perf session: Reduce the number of parms to perf_session__process_events
[linux-flexiantxendom0-3.2.10.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13
14 #include "util/debug.h"
15
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23
24 static u64                      sample_type;
25
26 static char                     default_sort_order[] = "avg, max, switch, runtime";
27 static char                     *sort_order = default_sort_order;
28
29 static int                      profile_cpu = -1;
30
31 #define PR_SET_NAME             15               /* Set process name */
32 #define MAX_CPUS                4096
33
34 static u64                      run_measurement_overhead;
35 static u64                      sleep_measurement_overhead;
36
37 #define COMM_LEN                20
38 #define SYM_LEN                 129
39
40 #define MAX_PID                 65536
41
42 static unsigned long            nr_tasks;
43
44 struct sched_atom;
45
46 struct task_desc {
47         unsigned long           nr;
48         unsigned long           pid;
49         char                    comm[COMM_LEN];
50
51         unsigned long           nr_events;
52         unsigned long           curr_event;
53         struct sched_atom       **atoms;
54
55         pthread_t               thread;
56         sem_t                   sleep_sem;
57
58         sem_t                   ready_for_work;
59         sem_t                   work_done_sem;
60
61         u64                     cpu_usage;
62 };
63
64 enum sched_event_type {
65         SCHED_EVENT_RUN,
66         SCHED_EVENT_SLEEP,
67         SCHED_EVENT_WAKEUP,
68         SCHED_EVENT_MIGRATION,
69 };
70
71 struct sched_atom {
72         enum sched_event_type   type;
73         u64                     timestamp;
74         u64                     duration;
75         unsigned long           nr;
76         int                     specific_wait;
77         sem_t                   *wait_sem;
78         struct task_desc        *wakee;
79 };
80
81 static struct task_desc         *pid_to_task[MAX_PID];
82
83 static struct task_desc         **tasks;
84
85 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
86 static u64                      start_time;
87
88 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
89
90 static unsigned long            nr_run_events;
91 static unsigned long            nr_sleep_events;
92 static unsigned long            nr_wakeup_events;
93
94 static unsigned long            nr_sleep_corrections;
95 static unsigned long            nr_run_events_optimized;
96
97 static unsigned long            targetless_wakeups;
98 static unsigned long            multitarget_wakeups;
99
100 static u64                      cpu_usage;
101 static u64                      runavg_cpu_usage;
102 static u64                      parent_cpu_usage;
103 static u64                      runavg_parent_cpu_usage;
104
105 static unsigned long            nr_runs;
106 static u64                      sum_runtime;
107 static u64                      sum_fluct;
108 static u64                      run_avg;
109
110 static unsigned long            replay_repeat = 10;
111 static unsigned long            nr_timestamps;
112 static unsigned long            nr_unordered_timestamps;
113 static unsigned long            nr_state_machine_bugs;
114 static unsigned long            nr_context_switch_bugs;
115 static unsigned long            nr_events;
116 static unsigned long            nr_lost_chunks;
117 static unsigned long            nr_lost_events;
118
119 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
120
121 enum thread_state {
122         THREAD_SLEEPING = 0,
123         THREAD_WAIT_CPU,
124         THREAD_SCHED_IN,
125         THREAD_IGNORE
126 };
127
128 struct work_atom {
129         struct list_head        list;
130         enum thread_state       state;
131         u64                     sched_out_time;
132         u64                     wake_up_time;
133         u64                     sched_in_time;
134         u64                     runtime;
135 };
136
137 struct work_atoms {
138         struct list_head        work_list;
139         struct thread           *thread;
140         struct rb_node          node;
141         u64                     max_lat;
142         u64                     max_lat_at;
143         u64                     total_lat;
144         u64                     nb_atoms;
145         u64                     total_runtime;
146 };
147
148 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
149
150 static struct rb_root           atom_root, sorted_atom_root;
151
152 static u64                      all_runtime;
153 static u64                      all_count;
154
155
156 static u64 get_nsecs(void)
157 {
158         struct timespec ts;
159
160         clock_gettime(CLOCK_MONOTONIC, &ts);
161
162         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
163 }
164
165 static void burn_nsecs(u64 nsecs)
166 {
167         u64 T0 = get_nsecs(), T1;
168
169         do {
170                 T1 = get_nsecs();
171         } while (T1 + run_measurement_overhead < T0 + nsecs);
172 }
173
174 static void sleep_nsecs(u64 nsecs)
175 {
176         struct timespec ts;
177
178         ts.tv_nsec = nsecs % 999999999;
179         ts.tv_sec = nsecs / 999999999;
180
181         nanosleep(&ts, NULL);
182 }
183
184 static void calibrate_run_measurement_overhead(void)
185 {
186         u64 T0, T1, delta, min_delta = 1000000000ULL;
187         int i;
188
189         for (i = 0; i < 10; i++) {
190                 T0 = get_nsecs();
191                 burn_nsecs(0);
192                 T1 = get_nsecs();
193                 delta = T1-T0;
194                 min_delta = min(min_delta, delta);
195         }
196         run_measurement_overhead = min_delta;
197
198         printf("run measurement overhead: %Ld nsecs\n", min_delta);
199 }
200
201 static void calibrate_sleep_measurement_overhead(void)
202 {
203         u64 T0, T1, delta, min_delta = 1000000000ULL;
204         int i;
205
206         for (i = 0; i < 10; i++) {
207                 T0 = get_nsecs();
208                 sleep_nsecs(10000);
209                 T1 = get_nsecs();
210                 delta = T1-T0;
211                 min_delta = min(min_delta, delta);
212         }
213         min_delta -= 10000;
214         sleep_measurement_overhead = min_delta;
215
216         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
217 }
218
219 static struct sched_atom *
220 get_new_event(struct task_desc *task, u64 timestamp)
221 {
222         struct sched_atom *event = zalloc(sizeof(*event));
223         unsigned long idx = task->nr_events;
224         size_t size;
225
226         event->timestamp = timestamp;
227         event->nr = idx;
228
229         task->nr_events++;
230         size = sizeof(struct sched_atom *) * task->nr_events;
231         task->atoms = realloc(task->atoms, size);
232         BUG_ON(!task->atoms);
233
234         task->atoms[idx] = event;
235
236         return event;
237 }
238
239 static struct sched_atom *last_event(struct task_desc *task)
240 {
241         if (!task->nr_events)
242                 return NULL;
243
244         return task->atoms[task->nr_events - 1];
245 }
246
247 static void
248 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
249 {
250         struct sched_atom *event, *curr_event = last_event(task);
251
252         /*
253          * optimize an existing RUN event by merging this one
254          * to it:
255          */
256         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
257                 nr_run_events_optimized++;
258                 curr_event->duration += duration;
259                 return;
260         }
261
262         event = get_new_event(task, timestamp);
263
264         event->type = SCHED_EVENT_RUN;
265         event->duration = duration;
266
267         nr_run_events++;
268 }
269
270 static void
271 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
