Merge branch '3.4-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54
55 #include "e1000.h"
56
57 #define DRV_EXTRAVERSION "-k"
58
59 #define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69
70 static const struct e1000_info *e1000_info_tbl[] = {
71         [board_82571]           = &e1000_82571_info,
72         [board_82572]           = &e1000_82572_info,
73         [board_82573]           = &e1000_82573_info,
74         [board_82574]           = &e1000_82574_info,
75         [board_82583]           = &e1000_82583_info,
76         [board_80003es2lan]     = &e1000_es2_info,
77         [board_ich8lan]         = &e1000_ich8_info,
78         [board_ich9lan]         = &e1000_ich9_info,
79         [board_ich10lan]        = &e1000_ich10_info,
80         [board_pchlan]          = &e1000_pch_info,
81         [board_pch2lan]         = &e1000_pch2_info,
82 };
83
84 struct e1000_reg_info {
85         u32 ofs;
86         char *name;
87 };
88
89 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
90 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
91 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
92 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
93 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
94
95 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
96 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
97 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
98 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
99 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
100
101 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
102
103         /* General Registers */
104         {E1000_CTRL, "CTRL"},
105         {E1000_STATUS, "STATUS"},
106         {E1000_CTRL_EXT, "CTRL_EXT"},
107
108         /* Interrupt Registers */
109         {E1000_ICR, "ICR"},
110
111         /* Rx Registers */
112         {E1000_RCTL, "RCTL"},
113         {E1000_RDLEN, "RDLEN"},
114         {E1000_RDH, "RDH"},
115         {E1000_RDT, "RDT"},
116         {E1000_RDTR, "RDTR"},
117         {E1000_RXDCTL(0), "RXDCTL"},
118         {E1000_ERT, "ERT"},
119         {E1000_RDBAL, "RDBAL"},
120         {E1000_RDBAH, "RDBAH"},
121         {E1000_RDFH, "RDFH"},
122         {E1000_RDFT, "RDFT"},
123         {E1000_RDFHS, "RDFHS"},
124         {E1000_RDFTS, "RDFTS"},
125         {E1000_RDFPC, "RDFPC"},
126
127         /* Tx Registers */
128         {E1000_TCTL, "TCTL"},
129         {E1000_TDBAL, "TDBAL"},
130         {E1000_TDBAH, "TDBAH"},
131         {E1000_TDLEN, "TDLEN"},
132         {E1000_TDH, "TDH"},
133         {E1000_TDT, "TDT"},
134         {E1000_TIDV, "TIDV"},
135         {E1000_TXDCTL(0), "TXDCTL"},
136         {E1000_TADV, "TADV"},
137         {E1000_TARC(0), "TARC"},
138         {E1000_TDFH, "TDFH"},
139         {E1000_TDFT, "TDFT"},
140         {E1000_TDFHS, "TDFHS"},
141         {E1000_TDFTS, "TDFTS"},
142         {E1000_TDFPC, "TDFPC"},
143
144         /* List Terminator */
145         {0, NULL}
146 };
147
148 /*
149  * e1000_regdump - register printout routine
150  */
151 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
152 {
153         int n = 0;
154         char rname[16];
155         u32 regs[8];
156
157         switch (reginfo->ofs) {
158         case E1000_RXDCTL(0):
159                 for (n = 0; n < 2; n++)
160                         regs[n] = __er32(hw, E1000_RXDCTL(n));
161                 break;
162         case E1000_TXDCTL(0):
163                 for (n = 0; n < 2; n++)
164                         regs[n] = __er32(hw, E1000_TXDCTL(n));
165                 break;
166         case E1000_TARC(0):
167                 for (n = 0; n < 2; n++)
168                         regs[n] = __er32(hw, E1000_TARC(n));
169                 break;
170         default:
171                 pr_info("%-15s %08x\n",
172                         reginfo->name, __er32(hw, reginfo->ofs));
173                 return;
174         }
175
176         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
177         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
178 }
179
180 /*
181  * e1000e_dump - Print registers, Tx-ring and Rx-ring
182  */
183 static void e1000e_dump(struct e1000_adapter *adapter)
184 {
185         struct net_device *netdev = adapter->netdev;
186         struct e1000_hw *hw = &adapter->hw;
187         struct e1000_reg_info *reginfo;
188         struct e1000_ring *tx_ring = adapter->tx_ring;
189         struct e1000_tx_desc *tx_desc;
190         struct my_u0 {
191                 __le64 a;
192                 __le64 b;
193         } *u0;
194         struct e1000_buffer *buffer_info;
195         struct e1000_ring *rx_ring = adapter->rx_ring;
196         union e1000_rx_desc_packet_split *rx_desc_ps;
197         union e1000_rx_desc_extended *rx_desc;
198         struct my_u1 {
199                 __le64 a;
200                 __le64 b;
201                 __le64 c;
202                 __le64 d;
203         } *u1;
204         u32 staterr;
205         int i = 0;
206
207         if (!netif_msg_hw(adapter))
208                 return;
209
210         /* Print netdevice Info */
211         if (netdev) {
212                 dev_info(&adapter->pdev->dev, "Net device Info\n");
213                 pr_info("Device Name     state            trans_start      last_rx\n");
214                 pr_info("%-15s %016lX %016lX %016lX\n",
215                         netdev->name, netdev->state, netdev->trans_start,
216                         netdev->last_rx);
217         }
218
219         /* Print Registers */
220         dev_info(&adapter->pdev->dev, "Register Dump\n");
221         pr_info(" Register Name   Value\n");
222         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
223              reginfo->name; reginfo++) {
224                 e1000_regdump(hw, reginfo);
225         }
226
227         /* Print Tx Ring Summary */
228         if (!netdev || !netif_running(netdev))
229                 return;
230
231         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
232         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
233         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
234         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
235                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
236                 (unsigned long long)buffer_info->dma,
237                 buffer_info->length,
238                 buffer_info->next_to_watch,
239                 (unsigned long long)buffer_info->time_stamp);
240
241         /* Print Tx Ring */
242         if (!netif_msg_tx_done(adapter))
243                 goto rx_ring_summary;
244
245         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
246
247         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
248          *
249          * Legacy Transmit Descriptor
250          *   +--------------------------------------------------------------+
251          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
252          *   +--------------------------------------------------------------+
253          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
254          *   +--------------------------------------------------------------+
255          *   63       48 47        36 35    32 31     24 23    16 15        0
256          *
257          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
258          *   63      48 47    40 39       32 31             16 15    8 7      0
259          *   +----------------------------------------------------------------+
260          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
261          *   +----------------------------------------------------------------+
262          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
263          *   +----------------------------------------------------------------+
264          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
265          *
266          * Extended Data Descriptor (DTYP=0x1)
267          *   +----------------------------------------------------------------+
268          * 0 |                     Buffer Address [63:0]                      |
269          *   +----------------------------------------------------------------+
270          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
271          *   +----------------------------------------------------------------+
272          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
273          */
274         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
275         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
276         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
277         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
278                 const char *next_desc;
279                 tx_desc = E1000_TX_DESC(*tx_ring, i);
280                 buffer_info = &tx_ring->buffer_info[i];
281                 u0 = (struct my_u0 *)tx_desc;
282                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
283                         next_desc = " NTC/U";
284                 else if (i == tx_ring->next_to_use)
285                         next_desc = " NTU";
286                 else if (i == tx_ring->next_to_clean)
287                         next_desc = " NTC";
288                 else
289                         next_desc = "";
290                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
291                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
292                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
293                         i,
294                         (unsigned long long)le64_to_cpu(u0->a),
295                         (unsigned long long)le64_to_cpu(u0->b),
296                         (unsigned long long)buffer_info->dma,
297                         buffer_info->length, buffer_info->next_to_watch,
298                         (unsigned long long)buffer_info->time_stamp,
299                         buffer_info->skb, next_desc);
300
301                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
302                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
303                                        16, 1, phys_to_virt(buffer_info->dma),
304                                        buffer_info->length, true);
305         }
306
307         /* Print Rx Ring Summary */
308 rx_ring_summary:
309         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
310         pr_info("Queue [NTU] [NTC]\n");
311         pr_info(" %5d %5X %5X\n",
312                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
313
314         /* Print Rx Ring */
315         if (!netif_msg_rx_status(adapter))
316                 return;
317
318         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
319         switch (adapter->rx_ps_pages) {
320         case 1:
321         case 2:
322         case 3:
323                 /* [Extended] Packet Split Receive Descriptor Format
324                  *
325                  *    +-----------------------------------------------------+
326                  *  0 |                Buffer Address 0 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  *  8 |                Buffer Address 1 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  * 16 |                Buffer Address 2 [63:0]              |
331                  *    +-----------------------------------------------------+
332                  * 24 |                Buffer Address 3 [63:0]              |
333                  *    +-----------------------------------------------------+
334                  */
335                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
336                 /* [Extended] Receive Descriptor (Write-Back) Format
337                  *
338                  *   63       48 47    32 31     13 12    8 7    4 3        0
339                  *   +------------------------------------------------------+
340                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
341                  *   | Checksum | Ident  |         | Queue |      |  Type   |
342                  *   +------------------------------------------------------+
343                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
344                  *   +------------------------------------------------------+
345                  *   63       48 47    32 31            20 19               0
346                  */
347                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
348                 for (i = 0; i < rx_ring->count; i++) {
349                         const char *next_desc;
350                         buffer_info = &rx_ring->buffer_info[i];
351                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
352                         u1 = (struct my_u1 *)rx_desc_ps;
353                         staterr =
354                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
355
356                         if (i == rx_ring->next_to_use)
357                                 next_desc = " NTU";
358                         else if (i == rx_ring->next_to_clean)
359                                 next_desc = " NTC";
360                         else
361                                 next_desc = "";
362
363                         if (staterr & E1000_RXD_STAT_DD) {
364                                 /* Descriptor Done */
365                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
366                                         "RWB", i,
367                                         (unsigned long long)le64_to_cpu(u1->a),
368                                         (unsigned long long)le64_to_cpu(u1->b),
369                                         (unsigned long long)le64_to_cpu(u1->c),
370                                         (unsigned long long)le64_to_cpu(u1->d),
371                                         buffer_info->skb, next_desc);
372                         } else {
373                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
374                                         "R  ", i,
375                                         (unsigned long long)le64_to_cpu(u1->a),
376                                         (unsigned long long)le64_to_cpu(u1->b),
377                                         (unsigned long long)le64_to_cpu(u1->c),
378                                         (unsigned long long)le64_to_cpu(u1->d),
379                                         (unsigned long long)buffer_info->dma,
380                                         buffer_info->skb, next_desc);
381
382                                 if (netif_msg_pktdata(adapter))
383                                         print_hex_dump(KERN_INFO, "",
384                                                 DUMP_PREFIX_ADDRESS, 16, 1,
385                                                 phys_to_virt(buffer_info->dma),
386                                                 adapter->rx_ps_bsize0, true);
387                         }
388                 }
389                 break;
390         default:
391         case 0:
392                 /* Extended Receive Descriptor (Read) Format
393                  *
394                  *   +-----------------------------------------------------+
395                  * 0 |                Buffer Address [63:0]                |
396                  *   +-----------------------------------------------------+
397                  * 8 |                      Reserved                       |
398                  *   +-----------------------------------------------------+
399                  */
400                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
401                 /* Extended Receive Descriptor (Write-Back) Format
402                  *
403                  *   63       48 47    32 31    24 23            4 3        0
404                  *   +------------------------------------------------------+
405                  *   |     RSS Hash      |        |               |         |
406                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
407                  *   | Packet   | IP     |        |               |  Type   |
408                  *   | Checksum | Ident  |        |               |         |
409                  *   +------------------------------------------------------+
410                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
411                  *   +------------------------------------------------------+
412                  *   63       48 47    32 31            20 19               0
413                  */
414                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
415
416                 for (i = 0; i < rx_ring->count; i++) {
417                         const char *next_desc;
418
419                         buffer_info = &rx_ring->buffer_info[i];
420                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
421                         u1 = (struct my_u1 *)rx_desc;
422                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
423
424                         if (i == rx_ring->next_to_use)
425                                 next_desc = " NTU";
426                         else if (i == rx_ring->next_to_clean)
427                                 next_desc = " NTC";
428                         else
429                                 next_desc = "";
430
431                         if (staterr & E1000_RXD_STAT_DD) {
432                                 /* Descriptor Done */
433                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
434                                         "RWB", i,
435                                         (unsigned long long)le64_to_cpu(u1->a),
436                                         (unsigned long long)le64_to_cpu(u1->b),
437                                         buffer_info->skb, next_desc);
438                         } else {
439                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
440                                         "R  ", i,
441                                         (unsigned long long)le64_to_cpu(u1->a),
442                                         (unsigned long long)le64_to_cpu(u1->b),
443                                         (unsigned long long)buffer_info->dma,
444                                         buffer_info->skb, next_desc);
445
446                                 if (netif_msg_pktdata(adapter))
447                                         print_hex_dump(KERN_INFO, "",
448                                                        DUMP_PREFIX_ADDRESS, 16,
449                                                        1,
450                                                        phys_to_virt
451                                                        (buffer_info->dma),
452                                                        adapter->rx_buffer_len,
453                                                        true);
454                         }
455                 }
456         }
457 }
458
459 /**
460  * e1000_desc_unused - calculate if we have unused descriptors
461  **/
462 static int e1000_desc_unused(struct e1000_ring *ring)
463 {
464         if (ring->next_to_clean > ring->next_to_use)
465                 return ring->next_to_clean - ring->next_to_use - 1;
466
467         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
468 }
469
470 /**
471  * e1000_receive_skb - helper function to handle Rx indications
472  * @adapter: board private structure
473  * @status: descriptor status field as written by hardware
474  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
475  * @skb: pointer to sk_buff to be indicated to stack
476  **/
477 static void e1000_receive_skb(struct e1000_adapter *adapter,
478                               struct net_device *netdev, struct sk_buff *skb,
479                               u8 status, __le16 vlan)
480 {
481         u16 tag = le16_to_cpu(vlan);
482         skb->protocol = eth_type_trans(skb, netdev);
483
484         if (status & E1000_RXD_STAT_VP)
485                 __vlan_hwaccel_put_tag(skb, tag);
486
487         napi_gro_receive(&adapter->napi, skb);
488 }
489
490 /**
491  * e1000_rx_checksum - Receive Checksum Offload
492  * @adapter: board private structure
493  * @status_err: receive descriptor status and error fields
494  * @csum: receive descriptor csum field
495  * @sk_buff: socket buffer with received data
496  **/
497 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
498                               __le16 csum, struct sk_buff *skb)
499 {
500         u16 status = (u16)status_err;
501         u8 errors = (u8)(status_err >> 24);
502
503         skb_checksum_none_assert(skb);
504
505         /* Rx checksum disabled */
506         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
507                 return;
508
509         /* Ignore Checksum bit is set */
510         if (status & E1000_RXD_STAT_IXSM)
511                 return;
512
513         /* TCP/UDP checksum error bit is set */
514         if (errors & E1000_RXD_ERR_TCPE) {
515                 /* let the stack verify checksum errors */
516                 adapter->hw_csum_err++;
517                 return;
518         }
519
520         /* TCP/UDP Checksum has not been calculated */
521         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
522                 return;
523
524         /* It must be a TCP or UDP packet with a valid checksum */
525         if (status & E1000_RXD_STAT_TCPCS) {
526                 /* TCP checksum is good */
527                 skb->ip_summed = CHECKSUM_UNNECESSARY;
528         } else {
529                 /*
530                  * IP fragment with UDP payload
531                  * Hardware complements the payload checksum, so we undo it
532                  * and then put the value in host order for further stack use.
533                  */
534                 __sum16 sum = (__force __sum16)swab16((__force u16)csum);
535                 skb->csum = csum_unfold(~sum);
536                 skb->ip_summed = CHECKSUM_COMPLETE;
537         }
538         adapter->hw_csum_good++;
539 }
540
541 /**
542  * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
543  * @hw: pointer to the HW structure
544  * @tail: address of tail descriptor register
545  * @i: value to write to tail descriptor register
546  *
547  * When updating the tail register, the ME could be accessing Host CSR
548  * registers at the same time.  Normally, this is handled in h/w by an
549  * arbiter but on some parts there is a bug that acknowledges Host accesses
550  * later than it should which could result in the descriptor register to
551  * have an incorrect value.  Workaround this by checking the FWSM register
552  * which has bit 24 set while ME is accessing Host CSR registers, wait
553  * if it is set and try again a number of times.
554  **/
555 static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
556                                         unsigned int i)
557 {
558         unsigned int j = 0;
559
560         while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
561                (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
562                 udelay(50);
563
564         writel(i, tail);
565
566         if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
567                 return E1000_ERR_SWFW_SYNC;
568
569         return 0;
570 }
571
572 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
573 {
574         struct e1000_adapter *adapter = rx_ring->adapter;
575         struct e1000_hw *hw = &adapter->hw;
576
577         if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
578                 u32 rctl = er32(RCTL);
579                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
580                 e_err("ME firmware caused invalid RDT - resetting\n");
581                 schedule_work(&adapter->reset_task);
582         }
583 }
584
585 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
586 {
587         struct e1000_adapter *adapter = tx_ring->adapter;
588         struct e1000_hw *hw = &adapter->hw;
589
590         if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
591                 u32 tctl = er32(TCTL);
592                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
593                 e_err("ME firmware caused invalid TDT - resetting\n");
594                 schedule_work(&adapter->reset_task);
595         }
596 }
597
598 /**
599  * e1000_alloc_rx_buffers - Replace used receive buffers
600  * @rx_ring: Rx descriptor ring
601  **/
602 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
603                                    int cleaned_count, gfp_t gfp)
604 {
605         struct e1000_adapter *adapter = rx_ring->adapter;
606         struct net_device *netdev = adapter->netdev;
607         struct pci_dev *pdev = adapter->pdev;
608         union e1000_rx_desc_extended *rx_desc;
609         struct e1000_buffer *buffer_info;
610         struct sk_buff *skb;
611         unsigned int i;
612         unsigned int bufsz = adapter->rx_buffer_len;
613
614         i = rx_ring->next_to_use;
615         buffer_info = &rx_ring->buffer_info[i];
616
617         while (cleaned_count--) {
618                 skb = buffer_info->skb;
619                 if (skb) {
620                         skb_trim(skb, 0);
621                         goto map_skb;
622                 }
623
624                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
625                 if (!skb) {
626                         /* Better luck next round */
627                         adapter->alloc_rx_buff_failed++;
628                         break;
629                 }
630
631                 buffer_info->skb = skb;
632 map_skb:
633                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
634                                                   adapter->rx_buffer_len,
635                                                   DMA_FROM_DEVICE);
636                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
637                         dev_err(&pdev->dev, "Rx DMA map failed\n");
638                         adapter->rx_dma_failed++;
639                         break;
640                 }
641
642                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
643                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
644
645                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
646                         /*
647                          * Force memory writes to complete before letting h/w
648                          * know there are new descriptors to fetch.  (Only
649                          * applicable for weak-ordered memory model archs,
650                          * such as IA-64).
651                          */
652                         wmb();
653                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
654                                 e1000e_update_rdt_wa(rx_ring, i);
655                         else
656                                 writel(i, rx_ring->tail);
657                 }
658                 i++;
659                 if (i == rx_ring->count)
660                         i = 0;
661                 buffer_info = &rx_ring->buffer_info[i];
662         }
663
664         rx_ring->next_to_use = i;
665 }
666
667 /**
668  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
669  * @rx_ring: Rx descriptor ring
670  **/
671 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
672                                       int cleaned_count, gfp_t gfp)
673 {
674         struct e1000_adapter *adapter = rx_ring->adapter;
675         struct net_device *netdev = adapter->netdev;
676         struct pci_dev *pdev = adapter->pdev;
677         union e1000_rx_desc_packet_split *rx_desc;
678         struct e1000_buffer *buffer_info;
679         struct e1000_ps_page *ps_page;
680         struct sk_buff *skb;
681         unsigned int i, j;
682
683         i = rx_ring->next_to_use;
684         buffer_info = &rx_ring->buffer_info[i];
685
686         while (cleaned_count--) {
687                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
688
689                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
690                         ps_page = &buffer_info->ps_pages[j];
691                         if (j >= adapter->rx_ps_pages) {
692                                 /* all unused desc entries get hw null ptr */
693                                 rx_desc->read.buffer_addr[j + 1] =
694                                     ~cpu_to_le64(0);
695                                 continue;
696                         }
697                         if (!ps_page->page) {
698                                 ps_page->page = alloc_page(gfp);
699                                 if (!ps_page->page) {
700                                         adapter->alloc_rx_buff_failed++;
701                                         goto no_buffers;
702                                 }
703                                 ps_page->dma = dma_map_page(&pdev->dev,
704                                                             ps_page->page,
705                                                             0, PAGE_SIZE,
706                                                             DMA_FROM_DEVICE);
707                                 if (dma_mapping_error(&pdev->dev,
708                                                       ps_page->dma)) {
709                                         dev_err(&adapter->pdev->dev,
710                                                 "Rx DMA page map failed\n");
711                                         adapter->rx_dma_failed++;
712                                         goto no_buffers;
713                                 }
714                         }
715                         /*
716                          * Refresh the desc even if buffer_addrs
717                          * didn't change because each write-back
718                          * erases this info.
719                          */
720                         rx_desc->read.buffer_addr[j + 1] =
721                             cpu_to_le64(ps_page->dma);
722                 }
723
724                 skb = __netdev_alloc_skb_ip_align(netdev,
725                                                   adapter->rx_ps_bsize0,
726                                                   gfp);
727
728                 if (!skb) {
729                         adapter->alloc_rx_buff_failed++;
730                         break;
731                 }
732
733                 buffer_info->skb = skb;
734                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
735                                                   adapter->rx_ps_bsize0,
736                                                   DMA_FROM_DEVICE);
737                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
738                         dev_err(&pdev->dev, "Rx DMA map failed\n");
739                         adapter->rx_dma_failed++;
740                         /* cleanup skb */
741                         dev_kfree_skb_any(skb);
742                         buffer_info->skb = NULL;
743                         break;
744                 }
745
746                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
747
748                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
749                         /*
750                          * Force memory writes to complete before letting h/w
751                          * know there are new descriptors to fetch.  (Only
752                          * applicable for weak-ordered memory model archs,
753                          * such as IA-64).
