1668         adapter->link_check_timeout = jiffies;
1669         mod_timer(&adapter->watchdog_timer, jiffies);
1670         return 0;
1671 }
1672
1673 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1674 {
1675         int err;
1676         struct ixgbe_hw *hw = &adapter->hw;
1677
1678         ixgbevf_configure(adapter);
1679
1680         err = ixgbevf_up_complete(adapter);
1681
1682         /* clear any pending interrupts, may auto mask */
1683         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1684
1685         ixgbevf_irq_enable(adapter, true, true);
1686
1687         return err;
1688 }
1689
1690 /**
1691  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1692  * @adapter: board private structure
1693  * @rx_ring: ring to free buffers from
1694  **/
1695 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1696                                   struct ixgbevf_ring *rx_ring)
1697 {
1698         struct pci_dev *pdev = adapter->pdev;
1699         unsigned long size;
1700         unsigned int i;
1701
1702         if (!rx_ring->rx_buffer_info)
1703                 return;
1704
1705         /* Free all the Rx ring sk_buffs */
1706         for (i = 0; i < rx_ring->count; i++) {
1707                 struct ixgbevf_rx_buffer *rx_buffer_info;
1708
1709                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1710                 if (rx_buffer_info->dma) {
1711                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1712                                          rx_ring->rx_buf_len,
1713                                          DMA_FROM_DEVICE);
1714                         rx_buffer_info->dma = 0;
1715                 }
1716                 if (rx_buffer_info->skb) {
1717                         struct sk_buff *skb = rx_buffer_info->skb;
1718                         rx_buffer_info->skb = NULL;
1719                         do {
1720                                 struct sk_buff *this = skb;
1721                                 skb = skb->prev;
1722                                 dev_kfree_skb(this);
1723                         } while (skb);
1724                 }
1725                 if (!rx_buffer_info->page)
1726                         continue;
1727                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1728                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1729                 rx_buffer_info->page_dma = 0;
1730                 put_page(rx_buffer_info->page);
1731                 rx_buffer_info->page = NULL;
1732                 rx_buffer_info->page_offset = 0;
1733         }
1734
1735         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1736         memset(rx_ring->rx_buffer_info, 0, size);
1737
1738         /* Zero out the descriptor ring */
1739         memset(rx_ring->desc, 0, rx_ring->size);
1740
1741         rx_ring->next_to_clean = 0;
1742         rx_ring->next_to_use = 0;
1743
1744         if (rx_ring->head)
1745                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1746         if (rx_ring->tail)
1747                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1748 }
1749
1750 /**
1751  * ixgbevf_clean_tx_ring - Free Tx Buffers
1752  * @adapter: board private structure
1753  * @tx_ring: ring to be cleaned
1754  **/
1755 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1756                                   struct ixgbevf_ring *tx_ring)
1757 {
1758         struct ixgbevf_tx_buffer *tx_buffer_info;
1759         unsigned long size;
1760         unsigned int i;
1761
1762         if (!tx_ring->tx_buffer_info)
1763                 return;
1764
1765         /* Free all the Tx ring sk_buffs */
1766
1767         for (i = 0; i < tx_ring->count; i++) {
1768                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1769                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1770         }
1771
1772         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1773         memset(tx_ring->tx_buffer_info, 0, size);
1774
1775         memset(tx_ring->desc, 0, tx_ring->size);
1776
1777         tx_ring->next_to_use = 0;
1778         tx_ring->next_to_clean = 0;
1779
1780         if (tx_ring->head)
1781                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1782         if (tx_ring->tail)
1783                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1784 }
1785
1786 /**
1787  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1788  * @adapter: board private structure
1789  **/
1790 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1791 {
1792         int i;
1793
1794         for (i = 0; i < adapter->num_rx_queues; i++)
1795                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1796 }
1797
1798 /**
1799  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1800  * @adapter: board private structure
1801  **/
1802 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1803 {
1804         int i;
1805
1806         for (i = 0; i < adapter->num_tx_queues; i++)
1807                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1808 }
1809
1810 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1811 {
1812         struct net_device *netdev = adapter->netdev;
1813         struct ixgbe_hw *hw = &adapter->hw;
1814         u32 txdctl;
1815         int i, j;
1816
1817         /* signal that we are down to the interrupt handler */
1818         set_bit(__IXGBEVF_DOWN, &adapter->state);
1819         /* disable receives */
1820
1821         netif_tx_disable(netdev);
1822
1823         msleep(10);
1824
1825         netif_tx_stop_all_queues(netdev);
1826
1827         ixgbevf_irq_disable(adapter);
1828
1829         ixgbevf_napi_disable_all(adapter);
1830
1831         del_timer_sync(&adapter->watchdog_timer);
1832         /* can't call flush scheduled work here because it can deadlock
1833          * if linkwatch_event tries to acquire the rtnl_lock which we are
1834          * holding */
1835         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1836                 msleep(1);
1837
1838         /* disable transmits in the hardware now that interrupts are off */
1839         for (i = 0; i < adapter->num_tx_queues; i++) {
1840                 j = adapter->tx_ring[i].reg_idx;
1841                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1842                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1843                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1844         }
1845
1846         netif_carrier_off(netdev);
1847
1848         if (!pci_channel_offline(adapter->pdev))
1849                 ixgbevf_reset(adapter);
1850
1851         ixgbevf_clean_all_tx_rings(adapter);
1852         ixgbevf_clean_all_rx_rings(adapter);
1853 }
1854
1855 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1856 {
1857         struct ixgbe_hw *hw = &adapter->hw;
1858
1859         WARN_ON(in_interrupt());
1860
1861         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1862                 msleep(1);
1863
1864         /*
1865          * Check if PF is up before re-init.  If not then skip until
1866          * later when the PF is up and ready to service requests from
1867          * the VF via mailbox.  If the VF is up and running then the
1868          * watchdog task will continue to schedule reset tasks until
1869          * the PF is up and running.
1870          */
1871         if (!hw->mac.ops.reset_hw(hw)) {
1872                 ixgbevf_down(adapter);
1873                 ixgbevf_up(adapter);
1874         }
1875
1876         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1877 }
1878
1879 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1880 {
1881         struct ixgbe_hw *hw = &adapter->hw;
1882         struct net_device *netdev = adapter->netdev;
1883
1884         if (hw->mac.ops.reset_hw(hw))
1885                 hw_dbg(hw, "PF still resetting\n");
1886         else
1887                 hw->mac.ops.init_hw(hw);
1888
1889         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1890                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1891                        netdev->addr_len);
1892                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1893                        netdev->addr_len);
1894         }
1895 }
1896
1897 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1898                                          int vectors)
1899 {
1900         int err, vector_threshold;
1901
1902         /* We'll want at least 3 (vector_threshold):
1903          * 1) TxQ[0] Cleanup
1904          * 2) RxQ[0] Cleanup
1905          * 3) Other (Link Status Change, etc.)
1906          */
1907         vector_threshold = MIN_MSIX_COUNT;
1908
1909         /* The more we get, the more we will assign to Tx/Rx Cleanup
1910          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1911          * Right now, we simply care about how many we'll get; we'll
1912          * set them up later while requesting irq's.