272                        struct task_desc *wakee)
273 {
274         struct sched_atom *event, *wakee_event;
275
276         event = get_new_event(task, timestamp);
277         event->type = SCHED_EVENT_WAKEUP;
278         event->wakee = wakee;
279
280         wakee_event = last_event(wakee);
281         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
282                 targetless_wakeups++;
283                 return;
284         }
285         if (wakee_event->wait_sem) {
286                 multitarget_wakeups++;
287                 return;
288         }
289
290         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
291         sem_init(wakee_event->wait_sem, 0, 0);
292         wakee_event->specific_wait = 1;
293         event->wait_sem = wakee_event->wait_sem;
294
295         nr_wakeup_events++;
296 }
297
298 static void
299 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
300                       u64 task_state __used)
301 {
302         struct sched_atom *event = get_new_event(task, timestamp);
303
304         event->type = SCHED_EVENT_SLEEP;
305
306         nr_sleep_events++;
307 }
308
309 static struct task_desc *register_pid(unsigned long pid, const char *comm)
310 {
311         struct task_desc *task;
312
313         BUG_ON(pid >= MAX_PID);
314
315         task = pid_to_task[pid];
316
317         if (task)
318                 return task;
319
320         task = zalloc(sizeof(*task));
321         task->pid = pid;
322         task->nr = nr_tasks;
323         strcpy(task->comm, comm);
324         /*
325          * every task starts in sleeping state - this gets ignored
326          * if there's no wakeup pointing to this sleep state:
327          */
328         add_sched_event_sleep(task, 0, 0);
329
330         pid_to_task[pid] = task;
331         nr_tasks++;
332         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
333         BUG_ON(!tasks);
334         tasks[task->nr] = task;
335
336         if (verbose)
337                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
338
339         return task;
340 }
341
342
343 static void print_task_traces(void)
344 {
345         struct task_desc *task;
346         unsigned long i;
347
348         for (i = 0; i < nr_tasks; i++) {
349                 task = tasks[i];
350                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
351                         task->nr, task->comm, task->pid, task->nr_events);
352         }
353 }
354
355 static void add_cross_task_wakeups(void)
356 {
357         struct task_desc *task1, *task2;
358         unsigned long i, j;
359
360         for (i = 0; i < nr_tasks; i++) {
361                 task1 = tasks[i];
362                 j = i + 1;
363                 if (j == nr_tasks)
364                         j = 0;
365                 task2 = tasks[j];
366                 add_sched_event_wakeup(task1, 0, task2);
367         }
368 }
369
370 static void
371 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
372 {
373         int ret = 0;
374         u64 now;
375         long long delta;
376
377         now = get_nsecs();
378         delta = start_time + atom->timestamp - now;
379
380         switch (atom->type) {
381                 case SCHED_EVENT_RUN:
382                         burn_nsecs(atom->duration);
383                         break;
384                 case SCHED_EVENT_SLEEP:
385                         if (atom->wait_sem)
386                                 ret = sem_wait(atom->wait_sem);
387                         BUG_ON(ret);
388                         break;
389                 case SCHED_EVENT_WAKEUP:
390                         if (atom->wait_sem)
391                                 ret = sem_post(atom->wait_sem);
392                         BUG_ON(ret);
393                         break;
394                 case SCHED_EVENT_MIGRATION:
395                         break;
396                 default:
397                         BUG_ON(1);
398         }
399 }
400
401 static u64 get_cpu_usage_nsec_parent(void)
402 {
403         struct rusage ru;
404         u64 sum;
405         int err;
406
407         err = getrusage(RUSAGE_SELF, &ru);
408         BUG_ON(err);
409
410         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
411         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
412
413         return sum;
414 }
415
416 static int self_open_counters(void)
417 {
418         struct perf_event_attr attr;
419         int fd;
420
421         memset(&attr, 0, sizeof(attr));
422
423         attr.type = PERF_TYPE_SOFTWARE;
424         attr.config = PERF_COUNT_SW_TASK_CLOCK;
425
426         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
427
428         if (fd < 0)
429                 die("Error: sys_perf_event_open() syscall returned"
430                     "with %d (%s)\n", fd, strerror(errno));
431         return fd;
432 }
433
434 static u64 get_cpu_usage_nsec_self(int fd)
435 {
436         u64 runtime;
437         int ret;
438
439         ret = read(fd, &runtime, sizeof(runtime));
440         BUG_ON(ret != sizeof(runtime));
441
442         return runtime;
443 }
444
445 static void *thread_func(void *ctx)
446 {
447         struct task_desc *this_task = ctx;
448         u64 cpu_usage_0, cpu_usage_1;
449         unsigned long i, ret;
450         char comm2[22];
451         int fd;
452
453         sprintf(comm2, ":%s", this_task->comm);
454         prctl(PR_SET_NAME, comm2);
455         fd = self_open_counters();
456
457 again:
458         ret = sem_post(&this_task->ready_for_work);
459         BUG_ON(ret);
460         ret = pthread_mutex_lock(&start_work_mutex);
461         BUG_ON(ret);
462         ret = pthread_mutex_unlock(&start_work_mutex);
463         BUG_ON(ret);
464
465         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
466
467         for (i = 0; i < this_task->nr_events; i++) {
468                 this_task->curr_event = i;
469                 process_sched_event(this_task, this_task->atoms[i]);
470         }
471
472         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
473         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
474         ret = sem_post(&this_task->work_done_sem);
475         BUG_ON(ret);
476
477         ret = pthread_mutex_lock(&work_done_wait_mutex);
478         BUG_ON(ret);
479         ret = pthread_mutex_unlock(&work_done_wait_mutex);
480         BUG_ON(ret);
481
482         goto again;
483 }
484
485 static void create_tasks(void)
486 {
487         struct task_desc *task;
488         pthread_attr_t attr;
489         unsigned long i;
490         int err;
491
492         err = pthread_attr_init(&attr);
493         BUG_ON(err);
494         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
495         BUG_ON(err);
496         err = pthread_mutex_lock(&start_work_mutex);
497         BUG_ON(err);
498         err = pthread_mutex_lock(&work_done_wait_mutex);
499         BUG_ON(err);
500         for (i = 0; i < nr_tasks; i++) {
501                 task = tasks[i];
502                 sem_init(&task->sleep_sem, 0, 0);
503                 sem_init(&task->ready_for_work, 0, 0);
504                 sem_init(&task->work_done_sem, 0, 0);
505                 task->curr_event = 0;
506                 err = pthread_create(&task->thread, &attr, thread_func, task);
507                 BUG_ON(err);
508         }
509 }
510
511 static void wait_for_tasks(void)
512 {
513         u64 cpu_usage_0, cpu_usage_1;
514         struct task_desc *task;
515         unsigned long i, ret;
516
517         start_time = get_nsecs();
518         cpu_usage = 0;
519         pthread_mutex_unlock(&work_done_wait_mutex);
520
521         for (i = 0; i < nr_tasks; i++) {
522                 task = tasks[i];
523                 ret = sem_wait(&task->ready_for_work);
524                 BUG_ON(ret);
525                 sem_init(&task->ready_for_work, 0, 0);
526         }
527         ret = pthread_mutex_lock(&work_done_wait_mutex);
528         BUG_ON(ret);