754                          */
755                         wmb();
756                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
757                                 e1000e_update_rdt_wa(rx_ring, i << 1);
758                         else
759                                 writel(i << 1, rx_ring->tail);
760                 }
761
762                 i++;
763                 if (i == rx_ring->count)
764                         i = 0;
765                 buffer_info = &rx_ring->buffer_info[i];
766         }
767
768 no_buffers:
769         rx_ring->next_to_use = i;
770 }
771
772 /**
773  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
774  * @rx_ring: Rx descriptor ring
775  * @cleaned_count: number of buffers to allocate this pass
776  **/
777
778 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
779                                          int cleaned_count, gfp_t gfp)
780 {
781         struct e1000_adapter *adapter = rx_ring->adapter;
782         struct net_device *netdev = adapter->netdev;
783         struct pci_dev *pdev = adapter->pdev;
784         union e1000_rx_desc_extended *rx_desc;
785         struct e1000_buffer *buffer_info;
786         struct sk_buff *skb;
787         unsigned int i;
788         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
789
790         i = rx_ring->next_to_use;
791         buffer_info = &rx_ring->buffer_info[i];
792
793         while (cleaned_count--) {
794                 skb = buffer_info->skb;
795                 if (skb) {
796                         skb_trim(skb, 0);
797                         goto check_page;
798                 }
799
800                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
801                 if (unlikely(!skb)) {
802                         /* Better luck next round */
803                         adapter->alloc_rx_buff_failed++;
804                         break;
805                 }
806
807                 buffer_info->skb = skb;
808 check_page:
809                 /* allocate a new page if necessary */
810                 if (!buffer_info->page) {
811                         buffer_info->page = alloc_page(gfp);
812                         if (unlikely(!buffer_info->page)) {
813                                 adapter->alloc_rx_buff_failed++;
814                                 break;
815                         }
816                 }
817
818                 if (!buffer_info->dma)
819                         buffer_info->dma = dma_map_page(&pdev->dev,
820                                                         buffer_info->page, 0,
821                                                         PAGE_SIZE,
822                                                         DMA_FROM_DEVICE);
823
824                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
825                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
826
827                 if (unlikely(++i == rx_ring->count))
828                         i = 0;
829                 buffer_info = &rx_ring->buffer_info[i];
830         }
831
832         if (likely(rx_ring->next_to_use != i)) {
833                 rx_ring->next_to_use = i;
834                 if (unlikely(i-- == 0))
835                         i = (rx_ring->count - 1);
836
837                 /* Force memory writes to complete before letting h/w
838                  * know there are new descriptors to fetch.  (Only
839                  * applicable for weak-ordered memory model archs,
840                  * such as IA-64). */
841                 wmb();
842                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
843                         e1000e_update_rdt_wa(rx_ring, i);
844                 else
845                         writel(i, rx_ring->tail);
846         }
847 }
848
849 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
850                                  struct sk_buff *skb)
851 {
852         if (netdev->features & NETIF_F_RXHASH)
853                 skb->rxhash = le32_to_cpu(rss);
854 }
855
856 /**
857  * e1000_clean_rx_irq - Send received data up the network stack
858  * @rx_ring: Rx descriptor ring
859  *
860  * the return value indicates whether actual cleaning was done, there
861  * is no guarantee that everything was cleaned
862  **/
863 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
864                                int work_to_do)
865 {
866         struct e1000_adapter *adapter = rx_ring->adapter;
867         struct net_device *netdev = adapter->netdev;
868         struct pci_dev *pdev = adapter->pdev;
869         struct e1000_hw *hw = &adapter->hw;
870         union e1000_rx_desc_extended *rx_desc, *next_rxd;
871         struct e1000_buffer *buffer_info, *next_buffer;
872         u32 length, staterr;
873         unsigned int i;
874         int cleaned_count = 0;
875         bool cleaned = false;
876         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
877
878         i = rx_ring->next_to_clean;
879         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
880         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
881         buffer_info = &rx_ring->buffer_info[i];
882
883         while (staterr & E1000_RXD_STAT_DD) {
884                 struct sk_buff *skb;
885
886                 if (*work_done >= work_to_do)
887                         break;
888                 (*work_done)++;
889                 rmb();  /* read descriptor and rx_buffer_info after status DD */
890
891                 skb = buffer_info->skb;
892                 buffer_info->skb = NULL;
893
894                 prefetch(skb->data - NET_IP_ALIGN);
895
896                 i++;
897                 if (i == rx_ring->count)
898                         i = 0;
899                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
900                 prefetch(next_rxd);
901
902                 next_buffer = &rx_ring->buffer_info[i];
903
904                 cleaned = true;
905                 cleaned_count++;
906                 dma_unmap_single(&pdev->dev,
907                                  buffer_info->dma,
908                                  adapter->rx_buffer_len,
909                                  DMA_FROM_DEVICE);
910                 buffer_info->dma = 0;
911
912                 length = le16_to_cpu(rx_desc->wb.upper.length);
913
914                 /*
915                  * !EOP means multiple descriptors were used to store a single
916                  * packet, if that's the case we need to toss it.  In fact, we
917                  * need to toss every packet with the EOP bit clear and the
918                  * next frame that _does_ have the EOP bit set, as it is by
919                  * definition only a frame fragment
920                  */
921                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
922                         adapter->flags2 |= FLAG2_IS_DISCARDING;
923
924                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
925                         /* All receives must fit into a single buffer */
926                         e_dbg("Receive packet consumed multiple buffers\n");
927                         /* recycle */
928                         buffer_info->skb = skb;
929                         if (staterr & E1000_RXD_STAT_EOP)
930                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
931                         goto next_desc;
932                 }
933
934                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
935                              !(netdev->features & NETIF_F_RXALL))) {
936                         /* recycle */
937                         buffer_info->skb = skb;
938                         goto next_desc;
939                 }
940
941                 /* adjust length to remove Ethernet CRC */
942                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
943                         /* If configured to store CRC, don't subtract FCS,
944                          * but keep the FCS bytes out of the total_rx_bytes
945                          * counter
946                          */
947                         if (netdev->features & NETIF_F_RXFCS)
948                                 total_rx_bytes -= 4;
949                         else
950                                 length -= 4;
951                 }
952
953                 total_rx_bytes += length;
954                 total_rx_packets++;
955
956                 /*
957                  * code added for copybreak, this should improve
958                  * performance for small packets with large amounts
959                  * of reassembly being done in the stack
960                  */
961                 if (length < copybreak) {
962                         struct sk_buff *new_skb =
963                             netdev_alloc_skb_ip_align(netdev, length);
964                         if (new_skb) {
965                                 skb_copy_to_linear_data_offset(new_skb,
966                                                                -NET_IP_ALIGN,
967                                                                (skb->data -
968                                                                 NET_IP_ALIGN),
969                                                                (length +
970                                                                 NET_IP_ALIGN));
971                                 /* save the skb in buffer_info as good */
972                                 buffer_info->skb = skb;
973                                 skb = new_skb;
974                         }
975                         /* else just continue with the old one */
976                 }
977                 /* end copybreak code */
978                 skb_put(skb, length);
979
980                 /* Receive Checksum Offload */
981                 e1000_rx_checksum(adapter, staterr,
982                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
983
984                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
985
986                 e1000_receive_skb(adapter, netdev, skb, staterr,
987                                   rx_desc->wb.upper.vlan);
988
989 next_desc:
990                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
991
992                 /* return some buffers to hardware, one at a time is too slow */
993                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
994                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
995                                               GFP_ATOMIC);
996                         cleaned_count = 0;
997                 }
998
999                 /* use prefetched values */
1000                 rx_desc = next_rxd;
1001                 buffer_info = next_buffer;
1002
1003                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1004         }
1005         rx_ring->next_to_clean = i;
1006
1007         cleaned_count = e1000_desc_unused(rx_ring);
1008         if (cleaned_count)
1009                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1010
1011         adapter->total_rx_bytes += total_rx_bytes;
1012         adapter->total_rx_packets += total_rx_packets;
1013         return cleaned;
1014 }
1015
1016 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1017                             struct e1000_buffer *buffer_info)
1018 {
1019         struct e1000_adapter *adapter = tx_ring->adapter;
1020
1021         if (buffer_info->dma) {
1022                 if (buffer_info->mapped_as_page)
1023                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1024                                        buffer_info->length, DMA_TO_DEVICE);
1025                 else
1026                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1027                                          buffer_info->length, DMA_TO_DEVICE);
1028                 buffer_info->dma = 0;
1029         }
1030         if (buffer_info->skb) {
1031                 dev_kfree_skb_any(buffer_info->skb);
1032                 buffer_info->skb = NULL;
1033         }
1034         buffer_info->time_stamp = 0;
1035 }
1036
1037 static void e1000_print_hw_hang(struct work_struct *work)
1038 {
1039         struct e1000_adapter *adapter = container_of(work,
1040                                                      struct e1000_adapter,
1041                                                      print_hang_task);
1042         struct net_device *netdev = adapter->netdev;
1043         struct e1000_ring *tx_ring = adapter->tx_ring;
1044         unsigned int i = tx_ring->next_to_clean;
1045         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1046         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1047         struct e1000_hw *hw = &adapter->hw;
1048         u16 phy_status, phy_1000t_status, phy_ext_status;
1049         u16 pci_status;
1050
1051         if (test_bit(__E1000_DOWN, &adapter->state))
1052                 return;
1053
1054         if (!adapter->tx_hang_recheck &&
1055             (adapter->flags2 & FLAG2_DMA_BURST)) {
1056                 /* May be block on write-back, flush and detect again
1057                  * flush pending descriptor writebacks to memory
1058                  */
1059                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1060                 /* execute the writes immediately */
1061                 e1e_flush();
1062                 /*
1063                  * Due to rare timing issues, write to TIDV again to ensure
1064                  * the write is successful
1065                  */
1066                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1067                 /* execute the writes immediately */
1068                 e1e_flush();
1069                 adapter->tx_hang_recheck = true;
1070                 return;
1071         }
1072         /* Real hang detected */
1073         adapter->tx_hang_recheck = false;
1074         netif_stop_queue(netdev);
1075
1076         e1e_rphy(hw, PHY_STATUS, &phy_status);
1077         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1078         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1079
1080         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1081
1082         /* detected Hardware unit hang */
1083         e_err("Detected Hardware Unit Hang:\n"
1084               "  TDH                  <%x>\n"
1085               "  TDT                  <%x>\n"
1086               "  next_to_use          <%x>\n"
1087               "  next_to_clean        <%x>\n"
1088               "buffer_info[next_to_clean]:\n"
1089               "  time_stamp           <%lx>\n"
1090               "  next_to_watch        <%x>\n"
1091               "  jiffies              <%lx>\n"
1092               "  next_to_watch.status <%x>\n"
1093               "MAC Status             <%x>\n"
1094               "PHY Status             <%x>\n"
1095               "PHY 1000BASE-T Status  <%x>\n"
1096               "PHY Extended Status    <%x>\n"
1097               "PCI Status             <%x>\n",
1098               readl(tx_ring->head),
1099               readl(tx_ring->tail),
1100               tx_ring->next_to_use,
1101               tx_ring->next_to_clean,
1102               tx_ring->buffer_info[eop].time_stamp,
1103               eop,
1104               jiffies,
1105               eop_desc->upper.fields.status,
1106               er32(STATUS),
1107               phy_status,
1108               phy_1000t_status,
1109               phy_ext_status,
1110               pci_status);
1111 }
1112
1113 /**
1114  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1115  * @tx_ring: Tx descriptor ring
1116  *
1117  * the return value indicates whether actual cleaning was done, there
1118  * is no guarantee that everything was cleaned
1119  **/
1120 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1121 {
1122         struct e1000_adapter *adapter = tx_ring->adapter;
1123         struct net_device *netdev = adapter->netdev;
1124         struct e1000_hw *hw = &adapter->hw;
1125         struct e1000_tx_desc *tx_desc, *eop_desc;
1126         struct e1000_buffer *buffer_info;
1127         unsigned int i, eop;
1128         unsigned int count = 0;
1129         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1130         unsigned int bytes_compl = 0, pkts_compl = 0;
1131
1132         i = tx_ring->next_to_clean;
1133         eop = tx_ring->buffer_info[i].next_to_watch;
1134         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1135
1136         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1137                (count < tx_ring->count)) {
1138                 bool cleaned = false;
1139                 rmb(); /* read buffer_info after eop_desc */
1140                 for (; !cleaned; count++) {
1141                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1142                         buffer_info = &tx_ring->buffer_info[i];
1143                         cleaned = (i == eop);
1144
1145                         if (cleaned) {
1146                                 total_tx_packets += buffer_info->segs;
1147                                 total_tx_bytes += buffer_info->bytecount;
1148                                 if (buffer_info->skb) {
1149                                         bytes_compl += buffer_info->skb->len;
1150                                         pkts_compl++;
1151                                 }
1152                         }
1153
1154                         e1000_put_txbuf(tx_ring, buffer_info);
1155                         tx_desc->upper.data = 0;
1156
1157                         i++;
1158                         if (i == tx_ring->count)
1159                                 i = 0;
1160                 }
1161
1162                 if (i == tx_ring->next_to_use)
1163                         break;
1164                 eop = tx_ring->buffer_info[i].next_to_watch;
1165                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1166         }
1167
1168         tx_ring->next_to_clean = i;
1169
1170         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1171
1172 #define TX_WAKE_THRESHOLD 32
1173         if (count && netif_carrier_ok(netdev) &&
1174             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1175                 /* Make sure that anybody stopping the queue after this
1176                  * sees the new next_to_clean.
1177                  */
1178                 smp_mb();
1179
1180                 if (netif_queue_stopped(netdev) &&
1181                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1182                         netif_wake_queue(netdev);
1183                         ++adapter->restart_queue;
1184                 }
1185         }
1186
1187         if (adapter->detect_tx_hung) {
1188                 /*
1189                  * Detect a transmit hang in hardware, this serializes the
1190                  * check with the clearing of time_stamp and movement of i
1191                  */
1192                 adapter->detect_tx_hung = false;
1193                 if (tx_ring->buffer_info[i].time_stamp &&
1194                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1195                                + (adapter->tx_timeout_factor * HZ)) &&
1196                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1197                         schedule_work(&adapter->print_hang_task);
1198                 else
1199                         adapter->tx_hang_recheck = false;
1200         }
1201         adapter->total_tx_bytes += total_tx_bytes;
1202         adapter->total_tx_packets += total_tx_packets;
1203         return count < tx_ring->count;
1204 }
1205
1206 /**
1207  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1208  * @rx_ring: Rx descriptor ring
1209  *
1210  * the return value indicates whether actual cleaning was done, there
1211  * is no guarantee that everything was cleaned
1212  **/
1213 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1214                                   int work_to_do)
1215 {
1216         struct e1000_adapter *adapter = rx_ring->adapter;
1217         struct e1000_hw *hw = &adapter->hw;
1218         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1219         struct net_device *netdev = adapter->netdev;
1220         struct pci_dev *pdev = adapter->pdev;
1221         struct e1000_buffer *buffer_info, *next_buffer;
1222         struct e1000_ps_page *ps_page;
1223         struct sk_buff *skb;
1224         unsigned int i, j;
1225         u32 length, staterr;
1226         int cleaned_count = 0;
1227         bool cleaned = false;
1228         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1229
1230         i = rx_ring->next_to_clean;
1231         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1232         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1233         buffer_info = &rx_ring->buffer_info[i];
1234
1235         while (staterr & E1000_RXD_STAT_DD) {
1236                 if (*work_done >= work_to_do)
1237                         break;
1238                 (*work_done)++;
1239                 skb = buffer_info->skb;
1240                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1241
1242                 /* in the packet split case this is header only */
1243                 prefetch(skb->data - NET_IP_ALIGN);
1244
1245                 i++;
1246                 if (i == rx_ring->count)
1247                         i = 0;
1248                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1249                 prefetch(next_rxd);
1250
1251                 next_buffer = &rx_ring->buffer_info[i];
1252
1253                 cleaned = true;
1254                 cleaned_count++;
1255                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1256                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1257                 buffer_info->dma = 0;
1258
1259                 /* see !EOP comment in other Rx routine */
1260                 if (!(staterr & E1000_RXD_STAT_EOP))
1261                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1262
1263                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1264                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1265                         dev_kfree_skb_irq(skb);
1266                         if (staterr & E1000_RXD_STAT_EOP)
1267                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1268                         goto next_desc;
1269                 }
1270
1271                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1272                              !(netdev->features & NETIF_F_RXALL))) {
1273                         dev_kfree_skb_irq(skb);
1274                         goto next_desc;
1275                 }
1276
1277                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1278
1279                 if (!length) {
1280                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1281                         dev_kfree_skb_irq(skb);
1282                         goto next_desc;
1283                 }
1284
1285                 /* Good Receive */
1286                 skb_put(skb, length);
1287
1288                 {
1289                         /*
1290                          * this looks ugly, but it seems compiler issues make
1291                          * it more efficient than reusing j
1292                          */
1293                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1294
1295                         /*
1296                          * page alloc/put takes too long and effects small
1297                          * packet throughput, so unsplit small packets and
1298                          * save the alloc/put only valid in softirq (napi)
1299                          * context to call kmap_*
1300                          */
1301                         if (l1 && (l1 <= copybreak) &&
1302                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1303                                 u8 *vaddr;
1304
1305                                 ps_page = &buffer_info->ps_pages[0];
1306
1307                                 /*
1308                                  * there is no documentation about how to call
1309                                  * kmap_atomic, so we can't hold the mapping
1310                                  * very long
1311                                  */
1312                                 dma_sync_single_for_cpu(&pdev->dev,
1313                                                         ps_page->dma,
1314                                                         PAGE_SIZE,
1315                                                         DMA_FROM_DEVICE);
1316                                 vaddr = kmap_atomic(ps_page->page);
1317                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1318                                 kunmap_atomic(vaddr);
1319                                 dma_sync_single_for_device(&pdev->dev,
1320                                                            ps_page->dma,
1321                                                            PAGE_SIZE,
1322                                                            DMA_FROM_DEVICE);
1323
1324                                 /* remove the CRC */
1325                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1326                                         if (!(netdev->features & NETIF_F_RXFCS))
1327                                                 l1 -= 4;
1328                                 }
1329
1330                                 skb_put(skb, l1);
1331                                 goto copydone;
1332                         } /* if */
1333                 }
1334
1335                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1336                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1337                         if (!length)
1338                                 break;
1339
1340                         ps_page = &buffer_info->ps_pages[j];
1341                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1342                                        DMA_FROM_DEVICE);
1343                         ps_page->dma = 0;
1344                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1345                         ps_page->page = NULL;
1346                         skb->len += length;
1347                         skb->data_len += length;
1348                         skb->truesize += PAGE_SIZE;
1349                 }
1350
1351                 /* strip the ethernet crc, problem is we're using pages now so
1352                  * this whole operation can get a little cpu intensive
1353                  */
1354                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1355                         if (!(netdev->features & NETIF_F_RXFCS))
1356                                 pskb_trim(skb, skb->len - 4);
1357                 }
1358
1359 copydone:
1360                 total_rx_bytes += skb->len;
1361                 total_rx_packets++;
1362
1363                 e1000_rx_checksum(adapter, staterr,
1364                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1365
1366                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1367
1368                 if (rx_desc->wb.upper.header_status &
1369                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1370                         adapter->rx_hdr_split++;
1371
1372                 e1000_receive_skb(adapter, netdev, skb,
1373                                   staterr, rx_desc->wb.middle.vlan);
1374
1375 next_desc:
1376                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1377                 buffer_info->skb = NULL;
1378
1379                 /* return some buffers to hardware, one at a time is too slow */
1380                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1381                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1382                                               GFP_ATOMIC);
1383                         cleaned_count = 0;
1384                 }
1385
1386                 /* use prefetched values */
1387                 rx_desc = next_rxd;
1388                 buffer_info = next_buffer;
1389
1390                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1391         }
1392         rx_ring->next_to_clean = i;
1393
1394         cleaned_count = e1000_desc_unused(rx_ring);
1395         if (cleaned_count)
1396                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1397
1398         adapter->total_rx_bytes += total_rx_bytes;
1399         adapter->total_rx_packets += total_rx_packets;
1400         return cleaned;
1401 }
1402
1403 /**
1404  * e1000_consume_page - helper function
1405  **/
1406 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1407                                u16 length)
1408 {
1409         bi->page = NULL;
1410         skb->len += length;
1411         skb->data_len += length;
1412         skb->truesize += PAGE_SIZE;
1413 }
1414
1415 /**
1416  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1417  * @adapter: board private structure
1418  *
1419  * the return value indicates whether actual cleaning was done, there
1420  * is no guarantee that everything was cleaned
1421  **/
1422 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1423                                      int work_to_do)
1424 {
1425         struct e1000_adapter *adapter = rx_ring->adapter;
1426         struct net_device *netdev = adapter->netdev;
1427         struct pci_dev *pdev = adapter->pdev;
1428         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1429         struct e1000_buffer *buffer_info, *next_buffer;
1430         u32 length, staterr;
1431         unsigned int i;
1432         int cleaned_count = 0;
1433         bool cleaned = false;
1434         unsigned int total_rx_bytes=0, total_rx_packets=0;
1435
1436         i = rx_ring->next_to_clean;
1437         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1438         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1439         buffer_info = &rx_ring->buffer_info[i];
1440
1441         while (staterr & E1000_RXD_STAT_DD) {
1442                 struct sk_buff *skb;
1443
1444                 if (*work_done >= work_to_do)
1445                         break;
1446                 (*work_done)++;
1447                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1448
1449                 skb = buffer_info->skb;
1450                 buffer_info->skb = NULL;
1451
1452                 ++i;
1453                 if (i == rx_ring->count)
1454                         i = 0;
1455                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1456                 prefetch(next_rxd);
1457
1458                 next_buffer = &rx_ring->buffer_info[i];
1459
1460                 cleaned = true;
1461                 cleaned_count++;
1462                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1463                                DMA_FROM_DEVICE);
1464                 buffer_info->dma = 0;
1465
1466                 length = le16_to_cpu(rx_desc->wb.upper.length);
1467
1468                 /* errors is only valid for DD + EOP descriptors */
1469                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1470                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1471                               !(netdev->features & NETIF_F_RXALL)))) {
1472                         /* recycle both page and skb */
1473                         buffer_info->skb = skb;
1474                         /* an error means any chain goes out the window too */
1475                         if (rx_ring->rx_skb_top)
1476                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1477                         rx_ring->rx_skb_top = NULL;
1478                         goto next_desc;
1479                 }
1480
1481 #define rxtop (rx_ring->rx_skb_top)
1482                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1483                         /* this descriptor is only the beginning (or middle) */
1484                         if (!rxtop) {
1485                                 /* this is the beginning of a chain */
1486                                 rxtop = skb;
1487                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1488                                                    0, length);
1489                         } else {
1490                                 /* this is the middle of a chain */
1491                                 skb_fill_page_desc(rxtop,
1492                                     skb_shinfo(rxtop)->nr_frags,
1493                                     buffer_info->page, 0, length);
1494                                 /* re-use the skb, only consumed the page */
1495                                 buffer_info->skb = skb;
1496                         }
1497                         e1000_consume_page(buffer_info, rxtop, length);
1498                         goto next_desc;
1499                 } else {
1500                         if (rxtop) {
1501                                 /* end of the chain */
1502                                 skb_fill_page_desc(rxtop,
1503                                     skb_shinfo(rxtop)->nr_frags,
1504                                     buffer_info->page, 0, length);
1505                                 /* re-use the current skb, we only consumed the
1506                                  * page */
1507                                 buffer_info->skb = skb;
1508                                 skb = rxtop;
1509                                 rxtop = NULL;
1510                                 e1000_consume_page(buffer_info, skb, length);
1511                         } else {
1512                                 /* no chain, got EOP, this buf is the packet
1513                                  * copybreak to save the put_page/alloc_page */
1514                                 if (length <= copybreak &&
1515                                     skb_tailroom(skb) >= length) {
1516                                         u8 *vaddr;
1517                                         vaddr = kmap_atomic(buffer_info->page);
1518                                         memcpy(skb_tail_pointer(skb), vaddr,
1519                                                length);
1520                                         kunmap_atomic(vaddr);
1521                                         /* re-use the page, so don't erase
1522                                          * buffer_info->page */
1523                                         skb_put(skb, length);
1524                                 } else {
1525                                         skb_fill_page_desc(skb, 0,
1526                                                            buffer_info->page, 0,
1527                                                            length);
1528                                         e1000_consume_page(buffer_info, skb,
1529                                                            length);
1530                                 }
1531                         }
1532                 }
1533
1534                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1535                 e1000_rx_checksum(adapter, staterr,
1536                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1537
1538                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1539
1540                 /* probably a little skewed due to removing CRC */
1541                 total_rx_bytes += skb->len;
1542                 total_rx_packets++;
1543
1544                 /* eth type trans needs skb->data to point to something */
1545                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1546                         e_err("pskb_may_pull failed.\n");
1547                         dev_kfree_skb_irq(skb);
1548                         goto next_desc;
1549                 }
1550
1551                 e1000_receive_skb(adapter, netdev, skb, staterr,
1552                                   rx_desc->wb.upper.vlan);
1553
1554 next_desc:
1555                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1556
1557                 /* return some buffers to hardware, one at a time is too slow */
1558                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1559                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1560                                               GFP_ATOMIC);
1561                         cleaned_count = 0;
1562                 }
1563
1564                 /* use prefetched values */
1565                 rx_desc = next_rxd;
1566                 buffer_info = next_buffer;
1567
1568                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1569         }
1570         rx_ring->next_to_clean = i;
1571
1572         cleaned_count = e1000_desc_unused(rx_ring);
1573         if (cleaned_count)
1574                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1575
1576         adapter->total_rx_bytes += total_rx_bytes;
1577         adapter->total_rx_packets += total_rx_packets;
1578         return cleaned;
1579 }
1580
1581 /**
1582  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1583  * @rx_ring: Rx descriptor ring
1584  **/
1585 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1586 {
1587         struct e1000_adapter *adapter = rx_ring->adapter;
1588         struct e1000_buffer *buffer_info;
1589         struct e1000_ps_page *ps_page;
1590         struct pci_dev *pdev = adapter->pdev;
1591         unsigned int i, j;
1592
1593         /* Free all the Rx ring sk_buffs */
1594         for (i = 0; i < rx_ring->count; i++) {
1595                 buffer_info = &rx_ring->buffer_info[i];
1596                 if (buffer_info->dma) {
1597                         if (adapter->clean_rx == e1000_clean_rx_irq)
1598                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1599                                                  adapter->rx_buffer_len,
1600                                                  DMA_FROM_DEVICE);
1601                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1602                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1603                                                PAGE_SIZE,
1604                                                DMA_FROM_DEVICE);
1605                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1606                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1607                                                  adapter->rx_ps_bsize0,
1608                                                  DMA_FROM_DEVICE);
1609                         buffer_info->dma = 0;
1610                 }
1611
1612                 if (buffer_info->page) {
1613                         put_page(buffer_info->page);
1614                         buffer_info->page = NULL;
1615                 }
1616
1617                 if (buffer_info->skb) {
1618                         dev_kfree_skb(buffer_info->skb);
1619                         buffer_info->skb = NULL;
1620                 }
1621
1622                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1623                         ps_page = &buffer_info->ps_pages[j];
1624                         if (!ps_page->page)
1625                                 break;
1626                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1627                                        DMA_FROM_DEVICE);
1628                         ps_page->dma = 0;
1629                         put_page(ps_page->page);
1630                         ps_page->page = NULL;
1631                 }
1632         }
1633
1634         /* there also may be some cached data from a chained receive */
1635         if (rx_ring->rx_skb_top) {
1636                 dev_kfree_skb(rx_ring->rx_skb_top);
1637                 rx_ring->rx_skb_top = NULL;
1638         }
1639
1640         /* Zero out the descriptor ring */
1641         memset(rx_ring->desc, 0, rx_ring->size);
1642
1643         rx_ring->next_to_clean = 0;
1644         rx_ring->next_to_use = 0;
1645         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1646
1647         writel(0, rx_ring->head);
1648         writel(0, rx_ring->tail);
1649 }
1650
1651 static void e1000e_downshift_workaround(struct work_struct *work)
1652 {
1653         struct e1000_adapter *adapter = container_of(work,
1654                                         struct e1000_adapter, downshift_task);
1655
1656         if (test_bit(__E1000_DOWN, &adapter->state))
1657                 return;
1658
1659         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1660 }
1661
1662 /**
1663  * e1000_intr_msi - Interrupt Handler
1664  * @irq: interrupt number
1665  * @data: pointer to a network interface device structure
1666  **/
1667 static irqreturn_t e1000_intr_msi(int irq, void *data)
1668 {
1669         struct net_device *netdev = data;
1670         struct e1000_adapter *adapter = netdev_priv(netdev);
1671         struct e1000_hw *hw = &adapter->hw;
1672         u32 icr = er32(ICR);
1673
1674         /*
1675          * read ICR disables interrupts using IAM
1676          */
1677
1678         if (icr & E1000_ICR_LSC) {
1679                 hw->mac.get_link_status = true;
1680                 /*
1681                  * ICH8 workaround-- Call gig speed drop workaround on cable
1682                  * disconnect (LSC) before accessing any PHY registers
1683                  */
1684                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1685                     (!(er32(STATUS) & E1000_STATUS_LU)))
1686                         schedule_work(&adapter->downshift_task);
1687
1688                 /*
1689                  * 80003ES2LAN workaround-- For packet buffer work-around on
1690                  * link down event; disable receives here in the ISR and reset
1691                  * adapter in watchdog
1692                  */
1693                 if (netif_carrier_ok(netdev) &&
1694                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1695                         /* disable receives */
1696                         u32 rctl = er32(RCTL);
1697                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1698                         adapter->flags |= FLAG_RX_RESTART_NOW;
1699                 }
1700                 /* guard against interrupt when we're going down */
1701                 if (!test_bit(__E1000_DOWN, &adapter->state))
1702                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1703         }
1704
1705         if (napi_schedule_prep(&adapter->napi)) {
1706                 adapter->total_tx_bytes = 0;
1707                 adapter->total_tx_packets = 0;
1708                 adapter->total_rx_bytes = 0;
1709                 adapter->total_rx_packets = 0;
1710                 __napi_schedule(&adapter->napi);
1711         }
1712
1713         return IRQ_HANDLED;
1714 }
1715
1716 /**
1717  * e1000_intr - Interrupt Handler
1718  * @irq: interrupt number
1719  * @data: pointer to a network interface device structure
1720  **/
1721 static irqreturn_t e1000_intr(int irq, void *data)
1722 {
1723         struct net_device *netdev = data;
1724         struct e1000_adapter *adapter = netdev_priv(netdev);
1725         struct e1000_hw *hw = &adapter->hw;
1726         u32 rctl, icr = er32(ICR);
1727
1728         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1729                 return IRQ_NONE;  /* Not our interrupt */
1730
1731         /*
1732          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1733          * not set, then the adapter didn't send an interrupt
1734          */
1735         if (!(icr & E1000_ICR_INT_ASSERTED))
1736                 return IRQ_NONE;
1737
1738         /*
1739          * Interrupt Auto-Mask...upon reading ICR,
1740          * interrupts are masked.  No need for the
1741          * IMC write
1742          */
1743
1744         if (icr & E1000_ICR_LSC) {
1745                 hw->mac.get_link_status = true;
1746                 /*
1747                  * ICH8 workaround-- Call gig speed drop workaround on cable
1748                  * disconnect (LSC) before accessing any PHY registers
1749                  */
1750                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1751                     (!(er32(STATUS) & E1000_STATUS_LU)))
1752                         schedule_work(&adapter->downshift_task);
1753
1754                 /*
1755                  * 80003ES2LAN workaround--
1756                  * For packet buffer work-around on link down event;
1757                  * disable receives here in the ISR and
1758                  * reset adapter in watchdog
1759                  */
1760                 if (netif_carrier_ok(netdev) &&
1761                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1762                         /* disable receives */
1763                         rctl = er32(RCTL);
1764                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1765                         adapter->flags |= FLAG_RX_RESTART_NOW;
1766                 }
1767                 /* guard against interrupt when we're going down */
1768                 if (!test_bit(__E1000_DOWN, &adapter->state))
1769                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1770         }
1771
1772         if (napi_schedule_prep(&adapter->napi)) {
1773                 adapter->total_tx_bytes = 0;
1774                 adapter->total_tx_packets = 0;
1775                 adapter->total_rx_bytes = 0;
1776                 adapter->total_rx_packets = 0;
1777                 __napi_schedule(&adapter->napi);
1778         }
1779
1780         return IRQ_HANDLED;
1781 }
1782
1783 static irqreturn_t e1000_msix_other(int irq, void *data)
1784 {
1785         struct net_device *netdev = data;
1786         struct e1000_adapter *adapter = netdev_priv(netdev);
1787         struct e1000_hw *hw = &adapter->hw;
1788         u32 icr = er32(ICR);
1789
1790         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1791                 if (!test_bit(__E1000_DOWN, &adapter->state))
1792                         ew32(IMS, E1000_IMS_OTHER);
1793                 return IRQ_NONE;
1794         }
1795
1796         if (icr & adapter->eiac_mask)
1797                 ew32(ICS, (icr & adapter->eiac_mask));
1798
1799         if (icr & E1000_ICR_OTHER) {
1800                 if (!(icr & E1000_ICR_LSC))
1801                         goto no_link_interrupt;
1802                 hw->mac.get_link_status = true;
1803                 /* guard against interrupt when we're going down */
1804                 if (!test_bit(__E1000_DOWN, &adapter->state))
1805                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1806         }
1807
1808 no_link_interrupt:
1809         if (!test_bit(__E1000_DOWN, &adapter->state))
1810                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1811
1812         return IRQ_HANDLED;
1813 }
1814
1815
1816 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1817 {
1818         struct net_device *netdev = data;
1819         struct e1000_adapter *adapter = netdev_priv(netdev);
1820         struct e1000_hw *hw = &adapter->hw;
1821         struct e1000_ring *tx_ring = adapter->tx_ring;
1822
1823
1824         adapter->total_tx_bytes = 0;
1825         adapter->total_tx_packets = 0;
1826
1827         if (!e1000_clean_tx_irq(tx_ring))
1828                 /* Ring was not completely cleaned, so fire another interrupt */
1829                 ew32(ICS, tx_ring->ims_val);
1830
1831         return IRQ_HANDLED;
1832 }
1833
1834 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1835 {
1836         struct net_device *netdev = data;
1837         struct e1000_adapter *adapter = netdev_priv(netdev);
1838         struct e1000_ring *rx_ring = adapter->rx_ring;
1839
1840         /* Write the ITR value calculated at the end of the
1841          * previous interrupt.