1913          */
1914         while (vectors >= vector_threshold) {
1915                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1916                                       vectors);
1917                 if (!err) /* Success in acquiring all requested vectors. */
1918                         break;
1919                 else if (err < 0)
1920                         vectors = 0; /* Nasty failure, quit now */
1921                 else /* err == number of vectors we should try again with */
1922                         vectors = err;
1923         }
1924
1925         if (vectors < vector_threshold) {
1926                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1927                  * This just means we'll go with either a single MSI
1928                  * vector or fall back to legacy interrupts.
1929                  */
1930                 hw_dbg(&adapter->hw,
1931                        "Unable to allocate MSI-X interrupts\n");
1932                 kfree(adapter->msix_entries);
1933                 adapter->msix_entries = NULL;
1934         } else {
1935                 /*
1936                  * Adjust for only the vectors we'll use, which is minimum
1937                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1938                  * vectors we were allocated.
1939                  */
1940                 adapter->num_msix_vectors = vectors;
1941         }
1942 }
1943
1944 /*
1945  * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1946  * @adapter: board private structure to initialize
1947  *
1948  * This is the top level queue allocation routine.  The order here is very
1949  * important, starting with the "most" number of features turned on at once,
1950  * and ending with the smallest set of features.  This way large combinations
1951  * can be allocated if they're turned on, and smaller combinations are the
1952  * fallthrough conditions.
1953  *
1954  **/
1955 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1956 {
1957         /* Start with base case */
1958         adapter->num_rx_queues = 1;
1959         adapter->num_tx_queues = 1;
1960         adapter->num_rx_pools = adapter->num_rx_queues;
1961         adapter->num_rx_queues_per_pool = 1;
1962 }
1963
1964 /**
1965  * ixgbevf_alloc_queues - Allocate memory for all rings
1966  * @adapter: board private structure to initialize
1967  *
1968  * We allocate one ring per queue at run-time since we don't know the
1969  * number of queues at compile-time.  The polling_netdev array is
1970  * intended for Multiqueue, but should work fine with a single queue.
1971  **/
1972 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1973 {
1974         int i;
1975
1976         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1977                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1978         if (!adapter->tx_ring)
1979                 goto err_tx_ring_allocation;
1980
1981         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1982                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1983         if (!adapter->rx_ring)
1984                 goto err_rx_ring_allocation;
1985
1986         for (i = 0; i < adapter->num_tx_queues; i++) {
1987                 adapter->tx_ring[i].count = adapter->tx_ring_count;
1988                 adapter->tx_ring[i].queue_index = i;
1989                 adapter->tx_ring[i].reg_idx = i;
1990         }
1991
1992         for (i = 0; i < adapter->num_rx_queues; i++) {
1993                 adapter->rx_ring[i].count = adapter->rx_ring_count;
1994                 adapter->rx_ring[i].queue_index = i;
1995                 adapter->rx_ring[i].reg_idx = i;
1996         }
1997
1998         return 0;
1999
2000 err_rx_ring_allocation:
2001         kfree(adapter->tx_ring);
2002 err_tx_ring_allocation:
2003         return -ENOMEM;
2004 }
2005
2006 /**
2007  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2008  * @adapter: board private structure to initialize
2009  *
2010  * Attempt to configure the interrupts using the best available
2011  * capabilities of the hardware and the kernel.
2012  **/
2013 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2014 {
2015         int err = 0;
2016         int vector, v_budget;
2017
2018         /*
2019          * It's easy to be greedy for MSI-X vectors, but it really
2020          * doesn't do us much good if we have a lot more vectors
2021          * than CPU's.  So let's be conservative and only ask for
2022          * (roughly) twice the number of vectors as there are CPU's.
2023          */
2024         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2025                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2026
2027         /* A failure in MSI-X entry allocation isn't fatal, but it does
2028          * mean we disable MSI-X capabilities of the adapter. */
2029         adapter->msix_entries = kcalloc(v_budget,
2030                                         sizeof(struct msix_entry), GFP_KERNEL);
2031         if (!adapter->msix_entries) {
2032                 err = -ENOMEM;
2033                 goto out;
2034         }
2035
2036         for (vector = 0; vector < v_budget; vector++)
2037                 adapter->msix_entries[vector].entry = vector;
2038
2039         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2040
2041 out:
2042         return err;
2043 }
2044
2045 /**
2046  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2047  * @adapter: board private structure to initialize
2048  *
2049  * We allocate one q_vector per queue interrupt.  If allocation fails we
2050  * return -ENOMEM.
2051  **/
2052 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2053 {
2054         int q_idx, num_q_vectors;
2055         struct ixgbevf_q_vector *q_vector;
2056         int napi_vectors;
2057         int (*poll)(struct napi_struct *, int);
2058
2059         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2060         napi_vectors = adapter->num_rx_queues;
2061         poll = &ixgbevf_clean_rxonly;
2062
2063         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2064                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2065                 if (!q_vector)
2066                         goto err_out;
2067                 q_vector->adapter = adapter;
2068                 q_vector->v_idx = q_idx;
2069                 q_vector->eitr = adapter->eitr_param;
2070                 if (q_idx < napi_vectors)
2071                         netif_napi_add(adapter->netdev, &q_vector->napi,
2072                                        (*poll), 64);
2073                 adapter->q_vector[q_idx] = q_vector;
2074         }
2075
2076         return 0;
2077
2078 err_out:
2079         while (q_idx) {
2080                 q_idx--;
2081                 q_vector = adapter->q_vector[q_idx];
2082                 netif_napi_del(&q_vector->napi);
2083                 kfree(q_vector);
2084                 adapter->q_vector[q_idx] = NULL;
2085         }
2086         return -ENOMEM;
2087 }
2088
2089 /**
2090  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2091  * @adapter: board private structure to initialize
2092  *
2093  * This function frees the memory allocated to the q_vectors.  In addition if
2094  * NAPI is enabled it will delete any references to the NAPI struct prior
2095  * to freeing the q_vector.
2096  **/
2097 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2098 {
2099         int q_idx, num_q_vectors;
2100         int napi_vectors;
2101
2102         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2103         napi_vectors = adapter->num_rx_queues;
2104
2105         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2106                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2107
2108                 adapter->q_vector[q_idx] = NULL;
2109                 if (q_idx < napi_vectors)
2110                         netif_napi_del(&q_vector->napi);
2111                 kfree(q_vector);
2112         }
2113 }
2114
2115 /**
2116  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2117  * @adapter: board private structure
2118  *
2119  **/
2120 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2121 {
2122         pci_disable_msix(adapter->pdev);
2123         kfree(adapter->msix_entries);
2124         adapter->msix_entries = NULL;
2125 }
2126
2127 /**
2128  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2129  * @adapter: board private structure to initialize
2130  *
2131  **/
2132 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2133 {
2134         int err;
2135
2136         /* Number of supported queues */
2137         ixgbevf_set_num_queues(adapter);
2138
2139         err = ixgbevf_set_interrupt_capability(adapter);
2140         if (err) {
2141                 hw_dbg(&adapter->hw,
2142                        "Unable to setup interrupt capabilities\n");
2143                 goto err_set_interrupt;
2144         }
2145
2146         err = ixgbevf_alloc_q_vectors(adapter);
2147         if (err) {
2148                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2149                        "vectors\n");
2150                 goto err_alloc_q_vectors;
2151         }
2152
2153         err = ixgbevf_alloc_queues(adapter);
2154         if (err) {
2155                 pr_err("Unable to allocate memory for queues\n");
2156                 goto err_alloc_queues;
2157         }
2158
2159         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2160                "Tx Queue count = %u\n",
2161                (adapter->num_rx_queues > 1) ? "Enabled" :
2162                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2163
2164         set_bit(__IXGBEVF_DOWN, &adapter->state);
2165
2166         return 0;
2167 err_alloc_queues:
2168         ixgbevf_free_q_vectors(adapter);
2169 err_alloc_q_vectors:
2170         ixgbevf_reset_interrupt_capability(adapter);
2171 err_set_interrupt:
2172         return err;
2173 }
2174
2175 /**
2176  * ixgbevf_sw_init - Initialize general software structures
2177  * (struct ixgbevf_adapter)
2178  * @adapter: board private structure to initialize
2179  *
2180  * ixgbevf_sw_init initializes the Adapter private data structure.