529
530         cpu_usage_0 = get_cpu_usage_nsec_parent();
531
532         pthread_mutex_unlock(&start_work_mutex);
533
534         for (i = 0; i < nr_tasks; i++) {
535                 task = tasks[i];
536                 ret = sem_wait(&task->work_done_sem);
537                 BUG_ON(ret);
538                 sem_init(&task->work_done_sem, 0, 0);
539                 cpu_usage += task->cpu_usage;
540                 task->cpu_usage = 0;
541         }
542
543         cpu_usage_1 = get_cpu_usage_nsec_parent();
544         if (!runavg_cpu_usage)
545                 runavg_cpu_usage = cpu_usage;
546         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
547
548         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
549         if (!runavg_parent_cpu_usage)
550                 runavg_parent_cpu_usage = parent_cpu_usage;
551         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
552                                    parent_cpu_usage)/10;
553
554         ret = pthread_mutex_lock(&start_work_mutex);
555         BUG_ON(ret);
556
557         for (i = 0; i < nr_tasks; i++) {
558                 task = tasks[i];
559                 sem_init(&task->sleep_sem, 0, 0);
560                 task->curr_event = 0;
561         }
562 }
563
564 static void run_one_test(void)
565 {
566         u64 T0, T1, delta, avg_delta, fluct, std_dev;
567
568         T0 = get_nsecs();
569         wait_for_tasks();
570         T1 = get_nsecs();
571
572         delta = T1 - T0;
573         sum_runtime += delta;
574         nr_runs++;
575
576         avg_delta = sum_runtime / nr_runs;
577         if (delta < avg_delta)
578                 fluct = avg_delta - delta;
579         else
580                 fluct = delta - avg_delta;
581         sum_fluct += fluct;
582         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
583         if (!run_avg)
584                 run_avg = delta;
585         run_avg = (run_avg*9 + delta)/10;
586
587         printf("#%-3ld: %0.3f, ",
588                 nr_runs, (double)delta/1000000.0);
589
590         printf("ravg: %0.2f, ",
591                 (double)run_avg/1e6);
592
593         printf("cpu: %0.2f / %0.2f",
594                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
595
596 #if 0
597         /*
598          * rusage statistics done by the parent, these are less
599          * accurate than the sum_exec_runtime based statistics:
600          */
601         printf(" [%0.2f / %0.2f]",
602                 (double)parent_cpu_usage/1e6,
603                 (double)runavg_parent_cpu_usage/1e6);
604 #endif
605
606         printf("\n");
607
608         if (nr_sleep_corrections)
609                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
610         nr_sleep_corrections = 0;
611 }
612
613 static void test_calibrations(void)
614 {
615         u64 T0, T1;
616
617         T0 = get_nsecs();
618         burn_nsecs(1e6);
619         T1 = get_nsecs();
620
621         printf("the run test took %Ld nsecs\n", T1-T0);
622
623         T0 = get_nsecs();
624         sleep_nsecs(1e6);
625         T1 = get_nsecs();
626
627         printf("the sleep test took %Ld nsecs\n", T1-T0);
628 }
629
630 #define FILL_FIELD(ptr, field, event, data)     \
631         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
632
633 #define FILL_ARRAY(ptr, array, event, data)                     \
634 do {                                                            \
635         void *__array = raw_field_ptr(event, #array, data);     \
636         memcpy(ptr.array, __array, sizeof(ptr.array));  \
637 } while(0)
638
639 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
640 do {                                                            \
641         FILL_FIELD(ptr, common_type, event, data);              \
642         FILL_FIELD(ptr, common_flags, event, data);             \
643         FILL_FIELD(ptr, common_preempt_count, event, data);     \
644         FILL_FIELD(ptr, common_pid, event, data);               \
645         FILL_FIELD(ptr, common_tgid, event, data);              \
646 } while (0)
647
648
649
650 struct trace_switch_event {
651         u32 size;
652
653         u16 common_type;
654         u8 common_flags;
655         u8 common_preempt_count;
656         u32 common_pid;
657         u32 common_tgid;
658
659         char prev_comm[16];
660         u32 prev_pid;
661         u32 prev_prio;
662         u64 prev_state;
663         char next_comm[16];
664         u32 next_pid;
665         u32 next_prio;
666 };
667
668 struct trace_runtime_event {
669         u32 size;
670
671         u16 common_type;
672         u8 common_flags;
673         u8 common_preempt_count;
674         u32 common_pid;
675         u32 common_tgid;
676
677         char comm[16];
678         u32 pid;
679         u64 runtime;
680         u64 vruntime;
681 };
682
683 struct trace_wakeup_event {
684         u32 size;
685
686         u16 common_type;
687         u8 common_flags;
688         u8 common_preempt_count;
689         u32 common_pid;
690         u32 common_tgid;
691
692         char comm[16];
693         u32 pid;
694
695         u32 prio;
696         u32 success;
697         u32 cpu;
698 };
699
700 struct trace_fork_event {
701         u32 size;
702
703         u16 common_type;
704         u8 common_flags;
705         u8 common_preempt_count;
706         u32 common_pid;
707         u32 common_tgid;
708
709         char parent_comm[16];
710         u32 parent_pid;
711         char child_comm[16];
712         u32 child_pid;
713 };
714
715 struct trace_migrate_task_event {
716         u32 size;
717
718         u16 common_type;
719         u8 common_flags;
720         u8 common_preempt_count;
721         u32 common_pid;
722         u32 common_tgid;
723
724         char comm[16];
725         u32 pid;
726
727         u32 prio;
728         u32 cpu;
729 };
730
731 struct trace_sched_handler {
732         void (*switch_event)(struct trace_switch_event *,
733                              struct event *,
734                              int cpu,
735                              u64 timestamp,
736                              struct thread *thread);
737
738         void (*runtime_event)(struct trace_runtime_event *,
739                               struct event *,
740                               int cpu,
741                               u64 timestamp,
742                               struct thread *thread);
743
744         void (*wakeup_event)(struct trace_wakeup_event *,
745                              struct event *,
746                              int cpu,
747                              u64 timestamp,
748                              struct thread *thread);
749
750         void (*fork_event)(struct trace_fork_event *,
751                            struct event *,
752                            int cpu,
753                            u64 timestamp,
754                            struct thread *thread);
755
756         void (*migrate_task_event)(struct trace_migrate_task_event *,
757                            struct event *,
758                            int cpu,
759                            u64 timestamp,
760                            struct thread *thread);
761 };
762
763
764 static void
765 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
766                     struct event *event,
767                     int cpu __used,
768                     u64 timestamp __used,
769                     struct thread *thread __used)
770 {
771         struct task_desc *waker, *wakee;
772
773         if (verbose) {
774                 printf("sched_wakeup event %p\n", event);
775
776                 printf(" ... pid %d woke up %s/%d\n",
777                         wakeup_event->common_pid,
778                         wakeup_event->comm,
779                         wakeup_event->pid);
780         }
781
782         waker = register_pid(wakeup_event->common_pid, "<unknown>");
783         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
