Merge branch '3.4-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-flexiantxendom0-3.2.10.git] / drivers / dma / amba-pl08x.c
1 /*
2  * Copyright (c) 2006 ARM Ltd.
3  * Copyright (c) 2010 ST-Ericsson SA
4  *
5  * Author: Peter Pearse <peter.pearse@arm.com>
6  * Author: Linus Walleij <linus.walleij@stericsson.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
21  *
22  * The full GNU General Public License is in this distribution in the file
23  * called COPYING.
24  *
25  * Documentation: ARM DDI 0196G == PL080
26  * Documentation: ARM DDI 0218E == PL081
27  *
28  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29  * channel.
30  *
31  * The PL080 has 8 channels available for simultaneous use, and the PL081
32  * has only two channels. So on these DMA controllers the number of channels
33  * and the number of incoming DMA signals are two totally different things.
34  * It is usually not possible to theoretically handle all physical signals,
35  * so a multiplexing scheme with possible denial of use is necessary.
36  *
37  * The PL080 has a dual bus master, PL081 has a single master.
38  *
39  * Memory to peripheral transfer may be visualized as
40  *      Get data from memory to DMAC
41  *      Until no data left
42  *              On burst request from peripheral
43  *                      Destination burst from DMAC to peripheral
44  *                      Clear burst request
45  *      Raise terminal count interrupt
46  *
47  * For peripherals with a FIFO:
48  * Source      burst size == half the depth of the peripheral FIFO
49  * Destination burst size == the depth of the peripheral FIFO
50  *
51  * (Bursts are irrelevant for mem to mem transfers - there are no burst
52  * signals, the DMA controller will simply facilitate its AHB master.)
53  *
54  * ASSUMES default (little) endianness for DMA transfers
55  *
56  * The PL08x has two flow control settings:
57  *  - DMAC flow control: the transfer size defines the number of transfers
58  *    which occur for the current LLI entry, and the DMAC raises TC at the
59  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
60  *    to both the BREQ and SREQ signals (contrary to documented),
61  *    transferring data if either is active.  The LBREQ and LSREQ signals
62  *    are ignored.
63  *
64  *  - Peripheral flow control: the transfer size is ignored (and should be
65  *    zero).  The data is transferred from the current LLI entry, until
66  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
67  *    will then move to the next LLI entry.
68  *
69  * Global TODO:
70  * - Break out common code from arch/arm/mach-s3c64xx and share
71  */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89
90 #define DRIVER_NAME     "pl08xdmac"
91
92 static struct amba_driver pl08x_amba_driver;
93
94 /**
95  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96  * @channels: the number of channels available in this variant
97  * @dualmaster: whether this version supports dual AHB masters or not.
98  */
99 struct vendor_data {
100         u8 channels;
101         bool dualmaster;
102 };
103
104 /*
105  * PL08X private data structures
106  * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
107  * start & end do not - their bus bit info is in cctl.  Also note that these
108  * are fixed 32-bit quantities.
109  */
110 struct pl08x_lli {
111         u32 src;
112         u32 dst;
113         u32 lli;
114         u32 cctl;
115 };
116
117 /**
118  * struct pl08x_driver_data - the local state holder for the PL08x
119  * @slave: slave engine for this instance
120  * @memcpy: memcpy engine for this instance
121  * @base: virtual memory base (remapped) for the PL08x
122  * @adev: the corresponding AMBA (PrimeCell) bus entry
123  * @vd: vendor data for this PL08x variant
124  * @pd: platform data passed in from the platform/machine
125  * @phy_chans: array of data for the physical channels
126  * @pool: a pool for the LLI descriptors
127  * @pool_ctr: counter of LLIs in the pool
128  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
129  * fetches
130  * @mem_buses: set to indicate memory transfers on AHB2.
131  * @lock: a spinlock for this struct
132  */
133 struct pl08x_driver_data {
134         struct dma_device slave;
135         struct dma_device memcpy;
136         void __iomem *base;
137         struct amba_device *adev;
138         const struct vendor_data *vd;
139         struct pl08x_platform_data *pd;
140         struct pl08x_phy_chan *phy_chans;
141         struct dma_pool *pool;
142         int pool_ctr;
143         u8 lli_buses;
144         u8 mem_buses;
145         spinlock_t lock;
146 };
147
148 /*
149  * PL08X specific defines
150  */
151
152 /* Size (bytes) of each LLI buffer allocated for one transfer */
153 # define PL08X_LLI_TSFR_SIZE    0x2000
154
155 /* Maximum times we call dma_pool_alloc on this pool without freeing */
156 #define MAX_NUM_TSFR_LLIS       (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
157 #define PL08X_ALIGN             8
158
159 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
160 {
161         return container_of(chan, struct pl08x_dma_chan, chan);
162 }
163
164 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
165 {
166         return container_of(tx, struct pl08x_txd, tx);
167 }
168
169 /*
170  * Physical channel handling
171  */
172
173 /* Whether a certain channel is busy or not */
174 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
175 {
176         unsigned int val;
177
178         val = readl(ch->base + PL080_CH_CONFIG);
179         return val & PL080_CONFIG_ACTIVE;
180 }
181
182 /*
183  * Set the initial DMA register values i.e. those for the first LLI
184  * The next LLI pointer and the configuration interrupt bit have
185  * been set when the LLIs were constructed.  Poke them into the hardware
186  * and start the transfer.
187  */
188 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
189         struct pl08x_txd *txd)
190 {
191         struct pl08x_driver_data *pl08x = plchan->host;
192         struct pl08x_phy_chan *phychan = plchan->phychan;
193         struct pl08x_lli *lli = &txd->llis_va[0];
194         u32 val;
195
196         plchan->at = txd;
197
198         /* Wait for channel inactive */
199         while (pl08x_phy_channel_busy(phychan))
200                 cpu_relax();
201
202         dev_vdbg(&pl08x->adev->dev,
203                 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
204                 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
205                 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
206                 txd->ccfg);
207
208         writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
209         writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
210         writel(lli->lli, phychan->base + PL080_CH_LLI);
211         writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
212         writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
213
214         /* Enable the DMA channel */
215         /* Do not access config register until channel shows as disabled */
216         while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
217                 cpu_relax();
218
219         /* Do not access config register until channel shows as inactive */
220         val = readl(phychan->base + PL080_CH_CONFIG);
221         while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
222                 val = readl(phychan->base + PL080_CH_CONFIG);
223
224         writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
225 }
226
227 /*
228  * Pause the channel by setting the HALT bit.
229  *
230  * For M->P transfers, pause the DMAC first and then stop the peripheral -
231  * the FIFO can only drain if the peripheral is still requesting data.
232  * (note: this can still timeout if the DMAC FIFO never drains of data.)
233  *
234  * For P->M transfers, disable the peripheral first to stop it filling
235  * the DMAC FIFO, and then pause the DMAC.
236  */
237 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
238 {
239         u32 val;
240         int timeout;
241
242         /* Set the HALT bit and wait for the FIFO to drain */
243         val = readl(ch->base + PL080_CH_CONFIG);
244         val |= PL080_CONFIG_HALT;
245         writel(val, ch->base + PL080_CH_CONFIG);
246
247         /* Wait for channel inactive */
248         for (timeout = 1000; timeout; timeout--) {
249                 if (!pl08x_phy_channel_busy(ch))
250                         break;
251                 udelay(1);
252         }
253         if (pl08x_phy_channel_busy(ch))
254                 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
255 }
256
257 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
258 {
259         u32 val;
260
261         /* Clear the HALT bit */
262         val = readl(ch->base + PL080_CH_CONFIG);
263         val &= ~PL080_CONFIG_HALT;
264         writel(val, ch->base + PL080_CH_CONFIG);
265 }
266
267 /*
268  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
269  * clears any pending interrupt status.  This should not be used for
270  * an on-going transfer, but as a method of shutting down a channel
271  * (eg, when it's no longer used) or terminating a transfer.