2181  * Fields are initialized based on PCI device information and
2182  * OS network device settings (MTU size).
2183  **/
2184 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2185 {
2186         struct ixgbe_hw *hw = &adapter->hw;
2187         struct pci_dev *pdev = adapter->pdev;
2188         int err;
2189
2190         /* PCI config space info */
2191
2192         hw->vendor_id = pdev->vendor;
2193         hw->device_id = pdev->device;
2194         hw->revision_id = pdev->revision;
2195         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2196         hw->subsystem_device_id = pdev->subsystem_device;
2197
2198         hw->mbx.ops.init_params(hw);
2199         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2200         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2201         err = hw->mac.ops.reset_hw(hw);
2202         if (err) {
2203                 dev_info(&pdev->dev,
2204                          "PF still in reset state, assigning new address\n");
2205                 eth_hw_addr_random(adapter->netdev);
2206                 memcpy(adapter->hw.mac.addr, adapter->netdev->dev_addr,
2207                         adapter->netdev->addr_len);
2208         } else {
2209                 err = hw->mac.ops.init_hw(hw);
2210                 if (err) {
2211                         pr_err("init_shared_code failed: %d\n", err);
2212                         goto out;
2213                 }
2214                 memcpy(adapter->netdev->dev_addr, adapter->hw.mac.addr,
2215                         adapter->netdev->addr_len);
2216         }
2217
2218         /* Enable dynamic interrupt throttling rates */
2219         adapter->eitr_param = 20000;
2220         adapter->itr_setting = 1;
2221
2222         /* set defaults for eitr in MegaBytes */
2223         adapter->eitr_low = 10;
2224         adapter->eitr_high = 20;
2225
2226         /* set default ring sizes */
2227         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2228         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2229
2230         /* enable rx csum by default */
2231         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2232
2233         set_bit(__IXGBEVF_DOWN, &adapter->state);
2234         return 0;
2235
2236 out:
2237         return err;
2238 }
2239
2240 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2241         {                                                       \
2242                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2243                 if (current_counter < last_counter)             \
2244                         counter += 0x100000000LL;               \
2245                 last_counter = current_counter;                 \
2246                 counter &= 0xFFFFFFFF00000000LL;                \
2247                 counter |= current_counter;                     \
2248         }
2249
2250 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2251         {                                                                \
2252                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2253                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2254                 u64 current_counter = (current_counter_msb << 32) |      \
2255                         current_counter_lsb;                             \
2256                 if (current_counter < last_counter)                      \
2257                         counter += 0x1000000000LL;                       \
2258                 last_counter = current_counter;                          \
2259                 counter &= 0xFFFFFFF000000000LL;                         \
2260                 counter |= current_counter;                              \
2261         }
2262 /**
2263  * ixgbevf_update_stats - Update the board statistics counters.
2264  * @adapter: board private structure
2265  **/
2266 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2267 {
2268         struct ixgbe_hw *hw = &adapter->hw;
2269
2270         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2271                                 adapter->stats.vfgprc);
2272         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2273                                 adapter->stats.vfgptc);
2274         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2275                                 adapter->stats.last_vfgorc,
2276                                 adapter->stats.vfgorc);
2277         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2278                                 adapter->stats.last_vfgotc,
2279                                 adapter->stats.vfgotc);
2280         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2281                                 adapter->stats.vfmprc);
2282 }
2283
2284 /**
2285  * ixgbevf_watchdog - Timer Call-back
2286  * @data: pointer to adapter cast into an unsigned long
2287  **/
2288 static void ixgbevf_watchdog(unsigned long data)
2289 {
2290         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2291         struct ixgbe_hw *hw = &adapter->hw;
2292         u64 eics = 0;
2293         int i;
2294
2295         /*
2296          * Do the watchdog outside of interrupt context due to the lovely
2297          * delays that some of the newer hardware requires
2298          */
2299
2300         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2301                 goto watchdog_short_circuit;
2302
2303         /* get one bit for every active tx/rx interrupt vector */
2304         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2305                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2306                 if (qv->rxr_count || qv->txr_count)
2307                         eics |= (1 << i);
2308         }
2309
2310         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2311
2312 watchdog_short_circuit:
2313         schedule_work(&adapter->watchdog_task);
2314 }
2315
2316 /**
2317  * ixgbevf_tx_timeout - Respond to a Tx Hang
2318  * @netdev: network interface device structure
2319  **/
2320 static void ixgbevf_tx_timeout(struct net_device *netdev)
2321 {
2322         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2323
2324         /* Do the reset outside of interrupt context */
2325         schedule_work(&adapter->reset_task);
2326 }
2327
2328 static void ixgbevf_reset_task(struct work_struct *work)
2329 {
2330         struct ixgbevf_adapter *adapter;
2331         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2332
2333         /* If we're already down or resetting, just bail */
2334         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2335             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2336                 return;
2337
2338         adapter->tx_timeout_count++;
2339
2340         ixgbevf_reinit_locked(adapter);
2341 }
2342
2343 /**
2344  * ixgbevf_watchdog_task - worker thread to bring link up
2345  * @work: pointer to work_struct containing our data
2346  **/
2347 static void ixgbevf_watchdog_task(struct work_struct *work)
2348 {
2349         struct ixgbevf_adapter *adapter = container_of(work,
2350                                                        struct ixgbevf_adapter,
2351                                                        watchdog_task);
2352         struct net_device *netdev = adapter->netdev;
2353         struct ixgbe_hw *hw = &adapter->hw;
2354         u32 link_speed = adapter->link_speed;
2355         bool link_up = adapter->link_up;
2356
2357         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2358
2359         /*
2360          * Always check the link on the watchdog because we have
2361          * no LSC interrupt
2362          */
2363         if (hw->mac.ops.check_link) {
2364                 if ((hw->mac.ops.check_link(hw, &link_speed,
2365                                             &link_up, false)) != 0) {
2366                         adapter->link_up = link_up;
2367                         adapter->link_speed = link_speed;
2368                         netif_carrier_off(netdev);
2369                         netif_tx_stop_all_queues(netdev);
2370                         schedule_work(&adapter->reset_task);
2371                         goto pf_has_reset;
2372                 }
2373         } else {
2374                 /* always assume link is up, if no check link
2375                  * function */
2376                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2377                 link_up = true;
2378         }
2379         adapter->link_up = link_up;
2380         adapter->link_speed = link_speed;
2381
2382         if (link_up) {
2383                 if (!netif_carrier_ok(netdev)) {
2384                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2385                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2386                                10 : 1);