784
785         add_sched_event_wakeup(waker, timestamp, wakee);
786 }
787
788 static u64 cpu_last_switched[MAX_CPUS];
789
790 static void
791 replay_switch_event(struct trace_switch_event *switch_event,
792                     struct event *event,
793                     int cpu,
794                     u64 timestamp,
795                     struct thread *thread __used)
796 {
797         struct task_desc *prev, *next;
798         u64 timestamp0;
799         s64 delta;
800
801         if (verbose)
802                 printf("sched_switch event %p\n", event);
803
804         if (cpu >= MAX_CPUS || cpu < 0)
805                 return;
806
807         timestamp0 = cpu_last_switched[cpu];
808         if (timestamp0)
809                 delta = timestamp - timestamp0;
810         else
811                 delta = 0;
812
813         if (delta < 0)
814                 die("hm, delta: %Ld < 0 ?\n", delta);
815
816         if (verbose) {
817                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
818                         switch_event->prev_comm, switch_event->prev_pid,
819                         switch_event->next_comm, switch_event->next_pid,
820                         delta);
821         }
822
823         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
824         next = register_pid(switch_event->next_pid, switch_event->next_comm);
825
826         cpu_last_switched[cpu] = timestamp;
827
828         add_sched_event_run(prev, timestamp, delta);
829         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
830 }
831
832
833 static void
834 replay_fork_event(struct trace_fork_event *fork_event,
835                   struct event *event,
836                   int cpu __used,
837                   u64 timestamp __used,
838                   struct thread *thread __used)
839 {
840         if (verbose) {
841                 printf("sched_fork event %p\n", event);
842                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
843                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
844         }
845         register_pid(fork_event->parent_pid, fork_event->parent_comm);
846         register_pid(fork_event->child_pid, fork_event->child_comm);
847 }
848
849 static struct trace_sched_handler replay_ops  = {
850         .wakeup_event           = replay_wakeup_event,
851         .switch_event           = replay_switch_event,
852         .fork_event             = replay_fork_event,
853 };
854
855 struct sort_dimension {
856         const char              *name;
857         sort_fn_t               cmp;
858         struct list_head        list;
859 };
860
861 static LIST_HEAD(cmp_pid);
862
863 static int
864 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
865 {
866         struct sort_dimension *sort;
867         int ret = 0;
868
869         BUG_ON(list_empty(list));
870
871         list_for_each_entry(sort, list, list) {
872                 ret = sort->cmp(l, r);
873                 if (ret)
874                         return ret;
875         }
876
877         return ret;
878 }
879
880 static struct work_atoms *
881 thread_atoms_search(struct rb_root *root, struct thread *thread,
882                          struct list_head *sort_list)
883 {
884         struct rb_node *node = root->rb_node;
885         struct work_atoms key = { .thread = thread };
886
887         while (node) {
888                 struct work_atoms *atoms;
889                 int cmp;
890
891                 atoms = container_of(node, struct work_atoms, node);
892
893                 cmp = thread_lat_cmp(sort_list, &key, atoms);
894                 if (cmp > 0)
895                         node = node->rb_left;
896                 else if (cmp < 0)
897                         node = node->rb_right;
898                 else {
899                         BUG_ON(thread != atoms->thread);
900                         return atoms;
901                 }
902         }
903         return NULL;
904 }
905
906 static void
907 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
908                          struct list_head *sort_list)
909 {
910         struct rb_node **new = &(root->rb_node), *parent = NULL;
911
912         while (*new) {
913                 struct work_atoms *this;
914                 int cmp;
915
916                 this = container_of(*new, struct work_atoms, node);
917                 parent = *new;
918
919                 cmp = thread_lat_cmp(sort_list, data, this);
920
921                 if (cmp > 0)
922                         new = &((*new)->rb_left);
923                 else
924                         new = &((*new)->rb_right);
925         }
926
927         rb_link_node(&data->node, parent, new);
928         rb_insert_color(&data->node, root);
929 }
930
931 static void thread_atoms_insert(struct thread *thread)
932 {
933         struct work_atoms *atoms = zalloc(sizeof(*atoms));
934         if (!atoms)
935                 die("No memory");
936
937         atoms->thread = thread;
938         INIT_LIST_HEAD(&atoms->work_list);
939         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
940 }
941
942 static void
943 latency_fork_event(struct trace_fork_event *fork_event __used,
944                    struct event *event __used,
945                    int cpu __used,
946                    u64 timestamp __used,
947                    struct thread *thread __used)
948 {
949         /* should insert the newcomer */
950 }
951
952 __used
953 static char sched_out_state(struct trace_switch_event *switch_event)
954 {
955         const char *str = TASK_STATE_TO_CHAR_STR;
956
957         return str[switch_event->prev_state];
958 }
959
960 static void
961 add_sched_out_event(struct work_atoms *atoms,
962                     char run_state,
963                     u64 timestamp)
964 {
965         struct work_atom *atom = zalloc(sizeof(*atom));
966         if (!atom)
967                 die("Non memory");
968
969         atom->sched_out_time = timestamp;
970
971         if (run_state == 'R') {
972                 atom->state = THREAD_WAIT_CPU;
973                 atom->wake_up_time = atom->sched_out_time;
974         }
975
976         list_add_tail(&atom->list, &atoms->work_list);
977 }
978
979 static void
980 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
981 {
982         struct work_atom *atom;
983
984         BUG_ON(list_empty(&atoms->work_list));
985
986         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
987
988         atom->runtime += delta;
989         atoms->total_runtime += delta;
990 }
991
992 static void
993 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
994 {
995         struct work_atom *atom;
996         u64 delta;
997
998         if (list_empty(&atoms->work_list))
999                 return;
1000
1001         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1002
1003         if (atom->state != THREAD_WAIT_CPU)
1004                 return;
1005
1006         if (timestamp < atom->wake_up_time) {
1007                 atom->state = THREAD_IGNORE;
1008                 return;
1009         }
1010
1011         atom->state = THREAD_SCHED_IN;
1012         atom->sched_in_time = timestamp;
1013
1014         delta = atom->sched_in_time - atom->wake_up_time;
1015         atoms->total_lat += delta;
1016         if (delta > atoms->max_lat) {
1017                 atoms->max_lat = delta;
1018                 atoms->max_lat_at = timestamp;
1019         }
1020         atoms->nb_atoms++;
1021 }
1022
1023 static void
1024 latency_switch_event(struct trace_switch_event *switch_event,
1025                      struct event *event __used,
1026                      int cpu,
1027                      u64 timestamp,
1028                      struct thread *thread __used)
1029 {
1030         struct work_atoms *out_events, *in_events;
1031         struct thread *sched_out, *sched_in;
1032         u64 timestamp0;
1033         s64 delta;
1034