272  */
273 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
274         struct pl08x_phy_chan *ch)
275 {
276         u32 val = readl(ch->base + PL080_CH_CONFIG);
277
278         val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
279                  PL080_CONFIG_TC_IRQ_MASK);
280
281         writel(val, ch->base + PL080_CH_CONFIG);
282
283         writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
284         writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
285 }
286
287 static inline u32 get_bytes_in_cctl(u32 cctl)
288 {
289         /* The source width defines the number of bytes */
290         u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
291
292         switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
293         case PL080_WIDTH_8BIT:
294                 break;
295         case PL080_WIDTH_16BIT:
296                 bytes *= 2;
297                 break;
298         case PL080_WIDTH_32BIT:
299                 bytes *= 4;
300                 break;
301         }
302         return bytes;
303 }
304
305 /* The channel should be paused when calling this */
306 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
307 {
308         struct pl08x_phy_chan *ch;
309         struct pl08x_txd *txd;
310         unsigned long flags;
311         size_t bytes = 0;
312
313         spin_lock_irqsave(&plchan->lock, flags);
314         ch = plchan->phychan;
315         txd = plchan->at;
316
317         /*
318          * Follow the LLIs to get the number of remaining
319          * bytes in the currently active transaction.
320          */
321         if (ch && txd) {
322                 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
323
324                 /* First get the remaining bytes in the active transfer */
325                 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
326
327                 if (clli) {
328                         struct pl08x_lli *llis_va = txd->llis_va;
329                         dma_addr_t llis_bus = txd->llis_bus;
330                         int index;
331
332                         BUG_ON(clli < llis_bus || clli >= llis_bus +
333                                 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
334
335                         /*
336                          * Locate the next LLI - as this is an array,
337                          * it's simple maths to find.
338                          */
339                         index = (clli - llis_bus) / sizeof(struct pl08x_lli);
340
341                         for (; index < MAX_NUM_TSFR_LLIS; index++) {
342                                 bytes += get_bytes_in_cctl(llis_va[index].cctl);
343
344                                 /*
345                                  * A LLI pointer of 0 terminates the LLI list
346                                  */
347                                 if (!llis_va[index].lli)
348                                         break;
349                         }
350                 }
351         }
352
353         /* Sum up all queued transactions */
354         if (!list_empty(&plchan->pend_list)) {
355                 struct pl08x_txd *txdi;
356                 list_for_each_entry(txdi, &plchan->pend_list, node) {
357                         struct pl08x_sg *dsg;
358                         list_for_each_entry(dsg, &txd->dsg_list, node)
359                                 bytes += dsg->len;
360                 }
361         }
362
363         spin_unlock_irqrestore(&plchan->lock, flags);
364
365         return bytes;
366 }
367
368 /*
369  * Allocate a physical channel for a virtual channel
370  *
371  * Try to locate a physical channel to be used for this transfer. If all
372  * are taken return NULL and the requester will have to cope by using
373  * some fallback PIO mode or retrying later.
374  */
375 static struct pl08x_phy_chan *
376 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
377                       struct pl08x_dma_chan *virt_chan)
378 {
379         struct pl08x_phy_chan *ch = NULL;
380         unsigned long flags;
381         int i;
382
383         for (i = 0; i < pl08x->vd->channels; i++) {
384                 ch = &pl08x->phy_chans[i];
385
386                 spin_lock_irqsave(&ch->lock, flags);
387
388                 if (!ch->serving) {
389                         ch->serving = virt_chan;
390                         ch->signal = -1;
391                         spin_unlock_irqrestore(&ch->lock, flags);
392                         break;
393                 }
394
395                 spin_unlock_irqrestore(&ch->lock, flags);
396         }
397
398         if (i == pl08x->vd->channels) {
399                 /* No physical channel available, cope with it */
400                 return NULL;
401         }
402
403         pm_runtime_get_sync(&pl08x->adev->dev);
404         return ch;
405 }
406
407 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
408                                          struct pl08x_phy_chan *ch)
409 {
410         unsigned long flags;
411
412         spin_lock_irqsave(&ch->lock, flags);
413
414         /* Stop the channel and clear its interrupts */
415         pl08x_terminate_phy_chan(pl08x, ch);
416
417         pm_runtime_put(&pl08x->adev->dev);
418
419         /* Mark it as free */
420         ch->serving = NULL;
421         spin_unlock_irqrestore(&ch->lock, flags);
422 }
423
424 /*
425  * LLI handling
426  */
427
428 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
429 {
430         switch (coded) {
431         case PL080_WIDTH_8BIT:
432                 return 1;
433         case PL080_WIDTH_16BIT:
434                 return 2;
435         case PL080_WIDTH_32BIT:
436                 return 4;
437         default:
438                 break;
439         }
440         BUG();
441         return 0;
442 }
443
444 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
445                                   size_t tsize)
446 {
447         u32 retbits = cctl;
448
449         /* Remove all src, dst and transfer size bits */
450         retbits &= ~PL080_CONTROL_DWIDTH_MASK;
451         retbits &= ~PL080_CONTROL_SWIDTH_MASK;
452         retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
453
454         /* Then set the bits according to the parameters */
455         switch (srcwidth) {
456         case 1:
457                 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
458                 break;
459         case 2:
460                 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
461                 break;
462         case 4:
463                 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
464                 break;
465         default:
466                 BUG();
467                 break;
468         }
469
470         switch (dstwidth) {
471         case 1:
472                 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
473                 break;
474         case 2:
475                 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
476                 break;
477         case 4:
478                 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
479                 break;
480         default:
481                 BUG();
482                 break;
483         }
484
485         retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
486         return retbits;
487 }
488
489 struct pl08x_lli_build_data {
490         struct pl08x_txd *txd;
491         struct pl08x_bus_data srcbus;
492         struct pl08x_bus_data dstbus;
493         size_t remainder;
494         u32 lli_bus;
495 };
496
497 /*
498  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
499  * victim in case src & dest are not similarly aligned. i.e. If after aligning
500  * masters address with width requirements of transfer (by sending few byte by
501  * byte data), slave is still not aligned, then its width will be reduced to
502  * BYTE.
503  * - prefers the destination bus if both available
504  * - prefers bus with fixed address (i.e. peripheral)
505  */
506 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
507         struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
508 {
509         if (!(cctl & PL080_CONTROL_DST_INCR)) {
510                 *mbus = &bd->dstbus;
511                 *sbus = &bd->srcbus;
512         } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
513                 *mbus = &bd->srcbus;
514                 *sbus = &bd->dstbus;
515         } else {
516                 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
517                         *mbus = &bd->dstbus;
518                         *sbus = &bd->srcbus;
519                 } else {
520                         *mbus = &bd->srcbus;
521                         *sbus = &bd->dstbus;
522                 }
523         }
524 }
525
526 /*
527  * Fills in one LLI for a certain transfer descriptor and advance the counter
528  */
529 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
530         int num_llis, int len, u32 cctl)
531 {
532         struct pl08x_lli *llis_va = bd->txd->llis_va;
533         dma_addr_t llis_bus = bd->txd->llis_bus;
534
535         BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
536
537         llis_va[num_llis].cctl = cctl;
538         llis_va[num_llis].src = bd->srcbus.addr;
539         llis_va[num_llis].dst = bd->dstbus.addr;
540         llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
541                 sizeof(struct pl08x_lli);
542         llis_va[num_llis].lli |= bd->lli_bus;
543
544         if (cctl & PL080_CONTROL_SRC_INCR)
545                 bd->srcbus.addr += len;
546         if (cctl & PL080_CONTROL_DST_INCR)
547                 bd->dstbus.addr += len;
548
549         BUG_ON(bd->remainder < len);
550
551         bd->remainder -= len;
552 }
553
554 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
555                 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
556 {
557         *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
558         pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
559         (*total_bytes) += len;
560 }
561
562 /*
563  * This fills in the table of LLIs for the transfer descriptor
564  * Note that we assume we never have to change the burst sizes
565  * Return 0 for error
566  */
567 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
568                               struct pl08x_txd *txd)
569 {
570         struct pl08x_bus_data *mbus, *sbus;
571         struct pl08x_lli_build_data bd;
572         int num_llis = 0;
573         u32 cctl, early_bytes = 0;
574         size_t max_bytes_per_lli, total_bytes;
575         struct pl08x_lli *llis_va;
576         struct pl08x_sg *dsg;
577
578         txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
579         if (!txd->llis_va) {
580                 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
581                 return 0;
582         }
583
584         pl08x->pool_ctr++;
585
586         bd.txd = txd;
587         bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
588         cctl = txd->cctl;
589
590         /* Find maximum width of the source bus */
591         bd.srcbus.maxwidth =
592                 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
593                                        PL080_CONTROL_SWIDTH_SHIFT);
594
595         /* Find maximum width of the destination bus */
596         bd.dstbus.maxwidth =
597                 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
598                                        PL080_CONTROL_DWIDTH_SHIFT);
599
600         list_for_each_entry(dsg, &txd->dsg_list, node) {
601                 total_bytes = 0;
602                 cctl = txd->cctl;
603
604                 bd.srcbus.addr = dsg->src_addr;
605                 bd.dstbus.addr = dsg->dst_addr;
606                 bd.remainder = dsg->len;
607                 bd.srcbus.buswidth = bd.srcbus.maxwidth;
608                 bd.dstbus.buswidth = bd.dstbus.maxwidth;
609
610                 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
611
612                 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
613                         bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
614                         bd.srcbus.buswidth,
615                         bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
616                         bd.dstbus.buswidth,
617                         bd.remainder);
618                 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
619                         mbus == &bd.srcbus ? "src" : "dst",
620                         sbus == &bd.srcbus ? "src" : "dst");
621
622                 /*
623                  * Zero length is only allowed if all these requirements are
624                  * met:
625                  * - flow controller is peripheral.