1842          */
1843         if (rx_ring->set_itr) {
1844                 writel(1000000000 / (rx_ring->itr_val * 256),
1845                        rx_ring->itr_register);
1846                 rx_ring->set_itr = 0;
1847         }
1848
1849         if (napi_schedule_prep(&adapter->napi)) {
1850                 adapter->total_rx_bytes = 0;
1851                 adapter->total_rx_packets = 0;
1852                 __napi_schedule(&adapter->napi);
1853         }
1854         return IRQ_HANDLED;
1855 }
1856
1857 /**
1858  * e1000_configure_msix - Configure MSI-X hardware
1859  *
1860  * e1000_configure_msix sets up the hardware to properly
1861  * generate MSI-X interrupts.
1862  **/
1863 static void e1000_configure_msix(struct e1000_adapter *adapter)
1864 {
1865         struct e1000_hw *hw = &adapter->hw;
1866         struct e1000_ring *rx_ring = adapter->rx_ring;
1867         struct e1000_ring *tx_ring = adapter->tx_ring;
1868         int vector = 0;
1869         u32 ctrl_ext, ivar = 0;
1870
1871         adapter->eiac_mask = 0;
1872
1873         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1874         if (hw->mac.type == e1000_82574) {
1875                 u32 rfctl = er32(RFCTL);
1876                 rfctl |= E1000_RFCTL_ACK_DIS;
1877                 ew32(RFCTL, rfctl);
1878         }
1879
1880 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1881         /* Configure Rx vector */
1882         rx_ring->ims_val = E1000_IMS_RXQ0;
1883         adapter->eiac_mask |= rx_ring->ims_val;
1884         if (rx_ring->itr_val)
1885                 writel(1000000000 / (rx_ring->itr_val * 256),
1886                        rx_ring->itr_register);
1887         else
1888                 writel(1, rx_ring->itr_register);
1889         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1890
1891         /* Configure Tx vector */
1892         tx_ring->ims_val = E1000_IMS_TXQ0;
1893         vector++;
1894         if (tx_ring->itr_val)
1895                 writel(1000000000 / (tx_ring->itr_val * 256),
1896                        tx_ring->itr_register);
1897         else
1898                 writel(1, tx_ring->itr_register);
1899         adapter->eiac_mask |= tx_ring->ims_val;
1900         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1901
1902         /* set vector for Other Causes, e.g. link changes */
1903         vector++;
1904         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1905         if (rx_ring->itr_val)
1906                 writel(1000000000 / (rx_ring->itr_val * 256),
1907                        hw->hw_addr + E1000_EITR_82574(vector));
1908         else
1909                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1910
1911         /* Cause Tx interrupts on every write back */
1912         ivar |= (1 << 31);
1913
1914         ew32(IVAR, ivar);
1915
1916         /* enable MSI-X PBA support */
1917         ctrl_ext = er32(CTRL_EXT);
1918         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1919
1920         /* Auto-Mask Other interrupts upon ICR read */
1921 #define E1000_EIAC_MASK_82574   0x01F00000
1922         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1923         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1924         ew32(CTRL_EXT, ctrl_ext);
1925         e1e_flush();
1926 }
1927
1928 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1929 {
1930         if (adapter->msix_entries) {
1931                 pci_disable_msix(adapter->pdev);
1932                 kfree(adapter->msix_entries);
1933                 adapter->msix_entries = NULL;
1934         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1935                 pci_disable_msi(adapter->pdev);
1936                 adapter->flags &= ~FLAG_MSI_ENABLED;
1937         }
1938 }
1939
1940 /**
1941  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1942  *
1943  * Attempt to configure interrupts using the best available
1944  * capabilities of the hardware and kernel.
1945  **/
1946 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1947 {
1948         int err;
1949         int i;
1950
1951         switch (adapter->int_mode) {
1952         case E1000E_INT_MODE_MSIX:
1953                 if (adapter->flags & FLAG_HAS_MSIX) {
1954                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1955                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1956                                                       sizeof(struct msix_entry),
1957                                                       GFP_KERNEL);
1958                         if (adapter->msix_entries) {
1959                                 for (i = 0; i < adapter->num_vectors; i++)
1960                                         adapter->msix_entries[i].entry = i;
1961
1962                                 err = pci_enable_msix(adapter->pdev,
1963                                                       adapter->msix_entries,
1964                                                       adapter->num_vectors);
1965                                 if (err == 0)
1966                                         return;
1967                         }
1968                         /* MSI-X failed, so fall through and try MSI */
1969                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1970                         e1000e_reset_interrupt_capability(adapter);
1971                 }
1972                 adapter->int_mode = E1000E_INT_MODE_MSI;
1973                 /* Fall through */
1974         case E1000E_INT_MODE_MSI:
1975                 if (!pci_enable_msi(adapter->pdev)) {
1976                         adapter->flags |= FLAG_MSI_ENABLED;
1977                 } else {
1978                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1979                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1980                 }
1981                 /* Fall through */
1982         case E1000E_INT_MODE_LEGACY:
1983                 /* Don't do anything; this is the system default */
1984                 break;
1985         }
1986
1987         /* store the number of vectors being used */
1988         adapter->num_vectors = 1;
1989 }
1990
1991 /**
1992  * e1000_request_msix - Initialize MSI-X interrupts
1993  *
1994  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1995  * kernel.
1996  **/
1997 static int e1000_request_msix(struct e1000_adapter *adapter)
1998 {
1999         struct net_device *netdev = adapter->netdev;
2000         int err = 0, vector = 0;
2001
2002         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2003                 snprintf(adapter->rx_ring->name,
2004                          sizeof(adapter->rx_ring->name) - 1,
2005                          "%s-rx-0", netdev->name);
2006         else
2007                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2008         err = request_irq(adapter->msix_entries[vector].vector,
2009                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2010                           netdev);
2011         if (err)
2012                 return err;
2013         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2014             E1000_EITR_82574(vector);
2015         adapter->rx_ring->itr_val = adapter->itr;
2016         vector++;
2017
2018         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2019                 snprintf(adapter->tx_ring->name,
2020                          sizeof(adapter->tx_ring->name) - 1,
2021                          "%s-tx-0", netdev->name);
2022         else
2023                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2024         err = request_irq(adapter->msix_entries[vector].vector,
2025                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2026                           netdev);
2027         if (err)
2028                 return err;
2029         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2030             E1000_EITR_82574(vector);
2031         adapter->tx_ring->itr_val = adapter->itr;
2032         vector++;
2033
2034         err = request_irq(adapter->msix_entries[vector].vector,
2035                           e1000_msix_other, 0, netdev->name, netdev);
2036         if (err)
2037                 return err;
2038
2039         e1000_configure_msix(adapter);
2040
2041         return 0;
2042 }
2043
2044 /**
2045  * e1000_request_irq - initialize interrupts
2046  *
2047  * Attempts to configure interrupts using the best available
2048  * capabilities of the hardware and kernel.
2049  **/
2050 static int e1000_request_irq(struct e1000_adapter *adapter)
2051 {
2052         struct net_device *netdev = adapter->netdev;
2053         int err;
2054
2055         if (adapter->msix_entries) {
2056                 err = e1000_request_msix(adapter);
2057                 if (!err)
2058                         return err;
2059                 /* fall back to MSI */
2060                 e1000e_reset_interrupt_capability(adapter);
2061                 adapter->int_mode = E1000E_INT_MODE_MSI;
2062                 e1000e_set_interrupt_capability(adapter);
2063         }
2064         if (adapter->flags & FLAG_MSI_ENABLED) {
2065                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2066                                   netdev->name, netdev);
2067                 if (!err)
2068                         return err;
2069
2070                 /* fall back to legacy interrupt */
2071                 e1000e_reset_interrupt_capability(adapter);
2072                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2073         }
2074
2075         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2076                           netdev->name, netdev);
2077         if (err)
2078                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2079
2080         return err;
2081 }
2082
2083 static void e1000_free_irq(struct e1000_adapter *adapter)
2084 {
2085         struct net_device *netdev = adapter->netdev;
2086
2087         if (adapter->msix_entries) {
2088                 int vector = 0;
2089
2090                 free_irq(adapter->msix_entries[vector].vector, netdev);
2091                 vector++;
2092
2093                 free_irq(adapter->msix_entries[vector].vector, netdev);
2094                 vector++;
2095
2096                 /* Other Causes interrupt vector */
2097                 free_irq(adapter->msix_entries[vector].vector, netdev);
2098                 return;
2099         }
2100
2101         free_irq(adapter->pdev->irq, netdev);
2102 }
2103
2104 /**
2105  * e1000_irq_disable - Mask off interrupt generation on the NIC
2106  **/
2107 static void e1000_irq_disable(struct e1000_adapter *adapter)
2108 {
2109         struct e1000_hw *hw = &adapter->hw;
2110
2111         ew32(IMC, ~0);
2112         if (adapter->msix_entries)
2113                 ew32(EIAC_82574, 0);
2114         e1e_flush();
2115
2116         if (adapter->msix_entries) {
2117                 int i;
2118                 for (i = 0; i < adapter->num_vectors; i++)
2119                         synchronize_irq(adapter->msix_entries[i].vector);
2120         } else {
2121                 synchronize_irq(adapter->pdev->irq);
2122         }
2123 }
2124
2125 /**
2126  * e1000_irq_enable - Enable default interrupt generation settings
2127  **/
2128 static void e1000_irq_enable(struct e1000_adapter *adapter)
2129 {
2130         struct e1000_hw *hw = &adapter->hw;
2131
2132         if (adapter->msix_entries) {
2133                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2134                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2135         } else {
2136                 ew32(IMS, IMS_ENABLE_MASK);
2137         }
2138         e1e_flush();
2139 }
2140
2141 /**
2142  * e1000e_get_hw_control - get control of the h/w from f/w
2143  * @adapter: address of board private structure
2144  *
2145  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2146  * For ASF and Pass Through versions of f/w this means that
2147  * the driver is loaded. For AMT version (only with 82573)
2148  * of the f/w this means that the network i/f is open.
2149  **/
2150 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2151 {
2152         struct e1000_hw *hw = &adapter->hw;
2153         u32 ctrl_ext;
2154         u32 swsm;
2155
2156         /* Let firmware know the driver has taken over */
2157         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2158                 swsm = er32(SWSM);
2159                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2160         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2161                 ctrl_ext = er32(CTRL_EXT);
2162                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2163         }
2164 }
2165
2166 /**
2167  * e1000e_release_hw_control - release control of the h/w to f/w
2168  * @adapter: address of board private structure
2169  *
2170  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2171  * For ASF and Pass Through versions of f/w this means that the
2172  * driver is no longer loaded. For AMT version (only with 82573) i
2173  * of the f/w this means that the network i/f is closed.
2174  *
2175  **/
2176 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2177 {
2178         struct e1000_hw *hw = &adapter->hw;
2179         u32 ctrl_ext;
2180         u32 swsm;
2181
2182         /* Let firmware taken over control of h/w */
2183         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2184                 swsm = er32(SWSM);
2185                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2186         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2187                 ctrl_ext = er32(CTRL_EXT);
2188                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2189         }
2190 }
2191
2192 /**
2193  * @e1000_alloc_ring - allocate memory for a ring structure
2194  **/
2195 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2196                                 struct e1000_ring *ring)
2197 {
2198         struct pci_dev *pdev = adapter->pdev;
2199
2200         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2201                                         GFP_KERNEL);
2202         if (!ring->desc)
2203                 return -ENOMEM;
2204
2205         return 0;
2206 }
2207
2208 /**
2209  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2210  * @tx_ring: Tx descriptor ring
2211  *
2212  * Return 0 on success, negative on failure
2213  **/
2214 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2215 {
2216         struct e1000_adapter *adapter = tx_ring->adapter;
2217         int err = -ENOMEM, size;
2218
2219         size = sizeof(struct e1000_buffer) * tx_ring->count;
2220         tx_ring->buffer_info = vzalloc(size);
2221         if (!tx_ring->buffer_info)
2222                 goto err;
2223
2224         /* round up to nearest 4K */
2225         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2226         tx_ring->size = ALIGN(tx_ring->size, 4096);
2227
2228         err = e1000_alloc_ring_dma(adapter, tx_ring);
2229         if (err)
2230                 goto err;
2231
2232         tx_ring->next_to_use = 0;
2233         tx_ring->next_to_clean = 0;
2234
2235         return 0;
2236 err:
2237         vfree(tx_ring->buffer_info);
2238         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2239         return err;
2240 }
2241
2242 /**
2243  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2244  * @rx_ring: Rx descriptor ring
2245  *
2246  * Returns 0 on success, negative on failure
2247  **/
2248 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2249 {
2250         struct e1000_adapter *adapter = rx_ring->adapter;
2251         struct e1000_buffer *buffer_info;
2252         int i, size, desc_len, err = -ENOMEM;
2253
2254         size = sizeof(struct e1000_buffer) * rx_ring->count;
2255         rx_ring->buffer_info = vzalloc(size);
2256         if (!rx_ring->buffer_info)
2257                 goto err;
2258
2259         for (i = 0; i < rx_ring->count; i++) {
2260                 buffer_info = &rx_ring->buffer_info[i];
2261                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2262                                                 sizeof(struct e1000_ps_page),
2263                                                 GFP_KERNEL);
2264                 if (!buffer_info->ps_pages)
2265                         goto err_pages;
2266         }
2267
2268         desc_len = sizeof(union e1000_rx_desc_packet_split);
2269
2270         /* Round up to nearest 4K */
2271         rx_ring->size = rx_ring->count * desc_len;
2272         rx_ring->size = ALIGN(rx_ring->size, 4096);
2273
2274         err = e1000_alloc_ring_dma(adapter, rx_ring);
2275         if (err)
2276                 goto err_pages;
2277
2278         rx_ring->next_to_clean = 0;
2279         rx_ring->next_to_use = 0;
2280         rx_ring->rx_skb_top = NULL;
2281
2282         return 0;
2283
2284 err_pages:
2285         for (i = 0; i < rx_ring->count; i++) {
2286                 buffer_info = &rx_ring->buffer_info[i];
2287                 kfree(buffer_info->ps_pages);
2288         }
2289 err:
2290         vfree(rx_ring->buffer_info);
2291         e_err("Unable to allocate memory for the receive descriptor ring\n");
2292         return err;
2293 }
2294
2295 /**
2296  * e1000_clean_tx_ring - Free Tx Buffers
2297  * @tx_ring: Tx descriptor ring
2298  **/
2299 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2300 {
2301         struct e1000_adapter *adapter = tx_ring->adapter;
2302         struct e1000_buffer *buffer_info;
2303         unsigned long size;
2304         unsigned int i;
2305
2306         for (i = 0; i < tx_ring->count; i++) {
2307                 buffer_info = &tx_ring->buffer_info[i];
2308                 e1000_put_txbuf(tx_ring, buffer_info);
2309         }
2310
2311         netdev_reset_queue(adapter->netdev);
2312         size = sizeof(struct e1000_buffer) * tx_ring->count;
2313         memset(tx_ring->buffer_info, 0, size);
2314
2315         memset(tx_ring->desc, 0, tx_ring->size);
2316
2317         tx_ring->next_to_use = 0;
2318         tx_ring->next_to_clean = 0;
2319
2320         writel(0, tx_ring->head);
2321         writel(0, tx_ring->tail);
2322 }
2323
2324 /**
2325  * e1000e_free_tx_resources - Free Tx Resources per Queue
2326  * @tx_ring: Tx descriptor ring
2327  *
2328  * Free all transmit software resources
2329  **/
2330 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2331 {
2332         struct e1000_adapter *adapter = tx_ring->adapter;
2333         struct pci_dev *pdev = adapter->pdev;
2334
2335         e1000_clean_tx_ring(tx_ring);
2336
2337         vfree(tx_ring->buffer_info);
2338         tx_ring->buffer_info = NULL;
2339
2340         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2341                           tx_ring->dma);
2342         tx_ring->desc = NULL;
2343 }
2344
2345 /**
2346  * e1000e_free_rx_resources - Free Rx Resources
2347  * @rx_ring: Rx descriptor ring
2348  *
2349  * Free all receive software resources
2350  **/
2351 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2352 {
2353         struct e1000_adapter *adapter = rx_ring->adapter;
2354         struct pci_dev *pdev = adapter->pdev;
2355         int i;
2356
2357         e1000_clean_rx_ring(rx_ring);
2358
2359         for (i = 0; i < rx_ring->count; i++)
2360                 kfree(rx_ring->buffer_info[i].ps_pages);
2361
2362         vfree(rx_ring->buffer_info);
2363         rx_ring->buffer_info = NULL;
2364
2365         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2366                           rx_ring->dma);
2367         rx_ring->desc = NULL;
2368 }
2369
2370 /**
2371  * e1000_update_itr - update the dynamic ITR value based on statistics
2372  * @adapter: pointer to adapter
2373  * @itr_setting: current adapter->itr
2374  * @packets: the number of packets during this measurement interval
2375  * @bytes: the number of bytes during this measurement interval
2376  *
2377  *      Stores a new ITR value based on packets and byte
2378  *      counts during the last interrupt.  The advantage of per interrupt
2379  *      computation is faster updates and more accurate ITR for the current
2380  *      traffic pattern.  Constants in this function were computed
2381  *      based on theoretical maximum wire speed and thresholds were set based
2382  *      on testing data as well as attempting to minimize response time
2383  *      while increasing bulk throughput.  This functionality is controlled
2384  *      by the InterruptThrottleRate module parameter.
2385  **/
2386 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2387                                      u16 itr_setting, int packets,
2388                                      int bytes)
2389 {
2390         unsigned int retval = itr_setting;
2391
2392         if (packets == 0)
2393                 return itr_setting;
2394
2395         switch (itr_setting) {
2396         case lowest_latency:
2397                 /* handle TSO and jumbo frames */
2398                 if (bytes/packets > 8000)
2399                         retval = bulk_latency;
2400                 else if ((packets < 5) && (bytes > 512))
2401                         retval = low_latency;
2402                 break;
2403         case low_latency:  /* 50 usec aka 20000 ints/s */
2404                 if (bytes > 10000) {
2405                         /* this if handles the TSO accounting */
2406                         if (bytes/packets > 8000)
2407                                 retval = bulk_latency;
2408                         else if ((packets < 10) || ((bytes/packets) > 1200))
2409                                 retval = bulk_latency;
2410                         else if ((packets > 35))
2411                                 retval = lowest_latency;
2412                 } else if (bytes/packets > 2000) {
2413                         retval = bulk_latency;
2414                 } else if (packets <= 2 && bytes < 512) {
2415                         retval = lowest_latency;
2416                 }
2417                 break;
2418         case bulk_latency: /* 250 usec aka 4000 ints/s */
2419                 if (bytes > 25000) {
2420                         if (packets > 35)
2421                                 retval = low_latency;
2422                 } else if (bytes < 6000) {
2423                         retval = low_latency;
2424                 }
2425                 break;
2426         }
2427
2428         return retval;
2429 }
2430
2431 static void e1000_set_itr(struct e1000_adapter *adapter)
2432 {
2433         struct e1000_hw *hw = &adapter->hw;
2434         u16 current_itr;
2435         u32 new_itr = adapter->itr;
2436
2437         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2438         if (adapter->link_speed != SPEED_1000) {
2439                 current_itr = 0;
2440                 new_itr = 4000;
2441                 goto set_itr_now;
2442         }
2443
2444         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2445                 new_itr = 0;
2446                 goto set_itr_now;
2447         }
2448
2449         adapter->tx_itr = e1000_update_itr(adapter,
2450                                     adapter->tx_itr,
2451                                     adapter->total_tx_packets,
2452                                     adapter->total_tx_bytes);
2453         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2454         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2455                 adapter->tx_itr = low_latency;
2456
2457         adapter->rx_itr = e1000_update_itr(adapter,
2458                                     adapter->rx_itr,
2459                                     adapter->total_rx_packets,
2460                                     adapter->total_rx_bytes);
2461         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2462         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2463                 adapter->rx_itr = low_latency;
2464
2465         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2466
2467         switch (current_itr) {
2468         /* counts and packets in update_itr are dependent on these numbers */
2469         case lowest_latency:
2470                 new_itr = 70000;
2471                 break;
2472         case low_latency:
2473                 new_itr = 20000; /* aka hwitr = ~200 */
2474                 break;
2475         case bulk_latency:
2476                 new_itr = 4000;
2477                 break;
2478         default:
2479                 break;
2480         }
2481
2482 set_itr_now:
2483         if (new_itr != adapter->itr) {
2484                 /*
2485                  * this attempts to bias the interrupt rate towards Bulk
2486                  * by adding intermediate steps when interrupt rate is
2487                  * increasing
2488                  */
2489                 new_itr = new_itr > adapter->itr ?