2387                         netif_carrier_on(netdev);
2388                         netif_tx_wake_all_queues(netdev);
2389                 }
2390         } else {
2391                 adapter->link_up = false;
2392                 adapter->link_speed = 0;
2393                 if (netif_carrier_ok(netdev)) {
2394                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2395                         netif_carrier_off(netdev);
2396                         netif_tx_stop_all_queues(netdev);
2397                 }
2398         }
2399
2400         ixgbevf_update_stats(adapter);
2401
2402 pf_has_reset:
2403         /* Reset the timer */
2404         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2405                 mod_timer(&adapter->watchdog_timer,
2406                           round_jiffies(jiffies + (2 * HZ)));
2407
2408         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2409 }
2410
2411 /**
2412  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2413  * @adapter: board private structure
2414  * @tx_ring: Tx descriptor ring for a specific queue
2415  *
2416  * Free all transmit software resources
2417  **/
2418 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2419                                struct ixgbevf_ring *tx_ring)
2420 {
2421         struct pci_dev *pdev = adapter->pdev;
2422
2423         ixgbevf_clean_tx_ring(adapter, tx_ring);
2424
2425         vfree(tx_ring->tx_buffer_info);
2426         tx_ring->tx_buffer_info = NULL;
2427
2428         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2429                           tx_ring->dma);
2430
2431         tx_ring->desc = NULL;
2432 }
2433
2434 /**
2435  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2436  * @adapter: board private structure
2437  *
2438  * Free all transmit software resources
2439  **/
2440 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2441 {
2442         int i;
2443
2444         for (i = 0; i < adapter->num_tx_queues; i++)
2445                 if (adapter->tx_ring[i].desc)
2446                         ixgbevf_free_tx_resources(adapter,
2447                                                   &adapter->tx_ring[i]);
2448
2449 }
2450
2451 /**
2452  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2453  * @adapter: board private structure
2454  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2455  *
2456  * Return 0 on success, negative on failure
2457  **/
2458 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2459                                struct ixgbevf_ring *tx_ring)
2460 {
2461         struct pci_dev *pdev = adapter->pdev;
2462         int size;
2463
2464         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2465         tx_ring->tx_buffer_info = vzalloc(size);
2466         if (!tx_ring->tx_buffer_info)
2467                 goto err;
2468
2469         /* round up to nearest 4K */
2470         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2471         tx_ring->size = ALIGN(tx_ring->size, 4096);
2472
2473         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2474                                            &tx_ring->dma, GFP_KERNEL);
2475         if (!tx_ring->desc)
2476                 goto err;
2477
2478         tx_ring->next_to_use = 0;
2479         tx_ring->next_to_clean = 0;
2480         tx_ring->work_limit = tx_ring->count;
2481         return 0;
2482
2483 err:
2484         vfree(tx_ring->tx_buffer_info);
2485         tx_ring->tx_buffer_info = NULL;
2486         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2487                "descriptor ring\n");
2488         return -ENOMEM;
2489 }
2490
2491 /**
2492  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2493  * @adapter: board private structure
2494  *
2495  * If this function returns with an error, then it's possible one or
2496  * more of the rings is populated (while the rest are not).  It is the
2497  * callers duty to clean those orphaned rings.
2498  *
2499  * Return 0 on success, negative on failure
2500  **/
2501 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2502 {
2503         int i, err = 0;
2504
2505         for (i = 0; i < adapter->num_tx_queues; i++) {
2506                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2507                 if (!err)
2508                         continue;
2509                 hw_dbg(&adapter->hw,
2510                        "Allocation for Tx Queue %u failed\n", i);
2511                 break;
2512         }
2513
2514         return err;
2515 }
2516
2517 /**
2518  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2519  * @adapter: board private structure
2520  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2521  *
2522  * Returns 0 on success, negative on failure
2523  **/
2524 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2525                                struct ixgbevf_ring *rx_ring)
2526 {
2527         struct pci_dev *pdev = adapter->pdev;
2528         int size;
2529
2530         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2531         rx_ring->rx_buffer_info = vzalloc(size);
2532         if (!rx_ring->rx_buffer_info)
2533                 goto alloc_failed;
2534
2535         /* Round up to nearest 4K */
2536         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2537         rx_ring->size = ALIGN(rx_ring->size, 4096);
2538
2539         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2540                                            &rx_ring->dma, GFP_KERNEL);
2541
2542         if (!rx_ring->desc) {
2543                 hw_dbg(&adapter->hw,
2544                        "Unable to allocate memory for "
2545                        "the receive descriptor ring\n");
2546                 vfree(rx_ring->rx_buffer_info);
2547                 rx_ring->rx_buffer_info = NULL;
2548                 goto alloc_failed;
2549         }
2550
2551         rx_ring->next_to_clean = 0;
2552         rx_ring->next_to_use = 0;
2553
2554         return 0;
2555 alloc_failed:
2556         return -ENOMEM;
2557 }
2558
2559 /**
2560  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2561  * @adapter: board private structure
2562  *
2563  * If this function returns with an error, then it's possible one or
2564  * more of the rings is populated (while the rest are not).  It is the
2565  * callers duty to clean those orphaned rings.
2566  *
2567  * Return 0 on success, negative on failure
2568  **/
2569 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2570 {
2571         int i, err = 0;
2572
2573         for (i = 0; i < adapter->num_rx_queues; i++) {
2574                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2575                 if (!err)
2576                         continue;
2577                 hw_dbg(&adapter->hw,
2578                        "Allocation for Rx Queue %u failed\n", i);
2579                 break;
2580         }
2581         return err;
2582 }
2583
2584 /**
2585  * ixgbevf_free_rx_resources - Free Rx Resources
2586  * @adapter: board private structure
2587  * @rx_ring: ring to clean the resources from
2588  *
2589  * Free all receive software resources
2590  **/
2591 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2592                                struct ixgbevf_ring *rx_ring)
2593 {
2594         struct pci_dev *pdev = adapter->pdev;
2595
2596         ixgbevf_clean_rx_ring(adapter, rx_ring);
2597
2598         vfree(rx_ring->rx_buffer_info);
2599         rx_ring->rx_buffer_info = NULL;
2600
2601         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2602                           rx_ring->dma);
2603
2604         rx_ring->desc = NULL;
2605 }
2606
2607 /**
2608  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2609  * @adapter: board private structure
2610  *
2611  * Free all receive software resources
2612  **/
2613 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2614 {
2615         int i;
2616
2617         for (i = 0; i < adapter->num_rx_queues; i++)
2618                 if (adapter->rx_ring[i].desc)
2619                         ixgbevf_free_rx_resources(adapter,
2620                                                   &adapter->rx_ring[i]);
2621 }
2622
2623 /**
2624  * ixgbevf_open - Called when a network interface is made active
2625  * @netdev: network interface device structure
2626  *
2627  * Returns 0 on success, negative value on failure
2628  *
2629  * The open entry point is called when a network interface is made
2630  * active by the system (IFF_UP).  At this point all resources needed
2631  * for transmit and receive operations are allocated, the interrupt
2632  * handler is registered with the OS, the watchdog timer is started,
2633  * and the stack is notified that the interface is ready.