626                  * - src.addr is aligned to src.width
627                  * - dst.addr is aligned to dst.width
628                  *
629                  * sg_len == 1 should be true, as there can be two cases here:
630                  *
631                  * - Memory addresses are contiguous and are not scattered.
632                  *   Here, Only one sg will be passed by user driver, with
633                  *   memory address and zero length. We pass this to controller
634                  *   and after the transfer it will receive the last burst
635                  *   request from peripheral and so transfer finishes.
636                  *
637                  * - Memory addresses are scattered and are not contiguous.
638                  *   Here, Obviously as DMA controller doesn't know when a lli's
639                  *   transfer gets over, it can't load next lli. So in this
640                  *   case, there has to be an assumption that only one lli is
641                  *   supported. Thus, we can't have scattered addresses.
642                  */
643                 if (!bd.remainder) {
644                         u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
645                                 PL080_CONFIG_FLOW_CONTROL_SHIFT;
646                         if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
647                                         (fc <= PL080_FLOW_SRC2DST_SRC))) {
648                                 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
649                                         __func__);
650                                 return 0;
651                         }
652
653                         if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
654                                         (bd.dstbus.addr % bd.dstbus.buswidth)) {
655                                 dev_err(&pl08x->adev->dev,
656                                         "%s src & dst address must be aligned to src"
657                                         " & dst width if peripheral is flow controller",
658                                         __func__);
659                                 return 0;
660                         }
661
662                         cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
663                                         bd.dstbus.buswidth, 0);
664                         pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
665                         break;
666                 }
667
668                 /*
669                  * Send byte by byte for following cases
670                  * - Less than a bus width available
671                  * - until master bus is aligned
672                  */
673                 if (bd.remainder < mbus->buswidth)
674                         early_bytes = bd.remainder;
675                 else if ((mbus->addr) % (mbus->buswidth)) {
676                         early_bytes = mbus->buswidth - (mbus->addr) %
677                                 (mbus->buswidth);
678                         if ((bd.remainder - early_bytes) < mbus->buswidth)
679                                 early_bytes = bd.remainder;
680                 }
681
682                 if (early_bytes) {
683                         dev_vdbg(&pl08x->adev->dev,
684                                 "%s byte width LLIs (remain 0x%08x)\n",
685                                 __func__, bd.remainder);
686                         prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
687                                 &total_bytes);
688                 }
689
690                 if (bd.remainder) {
691                         /*
692                          * Master now aligned
693                          * - if slave is not then we must set its width down
694                          */
695                         if (sbus->addr % sbus->buswidth) {
696                                 dev_dbg(&pl08x->adev->dev,
697                                         "%s set down bus width to one byte\n",
698                                         __func__);
699
700                                 sbus->buswidth = 1;
701                         }
702
703                         /*
704                          * Bytes transferred = tsize * src width, not
705                          * MIN(buswidths)
706                          */
707                         max_bytes_per_lli = bd.srcbus.buswidth *
708                                 PL080_CONTROL_TRANSFER_SIZE_MASK;
709                         dev_vdbg(&pl08x->adev->dev,
710                                 "%s max bytes per lli = %zu\n",
711                                 __func__, max_bytes_per_lli);
712
713                         /*
714                          * Make largest possible LLIs until less than one bus
715                          * width left
716                          */
717                         while (bd.remainder > (mbus->buswidth - 1)) {
718                                 size_t lli_len, tsize, width;
719
720                                 /*
721                                  * If enough left try to send max possible,
722                                  * otherwise try to send the remainder
723                                  */
724                                 lli_len = min(bd.remainder, max_bytes_per_lli);
725
726                                 /*
727                                  * Check against maximum bus alignment:
728                                  * Calculate actual transfer size in relation to
729                                  * bus width an get a maximum remainder of the
730                                  * highest bus width - 1
731                                  */
732                                 width = max(mbus->buswidth, sbus->buswidth);
733                                 lli_len = (lli_len / width) * width;
734                                 tsize = lli_len / bd.srcbus.buswidth;
735
736                                 dev_vdbg(&pl08x->adev->dev,
737                                         "%s fill lli with single lli chunk of "
738                                         "size 0x%08zx (remainder 0x%08zx)\n",
739                                         __func__, lli_len, bd.remainder);
740
741                                 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
742                                         bd.dstbus.buswidth, tsize);
743                                 pl08x_fill_lli_for_desc(&bd, num_llis++,
744                                                 lli_len, cctl);
745                                 total_bytes += lli_len;
746                         }
747
748                         /*
749                          * Send any odd bytes
750                          */
751                         if (bd.remainder) {
752                                 dev_vdbg(&pl08x->adev->dev,
753                                         "%s align with boundary, send odd bytes (remain %zu)\n",
754                                         __func__, bd.remainder);
755                                 prep_byte_width_lli(&bd, &cctl, bd.remainder,
756                                                 num_llis++, &total_bytes);
757                         }
758                 }
759
760                 if (total_bytes != dsg->len) {
761                         dev_err(&pl08x->adev->dev,
762                                 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
763                                 __func__, total_bytes, dsg->len);
764                         return 0;
765                 }
766
767                 if (num_llis >= MAX_NUM_TSFR_LLIS) {
768                         dev_err(&pl08x->adev->dev,
769                                 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
770                                 __func__, (u32) MAX_NUM_TSFR_LLIS);
771                         return 0;
772                 }
773         }
774
775         llis_va = txd->llis_va;
776         /* The final LLI terminates the LLI. */
777         llis_va[num_llis - 1].lli = 0;
778         /* The final LLI element shall also fire an interrupt. */
779         llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
780
781 #ifdef VERBOSE_DEBUG
782         {
783                 int i;
784
785                 dev_vdbg(&pl08x->adev->dev,
786                          "%-3s %-9s  %-10s %-10s %-10s %s\n",
787                          "lli", "", "csrc", "cdst", "clli", "cctl");
788                 for (i = 0; i < num_llis; i++) {
789                         dev_vdbg(&pl08x->adev->dev,
790                                  "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
791                                  i, &llis_va[i], llis_va[i].src,
792                                  llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
793                                 );
794                 }
795         }
796 #endif
797
798         return num_llis;
799 }
800
801 /* You should call this with the struct pl08x lock held */
802 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
803                            struct pl08x_txd *txd)
804 {
805         struct pl08x_sg *dsg, *_dsg;
806
807         /* Free the LLI */
808         if (txd->llis_va)
809                 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
810
811         pl08x->pool_ctr--;
812
813         list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
814                 list_del(&dsg->node);
815                 kfree(dsg);
816         }
817
818         kfree(txd);
819 }
820
821 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
822                                 struct pl08x_dma_chan *plchan)
823 {
824         struct pl08x_txd *txdi = NULL;
825         struct pl08x_txd *next;
826
827         if (!list_empty(&plchan->pend_list)) {
828                 list_for_each_entry_safe(txdi,
829                                          next, &plchan->pend_list, node) {
830                         list_del(&txdi->node);
831                         pl08x_free_txd(pl08x, txdi);
832                 }
833         }
834 }
835
836 /*
837  * The DMA ENGINE API
838  */
839 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
840 {
841         return 0;
842 }
843
844 static void pl08x_free_chan_resources(struct dma_chan *chan)
845 {
846 }
847
848 /*
849  * This should be called with the channel plchan->lock held
850  */
851 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
852                             struct pl08x_txd *txd)
853 {
854         struct pl08x_driver_data *pl08x = plchan->host;
855         struct pl08x_phy_chan *ch;
856         int ret;
857
858         /* Check if we already have a channel */
859         if (plchan->phychan) {
860                 ch = plchan->phychan;
861                 goto got_channel;
862         }
863
864         ch = pl08x_get_phy_channel(pl08x, plchan);
865         if (!ch) {
866                 /* No physical channel available, cope with it */
867                 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
868                 return -EBUSY;
869         }
870
871         /*
872          * OK we have a physical channel: for memcpy() this is all we
873          * need, but for slaves the physical signals may be muxed!