2490                              min(adapter->itr + (new_itr >> 2), new_itr) :
2491                              new_itr;
2492                 adapter->itr = new_itr;
2493                 adapter->rx_ring->itr_val = new_itr;
2494                 if (adapter->msix_entries)
2495                         adapter->rx_ring->set_itr = 1;
2496                 else
2497                         if (new_itr)
2498                                 ew32(ITR, 1000000000 / (new_itr * 256));
2499                         else
2500                                 ew32(ITR, 0);
2501         }
2502 }
2503
2504 /**
2505  * e1000_alloc_queues - Allocate memory for all rings
2506  * @adapter: board private structure to initialize
2507  **/
2508 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2509 {
2510         int size = sizeof(struct e1000_ring);
2511
2512         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2513         if (!adapter->tx_ring)
2514                 goto err;
2515         adapter->tx_ring->count = adapter->tx_ring_count;
2516         adapter->tx_ring->adapter = adapter;
2517
2518         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2519         if (!adapter->rx_ring)
2520                 goto err;
2521         adapter->rx_ring->count = adapter->rx_ring_count;
2522         adapter->rx_ring->adapter = adapter;
2523
2524         return 0;
2525 err:
2526         e_err("Unable to allocate memory for queues\n");
2527         kfree(adapter->rx_ring);
2528         kfree(adapter->tx_ring);
2529         return -ENOMEM;
2530 }
2531
2532 /**
2533  * e1000_clean - NAPI Rx polling callback
2534  * @napi: struct associated with this polling callback
2535  * @budget: amount of packets driver is allowed to process this poll
2536  **/
2537 static int e1000_clean(struct napi_struct *napi, int budget)
2538 {
2539         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2540         struct e1000_hw *hw = &adapter->hw;
2541         struct net_device *poll_dev = adapter->netdev;
2542         int tx_cleaned = 1, work_done = 0;
2543
2544         adapter = netdev_priv(poll_dev);
2545
2546         if (adapter->msix_entries &&
2547             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2548                 goto clean_rx;
2549
2550         tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2551
2552 clean_rx:
2553         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2554
2555         if (!tx_cleaned)
2556                 work_done = budget;
2557
2558         /* If budget not fully consumed, exit the polling mode */
2559         if (work_done < budget) {
2560                 if (adapter->itr_setting & 3)
2561                         e1000_set_itr(adapter);
2562                 napi_complete(napi);
2563                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2564                         if (adapter->msix_entries)
2565                                 ew32(IMS, adapter->rx_ring->ims_val);
2566                         else
2567                                 e1000_irq_enable(adapter);
2568                 }
2569         }
2570
2571         return work_done;
2572 }
2573
2574 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2575 {
2576         struct e1000_adapter *adapter = netdev_priv(netdev);
2577         struct e1000_hw *hw = &adapter->hw;
2578         u32 vfta, index;
2579
2580         /* don't update vlan cookie if already programmed */
2581         if ((adapter->hw.mng_cookie.status &
2582              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2583             (vid == adapter->mng_vlan_id))
2584                 return 0;
2585
2586         /* add VID to filter table */
2587         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2588                 index = (vid >> 5) & 0x7F;
2589                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2590                 vfta |= (1 << (vid & 0x1F));
2591                 hw->mac.ops.write_vfta(hw, index, vfta);
2592         }
2593
2594         set_bit(vid, adapter->active_vlans);
2595
2596         return 0;
2597 }
2598
2599 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2600 {
2601         struct e1000_adapter *adapter = netdev_priv(netdev);
2602         struct e1000_hw *hw = &adapter->hw;
2603         u32 vfta, index;
2604
2605         if ((adapter->hw.mng_cookie.status &
2606              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2607             (vid == adapter->mng_vlan_id)) {
2608                 /* release control to f/w */
2609                 e1000e_release_hw_control(adapter);
2610                 return 0;
2611         }
2612
2613         /* remove VID from filter table */
2614         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2615                 index = (vid >> 5) & 0x7F;
2616                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2617                 vfta &= ~(1 << (vid & 0x1F));
2618                 hw->mac.ops.write_vfta(hw, index, vfta);
2619         }
2620
2621         clear_bit(vid, adapter->active_vlans);
2622
2623         return 0;
2624 }
2625
2626 /**
2627  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2628  * @adapter: board private structure to initialize
2629  **/
2630 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2631 {
2632         struct net_device *netdev = adapter->netdev;
2633         struct e1000_hw *hw = &adapter->hw;
2634         u32 rctl;
2635
2636         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2637                 /* disable VLAN receive filtering */
2638                 rctl = er32(RCTL);
2639                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2640                 ew32(RCTL, rctl);
2641
2642                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2643                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2644                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2645                 }
2646         }
2647 }
2648
2649 /**
2650  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2651  * @adapter: board private structure to initialize
2652  **/
2653 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2654 {
2655         struct e1000_hw *hw = &adapter->hw;
2656         u32 rctl;
2657
2658         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2659                 /* enable VLAN receive filtering */
2660                 rctl = er32(RCTL);
2661                 rctl |= E1000_RCTL_VFE;
2662                 rctl &= ~E1000_RCTL_CFIEN;
2663                 ew32(RCTL, rctl);
2664         }
2665 }
2666
2667 /**
2668  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2669  * @adapter: board private structure to initialize
2670  **/
2671 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2672 {
2673         struct e1000_hw *hw = &adapter->hw;
2674         u32 ctrl;
2675
2676         /* disable VLAN tag insert/strip */
2677         ctrl = er32(CTRL);
2678         ctrl &= ~E1000_CTRL_VME;
2679         ew32(CTRL, ctrl);
2680 }
2681
2682 /**
2683  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2684  * @adapter: board private structure to initialize
2685  **/
2686 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2687 {
2688         struct e1000_hw *hw = &adapter->hw;
2689         u32 ctrl;
2690
2691         /* enable VLAN tag insert/strip */
2692         ctrl = er32(CTRL);
2693         ctrl |= E1000_CTRL_VME;
2694         ew32(CTRL, ctrl);
2695 }
2696
2697 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2698 {
2699         struct net_device *netdev = adapter->netdev;
2700         u16 vid = adapter->hw.mng_cookie.vlan_id;
2701         u16 old_vid = adapter->mng_vlan_id;
2702
2703         if (adapter->hw.mng_cookie.status &
2704             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2705                 e1000_vlan_rx_add_vid(netdev, vid);
2706                 adapter->mng_vlan_id = vid;
2707         }
2708
2709         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2710                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2711 }
2712
2713 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2714 {
2715         u16 vid;
2716
2717         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2718
2719         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2720                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2721 }
2722
2723 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2724 {
2725         struct e1000_hw *hw = &adapter->hw;
2726         u32 manc, manc2h, mdef, i, j;
2727
2728         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2729                 return;
2730
2731         manc = er32(MANC);
2732
2733         /*
2734          * enable receiving management packets to the host. this will probably
2735          * generate destination unreachable messages from the host OS, but
2736          * the packets will be handled on SMBUS
2737          */
2738         manc |= E1000_MANC_EN_MNG2HOST;
2739         manc2h = er32(MANC2H);
2740
2741         switch (hw->mac.type) {
2742         default:
2743                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2744                 break;
2745         case e1000_82574:
2746         case e1000_82583:
2747                 /*
2748                  * Check if IPMI pass-through decision filter already exists;
2749                  * if so, enable it.
2750                  */
2751                 for (i = 0, j = 0; i < 8; i++) {
2752                         mdef = er32(MDEF(i));
2753
2754                         /* Ignore filters with anything other than IPMI ports */
2755                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2756                                 continue;
2757
2758                         /* Enable this decision filter in MANC2H */
2759                         if (mdef)
2760                                 manc2h |= (1 << i);
2761
2762                         j |= mdef;
2763                 }
2764
2765                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2766                         break;
2767
2768                 /* Create new decision filter in an empty filter */
2769                 for (i = 0, j = 0; i < 8; i++)
2770                         if (er32(MDEF(i)) == 0) {
2771                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2772                                                E1000_MDEF_PORT_664));
2773                                 manc2h |= (1 << 1);
2774                                 j++;
2775                                 break;
2776                         }
2777
2778                 if (!j)
2779                         e_warn("Unable to create IPMI pass-through filter\n");
2780                 break;
2781         }
2782
2783         ew32(MANC2H, manc2h);
2784         ew32(MANC, manc);
2785 }
2786
2787 /**
2788  * e1000_configure_tx - Configure Transmit Unit after Reset
2789  * @adapter: board private structure
2790  *
2791  * Configure the Tx unit of the MAC after a reset.
2792  **/
2793 static void e1000_configure_tx(struct e1000_adapter *adapter)
2794 {
2795         struct e1000_hw *hw = &adapter->hw;
2796         struct e1000_ring *tx_ring = adapter->tx_ring;
2797         u64 tdba;
2798         u32 tdlen, tarc;
2799
2800         /* Setup the HW Tx Head and Tail descriptor pointers */
2801         tdba = tx_ring->dma;
2802         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2803         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2804         ew32(TDBAH, (tdba >> 32));
2805         ew32(TDLEN, tdlen);
2806         ew32(TDH, 0);
2807         ew32(TDT, 0);
2808         tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
2809         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
2810
2811         /* Set the Tx Interrupt Delay register */
2812         ew32(TIDV, adapter->tx_int_delay);
2813         /* Tx irq moderation */
2814         ew32(TADV, adapter->tx_abs_int_delay);
2815
2816         if (adapter->flags2 & FLAG2_DMA_BURST) {
2817                 u32 txdctl = er32(TXDCTL(0));
2818                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2819                             E1000_TXDCTL_WTHRESH);
2820                 /*
2821                  * set up some performance related parameters to encourage the
2822                  * hardware to use the bus more efficiently in bursts, depends
2823                  * on the tx_int_delay to be enabled,
2824                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2825                  * hthresh = 1 ==> prefetch when one or more available
2826                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2827                  * BEWARE: this seems to work but should be considered first if
2828                  * there are Tx hangs or other Tx related bugs
2829                  */
2830                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2831                 ew32(TXDCTL(0), txdctl);
2832         }
2833         /* erratum work around: set txdctl the same for both queues */
2834         ew32(TXDCTL(1), er32(TXDCTL(0)));
2835
2836         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2837                 tarc = er32(TARC(0));
2838                 /*
2839                  * set the speed mode bit, we'll clear it if we're not at
2840                  * gigabit link later
2841                  */
2842 #define SPEED_MODE_BIT (1 << 21)
2843                 tarc |= SPEED_MODE_BIT;
2844                 ew32(TARC(0), tarc);
2845         }
2846
2847         /* errata: program both queues to unweighted RR */
2848         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2849                 tarc = er32(TARC(0));
2850                 tarc |= 1;
2851                 ew32(TARC(0), tarc);
2852                 tarc = er32(TARC(1));
2853                 tarc |= 1;
2854                 ew32(TARC(1), tarc);
2855         }
2856
2857         /* Setup Transmit Descriptor Settings for eop descriptor */
2858         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2859
2860         /* only set IDE if we are delaying interrupts using the timers */
2861         if (adapter->tx_int_delay)
2862                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2863
2864         /* enable Report Status bit */
2865         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2866
2867         hw->mac.ops.config_collision_dist(hw);
2868 }
2869
2870 /**
2871  * e1000_setup_rctl - configure the receive control registers
2872  * @adapter: Board private structure
2873  **/
2874 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2875                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2876 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2877 {
2878         struct e1000_hw *hw = &adapter->hw;
2879         u32 rctl, rfctl;
2880         u32 pages = 0;
2881
2882         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2883         if (hw->mac.type == e1000_pch2lan) {
2884                 s32 ret_val;
2885
2886                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2887                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2888                 else
2889                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2890
2891                 if (ret_val)
2892                         e_dbg("failed to enable jumbo frame workaround mode\n");
2893         }
2894
2895         /* Program MC offset vector base */
2896         rctl = er32(RCTL);
2897         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2898         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2899                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2900                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2901
2902         /* Do not Store bad packets */
2903         rctl &= ~E1000_RCTL_SBP;
2904
2905         /* Enable Long Packet receive */
2906         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2907                 rctl &= ~E1000_RCTL_LPE;
2908         else
2909                 rctl |= E1000_RCTL_LPE;
2910
2911         /* Some systems expect that the CRC is included in SMBUS traffic. The
2912          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2913          * host memory when this is enabled
2914          */
2915         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2916                 rctl |= E1000_RCTL_SECRC;
2917
2918         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2919         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2920                 u16 phy_data;
2921
2922                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2923                 phy_data &= 0xfff8;
2924                 phy_data |= (1 << 2);
2925                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2926
2927                 e1e_rphy(hw, 22, &phy_data);
2928                 phy_data &= 0x0fff;
2929                 phy_data |= (1 << 14);
2930                 e1e_wphy(hw, 0x10, 0x2823);
2931                 e1e_wphy(hw, 0x11, 0x0003);
2932                 e1e_wphy(hw, 22, phy_data);
2933         }
2934
2935         /* Setup buffer sizes */
2936         rctl &= ~E1000_RCTL_SZ_4096;
2937         rctl |= E1000_RCTL_BSEX;
2938         switch (adapter->rx_buffer_len) {
2939         case 2048:
2940         default:
2941                 rctl |= E1000_RCTL_SZ_2048;
2942                 rctl &= ~E1000_RCTL_BSEX;
2943                 break;
2944         case 4096:
2945                 rctl |= E1000_RCTL_SZ_4096;
2946                 break;
2947         case 8192:
2948                 rctl |= E1000_RCTL_SZ_8192;
2949                 break;
2950         case 16384:
2951                 rctl |= E1000_RCTL_SZ_16384;
2952                 break;
2953         }
2954
2955         /* Enable Extended Status in all Receive Descriptors */
2956         rfctl = er32(RFCTL);
2957         rfctl |= E1000_RFCTL_EXTEN;
2958
2959         /*
2960          * 82571 and greater support packet-split where the protocol
2961          * header is placed in skb->data and the packet data is
2962          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2963          * In the case of a non-split, skb->data is linearly filled,
2964          * followed by the page buffers.  Therefore, skb->data is
2965          * sized to hold the largest protocol header.
2966          *
2967          * allocations using alloc_page take too long for regular MTU
2968          * so only enable packet split for jumbo frames
2969          *
2970          * Using pages when the page size is greater than 16k wastes
2971          * a lot of memory, since we allocate 3 pages at all times
2972          * per packet.
2973          */
2974         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2975         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2976                 adapter->rx_ps_pages = pages;
2977         else
2978                 adapter->rx_ps_pages = 0;
2979
2980         if (adapter->rx_ps_pages) {
2981                 u32 psrctl = 0;
2982
2983                 /*
2984                  * disable packet split support for IPv6 extension headers,
2985                  * because some malformed IPv6 headers can hang the Rx
2986                  */
2987                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2988                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2989
2990                 /* Enable Packet split descriptors */
2991                 rctl |= E1000_RCTL_DTYP_PS;
2992
2993                 psrctl |= adapter->rx_ps_bsize0 >>
2994                         E1000_PSRCTL_BSIZE0_SHIFT;
2995
2996                 switch (adapter->rx_ps_pages) {
2997                 case 3:
2998                         psrctl |= PAGE_SIZE <<
2999                                 E1000_PSRCTL_BSIZE3_SHIFT;
3000                 case 2:
3001                         psrctl |= PAGE_SIZE <<
3002                                 E1000_PSRCTL_BSIZE2_SHIFT;
3003                 case 1:
3004                         psrctl |= PAGE_SIZE >>
3005                                 E1000_PSRCTL_BSIZE1_SHIFT;
3006                         break;
3007                 }
3008
3009                 ew32(PSRCTL, psrctl);
3010         }
3011
3012         /* This is useful for sniffing bad packets. */
3013         if (adapter->netdev->features & NETIF_F_RXALL) {
3014                 /* UPE and MPE will be handled by normal PROMISC logic
3015                  * in e1000e_set_rx_mode */
3016                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3017                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3018                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3019
3020                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3021                           E1000_RCTL_DPF | /* Allow filtered pause */
3022                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3023                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3024                  * and that breaks VLANs.
3025                  */
3026         }
3027
3028         ew32(RFCTL, rfctl);
3029         ew32(RCTL, rctl);
3030         /* just started the receive unit, no need to restart */
3031         adapter->flags &= ~FLAG_RX_RESTART_NOW;
3032 }
3033
3034 /**
3035  * e1000_configure_rx - Configure Receive Unit after Reset
3036  * @adapter: board private structure
3037  *
3038  * Configure the Rx unit of the MAC after a reset.
3039  **/
3040 static void e1000_configure_rx(struct e1000_adapter *adapter)
3041 {
3042         struct e1000_hw *hw = &adapter->hw;
3043         struct e1000_ring *rx_ring = adapter->rx_ring;
3044         u64 rdba;
3045         u32 rdlen, rctl, rxcsum, ctrl_ext;
3046
3047         if (adapter->rx_ps_pages) {
3048                 /* this is a 32 byte descriptor */
3049                 rdlen = rx_ring->count *
3050                     sizeof(union e1000_rx_desc_packet_split);
3051                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3052                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3053         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3054                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3055                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3056                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3057         } else {
3058                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3059                 adapter->clean_rx = e1000_clean_rx_irq;
3060                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3061         }
3062
3063         /* disable receives while setting up the descriptors */
3064         rctl = er32(RCTL);
3065         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3066                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3067         e1e_flush();
3068         usleep_range(10000, 20000);
3069
3070         if (adapter->flags2 & FLAG2_DMA_BURST) {
3071                 /*
3072                  * set the writeback threshold (only takes effect if the RDTR
3073                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3074                  * enable prefetching of 0x20 Rx descriptors
3075                  * granularity = 01
3076                  * wthresh = 04,
3077                  * hthresh = 04,
3078                  * pthresh = 0x20
3079                  */
3080                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3081                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3082
3083                 /*
3084                  * override the delay timers for enabling bursting, only if
3085                  * the value was not set by the user via module options
3086                  */
3087                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3088                         adapter->rx_int_delay = BURST_RDTR;
3089                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3090                         adapter->rx_abs_int_delay = BURST_RADV;
3091         }
3092
3093         /* set the Receive Delay Timer Register */
3094         ew32(RDTR, adapter->rx_int_delay);
3095
3096         /* irq moderation */
3097         ew32(RADV, adapter->rx_abs_int_delay);
3098         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3099                 ew32(ITR, 1000000000 / (adapter->itr * 256));
3100
3101         ctrl_ext = er32(CTRL_EXT);
3102         /* Auto-Mask interrupts upon ICR access */
3103         ctrl_ext |= E1000_CTRL_EXT_IAME;
3104         ew32(IAM, 0xffffffff);
3105         ew32(CTRL_EXT, ctrl_ext);
3106         e1e_flush();
3107
3108         /*
3109          * Setup the HW Rx Head and Tail Descriptor Pointers and
3110          * the Base and Length of the Rx Descriptor Ring
3111          */
3112         rdba = rx_ring->dma;
3113         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3114         ew32(RDBAH, (rdba >> 32));
3115         ew32(RDLEN, rdlen);
3116         ew32(RDH, 0);
3117         ew32(RDT, 0);
3118         rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
3119         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
3120
3121         /* Enable Receive Checksum Offload for TCP and UDP */
3122         rxcsum = er32(RXCSUM);
3123         if (adapter->netdev->features & NETIF_F_RXCSUM) {
3124                 rxcsum |= E1000_RXCSUM_TUOFL;
3125
3126                 /*
3127                  * IPv4 payload checksum for UDP fragments must be
3128                  * used in conjunction with packet-split.
3129                  */
3130                 if (adapter->rx_ps_pages)
3131                         rxcsum |= E1000_RXCSUM_IPPCSE;
3132         } else {
3133                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3134                 /* no need to clear IPPCSE as it defaults to 0 */
3135         }
3136         ew32(RXCSUM, rxcsum);
3137
3138         if (adapter->hw.mac.type == e1000_pch2lan) {
3139                 /*
3140                  * With jumbo frames, excessive C-state transition
3141                  * latencies result in dropped transactions.
3142                  */
3143                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3144                         u32 rxdctl = er32(RXDCTL(0));
3145                         ew32(RXDCTL(0), rxdctl | 0x3);
3146                         pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3147                 } else {
3148                         pm_qos_update_request(&adapter->netdev->pm_qos_req,
3149                                               PM_QOS_DEFAULT_VALUE);
3150                 }
3151         }
3152
3153         /* Enable Receives */
3154         ew32(RCTL, rctl);
3155 }
3156
3157 /**
3158  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3159  * @netdev: network interface device structure
3160  *
3161  * Writes multicast address list to the MTA hash table.
3162  * Returns: -ENOMEM on failure
3163  *                0 on no addresses written
3164  *                X on writing X addresses to MTA
3165  */
3166 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3167 {
3168         struct e1000_adapter *adapter = netdev_priv(netdev);
3169         struct e1000_hw *hw = &adapter->hw;
3170         struct netdev_hw_addr *ha;
3171         u8 *mta_list;
3172         int i;
3173
3174         if (netdev_mc_empty(netdev)) {
3175                 /* nothing to program, so clear mc list */
3176                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3177                 return 0;
3178         }
3179
3180         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3181         if (!mta_list)
3182                 return -ENOMEM;
3183
3184         /* update_mc_addr_list expects a packed array of only addresses. */
3185         i = 0;
3186         netdev_for_each_mc_addr(ha, netdev)
3187                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3188
3189         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3190         kfree(mta_list);
3191
3192         return netdev_mc_count(netdev);
3193 }
3194
3195 /**
3196  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3197  * @netdev: network interface device structure
3198  *
3199  * Writes unicast address list to the RAR table.
3200  * Returns: -ENOMEM on failure/insufficient address space
3201  *                0 on no addresses written
3202  *                X on writing X addresses to the RAR table
3203  **/
3204 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3205 {
3206         struct e1000_adapter *adapter = netdev_priv(netdev);
3207         struct e1000_hw *hw = &adapter->hw;
3208         unsigned int rar_entries = hw->mac.rar_entry_count;
3209         int count = 0;
3210
3211         /* save a rar entry for our hardware address */
3212         rar_entries--;
3213
3214         /* save a rar entry for the LAA workaround */
3215         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3216                 rar_entries--;
3217
3218         /* return ENOMEM indicating insufficient memory for addresses */
3219         if (netdev_uc_count(netdev) > rar_entries)
3220                 return -ENOMEM;
3221
3222         if (!netdev_uc_empty(netdev) && rar_entries) {
3223                 struct netdev_hw_addr *ha;
3224
3225                 /*
3226                  * write the addresses in reverse order to avoid write
3227                  * combining
3228                  */
3229                 netdev_for_each_uc_addr(ha, netdev) {
3230                         if (!rar_entries)
3231                                 break;
3232                         e1000e_rar_set(hw, ha->addr, rar_entries--);
3233                         count++;
3234                 }
3235         }
3236
3237         /* zero out the remaining RAR entries not used above */
3238         for (; rar_entries > 0; rar_entries--) {
3239                 ew32(RAH(rar_entries), 0);
3240                 ew32(RAL(rar_entries), 0);
3241         }
3242         e1e_flush();
3243
3244         return count;
3245 }
3246
3247 /**
3248  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3249  * @netdev: network interface device structure
3250  *
3251  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3252  * address list or the network interface flags are updated.  This routine is
3253  * responsible for configuring the hardware for proper unicast, multicast,
3254  * promiscuous mode, and all-multi behavior.
3255  **/
3256 static void e1000e_set_rx_mode(struct net_device *netdev)
3257 {
3258         struct e1000_adapter *adapter = netdev_priv(netdev);
3259         struct e1000_hw *hw = &adapter->hw;
3260         u32 rctl;
3261
3262         /* Check for Promiscuous and All Multicast modes */
3263         rctl = er32(RCTL);
3264
3265         /* clear the affected bits */
3266         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3267
3268         if (netdev->flags & IFF_PROMISC) {
3269                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3270                 /* Do not hardware filter VLANs in promisc mode */
3271                 e1000e_vlan_filter_disable(adapter);
3272         } else {
3273                 int count;
3274
3275                 if (netdev->flags & IFF_ALLMULTI) {
3276                         rctl |= E1000_RCTL_MPE;
3277                 } else {
3278                         /*
3279                          * Write addresses to the MTA, if the attempt fails
3280                          * then we should just turn on promiscuous mode so
3281                          * that we can at least receive multicast traffic
3282                          */
3283                         count = e1000e_write_mc_addr_list(netdev);
3284                         if (count < 0)
3285                                 rctl |= E1000_RCTL_MPE;
3286                 }
3287                 e1000e_vlan_filter_enable(adapter);
3288                 /*
3289                  * Write addresses to available RAR registers, if there is not
3290                  * sufficient space to store all the addresses then enable
3291                  * unicast promiscuous mode
3292                  */
3293                 count = e1000e_write_uc_addr_list(netdev);
3294                 if (count < 0)
3295                         rctl |= E1000_RCTL_UPE;
3296         }
3297
3298         ew32(RCTL, rctl);
3299
3300         if (netdev->features & NETIF_F_HW_VLAN_RX)
3301                 e1000e_vlan_strip_enable(adapter);
3302         else
3303                 e1000e_vlan_strip_disable(adapter);
3304 }
3305
3306 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3307 {
3308         struct e1000_hw *hw = &adapter->hw;
3309         u32 mrqc, rxcsum;
3310         int i;
3311         static const u32 rsskey[10] = {
3312                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3313                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3314         };
3315
3316         /* Fill out hash function seed */
3317         for (i = 0; i < 10; i++)
3318                 ew32(RSSRK(i), rsskey[i]);
3319
3320         /* Direct all traffic to queue 0 */
3321         for (i = 0; i < 32; i++)
3322                 ew32(RETA(i), 0);
3323
3324         /*
3325          * Disable raw packet checksumming so that RSS hash is placed in
3326          * descriptor on writeback.