2634  **/
2635 static int ixgbevf_open(struct net_device *netdev)
2636 {
2637         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2638         struct ixgbe_hw *hw = &adapter->hw;
2639         int err;
2640
2641         /* disallow open during test */
2642         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2643                 return -EBUSY;
2644
2645         if (hw->adapter_stopped) {
2646                 ixgbevf_reset(adapter);
2647                 /* if adapter is still stopped then PF isn't up and
2648                  * the vf can't start. */
2649                 if (hw->adapter_stopped) {
2650                         err = IXGBE_ERR_MBX;
2651                         pr_err("Unable to start - perhaps the PF Driver isn't "
2652                                "up yet\n");
2653                         goto err_setup_reset;
2654                 }
2655         }
2656
2657         /* allocate transmit descriptors */
2658         err = ixgbevf_setup_all_tx_resources(adapter);
2659         if (err)
2660                 goto err_setup_tx;
2661
2662         /* allocate receive descriptors */
2663         err = ixgbevf_setup_all_rx_resources(adapter);
2664         if (err)
2665                 goto err_setup_rx;
2666
2667         ixgbevf_configure(adapter);
2668
2669         /*
2670          * Map the Tx/Rx rings to the vectors we were allotted.
2671          * if request_irq will be called in this function map_rings
2672          * must be called *before* up_complete
2673          */
2674         ixgbevf_map_rings_to_vectors(adapter);
2675
2676         err = ixgbevf_up_complete(adapter);
2677         if (err)
2678                 goto err_up;
2679
2680         /* clear any pending interrupts, may auto mask */
2681         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2682         err = ixgbevf_request_irq(adapter);
2683         if (err)
2684                 goto err_req_irq;
2685
2686         ixgbevf_irq_enable(adapter, true, true);
2687
2688         return 0;
2689
2690 err_req_irq:
2691         ixgbevf_down(adapter);
2692 err_up:
2693         ixgbevf_free_irq(adapter);
2694 err_setup_rx:
2695         ixgbevf_free_all_rx_resources(adapter);
2696 err_setup_tx:
2697         ixgbevf_free_all_tx_resources(adapter);
2698         ixgbevf_reset(adapter);
2699
2700 err_setup_reset:
2701
2702         return err;
2703 }
2704
2705 /**
2706  * ixgbevf_close - Disables a network interface
2707  * @netdev: network interface device structure
2708  *
2709  * Returns 0, this is not allowed to fail
2710  *
2711  * The close entry point is called when an interface is de-activated
2712  * by the OS.  The hardware is still under the drivers control, but
2713  * needs to be disabled.  A global MAC reset is issued to stop the
2714  * hardware, and all transmit and receive resources are freed.
2715  **/
2716 static int ixgbevf_close(struct net_device *netdev)
2717 {
2718         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2719
2720         ixgbevf_down(adapter);
2721         ixgbevf_free_irq(adapter);
2722
2723         ixgbevf_free_all_tx_resources(adapter);
2724         ixgbevf_free_all_rx_resources(adapter);
2725
2726         return 0;
2727 }
2728
2729 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2730                        struct ixgbevf_ring *tx_ring,
2731                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2732 {
2733         struct ixgbe_adv_tx_context_desc *context_desc;
2734         unsigned int i;
2735         int err;
2736         struct ixgbevf_tx_buffer *tx_buffer_info;
2737         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2738         u32 mss_l4len_idx, l4len;
2739
2740         if (skb_is_gso(skb)) {
2741                 if (skb_header_cloned(skb)) {
2742                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2743                         if (err)
2744                                 return err;
2745                 }
2746                 l4len = tcp_hdrlen(skb);
2747                 *hdr_len += l4len;
2748
2749                 if (skb->protocol == htons(ETH_P_IP)) {
2750                         struct iphdr *iph = ip_hdr(skb);
2751                         iph->tot_len = 0;
2752                         iph->check = 0;
2753                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2754                                                                  iph->daddr, 0,
2755                                                                  IPPROTO_TCP,
2756                                                                  0);
2757                         adapter->hw_tso_ctxt++;
2758                 } else if (skb_is_gso_v6(skb)) {
2759                         ipv6_hdr(skb)->payload_len = 0;
2760                         tcp_hdr(skb)->check =
2761                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2762                                              &ipv6_hdr(skb)->daddr,
2763                                              0, IPPROTO_TCP, 0);
2764                         adapter->hw_tso6_ctxt++;
2765                 }
2766
2767                 i = tx_ring->next_to_use;
2768
2769                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2770                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2771
2772                 /* VLAN MACLEN IPLEN */
2773                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2774                         vlan_macip_lens |=
2775                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2776                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2777                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2778                 *hdr_len += skb_network_offset(skb);
2779                 vlan_macip_lens |=
2780                         (skb_transport_header(skb) - skb_network_header(skb));
2781                 *hdr_len +=
2782                         (skb_transport_header(skb) - skb_network_header(skb));
2783                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2784                 context_desc->seqnum_seed = 0;
2785
2786                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2787                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2788                                     IXGBE_ADVTXD_DTYP_CTXT);
2789
2790                 if (skb->protocol == htons(ETH_P_IP))
2791                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2792                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2793                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2794
2795                 /* MSS L4LEN IDX */
2796                 mss_l4len_idx =
2797                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2798                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2799                 /* use index 1 for TSO */
2800                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2801                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2802
2803                 tx_buffer_info->time_stamp = jiffies;
2804                 tx_buffer_info->next_to_watch = i;
2805
2806                 i++;
2807                 if (i == tx_ring->count)
2808                         i = 0;
2809                 tx_ring->next_to_use = i;
2810
2811                 return true;
2812         }
2813
2814         return false;
2815 }
2816
2817 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2818                             struct ixgbevf_ring *tx_ring,
2819                             struct sk_buff *skb, u32 tx_flags)
2820 {
2821         struct ixgbe_adv_tx_context_desc *context_desc;
2822         unsigned int i;
2823         struct ixgbevf_tx_buffer *tx_buffer_info;
2824         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2825
2826         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2827             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2828                 i = tx_ring->next_to_use;
2829                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2830                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2831
2832                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2833                         vlan_macip_lens |= (tx_flags &
2834                                             IXGBE_TX_FLAGS_VLAN_MASK);
2835                 vlan_macip_lens |= (skb_network_offset(skb) <<
2836                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2837                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2838                         vlan_macip_lens |= (skb_transport_header(skb) -
2839                                             skb_network_header(skb));
2840
2841                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2842                 context_desc->seqnum_seed = 0;
2843