874          * Can the platform allow us to use this channel?
875          */
876         if (plchan->slave && pl08x->pd->get_signal) {
877                 ret = pl08x->pd->get_signal(plchan);
878                 if (ret < 0) {
879                         dev_dbg(&pl08x->adev->dev,
880                                 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
881                                 ch->id, plchan->name);
882                         /* Release physical channel & return */
883                         pl08x_put_phy_channel(pl08x, ch);
884                         return -EBUSY;
885                 }
886                 ch->signal = ret;
887         }
888
889         plchan->phychan = ch;
890         dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
891                  ch->id,
892                  ch->signal,
893                  plchan->name);
894
895 got_channel:
896         /* Assign the flow control signal to this channel */
897         if (txd->direction == DMA_MEM_TO_DEV)
898                 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
899         else if (txd->direction == DMA_DEV_TO_MEM)
900                 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
901
902         plchan->phychan_hold++;
903
904         return 0;
905 }
906
907 static void release_phy_channel(struct pl08x_dma_chan *plchan)
908 {
909         struct pl08x_driver_data *pl08x = plchan->host;
910
911         if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
912                 pl08x->pd->put_signal(plchan);
913                 plchan->phychan->signal = -1;
914         }
915         pl08x_put_phy_channel(pl08x, plchan->phychan);
916         plchan->phychan = NULL;
917 }
918
919 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
920 {
921         struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
922         struct pl08x_txd *txd = to_pl08x_txd(tx);
923         unsigned long flags;
924         dma_cookie_t cookie;
925
926         spin_lock_irqsave(&plchan->lock, flags);
927         cookie = dma_cookie_assign(tx);
928
929         /* Put this onto the pending list */
930         list_add_tail(&txd->node, &plchan->pend_list);
931
932         /*
933          * If there was no physical channel available for this memcpy,
934          * stack the request up and indicate that the channel is waiting
935          * for a free physical channel.
936          */
937         if (!plchan->slave && !plchan->phychan) {
938                 /* Do this memcpy whenever there is a channel ready */
939                 plchan->state = PL08X_CHAN_WAITING;
940                 plchan->waiting = txd;
941         } else {
942                 plchan->phychan_hold--;
943         }
944
945         spin_unlock_irqrestore(&plchan->lock, flags);
946
947         return cookie;
948 }
949
950 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
951                 struct dma_chan *chan, unsigned long flags)
952 {
953         struct dma_async_tx_descriptor *retval = NULL;
954
955         return retval;
956 }
957
958 /*
959  * Code accessing dma_async_is_complete() in a tight loop may give problems.
960  * If slaves are relying on interrupts to signal completion this function
961  * must not be called with interrupts disabled.
962  */
963 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
964                 dma_cookie_t cookie, struct dma_tx_state *txstate)
965 {
966         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
967         enum dma_status ret;
968
969         ret = dma_cookie_status(chan, cookie, txstate);
970         if (ret == DMA_SUCCESS)
971                 return ret;
972
973         /*
974          * This cookie not complete yet
975          * Get number of bytes left in the active transactions and queue
976          */
977         dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
978
979         if (plchan->state == PL08X_CHAN_PAUSED)
980                 return DMA_PAUSED;
981
982         /* Whether waiting or running, we're in progress */
983         return DMA_IN_PROGRESS;
984 }
985
986 /* PrimeCell DMA extension */
987 struct burst_table {
988         u32 burstwords;
989         u32 reg;
990 };
991
992 static const struct burst_table burst_sizes[] = {
993         {
994                 .burstwords = 256,
995                 .reg = PL080_BSIZE_256,
996         },
997         {
998                 .burstwords = 128,
999                 .reg = PL080_BSIZE_128,
1000         },
1001         {
1002                 .burstwords = 64,
1003                 .reg = PL080_BSIZE_64,
1004         },
1005         {
1006                 .burstwords = 32,
1007                 .reg = PL080_BSIZE_32,
1008         },
1009         {
1010                 .burstwords = 16,
1011                 .reg = PL080_BSIZE_16,
1012         },
1013         {
1014                 .burstwords = 8,
1015                 .reg = PL080_BSIZE_8,
1016         },
1017         {
1018                 .burstwords = 4,
1019                 .reg = PL080_BSIZE_4,
1020         },
1021         {
1022                 .burstwords = 0,
1023                 .reg = PL080_BSIZE_1,
1024         },
1025 };
1026
1027 /*
1028  * Given the source and destination available bus masks, select which
1029  * will be routed to each port.  We try to have source and destination
1030  * on separate ports, but always respect the allowable settings.
1031  */
1032 static u32 pl08x_select_bus(u8 src, u8 dst)
1033 {
1034         u32 cctl = 0;
1035
1036         if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1037                 cctl |= PL080_CONTROL_DST_AHB2;
1038         if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1039                 cctl |= PL080_CONTROL_SRC_AHB2;
1040
1041         return cctl;
1042 }
1043
1044 static u32 pl08x_cctl(u32 cctl)
1045 {
1046         cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1047                   PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1048                   PL080_CONTROL_PROT_MASK);
1049
1050         /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1051         return cctl | PL080_CONTROL_PROT_SYS;
1052 }
1053
1054 static u32 pl08x_width(enum dma_slave_buswidth width)
1055 {
1056         switch (width) {
1057         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1058                 return PL080_WIDTH_8BIT;
1059         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1060                 return PL080_WIDTH_16BIT;
1061         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1062                 return PL080_WIDTH_32BIT;
1063         default:
1064                 return ~0;
1065         }
1066 }
1067
1068 static u32 pl08x_burst(u32 maxburst)
1069 {
1070         int i;
1071
1072         for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1073                 if (burst_sizes[i].burstwords <= maxburst)
1074                         break;
1075
1076         return burst_sizes[i].reg;
1077 }
1078
1079 static int dma_set_runtime_config(struct dma_chan *chan,
1080                                   struct dma_slave_config *config)
1081 {
1082         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1083         struct pl08x_driver_data *pl08x = plchan->host;
1084         enum dma_slave_buswidth addr_width;
1085         u32 width, burst, maxburst;
1086         u32 cctl = 0;
1087
1088         if (!plchan->slave)
1089                 return -EINVAL;
1090
1091         /* Transfer direction */
1092         plchan->runtime_direction = config->direction;
1093         if (config->direction == DMA_MEM_TO_DEV) {
1094                 addr_width = config->dst_addr_width;
1095                 maxburst = config->dst_maxburst;
1096         } else if (config->direction == DMA_DEV_TO_MEM) {
1097                 addr_width = config->src_addr_width;
1098                 maxburst = config->src_maxburst;
1099         } else {
1100                 dev_err(&pl08x->adev->dev,
1101                         "bad runtime_config: alien transfer direction\n");
1102                 return -EINVAL;
1103         }
1104
1105         width = pl08x_width(addr_width);
1106         if (width == ~0) {
1107                 dev_err(&pl08x->adev->dev,
1108                         "bad runtime_config: alien address width\n");
1109                 return -EINVAL;
1110         }
1111
1112         cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1113         cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1114
1115         /*
1116          * If this channel will only request single transfers, set this
1117          * down to ONE element.  Also select one element if no maxburst
1118          * is specified.