3327          */
3328         rxcsum = er32(RXCSUM);
3329         rxcsum |= E1000_RXCSUM_PCSD;
3330
3331         ew32(RXCSUM, rxcsum);
3332
3333         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3334                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3335                 E1000_MRQC_RSS_FIELD_IPV6 |
3336                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3337                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3338
3339         ew32(MRQC, mrqc);
3340 }
3341
3342 /**
3343  * e1000_configure - configure the hardware for Rx and Tx
3344  * @adapter: private board structure
3345  **/
3346 static void e1000_configure(struct e1000_adapter *adapter)
3347 {
3348         struct e1000_ring *rx_ring = adapter->rx_ring;
3349
3350         e1000e_set_rx_mode(adapter->netdev);
3351
3352         e1000_restore_vlan(adapter);
3353         e1000_init_manageability_pt(adapter);
3354
3355         e1000_configure_tx(adapter);
3356
3357         if (adapter->netdev->features & NETIF_F_RXHASH)
3358                 e1000e_setup_rss_hash(adapter);
3359         e1000_setup_rctl(adapter);
3360         e1000_configure_rx(adapter);
3361         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3362 }
3363
3364 /**
3365  * e1000e_power_up_phy - restore link in case the phy was powered down
3366  * @adapter: address of board private structure
3367  *
3368  * The phy may be powered down to save power and turn off link when the
3369  * driver is unloaded and wake on lan is not enabled (among others)
3370  * *** this routine MUST be followed by a call to e1000e_reset ***
3371  **/
3372 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3373 {
3374         if (adapter->hw.phy.ops.power_up)
3375                 adapter->hw.phy.ops.power_up(&adapter->hw);
3376
3377         adapter->hw.mac.ops.setup_link(&adapter->hw);
3378 }
3379
3380 /**
3381  * e1000_power_down_phy - Power down the PHY
3382  *
3383  * Power down the PHY so no link is implied when interface is down.
3384  * The PHY cannot be powered down if management or WoL is active.
3385  */
3386 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3387 {
3388         /* WoL is enabled */
3389         if (adapter->wol)
3390                 return;
3391
3392         if (adapter->hw.phy.ops.power_down)
3393                 adapter->hw.phy.ops.power_down(&adapter->hw);
3394 }
3395
3396 /**
3397  * e1000e_reset - bring the hardware into a known good state
3398  *
3399  * This function boots the hardware and enables some settings that
3400  * require a configuration cycle of the hardware - those cannot be
3401  * set/changed during runtime. After reset the device needs to be
3402  * properly configured for Rx, Tx etc.
3403  */
3404 void e1000e_reset(struct e1000_adapter *adapter)
3405 {
3406         struct e1000_mac_info *mac = &adapter->hw.mac;
3407         struct e1000_fc_info *fc = &adapter->hw.fc;
3408         struct e1000_hw *hw = &adapter->hw;
3409         u32 tx_space, min_tx_space, min_rx_space;
3410         u32 pba = adapter->pba;
3411         u16 hwm;
3412
3413         /* reset Packet Buffer Allocation to default */
3414         ew32(PBA, pba);
3415
3416         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3417                 /*
3418                  * To maintain wire speed transmits, the Tx FIFO should be
3419                  * large enough to accommodate two full transmit packets,
3420                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3421                  * the Rx FIFO should be large enough to accommodate at least
3422                  * one full receive packet and is similarly rounded up and
3423                  * expressed in KB.
3424                  */
3425                 pba = er32(PBA);
3426                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3427                 tx_space = pba >> 16;
3428                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3429                 pba &= 0xffff;
3430                 /*
3431                  * the Tx fifo also stores 16 bytes of information about the Tx
3432                  * but don't include ethernet FCS because hardware appends it
3433                  */
3434                 min_tx_space = (adapter->max_frame_size +
3435                                 sizeof(struct e1000_tx_desc) -
3436                                 ETH_FCS_LEN) * 2;
3437                 min_tx_space = ALIGN(min_tx_space, 1024);
3438                 min_tx_space >>= 10;
3439                 /* software strips receive CRC, so leave room for it */
3440                 min_rx_space = adapter->max_frame_size;
3441                 min_rx_space = ALIGN(min_rx_space, 1024);
3442                 min_rx_space >>= 10;
3443
3444                 /*
3445                  * If current Tx allocation is less than the min Tx FIFO size,
3446                  * and the min Tx FIFO size is less than the current Rx FIFO
3447                  * allocation, take space away from current Rx allocation
3448                  */
3449                 if ((tx_space < min_tx_space) &&
3450                     ((min_tx_space - tx_space) < pba)) {
3451                         pba -= min_tx_space - tx_space;
3452
3453                         /*
3454                          * if short on Rx space, Rx wins and must trump Tx
3455                          * adjustment or use Early Receive if available
3456                          */
3457                         if (pba < min_rx_space)
3458                                 pba = min_rx_space;
3459                 }
3460
3461                 ew32(PBA, pba);
3462         }
3463
3464         /*
3465          * flow control settings
3466          *
3467          * The high water mark must be low enough to fit one full frame
3468          * (or the size used for early receive) above it in the Rx FIFO.
3469          * Set it to the lower of:
3470          * - 90% of the Rx FIFO size, and
3471          * - the full Rx FIFO size minus one full frame
3472          */
3473         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3474                 fc->pause_time = 0xFFFF;
3475         else
3476                 fc->pause_time = E1000_FC_PAUSE_TIME;
3477         fc->send_xon = true;
3478         fc->current_mode = fc->requested_mode;
3479
3480         switch (hw->mac.type) {
3481         case e1000_ich9lan:
3482         case e1000_ich10lan:
3483                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3484                         pba = 14;
3485                         ew32(PBA, pba);
3486                         fc->high_water = 0x2800;
3487                         fc->low_water = fc->high_water - 8;
3488                         break;
3489                 }
3490                 /* fall-through */
3491         default:
3492                 hwm = min(((pba << 10) * 9 / 10),
3493                           ((pba << 10) - adapter->max_frame_size));
3494
3495                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3496                 fc->low_water = fc->high_water - 8;
3497                 break;
3498         case e1000_pchlan:
3499                 /*
3500                  * Workaround PCH LOM adapter hangs with certain network
3501                  * loads.  If hangs persist, try disabling Tx flow control.
3502                  */
3503                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3504                         fc->high_water = 0x3500;
3505                         fc->low_water  = 0x1500;
3506                 } else {
3507                         fc->high_water = 0x5000;
3508                         fc->low_water  = 0x3000;
3509                 }
3510                 fc->refresh_time = 0x1000;
3511                 break;
3512         case e1000_pch2lan:
3513                 fc->high_water = 0x05C20;
3514                 fc->low_water = 0x05048;
3515                 fc->pause_time = 0x0650;
3516                 fc->refresh_time = 0x0400;
3517                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3518                         pba = 14;
3519                         ew32(PBA, pba);
3520                 }
3521                 break;
3522         }
3523
3524         /*
3525          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3526          * fit in receive buffer.
3527          */
3528         if (adapter->itr_setting & 0x3) {
3529                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3530                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3531                                 dev_info(&adapter->pdev->dev,
3532                                         "Interrupt Throttle Rate turned off\n");
3533                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3534                                 ew32(ITR, 0);
3535                         }
3536                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3537                         dev_info(&adapter->pdev->dev,
3538                                  "Interrupt Throttle Rate turned on\n");
3539                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3540                         adapter->itr = 20000;
3541                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3542                 }
3543         }
3544
3545         /* Allow time for pending master requests to run */
3546         mac->ops.reset_hw(hw);
3547
3548         /*
3549          * For parts with AMT enabled, let the firmware know
3550          * that the network interface is in control
3551          */
3552         if (adapter->flags & FLAG_HAS_AMT)
3553                 e1000e_get_hw_control(adapter);
3554
3555         ew32(WUC, 0);
3556
3557         if (mac->ops.init_hw(hw))
3558                 e_err("Hardware Error\n");
3559
3560         e1000_update_mng_vlan(adapter);
3561
3562         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3563         ew32(VET, ETH_P_8021Q);
3564
3565         e1000e_reset_adaptive(hw);
3566
3567         if (!netif_running(adapter->netdev) &&
3568             !test_bit(__E1000_TESTING, &adapter->state)) {
3569                 e1000_power_down_phy(adapter);
3570                 return;
3571         }
3572
3573         e1000_get_phy_info(hw);
3574
3575         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3576             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3577                 u16 phy_data = 0;
3578                 /*
3579                  * speed up time to link by disabling smart power down, ignore
3580                  * the return value of this function because there is nothing
3581                  * different we would do if it failed
3582                  */
3583                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3584                 phy_data &= ~IGP02E1000_PM_SPD;
3585                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3586         }
3587 }
3588
3589 int e1000e_up(struct e1000_adapter *adapter)
3590 {
3591         struct e1000_hw *hw = &adapter->hw;
3592
3593         /* hardware has been reset, we need to reload some things */
3594         e1000_configure(adapter);
3595
3596         clear_bit(__E1000_DOWN, &adapter->state);
3597
3598         if (adapter->msix_entries)
3599                 e1000_configure_msix(adapter);
3600         e1000_irq_enable(adapter);
3601
3602         netif_start_queue(adapter->netdev);
3603
3604         /* fire a link change interrupt to start the watchdog */
3605         if (adapter->msix_entries)
3606                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3607         else
3608                 ew32(ICS, E1000_ICS_LSC);
3609
3610         return 0;
3611 }
3612
3613 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3614 {
3615         struct e1000_hw *hw = &adapter->hw;
3616
3617         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3618                 return;
3619
3620         /* flush pending descriptor writebacks to memory */
3621         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3622         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3623
3624         /* execute the writes immediately */
3625         e1e_flush();
3626
3627         /*
3628          * due to rare timing issues, write to TIDV/RDTR again to ensure the
3629          * write is successful
3630          */
3631         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3632         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3633
3634         /* execute the writes immediately */
3635         e1e_flush();
3636 }
3637
3638 static void e1000e_update_stats(struct e1000_adapter *adapter);
3639
3640 void e1000e_down(struct e1000_adapter *adapter)
3641 {
3642         struct net_device *netdev = adapter->netdev;
3643         struct e1000_hw *hw = &adapter->hw;
3644         u32 tctl, rctl;
3645
3646         /*
3647          * signal that we're down so the interrupt handler does not
3648          * reschedule our watchdog timer
3649          */
3650         set_bit(__E1000_DOWN, &adapter->state);
3651
3652         /* disable receives in the hardware */
3653         rctl = er32(RCTL);
3654         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3655                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3656         /* flush and sleep below */
3657
3658         netif_stop_queue(netdev);
3659
3660         /* disable transmits in the hardware */
3661         tctl = er32(TCTL);
3662         tctl &= ~E1000_TCTL_EN;
3663         ew32(TCTL, tctl);
3664
3665         /* flush both disables and wait for them to finish */
3666         e1e_flush();
3667         usleep_range(10000, 20000);
3668
3669         e1000_irq_disable(adapter);
3670
3671         del_timer_sync(&adapter->watchdog_timer);
3672         del_timer_sync(&adapter->phy_info_timer);
3673
3674         netif_carrier_off(netdev);
3675
3676         spin_lock(&adapter->stats64_lock);
3677         e1000e_update_stats(adapter);
3678         spin_unlock(&adapter->stats64_lock);
3679
3680         e1000e_flush_descriptors(adapter);
3681         e1000_clean_tx_ring(adapter->tx_ring);
3682         e1000_clean_rx_ring(adapter->rx_ring);
3683
3684         adapter->link_speed = 0;
3685         adapter->link_duplex = 0;
3686
3687         if (!pci_channel_offline(adapter->pdev))
3688                 e1000e_reset(adapter);
3689
3690         /*
3691          * TODO: for power management, we could drop the link and
3692          * pci_disable_device here.
3693          */
3694 }
3695
3696 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3697 {
3698         might_sleep();
3699         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3700                 usleep_range(1000, 2000);
3701         e1000e_down(adapter);
3702         e1000e_up(adapter);
3703         clear_bit(__E1000_RESETTING, &adapter->state);
3704 }
3705
3706 /**
3707  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3708  * @adapter: board private structure to initialize
3709  *
3710  * e1000_sw_init initializes the Adapter private data structure.
3711  * Fields are initialized based on PCI device information and
3712  * OS network device settings (MTU size).
3713  **/
3714 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3715 {
3716         struct net_device *netdev = adapter->netdev;
3717
3718         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3719         adapter->rx_ps_bsize0 = 128;
3720         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3721         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3722         adapter->tx_ring_count = E1000_DEFAULT_TXD;
3723         adapter->rx_ring_count = E1000_DEFAULT_RXD;
3724
3725         spin_lock_init(&adapter->stats64_lock);
3726
3727         e1000e_set_interrupt_capability(adapter);
3728
3729         if (e1000_alloc_queues(adapter))
3730                 return -ENOMEM;
3731
3732         /* Explicitly disable IRQ since the NIC can be in any state. */
3733         e1000_irq_disable(adapter);
3734
3735         set_bit(__E1000_DOWN, &adapter->state);
3736         return 0;
3737 }
3738
3739 /**
3740  * e1000_intr_msi_test - Interrupt Handler
3741  * @irq: interrupt number
3742  * @data: pointer to a network interface device structure
3743  **/
3744 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3745 {
3746         struct net_device *netdev = data;
3747         struct e1000_adapter *adapter = netdev_priv(netdev);
3748         struct e1000_hw *hw = &adapter->hw;
3749         u32 icr = er32(ICR);
3750
3751         e_dbg("icr is %08X\n", icr);
3752         if (icr & E1000_ICR_RXSEQ) {
3753                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3754                 wmb();
3755         }
3756
3757         return IRQ_HANDLED;
3758 }
3759
3760 /**
3761  * e1000_test_msi_interrupt - Returns 0 for successful test
3762  * @adapter: board private struct
3763  *
3764  * code flow taken from tg3.c
3765  **/
3766 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3767 {
3768         struct net_device *netdev = adapter->netdev;
3769         struct e1000_hw *hw = &adapter->hw;
3770         int err;
3771
3772         /* poll_enable hasn't been called yet, so don't need disable */
3773         /* clear any pending events */
3774         er32(ICR);
3775
3776         /* free the real vector and request a test handler */
3777         e1000_free_irq(adapter);
3778         e1000e_reset_interrupt_capability(adapter);
3779
3780         /* Assume that the test fails, if it succeeds then the test
3781          * MSI irq handler will unset this flag */
3782         adapter->flags |= FLAG_MSI_TEST_FAILED;
3783
3784         err = pci_enable_msi(adapter->pdev);
3785         if (err)
3786                 goto msi_test_failed;
3787
3788         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3789                           netdev->name, netdev);
3790         if (err) {
3791                 pci_disable_msi(adapter->pdev);
3792                 goto msi_test_failed;
3793         }
3794
3795         wmb();
3796
3797         e1000_irq_enable(adapter);
3798
3799         /* fire an unusual interrupt on the test handler */
3800         ew32(ICS, E1000_ICS_RXSEQ);
3801         e1e_flush();
3802         msleep(100);
3803
3804         e1000_irq_disable(adapter);
3805
3806         rmb();
3807
3808         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3809                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3810                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3811         } else {
3812                 e_dbg("MSI interrupt test succeeded!\n");
3813         }
3814
3815         free_irq(adapter->pdev->irq, netdev);
3816         pci_disable_msi(adapter->pdev);
3817
3818 msi_test_failed:
3819         e1000e_set_interrupt_capability(adapter);
3820         return e1000_request_irq(adapter);
3821 }
3822
3823 /**
3824  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3825  * @adapter: board private struct
3826  *
3827  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3828  **/
3829 static int e1000_test_msi(struct e1000_adapter *adapter)
3830 {
3831         int err;
3832         u16 pci_cmd;
3833
3834         if (!(adapter->flags & FLAG_MSI_ENABLED))
3835                 return 0;
3836
3837         /* disable SERR in case the MSI write causes a master abort */
3838         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3839         if (pci_cmd & PCI_COMMAND_SERR)
3840                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3841                                       pci_cmd & ~PCI_COMMAND_SERR);
3842
3843         err = e1000_test_msi_interrupt(adapter);
3844
3845         /* re-enable SERR */
3846         if (pci_cmd & PCI_COMMAND_SERR) {
3847                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3848                 pci_cmd |= PCI_COMMAND_SERR;
3849                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3850         }
3851
3852         return err;
3853 }
3854
3855 /**
3856  * e1000_open - Called when a network interface is made active
3857  * @netdev: network interface device structure
3858  *
3859  * Returns 0 on success, negative value on failure
3860  *
3861  * The open entry point is called when a network interface is made
3862  * active by the system (IFF_UP).  At this point all resources needed
3863  * for transmit and receive operations are allocated, the interrupt
3864  * handler is registered with the OS, the watchdog timer is started,
3865  * and the stack is notified that the interface is ready.
3866  **/
3867 static int e1000_open(struct net_device *netdev)
3868 {
3869         struct e1000_adapter *adapter = netdev_priv(netdev);
3870         struct e1000_hw *hw = &adapter->hw;
3871         struct pci_dev *pdev = adapter->pdev;
3872         int err;
3873
3874         /* disallow open during test */
3875         if (test_bit(__E1000_TESTING, &adapter->state))
3876                 return -EBUSY;
3877
3878         pm_runtime_get_sync(&pdev->dev);
3879
3880         netif_carrier_off(netdev);
3881
3882         /* allocate transmit descriptors */
3883         err = e1000e_setup_tx_resources(adapter->tx_ring);
3884         if (err)
3885                 goto err_setup_tx;
3886
3887         /* allocate receive descriptors */
3888         err = e1000e_setup_rx_resources(adapter->rx_ring);
3889         if (err)
3890                 goto err_setup_rx;
3891
3892         /*
3893          * If AMT is enabled, let the firmware know that the network
3894          * interface is now open and reset the part to a known state.
3895          */
3896         if (adapter->flags & FLAG_HAS_AMT) {
3897                 e1000e_get_hw_control(adapter);
3898                 e1000e_reset(adapter);
3899         }
3900
3901         e1000e_power_up_phy(adapter);
3902
3903         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3904         if ((adapter->hw.mng_cookie.status &
3905              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3906                 e1000_update_mng_vlan(adapter);
3907
3908         /* DMA latency requirement to workaround jumbo issue */
3909         if (adapter->hw.mac.type == e1000_pch2lan)
3910                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3911                                    PM_QOS_CPU_DMA_LATENCY,
3912                                    PM_QOS_DEFAULT_VALUE);
3913
3914         /*
3915          * before we allocate an interrupt, we must be ready to handle it.
3916          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3917          * as soon as we call pci_request_irq, so we have to setup our
3918          * clean_rx handler before we do so.
3919          */
3920         e1000_configure(adapter);
3921
3922         err = e1000_request_irq(adapter);
3923         if (err)
3924                 goto err_req_irq;
3925
3926         /*
3927          * Work around PCIe errata with MSI interrupts causing some chipsets to
3928          * ignore e1000e MSI messages, which means we need to test our MSI
3929          * interrupt now
3930          */
3931         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3932                 err = e1000_test_msi(adapter);
3933                 if (err) {
3934                         e_err("Interrupt allocation failed\n");
3935                         goto err_req_irq;
3936                 }
3937         }
3938
3939         /* From here on the code is the same as e1000e_up() */
3940         clear_bit(__E1000_DOWN, &adapter->state);
3941
3942         napi_enable(&adapter->napi);
3943
3944         e1000_irq_enable(adapter);
3945
3946         adapter->tx_hang_recheck = false;
3947         netif_start_queue(netdev);
3948
3949         adapter->idle_check = true;
3950         pm_runtime_put(&pdev->dev);
3951
3952         /* fire a link status change interrupt to start the watchdog */
3953         if (adapter->msix_entries)
3954                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3955         else
3956                 ew32(ICS, E1000_ICS_LSC);
3957
3958         return 0;
3959
3960 err_req_irq:
3961         e1000e_release_hw_control(adapter);
3962         e1000_power_down_phy(adapter);
3963         e1000e_free_rx_resources(adapter->rx_ring);
3964 err_setup_rx:
3965         e1000e_free_tx_resources(adapter->tx_ring);
3966 err_setup_tx:
3967         e1000e_reset(adapter);
3968         pm_runtime_put_sync(&pdev->dev);
3969
3970         return err;
3971 }
3972
3973 /**
3974  * e1000_close - Disables a network interface
3975  * @netdev: network interface device structure
3976  *
3977  * Returns 0, this is not allowed to fail
3978  *
3979  * The close entry point is called when an interface is de-activated
3980  * by the OS.  The hardware is still under the drivers control, but
3981  * needs to be disabled.  A global MAC reset is issued to stop the
3982  * hardware, and all transmit and receive resources are freed.
3983  **/
3984 static int e1000_close(struct net_device *netdev)
3985 {
3986         struct e1000_adapter *adapter = netdev_priv(netdev);
3987         struct pci_dev *pdev = adapter->pdev;
3988         int count = E1000_CHECK_RESET_COUNT;
3989
3990         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3991                 usleep_range(10000, 20000);
3992
3993         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3994
3995         pm_runtime_get_sync(&pdev->dev);
3996
3997         napi_disable(&adapter->napi);
3998
3999         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4000                 e1000e_down(adapter);
4001                 e1000_free_irq(adapter);
4002         }
4003         e1000_power_down_phy(adapter);
4004
4005         e1000e_free_tx_resources(adapter->tx_ring);
4006         e1000e_free_rx_resources(adapter->rx_ring);
4007
4008         /*
4009          * kill manageability vlan ID if supported, but not if a vlan with
4010          * the same ID is registered on the host OS (let 8021q kill it)
4011          */
4012         if (adapter->hw.mng_cookie.status &
4013             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4014                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4015
4016         /*
4017          * If AMT is enabled, let the firmware know that the network
4018          * interface is now closed
4019          */
4020         if ((adapter->flags & FLAG_HAS_AMT) &&
4021             !test_bit(__E1000_TESTING, &adapter->state))
4022                 e1000e_release_hw_control(adapter);
4023
4024         if (adapter->hw.mac.type == e1000_pch2lan)
4025                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4026
4027         pm_runtime_put_sync(&pdev->dev);
4028
4029         return 0;
4030 }
4031 /**
4032  * e1000_set_mac - Change the Ethernet Address of the NIC
4033  * @netdev: network interface device structure
4034  * @p: pointer to an address structure
4035  *
4036  * Returns 0 on success, negative on failure
4037  **/
4038 static int e1000_set_mac(struct net_device *netdev, void *p)
4039 {
4040         struct e1000_adapter *adapter = netdev_priv(netdev);
4041         struct sockaddr *addr = p;
4042
4043         if (!is_valid_ether_addr(addr->sa_data))
4044                 return -EADDRNOTAVAIL;
4045
4046         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4047         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4048
4049         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4050
4051         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4052                 /* activate the work around */
4053                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4054
4055                 /*
4056                  * Hold a copy of the LAA in RAR[14] This is done so that
4057                  * between the time RAR[0] gets clobbered  and the time it
4058                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4059                  * of the RARs and no incoming packets directed to this port
4060                  * are dropped. Eventually the LAA will be in RAR[0] and
4061                  * RAR[14]
4062                  */
4063                 e1000e_rar_set(&adapter->hw,
4064                               adapter->hw.mac.addr,
4065                               adapter->hw.mac.rar_entry_count - 1);
4066         }
4067
4068         return 0;
4069 }
4070
4071 /**
4072  * e1000e_update_phy_task - work thread to update phy
4073  * @work: pointer to our work struct
4074  *
4075  * this worker thread exists because we must acquire a
4076  * semaphore to read the phy, which we could msleep while
4077  * waiting for it, and we can't msleep in a timer.
4078  **/
4079 static void e1000e_update_phy_task(struct work_struct *work)
4080 {
4081         struct e1000_adapter *adapter = container_of(work,
4082                                         struct e1000_adapter, update_phy_task);
4083
4084         if (test_bit(__E1000_DOWN, &adapter->state))
4085                 return;
4086
4087         e1000_get_phy_info(&adapter->hw);
4088 }
4089
4090 /*
4091  * Need to wait a few seconds after link up to get diagnostic information from
4092  * the phy
4093  */
4094 static void e1000_update_phy_info(unsigned long data)
4095 {
4096         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4097
4098         if (test_bit(__E1000_DOWN, &adapter->state))
4099                 return;
4100
4101         schedule_work(&adapter->update_phy_task);
4102 }
4103
4104 /**
4105  * e1000e_update_phy_stats - Update the PHY statistics counters
4106  * @adapter: board private structure
4107  *
4108  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4109  **/
4110 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4111 {
4112         struct e1000_hw *hw = &adapter->hw;
4113         s32 ret_val;
4114         u16 phy_data;
4115
4116         ret_val = hw->phy.ops.acquire(hw);
4117         if (ret_val)
4118                 return;
4119
4120         /*
4121          * A page set is expensive so check if already on desired page.
4122          * If not, set to the page with the PHY status registers.
4123          */
4124         hw->phy.addr = 1;
4125         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4126                                            &phy_data);
4127         if (ret_val)
4128                 goto release;
4129         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4130                 ret_val = hw->phy.ops.set_page(hw,
4131                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4132                 if (ret_val)
4133                         goto release;
4134         }
4135
4136         /* Single Collision Count */
4137         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4138         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4139         if (!ret_val)
4140                 adapter->stats.scc += phy_data;
4141
4142         /* Excessive Collision Count */
4143         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4144         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4145         if (!ret_val)
4146                 adapter->stats.ecol += phy_data;
4147
4148         /* Multiple Collision Count */
4149         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4150         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4151         if (!ret_val)
4152                 adapter->stats.mcc += phy_data;
4153
4154         /* Late Collision Count */
4155         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4156         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4157         if (!ret_val)
4158                 adapter->stats.latecol += phy_data;
4159
4160         /* Collision Count - also used for adaptive IFS */
4161         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4162         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4163         if (!ret_val)
4164                 hw->mac.collision_delta = phy_data;
4165
4166         /* Defer Count */
4167         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4168         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4169         if (!ret_val)
4170                 adapter->stats.dc += phy_data;
4171
4172         /* Transmit with no CRS */
4173         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4174         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4175         if (!ret_val)
4176                 adapter->stats.tncrs += phy_data;
4177
4178 release:
4179         hw->phy.ops.release(hw);
4180 }
4181
4182 /**
4183  * e1000e_update_stats - Update the board statistics counters
4184  * @adapter: board private structure
4185  **/
4186 static void e1000e_update_stats(struct e1000_adapter *adapter)
4187 {
4188         struct net_device *netdev = adapter->netdev;
4189         struct e1000_hw *hw = &adapter->hw;
4190         struct pci_dev *pdev = adapter->pdev;
4191
4192         /*
4193          * Prevent stats update while adapter is being reset, or if the pci
4194          * connection is down.