1035         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1036
1037         timestamp0 = cpu_last_switched[cpu];
1038         cpu_last_switched[cpu] = timestamp;
1039         if (timestamp0)
1040                 delta = timestamp - timestamp0;
1041         else
1042                 delta = 0;
1043
1044         if (delta < 0)
1045                 die("hm, delta: %Ld < 0 ?\n", delta);
1046
1047
1048         sched_out = threads__findnew(switch_event->prev_pid);
1049         sched_in = threads__findnew(switch_event->next_pid);
1050
1051         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1052         if (!out_events) {
1053                 thread_atoms_insert(sched_out);
1054                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055                 if (!out_events)
1056                         die("out-event: Internal tree error");
1057         }
1058         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1059
1060         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1061         if (!in_events) {
1062                 thread_atoms_insert(sched_in);
1063                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064                 if (!in_events)
1065                         die("in-event: Internal tree error");
1066                 /*
1067                  * Take came in we have not heard about yet,
1068                  * add in an initial atom in runnable state:
1069                  */
1070                 add_sched_out_event(in_events, 'R', timestamp);
1071         }
1072         add_sched_in_event(in_events, timestamp);
1073 }
1074
1075 static void
1076 latency_runtime_event(struct trace_runtime_event *runtime_event,
1077                      struct event *event __used,
1078                      int cpu,
1079                      u64 timestamp,
1080                      struct thread *this_thread __used)
1081 {
1082         struct thread *thread = threads__findnew(runtime_event->pid);
1083         struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1084
1085         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1086         if (!atoms) {
1087                 thread_atoms_insert(thread);
1088                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1089                 if (!atoms)
1090                         die("in-event: Internal tree error");
1091                 add_sched_out_event(atoms, 'R', timestamp);
1092         }
1093
1094         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1095 }
1096
1097 static void
1098 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1099                      struct event *__event __used,
1100                      int cpu __used,
1101                      u64 timestamp,
1102                      struct thread *thread __used)
1103 {
1104         struct work_atoms *atoms;
1105         struct work_atom *atom;
1106         struct thread *wakee;
1107
1108         /* Note for later, it may be interesting to observe the failing cases */
1109         if (!wakeup_event->success)
1110                 return;
1111
1112         wakee = threads__findnew(wakeup_event->pid);
1113         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1114         if (!atoms) {
1115                 thread_atoms_insert(wakee);
1116                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1117                 if (!atoms)
1118                         die("wakeup-event: Internal tree error");
1119                 add_sched_out_event(atoms, 'S', timestamp);
1120         }
1121
1122         BUG_ON(list_empty(&atoms->work_list));
1123
1124         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1125
1126         /*
1127          * You WILL be missing events if you've recorded only
1128          * one CPU, or are only looking at only one, so don't
1129          * make useless noise.
1130          */
1131         if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1132                 nr_state_machine_bugs++;
1133
1134         nr_timestamps++;
1135         if (atom->sched_out_time > timestamp) {
1136                 nr_unordered_timestamps++;
1137                 return;
1138         }
1139
1140         atom->state = THREAD_WAIT_CPU;
1141         atom->wake_up_time = timestamp;
1142 }
1143
1144 static void
1145 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1146                      struct event *__event __used,
1147                      int cpu __used,
1148                      u64 timestamp,
1149                      struct thread *thread __used)
1150 {
1151         struct work_atoms *atoms;
1152         struct work_atom *atom;
1153         struct thread *migrant;
1154
1155         /*
1156          * Only need to worry about migration when profiling one CPU.
1157          */
1158         if (profile_cpu == -1)
1159                 return;
1160
1161         migrant = threads__findnew(migrate_task_event->pid);
1162         atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1163         if (!atoms) {
1164                 thread_atoms_insert(migrant);
1165                 register_pid(migrant->pid, migrant->comm);
1166                 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1167                 if (!atoms)
1168                         die("migration-event: Internal tree error");
1169                 add_sched_out_event(atoms, 'R', timestamp);
1170         }
1171
1172         BUG_ON(list_empty(&atoms->work_list));
1173
1174         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1175         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1176
1177         nr_timestamps++;
1178
1179         if (atom->sched_out_time > timestamp)
1180                 nr_unordered_timestamps++;
1181 }
1182
1183 static struct trace_sched_handler lat_ops  = {
1184         .wakeup_event           = latency_wakeup_event,
1185         .switch_event           = latency_switch_event,
1186         .runtime_event          = latency_runtime_event,
1187         .fork_event             = latency_fork_event,
1188         .migrate_task_event     = latency_migrate_task_event,
1189 };
1190
1191 static void output_lat_thread(struct work_atoms *work_list)
1192 {
1193         int i;
1194         int ret;
1195         u64 avg;
1196
1197         if (!work_list->nb_atoms)
1198                 return;
1199         /*
1200          * Ignore idle threads:
1201          */
1202         if (!strcmp(work_list->thread->comm, "swapper"))
1203                 return;
1204
1205         all_runtime += work_list->total_runtime;
1206         all_count += work_list->nb_atoms;
1207
1208         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1209
1210         for (i = 0; i < 24 - ret; i++)
1211                 printf(" ");
1212
1213         avg = work_list->total_lat / work_list->nb_atoms;
1214
1215         printf("|%11.3f ms |%9llu | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1216               (double)work_list->total_runtime / 1e6,
1217                  work_list->nb_atoms, (double)avg / 1e6,
1218                  (double)work_list->max_lat / 1e6,
1219                  (double)work_list->max_lat_at / 1e9);
1220 }
1221
1222 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1223 {
1224         if (l->thread->pid < r->thread->pid)
1225                 return -1;
1226         if (l->thread->pid > r->thread->pid)
1227                 return 1;
1228
1229         return 0;
1230 }
1231
1232 static struct sort_dimension pid_sort_dimension = {
1233         .name                   = "pid",
1234         .cmp                    = pid_cmp,
1235 };
1236
1237 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1238 {
1239         u64 avgl, avgr;
1240
1241         if (!l->nb_atoms)
1242                 return -1;
1243
1244         if (!r->nb_atoms)
1245                 return 1;
1246
1247         avgl = l->total_lat / l->nb_atoms;
1248         avgr = r->total_lat / r->nb_atoms;
1249
1250         if (avgl < avgr)
1251                 return -1;