1119          */
1120         if (plchan->cd->single)
1121                 maxburst = 1;
1122
1123         burst = pl08x_burst(maxburst);
1124         cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1125         cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1126
1127         plchan->device_fc = config->device_fc;
1128
1129         if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1130                 plchan->src_addr = config->src_addr;
1131                 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1132                         pl08x_select_bus(plchan->cd->periph_buses,
1133                                          pl08x->mem_buses);
1134         } else {
1135                 plchan->dst_addr = config->dst_addr;
1136                 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1137                         pl08x_select_bus(pl08x->mem_buses,
1138                                          plchan->cd->periph_buses);
1139         }
1140
1141         dev_dbg(&pl08x->adev->dev,
1142                 "configured channel %s (%s) for %s, data width %d, "
1143                 "maxburst %d words, LE, CCTL=0x%08x\n",
1144                 dma_chan_name(chan), plchan->name,
1145                 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1146                 addr_width,
1147                 maxburst,
1148                 cctl);
1149
1150         return 0;
1151 }
1152
1153 /*
1154  * Slave transactions callback to the slave device to allow
1155  * synchronization of slave DMA signals with the DMAC enable
1156  */
1157 static void pl08x_issue_pending(struct dma_chan *chan)
1158 {
1159         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1160         unsigned long flags;
1161
1162         spin_lock_irqsave(&plchan->lock, flags);
1163         /* Something is already active, or we're waiting for a channel... */
1164         if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1165                 spin_unlock_irqrestore(&plchan->lock, flags);
1166                 return;
1167         }
1168
1169         /* Take the first element in the queue and execute it */
1170         if (!list_empty(&plchan->pend_list)) {
1171                 struct pl08x_txd *next;
1172
1173                 next = list_first_entry(&plchan->pend_list,
1174                                         struct pl08x_txd,
1175                                         node);
1176                 list_del(&next->node);
1177                 plchan->state = PL08X_CHAN_RUNNING;
1178
1179                 pl08x_start_txd(plchan, next);
1180         }
1181
1182         spin_unlock_irqrestore(&plchan->lock, flags);
1183 }
1184
1185 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1186                                         struct pl08x_txd *txd)
1187 {
1188         struct pl08x_driver_data *pl08x = plchan->host;
1189         unsigned long flags;
1190         int num_llis, ret;
1191
1192         num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1193         if (!num_llis) {
1194                 spin_lock_irqsave(&plchan->lock, flags);
1195                 pl08x_free_txd(pl08x, txd);
1196                 spin_unlock_irqrestore(&plchan->lock, flags);
1197                 return -EINVAL;
1198         }
1199
1200         spin_lock_irqsave(&plchan->lock, flags);
1201
1202         /*
1203          * See if we already have a physical channel allocated,
1204          * else this is the time to try to get one.
1205          */
1206         ret = prep_phy_channel(plchan, txd);
1207         if (ret) {
1208                 /*
1209                  * No physical channel was available.
1210                  *
1211                  * memcpy transfers can be sorted out at submission time.
1212                  *
1213                  * Slave transfers may have been denied due to platform
1214                  * channel muxing restrictions.  Since there is no guarantee
1215                  * that this will ever be resolved, and the signal must be
1216                  * acquired AFTER acquiring the physical channel, we will let
1217                  * them be NACK:ed with -EBUSY here. The drivers can retry
1218                  * the prep() call if they are eager on doing this using DMA.
1219                  */
1220                 if (plchan->slave) {
1221                         pl08x_free_txd_list(pl08x, plchan);
1222                         pl08x_free_txd(pl08x, txd);
1223                         spin_unlock_irqrestore(&plchan->lock, flags);
1224                         return -EBUSY;
1225                 }
1226         } else
1227                 /*
1228                  * Else we're all set, paused and ready to roll, status
1229                  * will switch to PL08X_CHAN_RUNNING when we call
1230                  * issue_pending(). If there is something running on the
1231                  * channel already we don't change its state.
1232                  */
1233                 if (plchan->state == PL08X_CHAN_IDLE)
1234                         plchan->state = PL08X_CHAN_PAUSED;
1235
1236         spin_unlock_irqrestore(&plchan->lock, flags);
1237
1238         return 0;
1239 }
1240
1241 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1242         unsigned long flags)
1243 {
1244         struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1245
1246         if (txd) {
1247                 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1248                 txd->tx.flags = flags;
1249                 txd->tx.tx_submit = pl08x_tx_submit;
1250                 INIT_LIST_HEAD(&txd->node);
1251                 INIT_LIST_HEAD(&txd->dsg_list);
1252
1253                 /* Always enable error and terminal interrupts */
1254                 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1255                             PL080_CONFIG_TC_IRQ_MASK;
1256         }
1257         return txd;
1258 }
1259
1260 /*
1261  * Initialize a descriptor to be used by memcpy submit
1262  */
1263 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1264                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1265                 size_t len, unsigned long flags)
1266 {
1267         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1268         struct pl08x_driver_data *pl08x = plchan->host;
1269         struct pl08x_txd *txd;
1270         struct pl08x_sg *dsg;
1271         int ret;
1272
1273         txd = pl08x_get_txd(plchan, flags);
1274         if (!txd) {
1275                 dev_err(&pl08x->adev->dev,
1276                         "%s no memory for descriptor\n", __func__);
1277                 return NULL;
1278         }
1279
1280         dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1281         if (!dsg) {
1282                 pl08x_free_txd(pl08x, txd);
1283                 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1284                                 __func__);
1285                 return NULL;
1286         }
1287         list_add_tail(&dsg->node, &txd->dsg_list);
1288
1289         txd->direction = DMA_NONE;
1290         dsg->src_addr = src;
1291         dsg->dst_addr = dest;
1292         dsg->len = len;
1293
1294         /* Set platform data for m2m */
1295         txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1296         txd->cctl = pl08x->pd->memcpy_channel.cctl &
1297                         ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1298
1299         /* Both to be incremented or the code will break */
1300         txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1301
1302         if (pl08x->vd->dualmaster)
1303                 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1304                                               pl08x->mem_buses);
1305
1306         ret = pl08x_prep_channel_resources(plchan, txd);
1307         if (ret)
1308                 return NULL;
1309
1310         return &txd->tx;
1311 }
1312
1313 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1314                 struct dma_chan *chan, struct scatterlist *sgl,
1315                 unsigned int sg_len, enum dma_transfer_direction direction,
1316                 unsigned long flags, void *context)
1317 {
1318         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1319         struct pl08x_driver_data *pl08x = plchan->host;
1320         struct pl08x_txd *txd;
1321         struct pl08x_sg *dsg;
1322         struct scatterlist *sg;
1323         dma_addr_t slave_addr;
1324         int ret, tmp;
1325
1326         dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1327                         __func__, sgl->length, plchan->name);
1328
1329         txd = pl08x_get_txd(plchan, flags);
1330         if (!txd) {
1331                 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1332                 return NULL;
1333         }
1334
1335         if (direction != plchan->runtime_direction)
1336                 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1337                         "the direction configured for the PrimeCell\n",
1338                         __func__);
1339
1340         /*
1341          * Set up addresses, the PrimeCell configured address
1342          * will take precedence since this may configure the
1343          * channel target address dynamically at runtime.