4195          */
4196         if (adapter->link_speed == 0)
4197                 return;
4198         if (pci_channel_offline(pdev))
4199                 return;
4200
4201         adapter->stats.crcerrs += er32(CRCERRS);
4202         adapter->stats.gprc += er32(GPRC);
4203         adapter->stats.gorc += er32(GORCL);
4204         er32(GORCH); /* Clear gorc */
4205         adapter->stats.bprc += er32(BPRC);
4206         adapter->stats.mprc += er32(MPRC);
4207         adapter->stats.roc += er32(ROC);
4208
4209         adapter->stats.mpc += er32(MPC);
4210
4211         /* Half-duplex statistics */
4212         if (adapter->link_duplex == HALF_DUPLEX) {
4213                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4214                         e1000e_update_phy_stats(adapter);
4215                 } else {
4216                         adapter->stats.scc += er32(SCC);
4217                         adapter->stats.ecol += er32(ECOL);
4218                         adapter->stats.mcc += er32(MCC);
4219                         adapter->stats.latecol += er32(LATECOL);
4220                         adapter->stats.dc += er32(DC);
4221
4222                         hw->mac.collision_delta = er32(COLC);
4223
4224                         if ((hw->mac.type != e1000_82574) &&
4225                             (hw->mac.type != e1000_82583))
4226                                 adapter->stats.tncrs += er32(TNCRS);
4227                 }
4228                 adapter->stats.colc += hw->mac.collision_delta;
4229         }
4230
4231         adapter->stats.xonrxc += er32(XONRXC);
4232         adapter->stats.xontxc += er32(XONTXC);
4233         adapter->stats.xoffrxc += er32(XOFFRXC);
4234         adapter->stats.xofftxc += er32(XOFFTXC);
4235         adapter->stats.gptc += er32(GPTC);
4236         adapter->stats.gotc += er32(GOTCL);
4237         er32(GOTCH); /* Clear gotc */
4238         adapter->stats.rnbc += er32(RNBC);
4239         adapter->stats.ruc += er32(RUC);
4240
4241         adapter->stats.mptc += er32(MPTC);
4242         adapter->stats.bptc += er32(BPTC);
4243
4244         /* used for adaptive IFS */
4245
4246         hw->mac.tx_packet_delta = er32(TPT);
4247         adapter->stats.tpt += hw->mac.tx_packet_delta;
4248
4249         adapter->stats.algnerrc += er32(ALGNERRC);
4250         adapter->stats.rxerrc += er32(RXERRC);
4251         adapter->stats.cexterr += er32(CEXTERR);
4252         adapter->stats.tsctc += er32(TSCTC);
4253         adapter->stats.tsctfc += er32(TSCTFC);
4254
4255         /* Fill out the OS statistics structure */
4256         netdev->stats.multicast = adapter->stats.mprc;
4257         netdev->stats.collisions = adapter->stats.colc;
4258
4259         /* Rx Errors */
4260
4261         /*
4262          * RLEC on some newer hardware can be incorrect so build
4263          * our own version based on RUC and ROC
4264          */
4265         netdev->stats.rx_errors = adapter->stats.rxerrc +
4266                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4267                 adapter->stats.ruc + adapter->stats.roc +
4268                 adapter->stats.cexterr;
4269         netdev->stats.rx_length_errors = adapter->stats.ruc +
4270                                               adapter->stats.roc;
4271         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4272         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4273         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4274
4275         /* Tx Errors */
4276         netdev->stats.tx_errors = adapter->stats.ecol +
4277                                        adapter->stats.latecol;
4278         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4279         netdev->stats.tx_window_errors = adapter->stats.latecol;
4280         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4281
4282         /* Tx Dropped needs to be maintained elsewhere */
4283
4284         /* Management Stats */
4285         adapter->stats.mgptc += er32(MGTPTC);
4286         adapter->stats.mgprc += er32(MGTPRC);
4287         adapter->stats.mgpdc += er32(MGTPDC);
4288 }
4289
4290 /**
4291  * e1000_phy_read_status - Update the PHY register status snapshot
4292  * @adapter: board private structure
4293  **/
4294 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4295 {
4296         struct e1000_hw *hw = &adapter->hw;
4297         struct e1000_phy_regs *phy = &adapter->phy_regs;
4298
4299         if ((er32(STATUS) & E1000_STATUS_LU) &&
4300             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4301                 int ret_val;
4302
4303                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4304                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4305                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4306                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4307                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4308                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4309                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4310                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4311                 if (ret_val)
4312                         e_warn("Error reading PHY register\n");
4313         } else {
4314                 /*
4315                  * Do not read PHY registers if link is not up
4316                  * Set values to typical power-on defaults
4317                  */
4318                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4319                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4320                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4321                              BMSR_ERCAP);
4322                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4323                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4324                 phy->lpa = 0;
4325                 phy->expansion = EXPANSION_ENABLENPAGE;
4326                 phy->ctrl1000 = ADVERTISE_1000FULL;
4327                 phy->stat1000 = 0;
4328                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4329         }
4330 }
4331
4332 static void e1000_print_link_info(struct e1000_adapter *adapter)
4333 {
4334         struct e1000_hw *hw = &adapter->hw;
4335         u32 ctrl = er32(CTRL);
4336
4337         /* Link status message must follow this format for user tools */
4338         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4339                 adapter->netdev->name,
4340                 adapter->link_speed,
4341                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4342                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4343                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4344                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4345 }
4346
4347 static bool e1000e_has_link(struct e1000_adapter *adapter)
4348 {
4349         struct e1000_hw *hw = &adapter->hw;
4350         bool link_active = false;
4351         s32 ret_val = 0;
4352
4353         /*
4354          * get_link_status is set on LSC (link status) interrupt or
4355          * Rx sequence error interrupt.  get_link_status will stay
4356          * false until the check_for_link establishes link
4357          * for copper adapters ONLY
4358          */
4359         switch (hw->phy.media_type) {
4360         case e1000_media_type_copper:
4361                 if (hw->mac.get_link_status) {
4362                         ret_val = hw->mac.ops.check_for_link(hw);
4363                         link_active = !hw->mac.get_link_status;
4364                 } else {
4365                         link_active = true;
4366                 }
4367                 break;
4368         case e1000_media_type_fiber:
4369                 ret_val = hw->mac.ops.check_for_link(hw);
4370                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4371                 break;
4372         case e1000_media_type_internal_serdes:
4373                 ret_val = hw->mac.ops.check_for_link(hw);
4374                 link_active = adapter->hw.mac.serdes_has_link;
4375                 break;
4376         default:
4377         case e1000_media_type_unknown:
4378                 break;
4379         }
4380
4381         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4382             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4383                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4384                 e_info("Gigabit has been disabled, downgrading speed\n");
4385         }
4386
4387         return link_active;
4388 }
4389
4390 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4391 {
4392         /* make sure the receive unit is started */
4393         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4394             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4395                 struct e1000_hw *hw = &adapter->hw;
4396                 u32 rctl = er32(RCTL);
4397                 ew32(RCTL, rctl | E1000_RCTL_EN);
4398                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4399         }
4400 }
4401
4402 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4403 {
4404         struct e1000_hw *hw = &adapter->hw;
4405
4406         /*
4407          * With 82574 controllers, PHY needs to be checked periodically
4408          * for hung state and reset, if two calls return true
4409          */
4410         if (e1000_check_phy_82574(hw))
4411                 adapter->phy_hang_count++;
4412         else
4413                 adapter->phy_hang_count = 0;
4414
4415         if (adapter->phy_hang_count > 1) {
4416                 adapter->phy_hang_count = 0;
4417                 schedule_work(&adapter->reset_task);
4418         }
4419 }
4420
4421 /**
4422  * e1000_watchdog - Timer Call-back
4423  * @data: pointer to adapter cast into an unsigned long
4424  **/
4425 static void e1000_watchdog(unsigned long data)
4426 {
4427         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4428
4429         /* Do the rest outside of interrupt context */
4430         schedule_work(&adapter->watchdog_task);
4431
4432         /* TODO: make this use queue_delayed_work() */
4433 }
4434
4435 static void e1000_watchdog_task(struct work_struct *work)
4436 {
4437         struct e1000_adapter *adapter = container_of(work,
4438                                         struct e1000_adapter, watchdog_task);
4439         struct net_device *netdev = adapter->netdev;
4440         struct e1000_mac_info *mac = &adapter->hw.mac;
4441         struct e1000_phy_info *phy = &adapter->hw.phy;
4442         struct e1000_ring *tx_ring = adapter->tx_ring;
4443         struct e1000_hw *hw = &adapter->hw;
4444         u32 link, tctl;
4445
4446         if (test_bit(__E1000_DOWN, &adapter->state))
4447                 return;
4448
4449         link = e1000e_has_link(adapter);
4450         if ((netif_carrier_ok(netdev)) && link) {
4451                 /* Cancel scheduled suspend requests. */
4452                 pm_runtime_resume(netdev->dev.parent);
4453
4454                 e1000e_enable_receives(adapter);
4455                 goto link_up;
4456         }
4457
4458         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4459             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4460                 e1000_update_mng_vlan(adapter);
4461
4462         if (link) {
4463                 if (!netif_carrier_ok(netdev)) {
4464                         bool txb2b = true;
4465
4466                         /* Cancel scheduled suspend requests. */
4467                         pm_runtime_resume(netdev->dev.parent);
4468
4469                         /* update snapshot of PHY registers on LSC */
4470                         e1000_phy_read_status(adapter);
4471                         mac->ops.get_link_up_info(&adapter->hw,
4472                                                    &adapter->link_speed,
4473                                                    &adapter->link_duplex);
4474                         e1000_print_link_info(adapter);
4475                         /*
4476                          * On supported PHYs, check for duplex mismatch only
4477                          * if link has autonegotiated at 10/100 half
4478                          */
4479                         if ((hw->phy.type == e1000_phy_igp_3 ||
4480                              hw->phy.type == e1000_phy_bm) &&
4481                             (hw->mac.autoneg == true) &&
4482                             (adapter->link_speed == SPEED_10 ||
4483                              adapter->link_speed == SPEED_100) &&
4484                             (adapter->link_duplex == HALF_DUPLEX)) {
4485                                 u16 autoneg_exp;
4486
4487                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4488
4489                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4490                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4491                         }
4492
4493                         /* adjust timeout factor according to speed/duplex */
4494                         adapter->tx_timeout_factor = 1;
4495                         switch (adapter->link_speed) {
4496                         case SPEED_10:
4497                                 txb2b = false;
4498                                 adapter->tx_timeout_factor = 16;
4499                                 break;
4500                         case SPEED_100:
4501                                 txb2b = false;
4502                                 adapter->tx_timeout_factor = 10;
4503                                 break;
4504                         }
4505
4506                         /*
4507                          * workaround: re-program speed mode bit after
4508                          * link-up event
4509                          */
4510                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4511                             !txb2b) {
4512                                 u32 tarc0;
4513                                 tarc0 = er32(TARC(0));
4514                                 tarc0 &= ~SPEED_MODE_BIT;
4515                                 ew32(TARC(0), tarc0);
4516                         }
4517
4518                         /*
4519                          * disable TSO for pcie and 10/100 speeds, to avoid
4520                          * some hardware issues
4521                          */
4522                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4523                                 switch (adapter->link_speed) {
4524                                 case SPEED_10:
4525                                 case SPEED_100:
4526                                         e_info("10/100 speed: disabling TSO\n");
4527                                         netdev->features &= ~NETIF_F_TSO;
4528                                         netdev->features &= ~NETIF_F_TSO6;
4529                                         break;
4530                                 case SPEED_1000:
4531                                         netdev->features |= NETIF_F_TSO;
4532                                         netdev->features |= NETIF_F_TSO6;
4533                                         break;
4534                                 default:
4535                                         /* oops */
4536                                         break;
4537                                 }
4538                         }
4539
4540                         /*
4541                          * enable transmits in the hardware, need to do this
4542                          * after setting TARC(0)
4543                          */
4544                         tctl = er32(TCTL);
4545                         tctl |= E1000_TCTL_EN;
4546                         ew32(TCTL, tctl);
4547
4548                         /*
4549                          * Perform any post-link-up configuration before
4550                          * reporting link up.
4551                          */
4552                         if (phy->ops.cfg_on_link_up)
4553                                 phy->ops.cfg_on_link_up(hw);
4554
4555                         netif_carrier_on(netdev);
4556
4557                         if (!test_bit(__E1000_DOWN, &adapter->state))
4558                                 mod_timer(&adapter->phy_info_timer,
4559                                           round_jiffies(jiffies + 2 * HZ));
4560                 }
4561         } else {
4562                 if (netif_carrier_ok(netdev)) {
4563                         adapter->link_speed = 0;
4564                         adapter->link_duplex = 0;
4565                         /* Link status message must follow this format */
4566                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4567                                adapter->netdev->name);
4568                         netif_carrier_off(netdev);
4569                         if (!test_bit(__E1000_DOWN, &adapter->state))
4570                                 mod_timer(&adapter->phy_info_timer,
4571                                           round_jiffies(jiffies + 2 * HZ));
4572
4573                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4574                                 schedule_work(&adapter->reset_task);
4575                         else
4576                                 pm_schedule_suspend(netdev->dev.parent,
4577                                                         LINK_TIMEOUT);
4578                 }
4579         }
4580
4581 link_up:
4582         spin_lock(&adapter->stats64_lock);
4583         e1000e_update_stats(adapter);
4584
4585         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4586         adapter->tpt_old = adapter->stats.tpt;
4587         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4588         adapter->colc_old = adapter->stats.colc;
4589
4590         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4591         adapter->gorc_old = adapter->stats.gorc;
4592         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4593         adapter->gotc_old = adapter->stats.gotc;
4594         spin_unlock(&adapter->stats64_lock);
4595
4596         e1000e_update_adaptive(&adapter->hw);
4597
4598         if (!netif_carrier_ok(netdev) &&
4599             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4600                 /*
4601                  * We've lost link, so the controller stops DMA,
4602                  * but we've got queued Tx work that's never going
4603                  * to get done, so reset controller to flush Tx.
4604                  * (Do the reset outside of interrupt context).
4605                  */
4606                 schedule_work(&adapter->reset_task);
4607                 /* return immediately since reset is imminent */
4608                 return;
4609         }
4610
4611         /* Simple mode for Interrupt Throttle Rate (ITR) */
4612         if (adapter->itr_setting == 4) {
4613                 /*
4614                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4615                  * Total asymmetrical Tx or Rx gets ITR=8000;
4616                  * everyone else is between 2000-8000.
4617                  */
4618                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4619                 u32 dif = (adapter->gotc > adapter->gorc ?
4620                             adapter->gotc - adapter->gorc :
4621                             adapter->gorc - adapter->gotc) / 10000;
4622                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4623
4624                 ew32(ITR, 1000000000 / (itr * 256));
4625         }
4626
4627         /* Cause software interrupt to ensure Rx ring is cleaned */
4628         if (adapter->msix_entries)
4629                 ew32(ICS, adapter->rx_ring->ims_val);
4630         else
4631                 ew32(ICS, E1000_ICS_RXDMT0);
4632
4633         /* flush pending descriptors to memory before detecting Tx hang */
4634         e1000e_flush_descriptors(adapter);
4635
4636         /* Force detection of hung controller every watchdog period */
4637         adapter->detect_tx_hung = true;
4638
4639         /*
4640          * With 82571 controllers, LAA may be overwritten due to controller
4641          * reset from the other port. Set the appropriate LAA in RAR[0]
4642          */
4643         if (e1000e_get_laa_state_82571(hw))
4644                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4645
4646         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4647                 e1000e_check_82574_phy_workaround(adapter);
4648
4649         /* Reset the timer */
4650         if (!test_bit(__E1000_DOWN, &adapter->state))
4651                 mod_timer(&adapter->watchdog_timer,
4652                           round_jiffies(jiffies + 2 * HZ));
4653 }
4654
4655 #define E1000_TX_FLAGS_CSUM             0x00000001
4656 #define E1000_TX_FLAGS_VLAN             0x00000002
4657 #define E1000_TX_FLAGS_TSO              0x00000004
4658 #define E1000_TX_FLAGS_IPV4             0x00000008
4659 #define E1000_TX_FLAGS_NO_FCS           0x00000010
4660 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4661 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4662
4663 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4664 {
4665         struct e1000_context_desc *context_desc;
4666         struct e1000_buffer *buffer_info;
4667         unsigned int i;
4668         u32 cmd_length = 0;
4669         u16 ipcse = 0, tucse, mss;
4670         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4671
4672         if (!skb_is_gso(skb))
4673                 return 0;
4674
4675         if (skb_header_cloned(skb)) {
4676                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4677
4678                 if (err)
4679                         return err;
4680         }
4681
4682         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4683         mss = skb_shinfo(skb)->gso_size;
4684         if (skb->protocol == htons(ETH_P_IP)) {
4685                 struct iphdr *iph = ip_hdr(skb);
4686                 iph->tot_len = 0;
4687                 iph->check = 0;
4688                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4689                                                          0, IPPROTO_TCP, 0);
4690                 cmd_length = E1000_TXD_CMD_IP;
4691                 ipcse = skb_transport_offset(skb) - 1;
4692         } else if (skb_is_gso_v6(skb)) {
4693                 ipv6_hdr(skb)->payload_len = 0;
4694                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4695                                                        &ipv6_hdr(skb)->daddr,
4696                                                        0, IPPROTO_TCP, 0);
4697                 ipcse = 0;
4698         }
4699         ipcss = skb_network_offset(skb);
4700         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4701         tucss = skb_transport_offset(skb);
4702         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4703         tucse = 0;
4704
4705         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4706                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4707
4708         i = tx_ring->next_to_use;
4709         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4710         buffer_info = &tx_ring->buffer_info[i];
4711
4712         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4713         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4714         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4715         context_desc->upper_setup.tcp_fields.tucss = tucss;
4716         context_desc->upper_setup.tcp_fields.tucso = tucso;
4717         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4718         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4719         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4720         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4721
4722         buffer_info->time_stamp = jiffies;
4723         buffer_info->next_to_watch = i;
4724
4725         i++;
4726         if (i == tx_ring->count)
4727                 i = 0;
4728         tx_ring->next_to_use = i;
4729
4730         return 1;
4731 }
4732
4733 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4734 {
4735         struct e1000_adapter *adapter = tx_ring->adapter;
4736         struct e1000_context_desc *context_desc;
4737         struct e1000_buffer *buffer_info;
4738         unsigned int i;
4739         u8 css;
4740         u32 cmd_len = E1000_TXD_CMD_DEXT;
4741         __be16 protocol;
4742
4743         if (skb->ip_summed != CHECKSUM_PARTIAL)
4744                 return 0;
4745
4746         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4747                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4748         else
4749                 protocol = skb->protocol;
4750
4751         switch (protocol) {
4752         case cpu_to_be16(ETH_P_IP):
4753                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4754                         cmd_len |= E1000_TXD_CMD_TCP;
4755                 break;
4756         case cpu_to_be16(ETH_P_IPV6):
4757                 /* XXX not handling all IPV6 headers */
4758                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4759                         cmd_len |= E1000_TXD_CMD_TCP;
4760                 break;
4761         default:
4762                 if (unlikely(net_ratelimit()))
4763                         e_warn("checksum_partial proto=%x!\n",
4764                                be16_to_cpu(protocol));
4765                 break;
4766         }
4767
4768         css = skb_checksum_start_offset(skb);
4769
4770         i = tx_ring->next_to_use;
4771         buffer_info = &tx_ring->buffer_info[i];
4772         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4773
4774         context_desc->lower_setup.ip_config = 0;
4775         context_desc->upper_setup.tcp_fields.tucss = css;
4776         context_desc->upper_setup.tcp_fields.tucso =
4777                                 css + skb->csum_offset;
4778         context_desc->upper_setup.tcp_fields.tucse = 0;
4779         context_desc->tcp_seg_setup.data = 0;
4780         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4781
4782         buffer_info->time_stamp = jiffies;
4783         buffer_info->next_to_watch = i;
4784
4785         i++;
4786         if (i == tx_ring->count)
4787                 i = 0;
4788         tx_ring->next_to_use = i;
4789
4790         return 1;
4791 }
4792
4793 #define E1000_MAX_PER_TXD       8192
4794 #define E1000_MAX_TXD_PWR       12
4795
4796 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4797                         unsigned int first, unsigned int max_per_txd,
4798                         unsigned int nr_frags, unsigned int mss)
4799 {
4800         struct e1000_adapter *adapter = tx_ring->adapter;
4801         struct pci_dev *pdev = adapter->pdev;
4802         struct e1000_buffer *buffer_info;
4803         unsigned int len = skb_headlen(skb);
4804         unsigned int offset = 0, size, count = 0, i;
4805         unsigned int f, bytecount, segs;
4806
4807         i = tx_ring->next_to_use;
4808
4809         while (len) {
4810                 buffer_info = &tx_ring->buffer_info[i];
4811                 size = min(len, max_per_txd);
4812
4813                 buffer_info->length = size;
4814                 buffer_info->time_stamp = jiffies;
4815                 buffer_info->next_to_watch = i;
4816                 buffer_info->dma = dma_map_single(&pdev->dev,
4817                                                   skb->data + offset,
4818                                                   size, DMA_TO_DEVICE);
4819                 buffer_info->mapped_as_page = false;
4820                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4821                         goto dma_error;
4822
4823                 len -= size;
4824                 offset += size;
4825                 count++;
4826
4827                 if (len) {
4828                         i++;
4829                         if (i == tx_ring->count)
4830                                 i = 0;
4831                 }
4832         }
4833
4834         for (f = 0; f < nr_frags; f++) {
4835                 const struct skb_frag_struct *frag;
4836
4837                 frag = &skb_shinfo(skb)->frags[f];
4838                 len = skb_frag_size(frag);
4839                 offset = 0;
4840
4841                 while (len) {
4842                         i++;
4843                         if (i == tx_ring->count)
4844                                 i = 0;
4845
4846                         buffer_info = &tx_ring->buffer_info[i];
4847                         size = min(len, max_per_txd);
4848
4849                         buffer_info->length = size;
4850                         buffer_info->time_stamp = jiffies;
4851                         buffer_info->next_to_watch = i;
4852                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4853                                                 offset, size, DMA_TO_DEVICE);
4854                         buffer_info->mapped_as_page = true;
4855                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4856                                 goto dma_error;
4857
4858                         len -= size;
4859                         offset += size;
4860                         count++;
4861                 }
4862         }
4863
4864         segs = skb_shinfo(skb)->gso_segs ? : 1;
4865         /* multiply data chunks by size of headers */
4866         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4867
4868         tx_ring->buffer_info[i].skb = skb;
4869         tx_ring->buffer_info[i].segs = segs;
4870         tx_ring->buffer_info[i].bytecount = bytecount;
4871         tx_ring->buffer_info[first].next_to_watch = i;
4872
4873         return count;
4874
4875 dma_error:
4876         dev_err(&pdev->dev, "Tx DMA map failed\n");
4877         buffer_info->dma = 0;
4878         if (count)
4879                 count--;
4880
4881         while (count--) {
4882                 if (i == 0)
4883                         i += tx_ring->count;
4884                 i--;
4885                 buffer_info = &tx_ring->buffer_info[i];
4886                 e1000_put_txbuf(tx_ring, buffer_info);
4887         }
4888
4889         return 0;
4890 }
4891
4892 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4893 {
4894         struct e1000_adapter *adapter = tx_ring->adapter;
4895         struct e1000_tx_desc *tx_desc = NULL;
4896         struct e1000_buffer *buffer_info;
4897         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4898         unsigned int i;
4899
4900         if (tx_flags & E1000_TX_FLAGS_TSO) {
4901                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4902                              E1000_TXD_CMD_TSE;
4903                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4904
4905                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4906                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4907         }
4908
4909         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4910                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4911                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4912         }
4913
4914         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4915                 txd_lower |= E1000_TXD_CMD_VLE;
4916                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4917         }
4918
4919         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4920                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
4921
4922         i = tx_ring->next_to_use;
4923
4924         do {
4925                 buffer_info = &tx_ring->buffer_info[i];
4926                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4927                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4928                 tx_desc->lower.data =
4929                         cpu_to_le32(txd_lower | buffer_info->length);
4930                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4931
4932                 i++;
4933                 if (i == tx_ring->count)
4934                         i = 0;
4935         } while (--count > 0);
4936
4937         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4938
4939         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4940         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4941                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4942
4943         /*
4944          * Force memory writes to complete before letting h/w
4945          * know there are new descriptors to fetch.  (Only
4946          * applicable for weak-ordered memory model archs,
4947          * such as IA-64).
4948          */
4949         wmb();
4950
4951         tx_ring->next_to_use = i;
4952
4953         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4954                 e1000e_update_tdt_wa(tx_ring, i);
4955         else
4956                 writel(i, tx_ring->tail);
4957
4958         /*
4959          * we need this if more than one processor can write to our tail
4960          * at a time, it synchronizes IO on IA64/Altix systems
4961          */
4962         mmiowb();
4963 }
4964
4965 #define MINIMUM_DHCP_PACKET_SIZE 282
4966 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4967                                     struct sk_buff *skb)
4968 {
4969         struct e1000_hw *hw =  &adapter->hw;
4970         u16 length, offset;
4971
4972         if (vlan_tx_tag_present(skb)) {
4973                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4974                     (adapter->hw.mng_cookie.status &
4975                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4976                         return 0;
4977         }
4978
4979         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4980                 return 0;
4981
4982         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4983                 return 0;
4984
4985         {
4986                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4987                 struct udphdr *udp;
4988
4989                 if (ip->protocol != IPPROTO_UDP)
4990                         return 0;
4991
4992                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4993                 if (ntohs(udp->dest) != 67)
4994                         return 0;
4995
4996                 offset = (u8 *)udp + 8 - skb->data;
4997                 length = skb->len - offset;
4998                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4999         }
5000
5001         return 0;
5002 }
5003
5004 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5005 {
5006         struct e1000_adapter *adapter = tx_ring->adapter;
5007
5008         netif_stop_queue(adapter->netdev);
5009         /*
5010          * Herbert's original patch had:
5011          *  smp_mb__after_netif_stop_queue();
5012          * but since that doesn't exist yet, just open code it.