2844                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2845                                     IXGBE_ADVTXD_DTYP_CTXT);
2846
2847                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2848                         switch (skb->protocol) {
2849                         case __constant_htons(ETH_P_IP):
2850                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2851                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2852                                         type_tucmd_mlhl |=
2853                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2854                                 break;
2855                         case __constant_htons(ETH_P_IPV6):
2856                                 /* XXX what about other V6 headers?? */
2857                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2858                                         type_tucmd_mlhl |=
2859                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2860                                 break;
2861                         default:
2862                                 if (unlikely(net_ratelimit())) {
2863                                         pr_warn("partial checksum but "
2864                                                 "proto=%x!\n", skb->protocol);
2865                                 }
2866                                 break;
2867                         }
2868                 }
2869
2870                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2871                 /* use index zero for tx checksum offload */
2872                 context_desc->mss_l4len_idx = 0;
2873
2874                 tx_buffer_info->time_stamp = jiffies;
2875                 tx_buffer_info->next_to_watch = i;
2876
2877                 adapter->hw_csum_tx_good++;
2878                 i++;
2879                 if (i == tx_ring->count)
2880                         i = 0;
2881                 tx_ring->next_to_use = i;
2882
2883                 return true;
2884         }
2885
2886         return false;
2887 }
2888
2889 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2890                           struct ixgbevf_ring *tx_ring,
2891                           struct sk_buff *skb, u32 tx_flags,
2892                           unsigned int first)
2893 {
2894         struct pci_dev *pdev = adapter->pdev;
2895         struct ixgbevf_tx_buffer *tx_buffer_info;
2896         unsigned int len;
2897         unsigned int total = skb->len;
2898         unsigned int offset = 0, size;
2899         int count = 0;
2900         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2901         unsigned int f;
2902         int i;
2903
2904         i = tx_ring->next_to_use;
2905
2906         len = min(skb_headlen(skb), total);
2907         while (len) {
2908                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2909                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2910
2911                 tx_buffer_info->length = size;
2912                 tx_buffer_info->mapped_as_page = false;
2913                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2914                                                      skb->data + offset,
2915                                                      size, DMA_TO_DEVICE);
2916                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2917                         goto dma_error;
2918                 tx_buffer_info->time_stamp = jiffies;
2919                 tx_buffer_info->next_to_watch = i;
2920
2921                 len -= size;
2922                 total -= size;
2923                 offset += size;
2924                 count++;
2925                 i++;
2926                 if (i == tx_ring->count)
2927                         i = 0;
2928         }
2929
2930         for (f = 0; f < nr_frags; f++) {
2931                 const struct skb_frag_struct *frag;
2932
2933                 frag = &skb_shinfo(skb)->frags[f];
2934                 len = min((unsigned int)skb_frag_size(frag), total);
2935                 offset = 0;
2936
2937                 while (len) {
2938                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2939                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2940
2941                         tx_buffer_info->length = size;
2942                         tx_buffer_info->dma =
2943                                 skb_frag_dma_map(&adapter->pdev->dev, frag,
2944                                                  offset, size, DMA_TO_DEVICE);
2945                         tx_buffer_info->mapped_as_page = true;
2946                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2947                                 goto dma_error;
2948                         tx_buffer_info->time_stamp = jiffies;
2949                         tx_buffer_info->next_to_watch = i;
2950
2951                         len -= size;
2952                         total -= size;
2953                         offset += size;
2954                         count++;
2955                         i++;
2956                         if (i == tx_ring->count)
2957                                 i = 0;
2958                 }
2959                 if (total == 0)
2960                         break;
2961         }
2962
2963         if (i == 0)
2964                 i = tx_ring->count - 1;
2965         else
2966                 i = i - 1;
2967         tx_ring->tx_buffer_info[i].skb = skb;
2968         tx_ring->tx_buffer_info[first].next_to_watch = i;
2969
2970         return count;
2971
2972 dma_error:
2973         dev_err(&pdev->dev, "TX DMA map failed\n");
2974
2975         /* clear timestamp and dma mappings for failed tx_buffer_info map */
2976         tx_buffer_info->dma = 0;
2977         tx_buffer_info->time_stamp = 0;
2978         tx_buffer_info->next_to_watch = 0;
2979         count--;
2980
2981         /* clear timestamp and dma mappings for remaining portion of packet */
2982         while (count >= 0) {
2983                 count--;
2984                 i--;
2985                 if (i < 0)
2986                         i += tx_ring->count;
2987                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2988                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2989         }
2990
2991         return count;
2992 }
2993
2994 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2995                              struct ixgbevf_ring *tx_ring, int tx_flags,
2996                              int count, u32 paylen, u8 hdr_len)
2997 {
2998         union ixgbe_adv_tx_desc *tx_desc = NULL;
2999         struct ixgbevf_tx_buffer *tx_buffer_info;
3000         u32 olinfo_status = 0, cmd_type_len = 0;
3001         unsigned int i;
3002
3003         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3004
3005         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3006
3007         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3008
3009         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3010                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3011
3012         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3013                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3014
3015                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3016                         IXGBE_ADVTXD_POPTS_SHIFT;
3017
3018                 /* use index 1 context for tso */
3019                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3020                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3021                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3022                                 IXGBE_ADVTXD_POPTS_SHIFT;
3023
3024         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3025                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3026                         IXGBE_ADVTXD_POPTS_SHIFT;
3027
3028         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3029
3030         i = tx_ring->next_to_use;
3031         while (count--) {
3032                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3033                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3034                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3035                 tx_desc->read.cmd_type_len =
3036                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3037                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3038                 i++;
3039                 if (i == tx_ring->count)
3040                         i = 0;
3041         }
3042
3043         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3044
3045         /*
3046          * Force memory writes to complete before letting h/w
3047          * know there are new descriptors to fetch.  (Only
3048          * applicable for weak-ordered memory model archs,
3049          * such as IA-64).