1344          */
1345         txd->direction = direction;
1346
1347         if (direction == DMA_MEM_TO_DEV) {
1348                 txd->cctl = plchan->dst_cctl;
1349                 slave_addr = plchan->dst_addr;
1350         } else if (direction == DMA_DEV_TO_MEM) {
1351                 txd->cctl = plchan->src_cctl;
1352                 slave_addr = plchan->src_addr;
1353         } else {
1354                 pl08x_free_txd(pl08x, txd);
1355                 dev_err(&pl08x->adev->dev,
1356                         "%s direction unsupported\n", __func__);
1357                 return NULL;
1358         }
1359
1360         if (plchan->device_fc)
1361                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1362                         PL080_FLOW_PER2MEM_PER;
1363         else
1364                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1365                         PL080_FLOW_PER2MEM;
1366
1367         txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1368
1369         for_each_sg(sgl, sg, sg_len, tmp) {
1370                 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1371                 if (!dsg) {
1372                         pl08x_free_txd(pl08x, txd);
1373                         dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1374                                         __func__);
1375                         return NULL;
1376                 }
1377                 list_add_tail(&dsg->node, &txd->dsg_list);
1378
1379                 dsg->len = sg_dma_len(sg);
1380                 if (direction == DMA_MEM_TO_DEV) {
1381                         dsg->src_addr = sg_phys(sg);
1382                         dsg->dst_addr = slave_addr;
1383                 } else {
1384                         dsg->src_addr = slave_addr;
1385                         dsg->dst_addr = sg_phys(sg);
1386                 }
1387         }
1388
1389         ret = pl08x_prep_channel_resources(plchan, txd);
1390         if (ret)
1391                 return NULL;
1392
1393         return &txd->tx;
1394 }
1395
1396 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1397                          unsigned long arg)
1398 {
1399         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1400         struct pl08x_driver_data *pl08x = plchan->host;
1401         unsigned long flags;
1402         int ret = 0;
1403
1404         /* Controls applicable to inactive channels */
1405         if (cmd == DMA_SLAVE_CONFIG) {
1406                 return dma_set_runtime_config(chan,
1407                                               (struct dma_slave_config *)arg);
1408         }
1409
1410         /*
1411          * Anything succeeds on channels with no physical allocation and
1412          * no queued transfers.
1413          */
1414         spin_lock_irqsave(&plchan->lock, flags);
1415         if (!plchan->phychan && !plchan->at) {
1416                 spin_unlock_irqrestore(&plchan->lock, flags);
1417                 return 0;
1418         }
1419
1420         switch (cmd) {
1421         case DMA_TERMINATE_ALL:
1422                 plchan->state = PL08X_CHAN_IDLE;
1423
1424                 if (plchan->phychan) {
1425                         pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1426
1427                         /*
1428                          * Mark physical channel as free and free any slave
1429                          * signal
1430                          */
1431                         release_phy_channel(plchan);
1432                         plchan->phychan_hold = 0;
1433                 }
1434                 /* Dequeue jobs and free LLIs */
1435                 if (plchan->at) {
1436                         pl08x_free_txd(pl08x, plchan->at);
1437                         plchan->at = NULL;
1438                 }
1439                 /* Dequeue jobs not yet fired as well */
1440                 pl08x_free_txd_list(pl08x, plchan);
1441                 break;
1442         case DMA_PAUSE:
1443                 pl08x_pause_phy_chan(plchan->phychan);
1444                 plchan->state = PL08X_CHAN_PAUSED;
1445                 break;
1446         case DMA_RESUME:
1447                 pl08x_resume_phy_chan(plchan->phychan);
1448                 plchan->state = PL08X_CHAN_RUNNING;
1449                 break;
1450         default:
1451                 /* Unknown command */
1452                 ret = -ENXIO;
1453                 break;
1454         }
1455
1456         spin_unlock_irqrestore(&plchan->lock, flags);
1457
1458         return ret;
1459 }
1460
1461 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1462 {
1463         struct pl08x_dma_chan *plchan;
1464         char *name = chan_id;
1465
1466         /* Reject channels for devices not bound to this driver */
1467         if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1468                 return false;
1469
1470         plchan = to_pl08x_chan(chan);
1471
1472         /* Check that the channel is not taken! */
1473         if (!strcmp(plchan->name, name))
1474                 return true;
1475
1476         return false;
1477 }
1478
1479 /*
1480  * Just check that the device is there and active
1481  * TODO: turn this bit on/off depending on the number of physical channels
1482  * actually used, if it is zero... well shut it off. That will save some
1483  * power. Cut the clock at the same time.
1484  */
1485 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1486 {
1487         writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1488 }
1489
1490 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1491 {
1492         struct device *dev = txd->tx.chan->device->dev;
1493         struct pl08x_sg *dsg;
1494
1495         if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1496                 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1497                         list_for_each_entry(dsg, &txd->dsg_list, node)
1498                                 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1499                                                 DMA_TO_DEVICE);
1500                 else {
1501                         list_for_each_entry(dsg, &txd->dsg_list, node)
1502                                 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1503                                                 DMA_TO_DEVICE);
1504                 }
1505         }
1506         if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1507                 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1508                         list_for_each_entry(dsg, &txd->dsg_list, node)
1509                                 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1510                                                 DMA_FROM_DEVICE);
1511                 else
1512                         list_for_each_entry(dsg, &txd->dsg_list, node)
1513                                 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1514                                                 DMA_FROM_DEVICE);
1515         }
1516 }
1517
1518 static void pl08x_tasklet(unsigned long data)
1519 {
1520         struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1521         struct pl08x_driver_data *pl08x = plchan->host;
1522         struct pl08x_txd *txd;
1523         unsigned long flags;
1524
1525         spin_lock_irqsave(&plchan->lock, flags);
1526
1527         txd = plchan->at;
1528         plchan->at = NULL;
1529
1530         if (txd) {
1531                 /* Update last completed */
1532                 dma_cookie_complete(&txd->tx);
1533         }
1534
1535         /* If a new descriptor is queued, set it up plchan->at is NULL here */
1536         if (!list_empty(&plchan->pend_list)) {
1537                 struct pl08x_txd *next;
1538
1539                 next = list_first_entry(&plchan->pend_list,
1540                                         struct pl08x_txd,
1541                                         node);
1542                 list_del(&next->node);
1543
1544                 pl08x_start_txd(plchan, next);
1545         } else if (plchan->phychan_hold) {
1546                 /*
1547                  * This channel is still in use - we have a new txd being
1548                  * prepared and will soon be queued.  Don't give up the
1549                  * physical channel.
1550                  */
1551         } else {
1552                 struct pl08x_dma_chan *waiting = NULL;
1553
1554                 /*
1555                  * No more jobs, so free up the physical channel
1556                  * Free any allocated signal on slave transfers too
1557                  */
1558                 release_phy_channel(plchan);
1559                 plchan->state = PL08X_CHAN_IDLE;
1560
1561                 /*
1562                  * And NOW before anyone else can grab that free:d up
1563                  * physical channel, see if there is some memcpy pending
1564                  * that seriously needs to start because of being stacked
1565                  * up while we were choking the physical channels with data.