5013          */
5014         smp_mb();
5015
5016         /*
5017          * We need to check again in a case another CPU has just
5018          * made room available.
5019          */
5020         if (e1000_desc_unused(tx_ring) < size)
5021                 return -EBUSY;
5022
5023         /* A reprieve! */
5024         netif_start_queue(adapter->netdev);
5025         ++adapter->restart_queue;
5026         return 0;
5027 }
5028
5029 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5030 {
5031         if (e1000_desc_unused(tx_ring) >= size)
5032                 return 0;
5033         return __e1000_maybe_stop_tx(tx_ring, size);
5034 }
5035
5036 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5037 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5038                                     struct net_device *netdev)
5039 {
5040         struct e1000_adapter *adapter = netdev_priv(netdev);
5041         struct e1000_ring *tx_ring = adapter->tx_ring;
5042         unsigned int first;
5043         unsigned int max_per_txd = E1000_MAX_PER_TXD;
5044         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5045         unsigned int tx_flags = 0;
5046         unsigned int len = skb_headlen(skb);
5047         unsigned int nr_frags;
5048         unsigned int mss;
5049         int count = 0;
5050         int tso;
5051         unsigned int f;
5052
5053         if (test_bit(__E1000_DOWN, &adapter->state)) {
5054                 dev_kfree_skb_any(skb);
5055                 return NETDEV_TX_OK;
5056         }
5057
5058         if (skb->len <= 0) {
5059                 dev_kfree_skb_any(skb);
5060                 return NETDEV_TX_OK;
5061         }
5062
5063         mss = skb_shinfo(skb)->gso_size;
5064         /*
5065          * The controller does a simple calculation to
5066          * make sure there is enough room in the FIFO before
5067          * initiating the DMA for each buffer.  The calc is:
5068          * 4 = ceil(buffer len/mss).  To make sure we don't
5069          * overrun the FIFO, adjust the max buffer len if mss
5070          * drops.
5071          */
5072         if (mss) {
5073                 u8 hdr_len;
5074                 max_per_txd = min(mss << 2, max_per_txd);
5075                 max_txd_pwr = fls(max_per_txd) - 1;
5076
5077                 /*
5078                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5079                  * points to just header, pull a few bytes of payload from
5080                  * frags into skb->data
5081                  */
5082                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5083                 /*
5084                  * we do this workaround for ES2LAN, but it is un-necessary,
5085                  * avoiding it could save a lot of cycles
5086                  */
5087                 if (skb->data_len && (hdr_len == len)) {
5088                         unsigned int pull_size;
5089
5090                         pull_size = min_t(unsigned int, 4, skb->data_len);
5091                         if (!__pskb_pull_tail(skb, pull_size)) {
5092                                 e_err("__pskb_pull_tail failed.\n");
5093                                 dev_kfree_skb_any(skb);
5094                                 return NETDEV_TX_OK;
5095                         }
5096                         len = skb_headlen(skb);
5097                 }
5098         }
5099
5100         /* reserve a descriptor for the offload context */
5101         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5102                 count++;
5103         count++;
5104
5105         count += TXD_USE_COUNT(len, max_txd_pwr);
5106
5107         nr_frags = skb_shinfo(skb)->nr_frags;
5108         for (f = 0; f < nr_frags; f++)
5109                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5110                                        max_txd_pwr);
5111
5112         if (adapter->hw.mac.tx_pkt_filtering)
5113                 e1000_transfer_dhcp_info(adapter, skb);
5114
5115         /*
5116          * need: count + 2 desc gap to keep tail from touching
5117          * head, otherwise try next time
5118          */
5119         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5120                 return NETDEV_TX_BUSY;
5121
5122         if (vlan_tx_tag_present(skb)) {
5123                 tx_flags |= E1000_TX_FLAGS_VLAN;
5124                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5125         }
5126
5127         first = tx_ring->next_to_use;
5128
5129         tso = e1000_tso(tx_ring, skb);
5130         if (tso < 0) {
5131                 dev_kfree_skb_any(skb);
5132                 return NETDEV_TX_OK;
5133         }
5134
5135         if (tso)
5136                 tx_flags |= E1000_TX_FLAGS_TSO;
5137         else if (e1000_tx_csum(tx_ring, skb))
5138                 tx_flags |= E1000_TX_FLAGS_CSUM;
5139
5140         /*
5141          * Old method was to assume IPv4 packet by default if TSO was enabled.
5142          * 82571 hardware supports TSO capabilities for IPv6 as well...
5143          * no longer assume, we must.
5144          */
5145         if (skb->protocol == htons(ETH_P_IP))
5146                 tx_flags |= E1000_TX_FLAGS_IPV4;
5147
5148         if (unlikely(skb->no_fcs))
5149                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5150
5151         /* if count is 0 then mapping error has occurred */
5152         count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5153         if (count) {
5154                 netdev_sent_queue(netdev, skb->len);
5155                 e1000_tx_queue(tx_ring, tx_flags, count);
5156                 /* Make sure there is space in the ring for the next send. */
5157                 e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5158
5159         } else {
5160                 dev_kfree_skb_any(skb);
5161                 tx_ring->buffer_info[first].time_stamp = 0;
5162                 tx_ring->next_to_use = first;
5163         }
5164
5165         return NETDEV_TX_OK;
5166 }
5167
5168 /**
5169  * e1000_tx_timeout - Respond to a Tx Hang
5170  * @netdev: network interface device structure
5171  **/
5172 static void e1000_tx_timeout(struct net_device *netdev)
5173 {
5174         struct e1000_adapter *adapter = netdev_priv(netdev);
5175
5176         /* Do the reset outside of interrupt context */
5177         adapter->tx_timeout_count++;
5178         schedule_work(&adapter->reset_task);
5179 }
5180
5181 static void e1000_reset_task(struct work_struct *work)
5182 {
5183         struct e1000_adapter *adapter;
5184         adapter = container_of(work, struct e1000_adapter, reset_task);
5185
5186         /* don't run the task if already down */
5187         if (test_bit(__E1000_DOWN, &adapter->state))
5188                 return;
5189
5190         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5191               (adapter->flags & FLAG_RX_RESTART_NOW))) {
5192                 e1000e_dump(adapter);
5193                 e_err("Reset adapter\n");
5194         }
5195         e1000e_reinit_locked(adapter);
5196 }
5197
5198 /**
5199  * e1000_get_stats64 - Get System Network Statistics
5200  * @netdev: network interface device structure
5201  * @stats: rtnl_link_stats64 pointer
5202  *
5203  * Returns the address of the device statistics structure.
5204  **/
5205 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5206                                              struct rtnl_link_stats64 *stats)
5207 {
5208         struct e1000_adapter *adapter = netdev_priv(netdev);
5209
5210         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5211         spin_lock(&adapter->stats64_lock);
5212         e1000e_update_stats(adapter);
5213         /* Fill out the OS statistics structure */
5214         stats->rx_bytes = adapter->stats.gorc;
5215         stats->rx_packets = adapter->stats.gprc;
5216         stats->tx_bytes = adapter->stats.gotc;
5217         stats->tx_packets = adapter->stats.gptc;
5218         stats->multicast = adapter->stats.mprc;
5219         stats->collisions = adapter->stats.colc;
5220
5221         /* Rx Errors */
5222
5223         /*
5224          * RLEC on some newer hardware can be incorrect so build
5225          * our own version based on RUC and ROC
5226          */
5227         stats->rx_errors = adapter->stats.rxerrc +
5228                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5229                 adapter->stats.ruc + adapter->stats.roc +
5230                 adapter->stats.cexterr;
5231         stats->rx_length_errors = adapter->stats.ruc +
5232                                               adapter->stats.roc;
5233         stats->rx_crc_errors = adapter->stats.crcerrs;
5234         stats->rx_frame_errors = adapter->stats.algnerrc;
5235         stats->rx_missed_errors = adapter->stats.mpc;
5236
5237         /* Tx Errors */
5238         stats->tx_errors = adapter->stats.ecol +
5239                                        adapter->stats.latecol;
5240         stats->tx_aborted_errors = adapter->stats.ecol;
5241         stats->tx_window_errors = adapter->stats.latecol;
5242         stats->tx_carrier_errors = adapter->stats.tncrs;
5243
5244         /* Tx Dropped needs to be maintained elsewhere */
5245
5246         spin_unlock(&adapter->stats64_lock);
5247         return stats;
5248 }
5249
5250 /**
5251  * e1000_change_mtu - Change the Maximum Transfer Unit
5252  * @netdev: network interface device structure
5253  * @new_mtu: new value for maximum frame size
5254  *
5255  * Returns 0 on success, negative on failure
5256  **/
5257 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5258 {
5259         struct e1000_adapter *adapter = netdev_priv(netdev);
5260         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5261
5262         /* Jumbo frame support */
5263         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
5264                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5265                         e_err("Jumbo Frames not supported.\n");
5266                         return -EINVAL;
5267                 }
5268
5269                 /*
5270                  * IP payload checksum (enabled with jumbos/packet-split when
5271                  * Rx checksum is enabled) and generation of RSS hash is
5272                  * mutually exclusive in the hardware.
5273                  */
5274                 if ((netdev->features & NETIF_F_RXCSUM) &&
5275                     (netdev->features & NETIF_F_RXHASH)) {
5276                         e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
5277                         return -EINVAL;
5278                 }
5279         }
5280
5281         /* Supported frame sizes */
5282         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5283             (max_frame > adapter->max_hw_frame_size)) {
5284                 e_err("Unsupported MTU setting\n");
5285                 return -EINVAL;
5286         }
5287
5288         /* Jumbo frame workaround on 82579 requires CRC be stripped */
5289         if ((adapter->hw.mac.type == e1000_pch2lan) &&
5290             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5291             (new_mtu > ETH_DATA_LEN)) {
5292                 e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5293                 return -EINVAL;
5294         }
5295
5296         /* 82573 Errata 17 */
5297         if (((adapter->hw.mac.type == e1000_82573) ||
5298              (adapter->hw.mac.type == e1000_82574)) &&
5299             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5300                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5301                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5302         }
5303
5304         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5305                 usleep_range(1000, 2000);
5306         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5307         adapter->max_frame_size = max_frame;
5308         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5309         netdev->mtu = new_mtu;
5310         if (netif_running(netdev))
5311                 e1000e_down(adapter);
5312
5313         /*
5314          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5315          * means we reserve 2 more, this pushes us to allocate from the next
5316          * larger slab size.
5317          * i.e. RXBUFFER_2048 --> size-4096 slab
5318          * However with the new *_jumbo_rx* routines, jumbo receives will use
5319          * fragmented skbs
5320          */
5321
5322         if (max_frame <= 2048)
5323                 adapter->rx_buffer_len = 2048;
5324         else
5325                 adapter->rx_buffer_len = 4096;
5326
5327         /* adjust allocation if LPE protects us, and we aren't using SBP */
5328         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5329              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5330                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5331                                          + ETH_FCS_LEN;
5332
5333         if (netif_running(netdev))
5334                 e1000e_up(adapter);
5335         else
5336                 e1000e_reset(adapter);
5337
5338         clear_bit(__E1000_RESETTING, &adapter->state);
5339
5340         return 0;
5341 }
5342
5343 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5344                            int cmd)
5345 {
5346         struct e1000_adapter *adapter = netdev_priv(netdev);
5347         struct mii_ioctl_data *data = if_mii(ifr);
5348
5349         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5350                 return -EOPNOTSUPP;
5351
5352         switch (cmd) {
5353         case SIOCGMIIPHY:
5354                 data->phy_id = adapter->hw.phy.addr;
5355                 break;
5356         case SIOCGMIIREG:
5357                 e1000_phy_read_status(adapter);
5358
5359                 switch (data->reg_num & 0x1F) {
5360                 case MII_BMCR:
5361                         data->val_out = adapter->phy_regs.bmcr;
5362                         break;
5363                 case MII_BMSR:
5364                         data->val_out = adapter->phy_regs.bmsr;
5365                         break;
5366                 case MII_PHYSID1:
5367                         data->val_out = (adapter->hw.phy.id >> 16);
5368                         break;
5369                 case MII_PHYSID2:
5370                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5371                         break;
5372                 case MII_ADVERTISE:
5373                         data->val_out = adapter->phy_regs.advertise;
5374                         break;
5375                 case MII_LPA:
5376                         data->val_out = adapter->phy_regs.lpa;
5377                         break;
5378                 case MII_EXPANSION:
5379                         data->val_out = adapter->phy_regs.expansion;
5380                         break;
5381                 case MII_CTRL1000:
5382                         data->val_out = adapter->phy_regs.ctrl1000;
5383                         break;
5384                 case MII_STAT1000:
5385                         data->val_out = adapter->phy_regs.stat1000;
5386                         break;
5387                 case MII_ESTATUS:
5388                         data->val_out = adapter->phy_regs.estatus;
5389                         break;
5390                 default:
5391                         return -EIO;
5392                 }
5393                 break;
5394         case SIOCSMIIREG:
5395         default:
5396                 return -EOPNOTSUPP;
5397         }
5398         return 0;
5399 }
5400
5401 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5402 {
5403         switch (cmd) {
5404         case SIOCGMIIPHY:
5405         case SIOCGMIIREG:
5406         case SIOCSMIIREG:
5407                 return e1000_mii_ioctl(netdev, ifr, cmd);
5408         default:
5409                 return -EOPNOTSUPP;
5410         }
5411 }
5412
5413 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5414 {
5415         struct e1000_hw *hw = &adapter->hw;
5416         u32 i, mac_reg;
5417         u16 phy_reg, wuc_enable;
5418         int retval = 0;
5419
5420         /* copy MAC RARs to PHY RARs */
5421         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5422
5423         retval = hw->phy.ops.acquire(hw);
5424         if (retval) {
5425                 e_err("Could not acquire PHY\n");
5426                 return retval;
5427         }
5428
5429         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5430         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5431         if (retval)
5432                 goto release;
5433
5434         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5435         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5436                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5437                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5438                                            (u16)(mac_reg & 0xFFFF));
5439                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5440                                            (u16)((mac_reg >> 16) & 0xFFFF));
5441         }
5442
5443         /* configure PHY Rx Control register */
5444         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5445         mac_reg = er32(RCTL);
5446         if (mac_reg & E1000_RCTL_UPE)
5447                 phy_reg |= BM_RCTL_UPE;
5448         if (mac_reg & E1000_RCTL_MPE)
5449                 phy_reg |= BM_RCTL_MPE;
5450         phy_reg &= ~(BM_RCTL_MO_MASK);
5451         if (mac_reg & E1000_RCTL_MO_3)
5452                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5453                                 << BM_RCTL_MO_SHIFT);
5454         if (mac_reg & E1000_RCTL_BAM)
5455                 phy_reg |= BM_RCTL_BAM;
5456         if (mac_reg & E1000_RCTL_PMCF)
5457                 phy_reg |= BM_RCTL_PMCF;
5458         mac_reg = er32(CTRL);
5459         if (mac_reg & E1000_CTRL_RFCE)
5460                 phy_reg |= BM_RCTL_RFCE;
5461         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5462
5463         /* enable PHY wakeup in MAC register */
5464         ew32(WUFC, wufc);
5465         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5466
5467         /* configure and enable PHY wakeup in PHY registers */
5468         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5469         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5470
5471         /* activate PHY wakeup */
5472         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5473         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5474         if (retval)
5475                 e_err("Could not set PHY Host Wakeup bit\n");
5476 release:
5477         hw->phy.ops.release(hw);
5478
5479         return retval;
5480 }
5481
5482 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5483                             bool runtime)
5484 {
5485         struct net_device *netdev = pci_get_drvdata(pdev);
5486         struct e1000_adapter *adapter = netdev_priv(netdev);
5487         struct e1000_hw *hw = &adapter->hw;
5488         u32 ctrl, ctrl_ext, rctl, status;
5489         /* Runtime suspend should only enable wakeup for link changes */
5490         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5491         int retval = 0;
5492
5493         netif_device_detach(netdev);
5494
5495         if (netif_running(netdev)) {
5496                 int count = E1000_CHECK_RESET_COUNT;
5497
5498                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5499                         usleep_range(10000, 20000);
5500
5501                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5502                 e1000e_down(adapter);
5503                 e1000_free_irq(adapter);
5504         }
5505         e1000e_reset_interrupt_capability(adapter);
5506
5507         retval = pci_save_state(pdev);
5508         if (retval)
5509                 return retval;
5510
5511         status = er32(STATUS);
5512         if (status & E1000_STATUS_LU)
5513                 wufc &= ~E1000_WUFC_LNKC;
5514
5515         if (wufc) {
5516                 e1000_setup_rctl(adapter);
5517                 e1000e_set_rx_mode(netdev);
5518
5519                 /* turn on all-multi mode if wake on multicast is enabled */
5520                 if (wufc & E1000_WUFC_MC) {
5521                         rctl = er32(RCTL);
5522                         rctl |= E1000_RCTL_MPE;
5523                         ew32(RCTL, rctl);
5524                 }
5525
5526                 ctrl = er32(CTRL);
5527                 /* advertise wake from D3Cold */
5528                 #define E1000_CTRL_ADVD3WUC 0x00100000
5529                 /* phy power management enable */
5530                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5531                 ctrl |= E1000_CTRL_ADVD3WUC;
5532                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5533                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5534                 ew32(CTRL, ctrl);
5535
5536                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5537                     adapter->hw.phy.media_type ==
5538                     e1000_media_type_internal_serdes) {
5539                         /* keep the laser running in D3 */
5540                         ctrl_ext = er32(CTRL_EXT);
5541                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5542                         ew32(CTRL_EXT, ctrl_ext);
5543                 }
5544
5545                 if (adapter->flags & FLAG_IS_ICH)
5546                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5547
5548                 /* Allow time for pending master requests to run */
5549                 e1000e_disable_pcie_master(&adapter->hw);
5550
5551                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5552                         /* enable wakeup by the PHY */
5553                         retval = e1000_init_phy_wakeup(adapter, wufc);
5554                         if (retval)
5555                                 return retval;
5556                 } else {
5557                         /* enable wakeup by the MAC */
5558                         ew32(WUFC, wufc);
5559                         ew32(WUC, E1000_WUC_PME_EN);
5560                 }
5561         } else {
5562                 ew32(WUC, 0);
5563                 ew32(WUFC, 0);
5564         }
5565
5566         *enable_wake = !!wufc;
5567
5568         /* make sure adapter isn't asleep if manageability is enabled */
5569         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5570             (hw->mac.ops.check_mng_mode(hw)))
5571                 *enable_wake = true;
5572
5573         if (adapter->hw.phy.type == e1000_phy_igp_3)
5574                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5575
5576         /*
5577          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5578          * would have already happened in close and is redundant.
5579          */
5580         e1000e_release_hw_control(adapter);
5581
5582         pci_disable_device(pdev);
5583
5584         return 0;
5585 }
5586
5587 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5588 {
5589         if (sleep && wake) {
5590                 pci_prepare_to_sleep(pdev);
5591                 return;
5592         }
5593
5594         pci_wake_from_d3(pdev, wake);
5595         pci_set_power_state(pdev, PCI_D3hot);
5596 }
5597
5598 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5599                                     bool wake)
5600 {
5601         struct net_device *netdev = pci_get_drvdata(pdev);
5602         struct e1000_adapter *adapter = netdev_priv(netdev);
5603
5604         /*
5605          * The pci-e switch on some quad port adapters will report a
5606          * correctable error when the MAC transitions from D0 to D3.  To
5607          * prevent this we need to mask off the correctable errors on the
5608          * downstream port of the pci-e switch.
5609          */
5610         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5611                 struct pci_dev *us_dev = pdev->bus->self;
5612                 int pos = pci_pcie_cap(us_dev);
5613                 u16 devctl;
5614
5615                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5616                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5617                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5618
5619                 e1000_power_off(pdev, sleep, wake);
5620
5621                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5622         } else {
5623                 e1000_power_off(pdev, sleep, wake);
5624         }
5625 }
5626
5627 #ifdef CONFIG_PCIEASPM
5628 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5629 {
5630         pci_disable_link_state_locked(pdev, state);
5631 }
5632 #else
5633 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5634 {
5635         int pos;
5636         u16 reg16;
5637
5638         /*
5639          * Both device and parent should have the same ASPM setting.
5640          * Disable ASPM in downstream component first and then upstream.
5641          */
5642         pos = pci_pcie_cap(pdev);
5643         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5644         reg16 &= ~state;
5645         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5646
5647         if (!pdev->bus->self)
5648                 return;
5649
5650         pos = pci_pcie_cap(pdev->bus->self);
5651         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5652         reg16 &= ~state;
5653         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5654 }
5655 #endif
5656 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5657 {
5658         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5659                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5660                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5661
5662         __e1000e_disable_aspm(pdev, state);
5663 }
5664
5665 #ifdef CONFIG_PM
5666 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5667 {
5668         return !!adapter->tx_ring->buffer_info;
5669 }
5670
5671 static int __e1000_resume(struct pci_dev *pdev)
5672 {
5673         struct net_device *netdev = pci_get_drvdata(pdev);
5674         struct e1000_adapter *adapter = netdev_priv(netdev);
5675         struct e1000_hw *hw = &adapter->hw;
5676         u16 aspm_disable_flag = 0;
5677         u32 err;
5678
5679         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5680                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5681         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5682                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5683         if (aspm_disable_flag)
5684                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5685
5686         pci_set_power_state(pdev, PCI_D0);
5687         pci_restore_state(pdev);
5688         pci_save_state(pdev);
5689
5690         e1000e_set_interrupt_capability(adapter);
5691         if (netif_running(netdev)) {
5692                 err = e1000_request_irq(adapter);
5693                 if (err)
5694                         return err;
5695         }
5696
5697         if (hw->mac.type == e1000_pch2lan)
5698                 e1000_resume_workarounds_pchlan(&adapter->hw);
5699
5700         e1000e_power_up_phy(adapter);
5701
5702         /* report the system wakeup cause from S3/S4 */
5703         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5704                 u16 phy_data;
5705
5706                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5707                 if (phy_data) {
5708                         e_info("PHY Wakeup cause - %s\n",
5709                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5710                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5711                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5712                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5713                                 phy_data & E1000_WUS_LNKC ?
5714                                 "Link Status Change" : "other");
5715                 }
5716                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5717         } else {
5718                 u32 wus = er32(WUS);
5719                 if (wus) {
5720                         e_info("MAC Wakeup cause - %s\n",
5721                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5722                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5723                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5724                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5725                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5726                                 "other");
5727                 }
5728                 ew32(WUS, ~0);
5729         }
5730
5731         e1000e_reset(adapter);
5732
5733         e1000_init_manageability_pt(adapter);
5734
5735         if (netif_running(netdev))
5736                 e1000e_up(adapter);
5737
5738         netif_device_attach(netdev);
5739
5740         /*
5741          * If the controller has AMT, do not set DRV_LOAD until the interface
5742          * is up.  For all other cases, let the f/w know that the h/w is now
5743          * under the control of the driver.
5744          */
5745         if (!(adapter->flags & FLAG_HAS_AMT))
5746                 e1000e_get_hw_control(adapter);
5747
5748         return 0;
5749 }
5750
5751 #ifdef CONFIG_PM_SLEEP
5752 static int e1000_suspend(struct device *dev)
5753 {
5754         struct pci_dev *pdev = to_pci_dev(dev);
5755         int retval;
5756         bool wake;
5757
5758         retval = __e1000_shutdown(pdev, &wake, false);
5759         if (!retval)
5760                 e1000_complete_shutdown(pdev, true, wake);
5761
5762         return retval;
5763 }
5764
5765 static int e1000_resume(struct device *dev)
5766 {
5767         struct pci_dev *pdev = to_pci_dev(dev);
5768         struct net_device *netdev = pci_get_drvdata(pdev);
5769         struct e1000_adapter *adapter = netdev_priv(netdev);
5770
5771         if (e1000e_pm_ready(adapter))
5772                 adapter->idle_check = true;
5773
5774         return __e1000_resume(pdev);
5775 }
5776 #endif /* CONFIG_PM_SLEEP */
5777
5778 #ifdef CONFIG_PM_RUNTIME
5779 static int e1000_runtime_suspend(struct device *dev)
5780 {
5781         struct pci_dev *pdev = to_pci_dev(dev);
5782         struct net_device *netdev = pci_get_drvdata(pdev);
5783         struct e1000_adapter *adapter = netdev_priv(netdev);
5784
5785         if (e1000e_pm_ready(adapter)) {
5786                 bool wake;
5787
5788                 __e1000_shutdown(pdev, &wake, true);
5789         }
5790
5791         return 0;
5792 }
5793
5794 static int e1000_idle(struct device *dev)
5795 {
5796         struct pci_dev *pdev = to_pci_dev(dev);
5797         struct net_device *netdev = pci_get_drvdata(pdev);
5798         struct e1000_adapter *adapter = netdev_priv(netdev);
5799
5800         if (!e1000e_pm_ready(adapter))
5801                 return 0;
5802
5803         if (adapter->idle_check) {
5804                 adapter->idle_check = false;
5805                 if (!e1000e_has_link(adapter))
5806                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5807         }
5808
5809         return -EBUSY;
5810 }
5811
5812 static int e1000_runtime_resume(struct device *dev)
5813 {
5814         struct pci_dev *pdev = to_pci_dev(dev);
5815         struct net_device *netdev = pci_get_drvdata(pdev);
5816         struct e1000_adapter *adapter = netdev_priv(netdev);
5817
5818         if (!e1000e_pm_ready(adapter))
5819                 return 0;
5820
5821         adapter->idle_check = !dev->power.runtime_auto;
5822         return __e1000_resume(pdev);
5823 }
5824 #endif /* CONFIG_PM_RUNTIME */
5825 #endif /* CONFIG_PM */
5826
5827 static void e1000_shutdown(struct pci_dev *pdev)
5828 {
5829         bool wake = false;
5830
5831         __e1000_shutdown(pdev, &wake, false);
5832
5833         if (system_state == SYSTEM_POWER_OFF)
5834                 e1000_complete_shutdown(pdev, false, wake);
5835 }
5836
5837 #ifdef CONFIG_NET_POLL_CONTROLLER
5838
5839 static irqreturn_t e1000_intr_msix(int irq, void *data)
5840 {
5841         struct net_device *netdev = data;
5842         struct e1000_adapter *adapter = netdev_priv(netdev);
5843
5844         if (adapter->msix_entries) {
5845                 int vector, msix_irq;
5846
5847                 vector = 0;
5848                 msix_irq = adapter->msix_entries[vector].vector;
5849                 disable_irq(msix_irq);
5850                 e1000_intr_msix_rx(msix_irq, netdev);
5851                 enable_irq(msix_irq);
5852
5853                 vector++;
5854                 msix_irq = adapter->msix_entries[vector].vector;
5855                 disable_irq(msix_irq);
5856                 e1000_intr_msix_tx(msix_irq, netdev);
5857                 enable_irq(msix_irq);
5858
5859                 vector++;
5860                 msix_irq = adapter->msix_entries[vector].vector;
5861                 disable_irq(msix_irq);
5862                 e1000_msix_other(msix_irq, netdev);
5863                 enable_irq(msix_irq);
5864         }
5865
5866         return IRQ_HANDLED;
5867 }
5868
5869 /*
5870  * Polling 'interrupt' - used by things like netconsole to send skbs
5871  * without having to re-enable interrupts. It's not called while
5872  * the interrupt routine is executing.