3050          */
3051         wmb();
3052
3053         tx_ring->next_to_use = i;
3054         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3055 }
3056
3057 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3058                                    struct ixgbevf_ring *tx_ring, int size)
3059 {
3060         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3061
3062         netif_stop_subqueue(netdev, tx_ring->queue_index);
3063         /* Herbert's original patch had:
3064          *  smp_mb__after_netif_stop_queue();
3065          * but since that doesn't exist yet, just open code it. */
3066         smp_mb();
3067
3068         /* We need to check again in a case another CPU has just
3069          * made room available. */
3070         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3071                 return -EBUSY;
3072
3073         /* A reprieve! - use start_queue because it doesn't call schedule */
3074         netif_start_subqueue(netdev, tx_ring->queue_index);
3075         ++adapter->restart_queue;
3076         return 0;
3077 }
3078
3079 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3080                                  struct ixgbevf_ring *tx_ring, int size)
3081 {
3082         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3083                 return 0;
3084         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3085 }
3086
3087 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3088 {
3089         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3090         struct ixgbevf_ring *tx_ring;
3091         unsigned int first;
3092         unsigned int tx_flags = 0;
3093         u8 hdr_len = 0;
3094         int r_idx = 0, tso;
3095         int count = 0;
3096
3097         unsigned int f;
3098
3099         tx_ring = &adapter->tx_ring[r_idx];
3100
3101         if (vlan_tx_tag_present(skb)) {
3102                 tx_flags |= vlan_tx_tag_get(skb);
3103                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3104                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3105         }
3106
3107         /* four things can cause us to need a context descriptor */
3108         if (skb_is_gso(skb) ||
3109             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3110             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3111                 count++;
3112
3113         count += TXD_USE_COUNT(skb_headlen(skb));
3114         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3115                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
3116
3117         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3118                 adapter->tx_busy++;
3119                 return NETDEV_TX_BUSY;
3120         }
3121
3122         first = tx_ring->next_to_use;
3123
3124         if (skb->protocol == htons(ETH_P_IP))
3125                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3126         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3127         if (tso < 0) {
3128                 dev_kfree_skb_any(skb);
3129                 return NETDEV_TX_OK;
3130         }
3131
3132         if (tso)
3133                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3134         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3135                  (skb->ip_summed == CHECKSUM_PARTIAL))
3136                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3137
3138         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3139                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3140                          skb->len, hdr_len);
3141
3142         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3143
3144         return NETDEV_TX_OK;
3145 }
3146
3147 /**
3148  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3149  * @netdev: network interface device structure
3150  * @p: pointer to an address structure
3151  *
3152  * Returns 0 on success, negative on failure
3153  **/
3154 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3155 {
3156         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3157         struct ixgbe_hw *hw = &adapter->hw;
3158         struct sockaddr *addr = p;
3159
3160         if (!is_valid_ether_addr(addr->sa_data))
3161                 return -EADDRNOTAVAIL;
3162
3163         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3164         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3165
3166         if (hw->mac.ops.set_rar)
3167                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3168
3169         return 0;
3170 }
3171
3172 /**
3173  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3174  * @netdev: network interface device structure
3175  * @new_mtu: new value for maximum frame size
3176  *
3177  * Returns 0 on success, negative on failure
3178  **/
3179 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3180 {
3181         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3182         struct ixgbe_hw *hw = &adapter->hw;
3183         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3184         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3185         u32 msg[2];
3186
3187         if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3188                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3189
3190         /* MTU < 68 is an error and causes problems on some kernels */
3191         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3192                 return -EINVAL;
3193
3194         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3195                netdev->mtu, new_mtu);
3196         /* must set new MTU before calling down or up */
3197         netdev->mtu = new_mtu;
3198
3199         msg[0] = IXGBE_VF_SET_LPE;
3200         msg[1] = max_frame;
3201         hw->mbx.ops.write_posted(hw, msg, 2);
3202
3203         if (netif_running(netdev))
3204                 ixgbevf_reinit_locked(adapter);
3205
3206         return 0;
3207 }
3208
3209 static void ixgbevf_shutdown(struct pci_dev *pdev)
3210 {
3211         struct net_device *netdev = pci_get_drvdata(pdev);
3212         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3213
3214         netif_device_detach(netdev);
3215
3216         if (netif_running(netdev)) {
3217                 ixgbevf_down(adapter);
3218                 ixgbevf_free_irq(adapter);
3219                 ixgbevf_free_all_tx_resources(adapter);
3220                 ixgbevf_free_all_rx_resources(adapter);
3221         }
3222
3223 #ifdef CONFIG_PM
3224         pci_save_state(pdev);
3225 #endif
3226
3227         pci_disable_device(pdev);
3228 }
3229
3230 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3231                                                 struct rtnl_link_stats64 *stats)
3232 {
3233         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3234         unsigned int start;
3235         u64 bytes, packets;
3236         const struct ixgbevf_ring *ring;
3237         int i;
3238
3239         ixgbevf_update_stats(adapter);
3240
3241         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3242
3243         for (i = 0; i < adapter->num_rx_queues; i++) {
3244                 ring = &adapter->rx_ring[i];
3245                 do {
3246                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3247                         bytes = ring->total_bytes;
3248                         packets = ring->total_packets;
3249                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3250                 stats->rx_bytes += bytes;
3251                 stats->rx_packets += packets;
3252         }
3253
3254         for (i = 0; i < adapter->num_tx_queues; i++) {
3255                 ring = &adapter->tx_ring[i];
3256                 do {
3257                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3258                         bytes = ring->total_bytes;
3259                         packets = ring->total_packets;
3260                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3261                 stats->tx_bytes += bytes;
3262                 stats->tx_packets += packets;
3263         }
3264
3265         return stats;
3266 }
3267
3268 static int ixgbevf_set_features(struct net_device *netdev,
3269         netdev_features_t features)
3270 {
3271         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3272
3273         if (features & NETIF_F_RXCSUM)
3274                 adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3275         else
3276                 adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3277
3278         return 0;
3279 }
3280
3281 static const struct net_device_ops ixgbe_netdev_ops = {
3282         .ndo_open               = ixgbevf_open,
3283         .ndo_stop               = ixgbevf_close,
3284         .ndo_start_xmit         = ixgbevf_xmit_frame,
3285         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3286         .ndo_get_stats64        = ixgbevf_get_stats,
3287         .ndo_validate_addr      = eth_validate_addr,
3288         .ndo_set_mac_address    = ixgbevf_set_mac,
3289         .ndo_change_mtu         = ixgbevf_change_mtu,
3290         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3291         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3292         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3293         .ndo_set_features       = ixgbevf_set_features,
3294 };
3295
3296 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3297 {
3298         dev->netdev_ops = &ixgbe_netdev_ops;
3299         ixgbevf_set_ethtool_ops(dev);
3300         dev->watchdog_timeo = 5 * HZ;
3301 }
3302
3303 /**
3304  * ixgbevf_probe - Device Initialization Routine
3305  * @pdev: PCI device information struct
3306  * @ent: entry in ixgbevf_pci_tbl
3307  *
3308  * Returns 0 on success, negative on failure
3309  *
3310  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3311  * The OS initialization, configuring of the adapter private structure,
3312  * and a hardware reset occur.