1566                  */
1567                 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1568                                     chan.device_node) {
1569                         if (waiting->state == PL08X_CHAN_WAITING &&
1570                                 waiting->waiting != NULL) {
1571                                 int ret;
1572
1573                                 /* This should REALLY not fail now */
1574                                 ret = prep_phy_channel(waiting,
1575                                                        waiting->waiting);
1576                                 BUG_ON(ret);
1577                                 waiting->phychan_hold--;
1578                                 waiting->state = PL08X_CHAN_RUNNING;
1579                                 waiting->waiting = NULL;
1580                                 pl08x_issue_pending(&waiting->chan);
1581                                 break;
1582                         }
1583                 }
1584         }
1585
1586         spin_unlock_irqrestore(&plchan->lock, flags);
1587
1588         if (txd) {
1589                 dma_async_tx_callback callback = txd->tx.callback;
1590                 void *callback_param = txd->tx.callback_param;
1591
1592                 /* Don't try to unmap buffers on slave channels */
1593                 if (!plchan->slave)
1594                         pl08x_unmap_buffers(txd);
1595
1596                 /* Free the descriptor */
1597                 spin_lock_irqsave(&plchan->lock, flags);
1598                 pl08x_free_txd(pl08x, txd);
1599                 spin_unlock_irqrestore(&plchan->lock, flags);
1600
1601                 /* Callback to signal completion */
1602                 if (callback)
1603                         callback(callback_param);
1604         }
1605 }
1606
1607 static irqreturn_t pl08x_irq(int irq, void *dev)
1608 {
1609         struct pl08x_driver_data *pl08x = dev;
1610         u32 mask = 0, err, tc, i;
1611
1612         /* check & clear - ERR & TC interrupts */
1613         err = readl(pl08x->base + PL080_ERR_STATUS);
1614         if (err) {
1615                 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1616                         __func__, err);
1617                 writel(err, pl08x->base + PL080_ERR_CLEAR);
1618         }
1619         tc = readl(pl08x->base + PL080_INT_STATUS);
1620         if (tc)
1621                 writel(tc, pl08x->base + PL080_TC_CLEAR);
1622
1623         if (!err && !tc)
1624                 return IRQ_NONE;
1625
1626         for (i = 0; i < pl08x->vd->channels; i++) {
1627                 if (((1 << i) & err) || ((1 << i) & tc)) {
1628                         /* Locate physical channel */
1629                         struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1630                         struct pl08x_dma_chan *plchan = phychan->serving;
1631
1632                         if (!plchan) {
1633                                 dev_err(&pl08x->adev->dev,
1634                                         "%s Error TC interrupt on unused channel: 0x%08x\n",
1635                                         __func__, i);
1636                                 continue;
1637                         }
1638
1639                         /* Schedule tasklet on this channel */
1640                         tasklet_schedule(&plchan->tasklet);
1641                         mask |= (1 << i);
1642                 }
1643         }
1644
1645         return mask ? IRQ_HANDLED : IRQ_NONE;
1646 }
1647
1648 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1649 {
1650         u32 cctl = pl08x_cctl(chan->cd->cctl);
1651
1652         chan->slave = true;
1653         chan->name = chan->cd->bus_id;
1654         chan->src_addr = chan->cd->addr;
1655         chan->dst_addr = chan->cd->addr;
1656         chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1657                 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1658         chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1659                 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1660 }
1661
1662 /*
1663  * Initialise the DMAC memcpy/slave channels.
1664  * Make a local wrapper to hold required data
1665  */
1666 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1667                 struct dma_device *dmadev, unsigned int channels, bool slave)
1668 {
1669         struct pl08x_dma_chan *chan;
1670         int i;
1671
1672         INIT_LIST_HEAD(&dmadev->channels);
1673
1674         /*
1675          * Register as many many memcpy as we have physical channels,
1676          * we won't always be able to use all but the code will have
1677          * to cope with that situation.
1678          */
1679         for (i = 0; i < channels; i++) {
1680                 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1681                 if (!chan) {
1682                         dev_err(&pl08x->adev->dev,
1683                                 "%s no memory for channel\n", __func__);
1684                         return -ENOMEM;
1685                 }
1686
1687                 chan->host = pl08x;
1688                 chan->state = PL08X_CHAN_IDLE;
1689
1690                 if (slave) {
1691                         chan->cd = &pl08x->pd->slave_channels[i];
1692                         pl08x_dma_slave_init(chan);
1693                 } else {
1694                         chan->cd = &pl08x->pd->memcpy_channel;
1695                         chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1696                         if (!chan->name) {
1697                                 kfree(chan);
1698                                 return -ENOMEM;
1699                         }
1700                 }
1701                 if (chan->cd->circular_buffer) {
1702                         dev_err(&pl08x->adev->dev,
1703                                 "channel %s: circular buffers not supported\n",
1704                                 chan->name);
1705                         kfree(chan);
1706                         continue;
1707                 }
1708                 dev_dbg(&pl08x->adev->dev,
1709                          "initialize virtual channel \"%s\"\n",
1710                          chan->name);
1711
1712                 chan->chan.device = dmadev;
1713                 dma_cookie_init(&chan->chan);
1714
1715                 spin_lock_init(&chan->lock);
1716                 INIT_LIST_HEAD(&chan->pend_list);
1717                 tasklet_init(&chan->tasklet, pl08x_tasklet,
1718                              (unsigned long) chan);
1719
1720                 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1721         }
1722         dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1723                  i, slave ? "slave" : "memcpy");
1724         return i;
1725 }
1726
1727 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1728 {
1729         struct pl08x_dma_chan *chan = NULL;
1730         struct pl08x_dma_chan *next;
1731
1732         list_for_each_entry_safe(chan,
1733                                  next, &dmadev->channels, chan.device_node) {
1734                 list_del(&chan->chan.device_node);
1735                 kfree(chan);
1736         }
1737 }
1738
1739 #ifdef CONFIG_DEBUG_FS
1740 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1741 {
1742         switch (state) {
1743         case PL08X_CHAN_IDLE:
1744                 return "idle";
1745         case PL08X_CHAN_RUNNING:
1746                 return "running";
1747         case PL08X_CHAN_PAUSED:
1748                 return "paused";
1749         case PL08X_CHAN_WAITING:
1750                 return "waiting";
1751         default:
1752                 break;
1753         }
1754         return "UNKNOWN STATE";
1755 }
1756
1757 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1758 {
1759         struct pl08x_driver_data *pl08x = s->private;
1760         struct pl08x_dma_chan *chan;
1761         struct pl08x_phy_chan *ch;
1762         unsigned long flags;
1763         int i;
1764
1765         seq_printf(s, "PL08x physical channels:\n");
1766         seq_printf(s, "CHANNEL:\tUSER:\n");
1767         seq_printf(s, "--------\t-----\n");
1768         for (i = 0; i < pl08x->vd->channels; i++) {
1769                 struct pl08x_dma_chan *virt_chan;
1770
1771                 ch = &pl08x->phy_chans[i];
1772
1773                 spin_lock_irqsave(&ch->lock, flags);
1774                 virt_chan = ch->serving;
1775
1776                 seq_printf(s, "%d\t\t%s\n",
1777                            ch->id, virt_chan ? virt_chan->name : "(none)");
1778
1779                 spin_unlock_irqrestore(&ch->lock, flags);
1780         }
1781
1782         seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1783         seq_printf(s, "CHANNEL:\tSTATE:\n");
1784         seq_printf(s, "--------\t------\n");
1785         list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1786                 seq_printf(s, "%s\t\t%s\n", chan->name,
1787                            pl08x_state_str(chan->state));
1788         }
1789
1790         seq_printf(s, "\nPL08x virtual slave channels:\n");
1791         seq_printf(s, "CHANNEL:\tSTATE:\n");
1792         seq_printf(s, "--------\t------\n");
1793         list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1794                 seq_printf(s, "%s\t\t%s\n", chan->name,
1795                            pl08x_state_str(chan->state));
1796         }
1797
1798         return 0;
1799 }
1800
1801 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1802 {
1803         return single_open(file, pl08x_debugfs_show, inode->i_private);
1804 }
1805
1806 static const struct file_operations pl08x_debugfs_operations = {
1807         .open           = pl08x_debugfs_open,
