ea7c01f4a2bf8388f27beda3e8c33d25baf7914f
[linux-flexiantxendom0-3.2.10.git] / security / selinux / ss / services.c
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *      Support for enhanced MLS infrastructure.
10  *      Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *      This program is free software; you can redistribute it and/or modify
39  *      it under the terms of the GNU General Public License as published by
40  *      the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72
73 extern void selnl_notify_policyload(u32 seqno);
74
75 int selinux_policycap_netpeer;
76 int selinux_policycap_openperm;
77
78 static DEFINE_RWLOCK(policy_rwlock);
79
80 static struct sidtab sidtab;
81 struct policydb policydb;
82 int ss_initialized;
83
84 /*
85  * The largest sequence number that has been used when
86  * providing an access decision to the access vector cache.
87  * The sequence number only changes when a policy change
88  * occurs.
89  */
90 static u32 latest_granting;
91
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context *context, char **scontext,
94                                     u32 *scontext_len);
95
96 static void context_struct_compute_av(struct context *scontext,
97                                       struct context *tcontext,
98                                       u16 tclass,
99                                       struct av_decision *avd);
100
101 struct selinux_mapping {
102         u16 value; /* policy value */
103         unsigned num_perms;
104         u32 perms[sizeof(u32) * 8];
105 };
106
107 static struct selinux_mapping *current_mapping;
108 static u16 current_mapping_size;
109
110 static int selinux_set_mapping(struct policydb *pol,
111                                struct security_class_mapping *map,
112                                struct selinux_mapping **out_map_p,
113                                u16 *out_map_size)
114 {
115         struct selinux_mapping *out_map = NULL;
116         size_t size = sizeof(struct selinux_mapping);
117         u16 i, j;
118         unsigned k;
119         bool print_unknown_handle = false;
120
121         /* Find number of classes in the input mapping */
122         if (!map)
123                 return -EINVAL;
124         i = 0;
125         while (map[i].name)
126                 i++;
127
128         /* Allocate space for the class records, plus one for class zero */
129         out_map = kcalloc(++i, size, GFP_ATOMIC);
130         if (!out_map)
131                 return -ENOMEM;
132
133         /* Store the raw class and permission values */
134         j = 0;
135         while (map[j].name) {
136                 struct security_class_mapping *p_in = map + (j++);
137                 struct selinux_mapping *p_out = out_map + j;
138
139                 /* An empty class string skips ahead */
140                 if (!strcmp(p_in->name, "")) {
141                         p_out->num_perms = 0;
142                         continue;
143                 }
144
145                 p_out->value = string_to_security_class(pol, p_in->name);
146                 if (!p_out->value) {
147                         printk(KERN_INFO
148                                "SELinux:  Class %s not defined in policy.\n",
149                                p_in->name);
150                         if (pol->reject_unknown)
151                                 goto err;
152                         p_out->num_perms = 0;
153                         print_unknown_handle = true;
154                         continue;
155                 }
156
157                 k = 0;
158                 while (p_in->perms && p_in->perms[k]) {
159                         /* An empty permission string skips ahead */
160                         if (!*p_in->perms[k]) {
161                                 k++;
162                                 continue;
163                         }
164                         p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165                                                             p_in->perms[k]);
166                         if (!p_out->perms[k]) {
167                                 printk(KERN_INFO
168                                        "SELinux:  Permission %s in class %s not defined in policy.\n",
169                                        p_in->perms[k], p_in->name);
170                                 if (pol->reject_unknown)
171                                         goto err;
172                                 print_unknown_handle = true;
173                         }
174
175                         k++;
176                 }
177                 p_out->num_perms = k;
178         }
179
180         if (print_unknown_handle)
181                 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182                        pol->allow_unknown ? "allowed" : "denied");
183
184         *out_map_p = out_map;
185         *out_map_size = i;
186         return 0;
187 err:
188         kfree(out_map);
189         return -EINVAL;
190 }
191
192 /*
193  * Get real, policy values from mapped values
194  */
195
196 static u16 unmap_class(u16 tclass)
197 {
198         if (tclass < current_mapping_size)
199                 return current_mapping[tclass].value;
200
201         return tclass;
202 }
203
204 /*
205  * Get kernel value for class from its policy value
206  */
207 static u16 map_class(u16 pol_value)
208 {
209         u16 i;
210
211         for (i = 1; i < current_mapping_size; i++) {
212                 if (current_mapping[i].value == pol_value)
213                         return i;
214         }
215
216         return SECCLASS_NULL;
217 }
218
219 static void map_decision(u16 tclass, struct av_decision *avd,
220                          int allow_unknown)
221 {
222         if (tclass < current_mapping_size) {
223                 unsigned i, n = current_mapping[tclass].num_perms;
224                 u32 result;
225
226                 for (i = 0, result = 0; i < n; i++) {
227                         if (avd->allowed & current_mapping[tclass].perms[i])
228                                 result |= 1<<i;
229                         if (allow_unknown && !current_mapping[tclass].perms[i])
230                                 result |= 1<<i;
231                 }
232                 avd->allowed = result;
233
234                 for (i = 0, result = 0; i < n; i++)
235                         if (avd->auditallow & current_mapping[tclass].perms[i])
236                                 result |= 1<<i;
237                 avd->auditallow = result;
238
239                 for (i = 0, result = 0; i < n; i++) {
240                         if (avd->auditdeny & current_mapping[tclass].perms[i])
241                                 result |= 1<<i;
242                         if (!allow_unknown && !current_mapping[tclass].perms[i])
243                                 result |= 1<<i;
244                 }
245                 /*
246                  * In case the kernel has a bug and requests a permission
247                  * between num_perms and the maximum permission number, we
248                  * should audit that denial
249                  */
250                 for (; i < (sizeof(u32)*8); i++)
251                         result |= 1<<i;
252                 avd->auditdeny = result;
253         }
254 }
255
256 int security_mls_enabled(void)
257 {
258         return policydb.mls_enabled;
259 }
260
261 /*
262  * Return the boolean value of a constraint expression
263  * when it is applied to the specified source and target
264  * security contexts.