3313  **/
3314 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3315                                    const struct pci_device_id *ent)
3316 {
3317         struct net_device *netdev;
3318         struct ixgbevf_adapter *adapter = NULL;
3319         struct ixgbe_hw *hw = NULL;
3320         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3321         static int cards_found;
3322         int err, pci_using_dac;
3323
3324         err = pci_enable_device(pdev);
3325         if (err)
3326                 return err;
3327
3328         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3329             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3330                 pci_using_dac = 1;
3331         } else {
3332                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3333                 if (err) {
3334                         err = dma_set_coherent_mask(&pdev->dev,
3335                                                     DMA_BIT_MASK(32));
3336                         if (err) {
3337                                 dev_err(&pdev->dev, "No usable DMA "
3338                                         "configuration, aborting\n");
3339                                 goto err_dma;
3340                         }
3341                 }
3342                 pci_using_dac = 0;
3343         }
3344
3345         err = pci_request_regions(pdev, ixgbevf_driver_name);
3346         if (err) {
3347                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3348                 goto err_pci_reg;
3349         }
3350
3351         pci_set_master(pdev);
3352
3353 #ifdef HAVE_TX_MQ
3354         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3355                                    MAX_TX_QUEUES);
3356 #else
3357         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3358 #endif
3359         if (!netdev) {
3360                 err = -ENOMEM;
3361                 goto err_alloc_etherdev;
3362         }
3363
3364         SET_NETDEV_DEV(netdev, &pdev->dev);
3365
3366         pci_set_drvdata(pdev, netdev);
3367         adapter = netdev_priv(netdev);
3368
3369         adapter->netdev = netdev;
3370         adapter->pdev = pdev;
3371         hw = &adapter->hw;
3372         hw->back = adapter;
3373         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3374
3375         /*
3376          * call save state here in standalone driver because it relies on
3377          * adapter struct to exist, and needs to call netdev_priv
3378          */
3379         pci_save_state(pdev);
3380
3381         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3382                               pci_resource_len(pdev, 0));
3383         if (!hw->hw_addr) {
3384                 err = -EIO;
3385                 goto err_ioremap;
3386         }
3387
3388         ixgbevf_assign_netdev_ops(netdev);
3389
3390         adapter->bd_number = cards_found;
3391
3392         /* Setup hw api */
3393         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3394         hw->mac.type  = ii->mac;
3395
3396         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3397                sizeof(struct ixgbe_mbx_operations));
3398
3399         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3400         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3401         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3402
3403         /* setup the private structure */
3404         err = ixgbevf_sw_init(adapter);
3405         if (err)
3406                 goto err_sw_init;
3407
3408         /* The HW MAC address was set and/or determined in sw_init */
3409         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3410
3411         if (!is_valid_ether_addr(netdev->dev_addr)) {
3412                 pr_err("invalid MAC address\n");
3413                 err = -EIO;
3414                 goto err_sw_init;
3415         }
3416
3417         netdev->hw_features = NETIF_F_SG |
3418                            NETIF_F_IP_CSUM |
3419                            NETIF_F_IPV6_CSUM |
3420                            NETIF_F_TSO |
3421                            NETIF_F_TSO6 |
3422                            NETIF_F_RXCSUM;
3423
3424         netdev->features = netdev->hw_features |
3425                            NETIF_F_HW_VLAN_TX |
3426                            NETIF_F_HW_VLAN_RX |
3427                            NETIF_F_HW_VLAN_FILTER;
3428
3429         netdev->vlan_features |= NETIF_F_TSO;
3430         netdev->vlan_features |= NETIF_F_TSO6;
3431         netdev->vlan_features |= NETIF_F_IP_CSUM;
3432         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3433         netdev->vlan_features |= NETIF_F_SG;
3434
3435         if (pci_using_dac)
3436                 netdev->features |= NETIF_F_HIGHDMA;
3437
3438         netdev->priv_flags |= IFF_UNICAST_FLT;
3439
3440         init_timer(&adapter->watchdog_timer);
3441         adapter->watchdog_timer.function = ixgbevf_watchdog;
3442         adapter->watchdog_timer.data = (unsigned long)adapter;
3443
3444         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3445         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3446
3447         err = ixgbevf_init_interrupt_scheme(adapter);
3448         if (err)
3449                 goto err_sw_init;
3450
3451         /* pick up the PCI bus settings for reporting later */
3452         if (hw->mac.ops.get_bus_info)
3453                 hw->mac.ops.get_bus_info(hw);
3454
3455         strcpy(netdev->name, "eth%d");
3456
3457         err = register_netdev(netdev);
3458         if (err)
3459                 goto err_register;
3460
3461         adapter->netdev_registered = true;
3462
3463         netif_carrier_off(netdev);
3464
3465         ixgbevf_init_last_counter_stats(adapter);
3466
3467         /* print the MAC address */
3468         hw_dbg(hw, "%pM\n", netdev->dev_addr);
3469
3470         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3471
3472         hw_dbg(hw, "LRO is disabled\n");
3473
3474         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3475         cards_found++;
3476         return 0;
3477
3478 err_register:
3479 err_sw_init:
3480         ixgbevf_reset_interrupt_capability(adapter);
3481         iounmap(hw->hw_addr);
3482 err_ioremap:
3483         free_netdev(netdev);
3484 err_alloc_etherdev:
3485         pci_release_regions(pdev);
3486 err_pci_reg:
3487 err_dma:
3488         pci_disable_device(pdev);
3489         return err;
3490 }
3491
3492 /**
3493  * ixgbevf_remove - Device Removal Routine
3494  * @pdev: PCI device information struct
3495  *
3496  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3497  * that it should release a PCI device.  The could be caused by a
3498  * Hot-Plug event, or because the driver is going to be removed from
3499  * memory.
3500  **/
3501 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3502 {
3503         struct net_device *netdev = pci_get_drvdata(pdev);
3504         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3505
3506         set_bit(__IXGBEVF_DOWN, &adapter->state);
3507
3508         del_timer_sync(&adapter->watchdog_timer);
3509
3510         cancel_work_sync(&adapter->reset_task);
3511         cancel_work_sync(&adapter->watchdog_task);
3512
3513         if (adapter->netdev_registered) {
3514                 unregister_netdev(netdev);
3515                 adapter->netdev_registered = false;
3516         }
3517
3518         ixgbevf_reset_interrupt_capability(adapter);
3519
3520         iounmap(adapter->hw.hw_addr);
3521         pci_release_regions(pdev);
3522
3523         hw_dbg(&adapter->hw, "Remove complete\n");
3524
3525         kfree(adapter->tx_ring);
3526         kfree(adapter->rx_ring);
3527
3528         free_netdev(netdev);
3529
3530         pci_disable_device(pdev);
3531 }
3532
3533 static struct pci_driver ixgbevf_driver = {
3534         .name     = ixgbevf_driver_name,
3535         .id_table = ixgbevf_pci_tbl,
3536         .probe    = ixgbevf_probe,
3537         .remove   = __devexit_p(ixgbevf_remove),
3538         .shutdown = ixgbevf_shutdown,
3539 };
3540
3541 /**
3542  * ixgbevf_init_module - Driver Registration Routine
3543  *
3544  * ixgbevf_init_module is the first routine called when the driver is
3545  * loaded. All it does is register with the PCI subsystem.
3546  **/
3547 static int __init ixgbevf_init_module(void)
3548 {
3549         int ret;
3550         pr_info("%s - version %s\n", ixgbevf_driver_string,
3551                 ixgbevf_driver_version);
3552
3553         pr_info("%s\n", ixgbevf_copyright);
3554
3555         ret = pci_register_driver(&ixgbevf_driver);
3556         return ret;
3557 }
3558
3559 module_init(ixgbevf_init_module);
3560
3561 /**
3562  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3563  *
3564  * ixgbevf_exit_module is called just before the driver is removed
3565  * from memory.
3566  **/
3567 static void __exit ixgbevf_exit_module(void)
3568 {
3569         pci_unregister_driver(&ixgbevf_driver);
3570 }
3571
3572 #ifdef DEBUG
3573 /**
3574  * ixgbevf_get_hw_dev_name - return device name string
3575  * used by hardware layer to print debugging information
3576  **/
3577 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3578 {
3579         struct ixgbevf_adapter *adapter = hw->back;
3580         return adapter->netdev->name;
3581 }
3582
3583 #endif
3584 module_exit(ixgbevf_exit_module);
3585
3586 /* ixgbevf_main.c */