1808         .read           = seq_read,
1809         .llseek         = seq_lseek,
1810         .release        = single_release,
1811 };
1812
1813 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1814 {
1815         /* Expose a simple debugfs interface to view all clocks */
1816         (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1817                         S_IFREG | S_IRUGO, NULL, pl08x,
1818                         &pl08x_debugfs_operations);
1819 }
1820
1821 #else
1822 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1823 {
1824 }
1825 #endif
1826
1827 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1828 {
1829         struct pl08x_driver_data *pl08x;
1830         const struct vendor_data *vd = id->data;
1831         int ret = 0;
1832         int i;
1833
1834         ret = amba_request_regions(adev, NULL);
1835         if (ret)
1836                 return ret;
1837
1838         /* Create the driver state holder */
1839         pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1840         if (!pl08x) {
1841                 ret = -ENOMEM;
1842                 goto out_no_pl08x;
1843         }
1844
1845         pm_runtime_set_active(&adev->dev);
1846         pm_runtime_enable(&adev->dev);
1847
1848         /* Initialize memcpy engine */
1849         dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1850         pl08x->memcpy.dev = &adev->dev;
1851         pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1852         pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1853         pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1854         pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1855         pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1856         pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1857         pl08x->memcpy.device_control = pl08x_control;
1858
1859         /* Initialize slave engine */
1860         dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1861         pl08x->slave.dev = &adev->dev;
1862         pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1863         pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1864         pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1865         pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1866         pl08x->slave.device_issue_pending = pl08x_issue_pending;
1867         pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1868         pl08x->slave.device_control = pl08x_control;
1869
1870         /* Get the platform data */
1871         pl08x->pd = dev_get_platdata(&adev->dev);
1872         if (!pl08x->pd) {
1873                 dev_err(&adev->dev, "no platform data supplied\n");
1874                 goto out_no_platdata;
1875         }
1876
1877         /* Assign useful pointers to the driver state */
1878         pl08x->adev = adev;
1879         pl08x->vd = vd;
1880
1881         /* By default, AHB1 only.  If dualmaster, from platform */
1882         pl08x->lli_buses = PL08X_AHB1;
1883         pl08x->mem_buses = PL08X_AHB1;
1884         if (pl08x->vd->dualmaster) {
1885                 pl08x->lli_buses = pl08x->pd->lli_buses;
1886                 pl08x->mem_buses = pl08x->pd->mem_buses;
1887         }
1888
1889         /* A DMA memory pool for LLIs, align on 1-byte boundary */
1890         pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1891                         PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1892         if (!pl08x->pool) {
1893                 ret = -ENOMEM;
1894                 goto out_no_lli_pool;
1895         }
1896
1897         spin_lock_init(&pl08x->lock);
1898
1899         pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1900         if (!pl08x->base) {
1901                 ret = -ENOMEM;
1902                 goto out_no_ioremap;
1903         }
1904
1905         /* Turn on the PL08x */
1906         pl08x_ensure_on(pl08x);
1907
1908         /* Attach the interrupt handler */
1909         writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1910         writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1911
1912         ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1913                           DRIVER_NAME, pl08x);
1914         if (ret) {
1915                 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1916                         __func__, adev->irq[0]);
1917                 goto out_no_irq;
1918         }
1919
1920         /* Initialize physical channels */
1921         pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1922                         GFP_KERNEL);
1923         if (!pl08x->phy_chans) {
1924                 dev_err(&adev->dev, "%s failed to allocate "
1925                         "physical channel holders\n",
1926                         __func__);
1927                 goto out_no_phychans;
1928         }
1929
1930         for (i = 0; i < vd->channels; i++) {
1931                 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1932
1933                 ch->id = i;
1934                 ch->base = pl08x->base + PL080_Cx_BASE(i);
1935                 spin_lock_init(&ch->lock);
1936                 ch->serving = NULL;
1937                 ch->signal = -1;
1938                 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1939                         i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1940         }
1941
1942         /* Register as many memcpy channels as there are physical channels */
1943         ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1944                                               pl08x->vd->channels, false);
1945         if (ret <= 0) {
1946                 dev_warn(&pl08x->adev->dev,
1947                          "%s failed to enumerate memcpy channels - %d\n",
1948                          __func__, ret);
1949                 goto out_no_memcpy;
1950         }
1951         pl08x->memcpy.chancnt = ret;
1952
1953         /* Register slave channels */
1954         ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1955                         pl08x->pd->num_slave_channels, true);
1956         if (ret <= 0) {
1957                 dev_warn(&pl08x->adev->dev,
1958                         "%s failed to enumerate slave channels - %d\n",
1959                                 __func__, ret);
1960                 goto out_no_slave;
1961         }
1962         pl08x->slave.chancnt = ret;
1963
1964         ret = dma_async_device_register(&pl08x->memcpy);
1965         if (ret) {
1966                 dev_warn(&pl08x->adev->dev,
1967                         "%s failed to register memcpy as an async device - %d\n",
1968                         __func__, ret);
1969                 goto out_no_memcpy_reg;
1970         }
1971
1972         ret = dma_async_device_register(&pl08x->slave);
1973         if (ret) {
1974                 dev_warn(&pl08x->adev->dev,
1975                         "%s failed to register slave as an async device - %d\n",
1976                         __func__, ret);
1977                 goto out_no_slave_reg;
1978         }
1979
1980         amba_set_drvdata(adev, pl08x);
1981         init_pl08x_debugfs(pl08x);
1982         dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1983                  amba_part(adev), amba_rev(adev),
1984                  (unsigned long long)adev->res.start, adev->irq[0]);
1985
1986         pm_runtime_put(&adev->dev);
1987         return 0;
1988
1989 out_no_slave_reg:
1990         dma_async_device_unregister(&pl08x->memcpy);
1991 out_no_memcpy_reg:
1992         pl08x_free_virtual_channels(&pl08x->slave);
1993 out_no_slave:
1994         pl08x_free_virtual_channels(&pl08x->memcpy);
1995 out_no_memcpy:
1996         kfree(pl08x->phy_chans);
1997 out_no_phychans:
1998         free_irq(adev->irq[0], pl08x);
1999 out_no_irq:
2000         iounmap(pl08x->base);
2001 out_no_ioremap:
2002         dma_pool_destroy(pl08x->pool);
2003 out_no_lli_pool:
2004 out_no_platdata:
2005         pm_runtime_put(&adev->dev);
2006         pm_runtime_disable(&adev->dev);
2007
2008         kfree(pl08x);
2009 out_no_pl08x:
2010         amba_release_regions(adev);
2011         return ret;
2012 }
2013
2014 /* PL080 has 8 channels and the PL080 have just 2 */
2015 static struct vendor_data vendor_pl080 = {
2016         .channels = 8,
2017         .dualmaster = true,
2018 };
2019
2020 static struct vendor_data vendor_pl081 = {
2021         .channels = 2,
2022         .dualmaster = false,
2023 };
2024
2025 static struct amba_id pl08x_ids[] = {
2026         /* PL080 */
2027         {
2028                 .id     = 0x00041080,
2029                 .mask   = 0x000fffff,
2030                 .data   = &vendor_pl080,
2031         },
2032         /* PL081 */
2033         {
2034                 .id     = 0x00041081,
2035                 .mask   = 0x000fffff,
2036                 .data   = &vendor_pl081,
2037         },
2038         /* Nomadik 8815 PL080 variant */
2039         {
2040                 .id     = 0x00280880,
2041                 .mask   = 0x00ffffff,
2042                 .data   = &vendor_pl080,
2043         },
2044         { 0, 0 },
2045 };
2046
2047 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2048
2049 static struct amba_driver pl08x_amba_driver = {
2050         .drv.name       = DRIVER_NAME,
2051         .id_table       = pl08x_ids,
2052         .probe          = pl08x_probe,
2053 };
2054
2055 static int __init pl08x_init(void)
2056 {
2057         int retval;
2058         retval = amba_driver_register(&pl08x_amba_driver);
2059         if (retval)
2060                 printk(KERN_WARNING DRIVER_NAME
2061                        "failed to register as an AMBA device (%d)\n",
2062                        retval);
2063         return retval;
2064 }
2065 subsys_initcall(pl08x_init);