1252         if (avgl > avgr)
1253                 return 1;
1254
1255         return 0;
1256 }
1257
1258 static struct sort_dimension avg_sort_dimension = {
1259         .name                   = "avg",
1260         .cmp                    = avg_cmp,
1261 };
1262
1263 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1264 {
1265         if (l->max_lat < r->max_lat)
1266                 return -1;
1267         if (l->max_lat > r->max_lat)
1268                 return 1;
1269
1270         return 0;
1271 }
1272
1273 static struct sort_dimension max_sort_dimension = {
1274         .name                   = "max",
1275         .cmp                    = max_cmp,
1276 };
1277
1278 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1279 {
1280         if (l->nb_atoms < r->nb_atoms)
1281                 return -1;
1282         if (l->nb_atoms > r->nb_atoms)
1283                 return 1;
1284
1285         return 0;
1286 }
1287
1288 static struct sort_dimension switch_sort_dimension = {
1289         .name                   = "switch",
1290         .cmp                    = switch_cmp,
1291 };
1292
1293 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1294 {
1295         if (l->total_runtime < r->total_runtime)
1296                 return -1;
1297         if (l->total_runtime > r->total_runtime)
1298                 return 1;
1299
1300         return 0;
1301 }
1302
1303 static struct sort_dimension runtime_sort_dimension = {
1304         .name                   = "runtime",
1305         .cmp                    = runtime_cmp,
1306 };
1307
1308 static struct sort_dimension *available_sorts[] = {
1309         &pid_sort_dimension,
1310         &avg_sort_dimension,
1311         &max_sort_dimension,
1312         &switch_sort_dimension,
1313         &runtime_sort_dimension,
1314 };
1315
1316 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1317
1318 static LIST_HEAD(sort_list);
1319
1320 static int sort_dimension__add(const char *tok, struct list_head *list)
1321 {
1322         int i;
1323
1324         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1325                 if (!strcmp(available_sorts[i]->name, tok)) {
1326                         list_add_tail(&available_sorts[i]->list, list);
1327
1328                         return 0;
1329                 }
1330         }
1331
1332         return -1;
1333 }
1334
1335 static void setup_sorting(void);
1336
1337 static void sort_lat(void)
1338 {
1339         struct rb_node *node;
1340
1341         for (;;) {
1342                 struct work_atoms *data;
1343                 node = rb_first(&atom_root);
1344                 if (!node)
1345                         break;
1346
1347                 rb_erase(node, &atom_root);
1348                 data = rb_entry(node, struct work_atoms, node);
1349                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1350         }
1351 }
1352
1353 static struct trace_sched_handler *trace_handler;
1354
1355 static void
1356 process_sched_wakeup_event(void *data,
1357                            struct event *event,
1358                            int cpu __used,
1359                            u64 timestamp __used,
1360                            struct thread *thread __used)
1361 {
1362         struct trace_wakeup_event wakeup_event;
1363
1364         FILL_COMMON_FIELDS(wakeup_event, event, data);
1365
1366         FILL_ARRAY(wakeup_event, comm, event, data);
1367         FILL_FIELD(wakeup_event, pid, event, data);
1368         FILL_FIELD(wakeup_event, prio, event, data);
1369         FILL_FIELD(wakeup_event, success, event, data);
1370         FILL_FIELD(wakeup_event, cpu, event, data);
1371
1372         if (trace_handler->wakeup_event)
1373                 trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1374 }
1375
1376 /*
1377  * Track the current task - that way we can know whether there's any
1378  * weird events, such as a task being switched away that is not current.
1379  */
1380 static int max_cpu;
1381
1382 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1383
1384 static struct thread *curr_thread[MAX_CPUS];
1385
1386 static char next_shortname1 = 'A';
1387 static char next_shortname2 = '0';
1388
1389 static void
1390 map_switch_event(struct trace_switch_event *switch_event,
1391                  struct event *event __used,
1392                  int this_cpu,
1393                  u64 timestamp,
1394                  struct thread *thread __used)
1395 {
1396         struct thread *sched_out, *sched_in;
1397         int new_shortname;
1398         u64 timestamp0;
1399         s64 delta;
1400         int cpu;
1401
1402         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1403
1404         if (this_cpu > max_cpu)
1405                 max_cpu = this_cpu;
1406
1407         timestamp0 = cpu_last_switched[this_cpu];
1408         cpu_last_switched[this_cpu] = timestamp;
1409         if (timestamp0)
1410                 delta = timestamp - timestamp0;
1411         else
1412                 delta = 0;
1413
1414         if (delta < 0)
1415                 die("hm, delta: %Ld < 0 ?\n", delta);
1416
1417
1418         sched_out = threads__findnew(switch_event->prev_pid);
1419         sched_in = threads__findnew(switch_event->next_pid);
1420
1421         curr_thread[this_cpu] = sched_in;
1422
1423         printf("  ");
1424
1425         new_shortname = 0;
1426         if (!sched_in->shortname[0]) {
1427                 sched_in->shortname[0] = next_shortname1;
1428                 sched_in->shortname[1] = next_shortname2;
1429
1430                 if (next_shortname1 < 'Z') {
1431                         next_shortname1++;
1432                 } else {
1433                         next_shortname1='A';
1434                         if (next_shortname2 < '9') {
1435                                 next_shortname2++;
1436                         } else {
1437                                 next_shortname2='0';
1438                         }
1439                 }
1440                 new_shortname = 1;
1441         }
1442
1443         for (cpu = 0; cpu <= max_cpu; cpu++) {
1444                 if (cpu != this_cpu)
1445                         printf(" ");
1446                 else
1447                         printf("*");
1448
1449                 if (curr_thread[cpu]) {
1450                         if (curr_thread[cpu]->pid)
1451                                 printf("%2s ", curr_thread[cpu]->shortname);
1452                         else
1453                                 printf(".  ");
1454                 } else
1455                         printf("   ");
1456         }
1457
1458         printf("  %12.6f secs ", (double)timestamp/1e9);
1459         if (new_shortname) {
1460                 printf("%s => %s:%d\n",
1461                         sched_in->shortname, sched_in->comm, sched_in->pid);
1462         } else {
1463                 printf("\n");
1464         }
1465 }
1466
1467
1468 static void
1469 process_sched_switch_event(void *data,
1470                            struct event *event,
1471                            int this_cpu,
1472                            u64 timestamp __used,
1473                            struct thread *thread __used)
1474 {
1475         struct trace_switch_event switch_event;
1476
1477         FILL_COMMON_FIELDS(switch_event, event, data);
1478
1479         FILL_ARRAY(switch_event, prev_comm, event, data);
1480         FILL_FIELD(switch_event, prev_pid, event, data);
1481         FILL_FIELD(switch_event, prev_prio, event, data);
1482         FILL_FIELD(switch_event, prev_state, event, data);
1483         FILL_ARRAY(switch_event, next_comm, event, data);
1484         FILL_FIELD(switch_event, next_pid, event, data);
1485         FILL_FIELD(switch_event, next_prio, event, data);
1486
1487         if (curr_pid[this_cpu] != (u32)-1) {
1488                 /*
1489                  * Are we trying to switch away a PID that is
1490                  * not current?