5873  */
5874 static void e1000_netpoll(struct net_device *netdev)
5875 {
5876         struct e1000_adapter *adapter = netdev_priv(netdev);
5877
5878         switch (adapter->int_mode) {
5879         case E1000E_INT_MODE_MSIX:
5880                 e1000_intr_msix(adapter->pdev->irq, netdev);
5881                 break;
5882         case E1000E_INT_MODE_MSI:
5883                 disable_irq(adapter->pdev->irq);
5884                 e1000_intr_msi(adapter->pdev->irq, netdev);
5885                 enable_irq(adapter->pdev->irq);
5886                 break;
5887         default: /* E1000E_INT_MODE_LEGACY */
5888                 disable_irq(adapter->pdev->irq);
5889                 e1000_intr(adapter->pdev->irq, netdev);
5890                 enable_irq(adapter->pdev->irq);
5891                 break;
5892         }
5893 }
5894 #endif
5895
5896 /**
5897  * e1000_io_error_detected - called when PCI error is detected
5898  * @pdev: Pointer to PCI device
5899  * @state: The current pci connection state
5900  *
5901  * This function is called after a PCI bus error affecting
5902  * this device has been detected.
5903  */
5904 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5905                                                 pci_channel_state_t state)
5906 {
5907         struct net_device *netdev = pci_get_drvdata(pdev);
5908         struct e1000_adapter *adapter = netdev_priv(netdev);
5909
5910         netif_device_detach(netdev);
5911
5912         if (state == pci_channel_io_perm_failure)
5913                 return PCI_ERS_RESULT_DISCONNECT;
5914
5915         if (netif_running(netdev))
5916                 e1000e_down(adapter);
5917         pci_disable_device(pdev);
5918
5919         /* Request a slot slot reset. */
5920         return PCI_ERS_RESULT_NEED_RESET;
5921 }
5922
5923 /**
5924  * e1000_io_slot_reset - called after the pci bus has been reset.
5925  * @pdev: Pointer to PCI device
5926  *
5927  * Restart the card from scratch, as if from a cold-boot. Implementation
5928  * resembles the first-half of the e1000_resume routine.
5929  */
5930 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5931 {
5932         struct net_device *netdev = pci_get_drvdata(pdev);
5933         struct e1000_adapter *adapter = netdev_priv(netdev);
5934         struct e1000_hw *hw = &adapter->hw;
5935         u16 aspm_disable_flag = 0;
5936         int err;
5937         pci_ers_result_t result;
5938
5939         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5940                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5941         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5942                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5943         if (aspm_disable_flag)
5944                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5945
5946         err = pci_enable_device_mem(pdev);
5947         if (err) {
5948                 dev_err(&pdev->dev,
5949                         "Cannot re-enable PCI device after reset.\n");
5950                 result = PCI_ERS_RESULT_DISCONNECT;
5951         } else {
5952                 pci_set_master(pdev);
5953                 pdev->state_saved = true;
5954                 pci_restore_state(pdev);
5955
5956                 pci_enable_wake(pdev, PCI_D3hot, 0);
5957                 pci_enable_wake(pdev, PCI_D3cold, 0);
5958
5959                 e1000e_reset(adapter);
5960                 ew32(WUS, ~0);
5961                 result = PCI_ERS_RESULT_RECOVERED;
5962         }
5963
5964         pci_cleanup_aer_uncorrect_error_status(pdev);
5965
5966         return result;
5967 }
5968
5969 /**
5970  * e1000_io_resume - called when traffic can start flowing again.
5971  * @pdev: Pointer to PCI device
5972  *
5973  * This callback is called when the error recovery driver tells us that
5974  * its OK to resume normal operation. Implementation resembles the
5975  * second-half of the e1000_resume routine.
5976  */
5977 static void e1000_io_resume(struct pci_dev *pdev)
5978 {
5979         struct net_device *netdev = pci_get_drvdata(pdev);
5980         struct e1000_adapter *adapter = netdev_priv(netdev);
5981
5982         e1000_init_manageability_pt(adapter);
5983
5984         if (netif_running(netdev)) {
5985                 if (e1000e_up(adapter)) {
5986                         dev_err(&pdev->dev,
5987                                 "can't bring device back up after reset\n");
5988                         return;
5989                 }
5990         }
5991
5992         netif_device_attach(netdev);
5993
5994         /*
5995          * If the controller has AMT, do not set DRV_LOAD until the interface
5996          * is up.  For all other cases, let the f/w know that the h/w is now
5997          * under the control of the driver.
5998          */
5999         if (!(adapter->flags & FLAG_HAS_AMT))
6000                 e1000e_get_hw_control(adapter);
6001
6002 }
6003
6004 static void e1000_print_device_info(struct e1000_adapter *adapter)
6005 {
6006         struct e1000_hw *hw = &adapter->hw;
6007         struct net_device *netdev = adapter->netdev;
6008         u32 ret_val;
6009         u8 pba_str[E1000_PBANUM_LENGTH];
6010
6011         /* print bus type/speed/width info */
6012         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6013                /* bus width */
6014                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6015                 "Width x1"),
6016                /* MAC address */
6017                netdev->dev_addr);
6018         e_info("Intel(R) PRO/%s Network Connection\n",
6019                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6020         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6021                                                 E1000_PBANUM_LENGTH);
6022         if (ret_val)
6023                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6024         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6025                hw->mac.type, hw->phy.type, pba_str);
6026 }
6027
6028 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6029 {
6030         struct e1000_hw *hw = &adapter->hw;
6031         int ret_val;
6032         u16 buf = 0;
6033
6034         if (hw->mac.type != e1000_82573)
6035                 return;
6036
6037         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6038         le16_to_cpus(&buf);
6039         if (!ret_val && (!(buf & (1 << 0)))) {
6040                 /* Deep Smart Power Down (DSPD) */
6041                 dev_warn(&adapter->pdev->dev,
6042                          "Warning: detected DSPD enabled in EEPROM\n");
6043         }
6044 }
6045
6046 static int e1000_set_features(struct net_device *netdev,
6047                               netdev_features_t features)
6048 {
6049         struct e1000_adapter *adapter = netdev_priv(netdev);
6050         netdev_features_t changed = features ^ netdev->features;
6051
6052         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6053                 adapter->flags |= FLAG_TSO_FORCE;
6054
6055         if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6056                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6057                          NETIF_F_RXALL)))
6058                 return 0;
6059
6060         /*
6061          * IP payload checksum (enabled with jumbos/packet-split when Rx
6062          * checksum is enabled) and generation of RSS hash is mutually
6063          * exclusive in the hardware.
6064          */
6065         if (adapter->rx_ps_pages &&
6066             (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
6067                 e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
6068                 return -EINVAL;
6069         }
6070
6071         if (changed & NETIF_F_RXFCS) {
6072                 if (features & NETIF_F_RXFCS) {
6073                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6074                 } else {
6075                         /* We need to take it back to defaults, which might mean
6076                          * stripping is still disabled at the adapter level.
6077                          */
6078                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6079                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6080                         else
6081                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6082                 }
6083         }
6084
6085         netdev->features = features;
6086
6087         if (netif_running(netdev))
6088                 e1000e_reinit_locked(adapter);
6089         else
6090                 e1000e_reset(adapter);
6091
6092         return 0;
6093 }
6094
6095 static const struct net_device_ops e1000e_netdev_ops = {
6096         .ndo_open               = e1000_open,
6097         .ndo_stop               = e1000_close,
6098         .ndo_start_xmit         = e1000_xmit_frame,
6099         .ndo_get_stats64        = e1000e_get_stats64,
6100         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6101         .ndo_set_mac_address    = e1000_set_mac,
6102         .ndo_change_mtu         = e1000_change_mtu,
6103         .ndo_do_ioctl           = e1000_ioctl,
6104         .ndo_tx_timeout         = e1000_tx_timeout,
6105         .ndo_validate_addr      = eth_validate_addr,
6106
6107         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6108         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6109 #ifdef CONFIG_NET_POLL_CONTROLLER
6110         .ndo_poll_controller    = e1000_netpoll,
6111 #endif
6112         .ndo_set_features = e1000_set_features,
6113 };
6114
6115 /**
6116  * e1000_probe - Device Initialization Routine
6117  * @pdev: PCI device information struct
6118  * @ent: entry in e1000_pci_tbl
6119  *
6120  * Returns 0 on success, negative on failure
6121  *
6122  * e1000_probe initializes an adapter identified by a pci_dev structure.
6123  * The OS initialization, configuring of the adapter private structure,
6124  * and a hardware reset occur.
6125  **/
6126 static int __devinit e1000_probe(struct pci_dev *pdev,
6127                                  const struct pci_device_id *ent)
6128 {
6129         struct net_device *netdev;
6130         struct e1000_adapter *adapter;
6131         struct e1000_hw *hw;
6132         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6133         resource_size_t mmio_start, mmio_len;
6134         resource_size_t flash_start, flash_len;
6135         static int cards_found;
6136         u16 aspm_disable_flag = 0;
6137         int i, err, pci_using_dac;
6138         u16 eeprom_data = 0;
6139         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6140
6141         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6142                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6143         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6144                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6145         if (aspm_disable_flag)
6146                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6147
6148         err = pci_enable_device_mem(pdev);
6149         if (err)
6150                 return err;
6151
6152         pci_using_dac = 0;
6153         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6154         if (!err) {
6155                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6156                 if (!err)
6157                         pci_using_dac = 1;
6158         } else {
6159                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6160                 if (err) {
6161                         err = dma_set_coherent_mask(&pdev->dev,
6162                                                     DMA_BIT_MASK(32));
6163                         if (err) {
6164                                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6165                                 goto err_dma;
6166                         }
6167                 }
6168         }
6169
6170         err = pci_request_selected_regions_exclusive(pdev,
6171                                           pci_select_bars(pdev, IORESOURCE_MEM),
6172                                           e1000e_driver_name);
6173         if (err)
6174                 goto err_pci_reg;
6175
6176         /* AER (Advanced Error Reporting) hooks */
6177         pci_enable_pcie_error_reporting(pdev);
6178
6179         pci_set_master(pdev);
6180         /* PCI config space info */
6181         err = pci_save_state(pdev);
6182         if (err)
6183                 goto err_alloc_etherdev;
6184
6185         err = -ENOMEM;
6186         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6187         if (!netdev)
6188                 goto err_alloc_etherdev;
6189
6190         SET_NETDEV_DEV(netdev, &pdev->dev);
6191
6192         netdev->irq = pdev->irq;
6193
6194         pci_set_drvdata(pdev, netdev);
6195         adapter = netdev_priv(netdev);
6196         hw = &adapter->hw;
6197         adapter->netdev = netdev;
6198         adapter->pdev = pdev;
6199         adapter->ei = ei;
6200         adapter->pba = ei->pba;
6201         adapter->flags = ei->flags;
6202         adapter->flags2 = ei->flags2;
6203         adapter->hw.adapter = adapter;
6204         adapter->hw.mac.type = ei->mac;
6205         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6206         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6207
6208         mmio_start = pci_resource_start(pdev, 0);
6209         mmio_len = pci_resource_len(pdev, 0);
6210
6211         err = -EIO;
6212         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6213         if (!adapter->hw.hw_addr)
6214                 goto err_ioremap;
6215
6216         if ((adapter->flags & FLAG_HAS_FLASH) &&
6217             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6218                 flash_start = pci_resource_start(pdev, 1);
6219                 flash_len = pci_resource_len(pdev, 1);
6220                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6221                 if (!adapter->hw.flash_address)
6222                         goto err_flashmap;
6223         }
6224
6225         /* construct the net_device struct */
6226         netdev->netdev_ops              = &e1000e_netdev_ops;
6227         e1000e_set_ethtool_ops(netdev);
6228         netdev->watchdog_timeo          = 5 * HZ;
6229         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6230         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6231
6232         netdev->mem_start = mmio_start;
6233         netdev->mem_end = mmio_start + mmio_len;
6234
6235         adapter->bd_number = cards_found++;
6236
6237         e1000e_check_options(adapter);
6238
6239         /* setup adapter struct */
6240         err = e1000_sw_init(adapter);
6241         if (err)
6242                 goto err_sw_init;
6243
6244         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6245         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6246         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6247
6248         err = ei->get_variants(adapter);
6249         if (err)
6250                 goto err_hw_init;
6251
6252         if ((adapter->flags & FLAG_IS_ICH) &&
6253             (adapter->flags & FLAG_READ_ONLY_NVM))
6254                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6255
6256         hw->mac.ops.get_bus_info(&adapter->hw);
6257
6258         adapter->hw.phy.autoneg_wait_to_complete = 0;
6259
6260         /* Copper options */
6261         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6262                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6263                 adapter->hw.phy.disable_polarity_correction = 0;
6264                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6265         }
6266
6267         if (hw->phy.ops.check_reset_block(hw))
6268                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6269
6270         /* Set initial default active device features */
6271         netdev->features = (NETIF_F_SG |
6272                             NETIF_F_HW_VLAN_RX |
6273                             NETIF_F_HW_VLAN_TX |
6274                             NETIF_F_TSO |
6275                             NETIF_F_TSO6 |
6276                             NETIF_F_RXHASH |
6277                             NETIF_F_RXCSUM |
6278                             NETIF_F_HW_CSUM);
6279
6280         /* Set user-changeable features (subset of all device features) */
6281         netdev->hw_features = netdev->features;
6282         netdev->hw_features |= NETIF_F_RXFCS;
6283         netdev->priv_flags |= IFF_SUPP_NOFCS;
6284         netdev->hw_features |= NETIF_F_RXALL;
6285
6286         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6287                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6288
6289         netdev->vlan_features |= (NETIF_F_SG |
6290                                   NETIF_F_TSO |
6291                                   NETIF_F_TSO6 |
6292                                   NETIF_F_HW_CSUM);
6293
6294         netdev->priv_flags |= IFF_UNICAST_FLT;
6295
6296         if (pci_using_dac) {
6297                 netdev->features |= NETIF_F_HIGHDMA;
6298                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6299         }
6300
6301         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6302                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6303
6304         /*
6305          * before reading the NVM, reset the controller to
6306          * put the device in a known good starting state
6307          */
6308         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6309
6310         /*
6311          * systems with ASPM and others may see the checksum fail on the first
6312          * attempt. Let's give it a few tries
6313          */
6314         for (i = 0;; i++) {
6315                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6316                         break;
6317                 if (i == 2) {
6318                         e_err("The NVM Checksum Is Not Valid\n");
6319                         err = -EIO;
6320                         goto err_eeprom;
6321                 }
6322         }
6323
6324         e1000_eeprom_checks(adapter);
6325
6326         /* copy the MAC address */
6327         if (e1000e_read_mac_addr(&adapter->hw))
6328                 e_err("NVM Read Error while reading MAC address\n");
6329
6330         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6331         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6332
6333         if (!is_valid_ether_addr(netdev->perm_addr)) {
6334                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6335                 err = -EIO;
6336                 goto err_eeprom;
6337         }
6338
6339         init_timer(&adapter->watchdog_timer);
6340         adapter->watchdog_timer.function = e1000_watchdog;
6341         adapter->watchdog_timer.data = (unsigned long) adapter;
6342
6343         init_timer(&adapter->phy_info_timer);
6344         adapter->phy_info_timer.function = e1000_update_phy_info;
6345         adapter->phy_info_timer.data = (unsigned long) adapter;
6346
6347         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6348         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6349         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6350         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6351         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6352
6353         /* Initialize link parameters. User can change them with ethtool */
6354         adapter->hw.mac.autoneg = 1;
6355         adapter->fc_autoneg = true;
6356         adapter->hw.fc.requested_mode = e1000_fc_default;
6357         adapter->hw.fc.current_mode = e1000_fc_default;
6358         adapter->hw.phy.autoneg_advertised = 0x2f;
6359
6360         /* ring size defaults */
6361         adapter->rx_ring->count = 256;
6362         adapter->tx_ring->count = 256;
6363
6364         /*
6365          * Initial Wake on LAN setting - If APM wake is enabled in
6366          * the EEPROM, enable the ACPI Magic Packet filter
6367          */
6368         if (adapter->flags & FLAG_APME_IN_WUC) {
6369                 /* APME bit in EEPROM is mapped to WUC.APME */
6370                 eeprom_data = er32(WUC);
6371                 eeprom_apme_mask = E1000_WUC_APME;
6372                 if ((hw->mac.type > e1000_ich10lan) &&
6373                     (eeprom_data & E1000_WUC_PHY_WAKE))
6374                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6375         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6376                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6377                     (adapter->hw.bus.func == 1))
6378                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6379                                        1, &eeprom_data);
6380                 else
6381                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6382                                        1, &eeprom_data);
6383         }
6384
6385         /* fetch WoL from EEPROM */
6386         if (eeprom_data & eeprom_apme_mask)
6387                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6388
6389         /*
6390          * now that we have the eeprom settings, apply the special cases
6391          * where the eeprom may be wrong or the board simply won't support
6392          * wake on lan on a particular port
6393          */
6394         if (!(adapter->flags & FLAG_HAS_WOL))
6395                 adapter->eeprom_wol = 0;
6396
6397         /* initialize the wol settings based on the eeprom settings */
6398         adapter->wol = adapter->eeprom_wol;
6399         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6400
6401         /* save off EEPROM version number */
6402         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6403
6404         /* reset the hardware with the new settings */
6405         e1000e_reset(adapter);
6406
6407         /*
6408          * If the controller has AMT, do not set DRV_LOAD until the interface
6409          * is up.  For all other cases, let the f/w know that the h/w is now
6410          * under the control of the driver.
6411          */
6412         if (!(adapter->flags & FLAG_HAS_AMT))
6413                 e1000e_get_hw_control(adapter);
6414
6415         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6416         err = register_netdev(netdev);
6417         if (err)
6418                 goto err_register;
6419
6420         /* carrier off reporting is important to ethtool even BEFORE open */
6421         netif_carrier_off(netdev);
6422
6423         e1000_print_device_info(adapter);
6424
6425         if (pci_dev_run_wake(pdev))
6426                 pm_runtime_put_noidle(&pdev->dev);
6427
6428         return 0;
6429
6430 err_register:
6431         if (!(adapter->flags & FLAG_HAS_AMT))
6432                 e1000e_release_hw_control(adapter);
6433 err_eeprom:
6434         if (!hw->phy.ops.check_reset_block(hw))
6435                 e1000_phy_hw_reset(&adapter->hw);
6436 err_hw_init:
6437         kfree(adapter->tx_ring);
6438         kfree(adapter->rx_ring);
6439 err_sw_init:
6440         if (adapter->hw.flash_address)
6441                 iounmap(adapter->hw.flash_address);
6442         e1000e_reset_interrupt_capability(adapter);
6443 err_flashmap:
6444         iounmap(adapter->hw.hw_addr);
6445 err_ioremap:
6446         free_netdev(netdev);
6447 err_alloc_etherdev:
6448         pci_release_selected_regions(pdev,
6449                                      pci_select_bars(pdev, IORESOURCE_MEM));
6450 err_pci_reg:
6451 err_dma:
6452         pci_disable_device(pdev);
6453         return err;
6454 }
6455
6456 /**
6457  * e1000_remove - Device Removal Routine
6458  * @pdev: PCI device information struct
6459  *
6460  * e1000_remove is called by the PCI subsystem to alert the driver
6461  * that it should release a PCI device.  The could be caused by a
6462  * Hot-Plug event, or because the driver is going to be removed from
6463  * memory.
6464  **/
6465 static void __devexit e1000_remove(struct pci_dev *pdev)
6466 {
6467         struct net_device *netdev = pci_get_drvdata(pdev);
6468         struct e1000_adapter *adapter = netdev_priv(netdev);
6469         bool down = test_bit(__E1000_DOWN, &adapter->state);
6470
6471         /*
6472          * The timers may be rescheduled, so explicitly disable them
6473          * from being rescheduled.
6474          */
6475         if (!down)
6476                 set_bit(__E1000_DOWN, &adapter->state);
6477         del_timer_sync(&adapter->watchdog_timer);
6478         del_timer_sync(&adapter->phy_info_timer);
6479
6480         cancel_work_sync(&adapter->reset_task);
6481         cancel_work_sync(&adapter->watchdog_task);
6482         cancel_work_sync(&adapter->downshift_task);
6483         cancel_work_sync(&adapter->update_phy_task);
6484         cancel_work_sync(&adapter->print_hang_task);
6485
6486         if (!(netdev->flags & IFF_UP))
6487                 e1000_power_down_phy(adapter);
6488
6489         /* Don't lie to e1000_close() down the road. */
6490         if (!down)
6491                 clear_bit(__E1000_DOWN, &adapter->state);
6492         unregister_netdev(netdev);
6493
6494         if (pci_dev_run_wake(pdev))
6495                 pm_runtime_get_noresume(&pdev->dev);
6496
6497         /*
6498          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6499          * would have already happened in close and is redundant.
6500          */
6501         e1000e_release_hw_control(adapter);
6502
6503         e1000e_reset_interrupt_capability(adapter);
6504         kfree(adapter->tx_ring);
6505         kfree(adapter->rx_ring);
6506
6507         iounmap(adapter->hw.hw_addr);
6508         if (adapter->hw.flash_address)
6509                 iounmap(adapter->hw.flash_address);
6510         pci_release_selected_regions(pdev,
6511                                      pci_select_bars(pdev, IORESOURCE_MEM));
6512
6513         free_netdev(netdev);
6514
6515         /* AER disable */
6516         pci_disable_pcie_error_reporting(pdev);
6517
6518         pci_disable_device(pdev);
6519 }
6520
6521 /* PCI Error Recovery (ERS) */
6522 static struct pci_error_handlers e1000_err_handler = {
6523         .error_detected = e1000_io_error_detected,
6524         .slot_reset = e1000_io_slot_reset,
6525         .resume = e1000_io_resume,
6526 };
6527
6528 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6529         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6532         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6538
6539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6543
6544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6547
6548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6551
6552         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6553           board_80003es2lan },
6554         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6555           board_80003es2lan },
6556         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6557           board_80003es2lan },
6558         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6559           board_80003es2lan },
6560
6561         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6562         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6563         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6564         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6565         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6566         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6567         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6568         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6569
6570         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6571         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6572         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6573         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6574         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6575         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6576         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6577         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6578         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6579
6580         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6581         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6582         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6583
6584         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6585         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6586         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6587
6588         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6589         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6590         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6591         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6592
6593         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6594         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6595
6596         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6597 };
6598 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6599
6600 #ifdef CONFIG_PM
6601 static const struct dev_pm_ops e1000_pm_ops = {
6602         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6603         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6604                                 e1000_runtime_resume, e1000_idle)
6605 };
6606 #endif
6607
6608 /* PCI Device API Driver */
6609 static struct pci_driver e1000_driver = {
6610         .name     = e1000e_driver_name,
6611         .id_table = e1000_pci_tbl,
6612         .probe    = e1000_probe,
6613         .remove   = __devexit_p(e1000_remove),
6614 #ifdef CONFIG_PM
6615         .driver   = {
6616                 .pm = &e1000_pm_ops,
6617         },
6618 #endif
6619         .shutdown = e1000_shutdown,
6620         .err_handler = &e1000_err_handler
6621 };
6622
6623 /**
6624  * e1000_init_module - Driver Registration Routine
6625  *
6626  * e1000_init_module is the first routine called when the driver is
6627  * loaded. All it does is register with the PCI subsystem.
6628  **/
6629 static int __init e1000_init_module(void)
6630 {
6631         int ret;
6632         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6633                 e1000e_driver_version);
6634         pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6635         ret = pci_register_driver(&e1000_driver);
6636
6637         return ret;
6638 }
6639 module_init(e1000_init_module);
6640
6641 /**
6642  * e1000_exit_module - Driver Exit Cleanup Routine
6643  *
6644  * e1000_exit_module is called just before the driver is removed
6645  * from memory.
6646  **/
6647 static void __exit e1000_exit_module(void)
6648 {
6649         pci_unregister_driver(&e1000_driver);
6650 }
6651 module_exit(e1000_exit_module);
6652
6653
6654 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6655 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6656 MODULE_LICENSE("GPL");
6657 MODULE_VERSION(DRV_VERSION);
6658
6659 /* netdev.c */