1491                  */
1492                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1493                         nr_context_switch_bugs++;
1494         }
1495         if (trace_handler->switch_event)
1496                 trace_handler->switch_event(&switch_event, event, this_cpu, timestamp, thread);
1497
1498         curr_pid[this_cpu] = switch_event.next_pid;
1499 }
1500
1501 static void
1502 process_sched_runtime_event(void *data,
1503                            struct event *event,
1504                            int cpu __used,
1505                            u64 timestamp __used,
1506                            struct thread *thread __used)
1507 {
1508         struct trace_runtime_event runtime_event;
1509
1510         FILL_ARRAY(runtime_event, comm, event, data);
1511         FILL_FIELD(runtime_event, pid, event, data);
1512         FILL_FIELD(runtime_event, runtime, event, data);
1513         FILL_FIELD(runtime_event, vruntime, event, data);
1514
1515         if (trace_handler->runtime_event)
1516                 trace_handler->runtime_event(&runtime_event, event, cpu, timestamp, thread);
1517 }
1518
1519 static void
1520 process_sched_fork_event(void *data,
1521                          struct event *event,
1522                          int cpu __used,
1523                          u64 timestamp __used,
1524                          struct thread *thread __used)
1525 {
1526         struct trace_fork_event fork_event;
1527
1528         FILL_COMMON_FIELDS(fork_event, event, data);
1529
1530         FILL_ARRAY(fork_event, parent_comm, event, data);
1531         FILL_FIELD(fork_event, parent_pid, event, data);
1532         FILL_ARRAY(fork_event, child_comm, event, data);
1533         FILL_FIELD(fork_event, child_pid, event, data);
1534
1535         if (trace_handler->fork_event)
1536                 trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1537 }
1538
1539 static void
1540 process_sched_exit_event(struct event *event,
1541                          int cpu __used,
1542                          u64 timestamp __used,
1543                          struct thread *thread __used)
1544 {
1545         if (verbose)
1546                 printf("sched_exit event %p\n", event);
1547 }
1548
1549 static void
1550 process_sched_migrate_task_event(void *data,
1551                            struct event *event,
1552                            int cpu __used,
1553                            u64 timestamp __used,
1554                            struct thread *thread __used)
1555 {
1556         struct trace_migrate_task_event migrate_task_event;
1557
1558         FILL_COMMON_FIELDS(migrate_task_event, event, data);
1559
1560         FILL_ARRAY(migrate_task_event, comm, event, data);
1561         FILL_FIELD(migrate_task_event, pid, event, data);
1562         FILL_FIELD(migrate_task_event, prio, event, data);
1563         FILL_FIELD(migrate_task_event, cpu, event, data);
1564
1565         if (trace_handler->migrate_task_event)
1566                 trace_handler->migrate_task_event(&migrate_task_event, event, cpu, timestamp, thread);
1567 }
1568
1569 static void
1570 process_raw_event(event_t *raw_event __used, void *data,
1571                   int cpu, u64 timestamp, struct thread *thread)
1572 {
1573         struct event *event;
1574         int type;
1575
1576
1577         type = trace_parse_common_type(data);
1578         event = trace_find_event(type);
1579
1580         if (!strcmp(event->name, "sched_switch"))
1581                 process_sched_switch_event(data, event, cpu, timestamp, thread);
1582         if (!strcmp(event->name, "sched_stat_runtime"))
1583                 process_sched_runtime_event(data, event, cpu, timestamp, thread);
1584         if (!strcmp(event->name, "sched_wakeup"))
1585                 process_sched_wakeup_event(data, event, cpu, timestamp, thread);
1586         if (!strcmp(event->name, "sched_wakeup_new"))
1587                 process_sched_wakeup_event(data, event, cpu, timestamp, thread);
1588         if (!strcmp(event->name, "sched_process_fork"))
1589                 process_sched_fork_event(data, event, cpu, timestamp, thread);
1590         if (!strcmp(event->name, "sched_process_exit"))
1591                 process_sched_exit_event(event, cpu, timestamp, thread);
1592         if (!strcmp(event->name, "sched_migrate_task"))
1593                 process_sched_migrate_task_event(data, event, cpu, timestamp, thread);
1594 }
1595
1596 static int process_sample_event(event_t *event,
1597                                 struct perf_session *session __used)
1598 {
1599         struct sample_data data;
1600         struct thread *thread;
1601
1602         if (!(sample_type & PERF_SAMPLE_RAW))
1603                 return 0;
1604
1605         memset(&data, 0, sizeof(data));
1606         data.time = -1;
1607         data.cpu = -1;
1608         data.period = -1;
1609
1610         event__parse_sample(event, sample_type, &data);
1611
1612         dump_printf("(IP, %d): %d/%d: %p period: %Ld\n",
1613                 event->header.misc,
1614                 data.pid, data.tid,
1615                 (void *)(long)data.ip,
1616                 (long long)data.period);
1617
1618         thread = threads__findnew(data.pid);
1619         if (thread == NULL) {
1620                 pr_debug("problem processing %d event, skipping it.\n",
1621                          event->header.type);
1622                 return -1;
1623         }
1624
1625         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1626
1627         if (profile_cpu != -1 && profile_cpu != (int)data.cpu)
1628                 return 0;
1629
1630         process_raw_event(event, data.raw_data, data.cpu, data.time, thread);
1631
1632         return 0;
1633 }
1634
1635 static int process_lost_event(event_t *event __used,
1636                               struct perf_session *session __used)
1637 {
1638         nr_lost_chunks++;
1639         nr_lost_events += event->lost.lost;
1640
1641         return 0;
1642 }
1643
1644 static int sample_type_check(u64 type)
1645 {
1646         sample_type = type;
1647
1648         if (!(sample_type & PERF_SAMPLE_RAW)) {
1649                 fprintf(stderr,
1650                         "No trace sample to read. Did you call perf record "
1651                         "without -R?");
1652                 return -1;
1653         }
1654
1655         return 0;
1656 }
1657
1658 static struct perf_event_ops event_ops = {
1659         .process_sample_event   = process_sample_event,
1660         .process_comm_event     = event__process_comm,
1661         .process_lost_event     = process_lost_event,
1662         .sample_type_check      = sample_type_check,
1663 };
1664
1665 static int read_events(void)
1666 {
1667         int err;
1668         struct perf_session *session = perf_session__new(input_name, O_RDONLY, 0);
1669
1670         if (session == NULL)
1671                 return -ENOMEM;
1672
1673         err = perf_session__process_events(session, &event_ops);
1674         perf_session__delete(session);
1675         return err;
1676 }
1677
1678 static void print_bad_events(void)
1679 {
1680         if (nr_unordered_timestamps && nr_timestamps) {
1681                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1682                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1683                         nr_unordered_timestamps, nr_timestamps);
1684         }
1685         if (nr_lost_events && nr_events) {
1686                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1687                         (double)nr_lost_events/(double)nr_events*100.0,
1688                         nr_lost_events, nr_events, nr_lost_chunks);
1689         }
1690         if (nr_state_machine_bugs && nr_timestamps) {
1691                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1692                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1693                         nr_state_machine_bugs, nr_timestamps);
1694                 if (nr_lost_events)
1695                         printf(" (due to lost events?)");
1696                 printf("\n");
1697         }
1698         if (nr_context_switch_bugs && nr_timestamps) {
1699                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1700                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1701                         nr_context_switch_bugs, nr_timestamps);
1702                 if (nr_lost_events)
1703                         printf(" (due to lost events?)");
1704                 printf("\n");
1705         }
1706 }
1707
1708 static void __cmd_lat(void)
1709 {
1710         struct rb_node *next;
1711
1712         setup_pager();
1713         read_events();
1714         sort_lat();
1715
1716         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1717         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1718         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1719
1720         next = rb_first(&sorted_atom_root);
1721
1722         while (next) {
1723                 struct work_atoms *work_list;
1724
1725                 work_list = rb_entry(next, struct work_atoms, node);
1726                 output_lat_thread(work_list);
1727                 next = rb_next(next);
1728         }
1729
1730         printf(" -----------------------------------------------------------------------------------------\n");
1731         printf("  TOTAL:                |%11.3f ms |%9Ld |\n",
1732                 (double)all_runtime/1e6, all_count);
1733
1734         printf(" ---------------------------------------------------\n");
1735
1736         print_bad_events();
1737         printf("\n");
1738
1739 }
1740
1741 static struct trace_sched_handler map_ops  = {
1742         .wakeup_event           = NULL,
1743         .switch_event           = map_switch_event,
1744         .runtime_event          = NULL,
1745         .fork_event             = NULL,
1746 };
1747
1748 static void __cmd_map(void)
1749 {
1750         max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1751
1752         setup_pager();
1753         read_events();
1754         print_bad_events();
1755 }
1756
1757 static void __cmd_replay(void)
1758 {
1759         unsigned long i;
1760
1761         calibrate_run_measurement_overhead();
1762         calibrate_sleep_measurement_overhead();
1763
1764         test_calibrations();
1765
1766         read_events();
1767
1768         printf("nr_run_events:        %ld\n", nr_run_events);
1769         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1770         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1771
1772         if (targetless_wakeups)
1773                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1774         if (multitarget_wakeups)
1775                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1776         if (nr_run_events_optimized)
1777                 printf("run atoms optimized: %ld\n",
1778                         nr_run_events_optimized);
1779
1780         print_task_traces();
1781         add_cross_task_wakeups();
1782
1783         create_tasks();
1784         printf("------------------------------------------------------------\n");
1785         for (i = 0; i < replay_repeat; i++)
1786                 run_one_test();
1787 }
1788
1789
1790 static const char * const sched_usage[] = {
1791         "perf sched [<options>] {record|latency|map|replay|trace}",
1792         NULL
1793 };
1794
1795 static const struct option sched_options[] = {
1796         OPT_STRING('i', "input", &input_name, "file",
1797                     "input file name"),
1798         OPT_BOOLEAN('v', "verbose", &verbose,
1799                     "be more verbose (show symbol address, etc)"),
1800         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1801                     "dump raw trace in ASCII"),
1802         OPT_END()
1803 };
1804
1805 static const char * const latency_usage[] = {
1806         "perf sched latency [<options>]",
1807         NULL
1808 };
1809
1810 static const struct option latency_options[] = {
1811         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1812                    "sort by key(s): runtime, switch, avg, max"),
1813         OPT_BOOLEAN('v', "verbose", &verbose,
1814                     "be more verbose (show symbol address, etc)"),
1815         OPT_INTEGER('C', "CPU", &profile_cpu,
1816                     "CPU to profile on"),
1817         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1818                     "dump raw trace in ASCII"),
1819         OPT_END()
1820 };
1821
1822 static const char * const replay_usage[] = {
1823         "perf sched replay [<options>]",
1824         NULL
1825 };
1826
1827 static const struct option replay_options[] = {
1828         OPT_INTEGER('r', "repeat", &replay_repeat,
1829                     "repeat the workload replay N times (-1: infinite)"),
1830         OPT_BOOLEAN('v', "verbose", &verbose,
1831                     "be more verbose (show symbol address, etc)"),
1832         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1833                     "dump raw trace in ASCII"),
1834         OPT_END()
1835 };
1836
1837 static void setup_sorting(void)
1838 {
1839         char *tmp, *tok, *str = strdup(sort_order);
1840
1841         for (tok = strtok_r(str, ", ", &tmp);
1842                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1843                 if (sort_dimension__add(tok, &sort_list) < 0) {
1844                         error("Unknown --sort key: `%s'", tok);
1845                         usage_with_options(latency_usage, latency_options);
1846                 }
1847         }
1848
1849         free(str);
1850
1851         sort_dimension__add("pid", &cmp_pid);
1852 }
1853
1854 static const char *record_args[] = {
1855         "record",
1856         "-a",
1857         "-R",
1858         "-M",
1859         "-f",
1860         "-m", "1024",
1861         "-c", "1",
1862         "-e", "sched:sched_switch:r",
1863         "-e", "sched:sched_stat_wait:r",
1864         "-e", "sched:sched_stat_sleep:r",
1865         "-e", "sched:sched_stat_iowait:r",
1866         "-e", "sched:sched_stat_runtime:r",
1867         "-e", "sched:sched_process_exit:r",
1868         "-e", "sched:sched_process_fork:r",
1869         "-e", "sched:sched_wakeup:r",
1870         "-e", "sched:sched_migrate_task:r",
1871 };
1872
1873 static int __cmd_record(int argc, const char **argv)
1874 {
1875         unsigned int rec_argc, i, j;
1876         const char **rec_argv;
1877
1878         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1879         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1880
1881         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1882                 rec_argv[i] = strdup(record_args[i]);
1883
1884         for (j = 1; j < (unsigned int)argc; j++, i++)
1885                 rec_argv[i] = argv[j];
1886
1887         BUG_ON(i != rec_argc);
1888
1889         return cmd_record(i, rec_argv, NULL);
1890 }
1891
1892 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1893 {
1894         argc = parse_options(argc, argv, sched_options, sched_usage,
1895                              PARSE_OPT_STOP_AT_NON_OPTION);
1896         if (!argc)
1897                 usage_with_options(sched_usage, sched_options);
1898
1899         /*
1900          * Aliased to 'perf trace' for now:
1901          */
1902         if (!strcmp(argv[0], "trace"))
1903                 return cmd_trace(argc, argv, prefix);
1904
1905         symbol__init(0);
1906         if (!strncmp(argv[0], "rec", 3)) {
1907                 return __cmd_record(argc, argv);
1908         } else if (!strncmp(argv[0], "lat", 3)) {
1909                 trace_handler = &lat_ops;
1910                 if (argc > 1) {
1911                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1912                         if (argc)
1913                                 usage_with_options(latency_usage, latency_options);
1914                 }
1915                 setup_sorting();
1916                 __cmd_lat();
1917         } else if (!strcmp(argv[0], "map")) {
1918                 trace_handler = &map_ops;
1919                 setup_sorting();
1920                 __cmd_map();
1921         } else if (!strncmp(argv[0], "rep", 3)) {
1922                 trace_handler = &replay_ops;
1923                 if (argc) {
1924                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1925                         if (argc)
1926                                 usage_with_options(replay_usage, replay_options);
1927                 }
1928                 __cmd_replay();
1929         } else {
1930                 usage_with_options(sched_usage, sched_options);
1931         }
1932
1933         return 0;
1934 }