265  *
266  * xcontext is a special beast...  It is used by the validatetrans rules
267  * only.  For these rules, scontext is the context before the transition,
268  * tcontext is the context after the transition, and xcontext is the context
269  * of the process performing the transition.  All other callers of
270  * constraint_expr_eval should pass in NULL for xcontext.
271  */
272 static int constraint_expr_eval(struct context *scontext,
273                                 struct context *tcontext,
274                                 struct context *xcontext,
275                                 struct constraint_expr *cexpr)
276 {
277         u32 val1, val2;
278         struct context *c;
279         struct role_datum *r1, *r2;
280         struct mls_level *l1, *l2;
281         struct constraint_expr *e;
282         int s[CEXPR_MAXDEPTH];
283         int sp = -1;
284
285         for (e = cexpr; e; e = e->next) {
286                 switch (e->expr_type) {
287                 case CEXPR_NOT:
288                         BUG_ON(sp < 0);
289                         s[sp] = !s[sp];
290                         break;
291                 case CEXPR_AND:
292                         BUG_ON(sp < 1);
293                         sp--;
294                         s[sp] &= s[sp + 1];
295                         break;
296                 case CEXPR_OR:
297                         BUG_ON(sp < 1);
298                         sp--;
299                         s[sp] |= s[sp + 1];
300                         break;
301                 case CEXPR_ATTR:
302                         if (sp == (CEXPR_MAXDEPTH - 1))
303                                 return 0;
304                         switch (e->attr) {
305                         case CEXPR_USER:
306                                 val1 = scontext->user;
307                                 val2 = tcontext->user;
308                                 break;
309                         case CEXPR_TYPE:
310                                 val1 = scontext->type;
311                                 val2 = tcontext->type;
312                                 break;
313                         case CEXPR_ROLE:
314                                 val1 = scontext->role;
315                                 val2 = tcontext->role;
316                                 r1 = policydb.role_val_to_struct[val1 - 1];
317                                 r2 = policydb.role_val_to_struct[val2 - 1];
318                                 switch (e->op) {
319                                 case CEXPR_DOM:
320                                         s[++sp] = ebitmap_get_bit(&r1->dominates,
321                                                                   val2 - 1);
322                                         continue;
323                                 case CEXPR_DOMBY:
324                                         s[++sp] = ebitmap_get_bit(&r2->dominates,
325                                                                   val1 - 1);
326                                         continue;
327                                 case CEXPR_INCOMP:
328                                         s[++sp] = (!ebitmap_get_bit(&r1->dominates,
329                                                                     val2 - 1) &&
330                                                    !ebitmap_get_bit(&r2->dominates,
331                                                                     val1 - 1));
332                                         continue;
333                                 default:
334                                         break;
335                                 }
336                                 break;
337                         case CEXPR_L1L2:
338                                 l1 = &(scontext->range.level[0]);
339                                 l2 = &(tcontext->range.level[0]);
340                                 goto mls_ops;
341                         case CEXPR_L1H2:
342                                 l1 = &(scontext->range.level[0]);
343                                 l2 = &(tcontext->range.level[1]);
344                                 goto mls_ops;
345                         case CEXPR_H1L2:
346                                 l1 = &(scontext->range.level[1]);
347                                 l2 = &(tcontext->range.level[0]);
348                                 goto mls_ops;
349                         case CEXPR_H1H2:
350                                 l1 = &(scontext->range.level[1]);
351                                 l2 = &(tcontext->range.level[1]);
352                                 goto mls_ops;
353                         case CEXPR_L1H1:
354                                 l1 = &(scontext->range.level[0]);
355                                 l2 = &(scontext->range.level[1]);
356                                 goto mls_ops;
357                         case CEXPR_L2H2:
358                                 l1 = &(tcontext->range.level[0]);
359                                 l2 = &(tcontext->range.level[1]);
360                                 goto mls_ops;
361 mls_ops:
362                         switch (e->op) {
363                         case CEXPR_EQ:
364                                 s[++sp] = mls_level_eq(l1, l2);
365                                 continue;
366                         case CEXPR_NEQ:
367                                 s[++sp] = !mls_level_eq(l1, l2);
368                                 continue;
369                         case CEXPR_DOM:
370                                 s[++sp] = mls_level_dom(l1, l2);
371                                 continue;
372                         case CEXPR_DOMBY:
373                                 s[++sp] = mls_level_dom(l2, l1);
374                                 continue;
375                         case CEXPR_INCOMP:
376                                 s[++sp] = mls_level_incomp(l2, l1);
377                                 continue;
378                         default:
379                                 BUG();
380                                 return 0;
381                         }
382                         break;
383                         default:
384                                 BUG();
385                                 return 0;
386                         }
387
388                         switch (e->op) {
389                         case CEXPR_EQ:
390                                 s[++sp] = (val1 == val2);
391                                 break;
392                         case CEXPR_NEQ:
393                                 s[++sp] = (val1 != val2);
394                                 break;
395                         default:
396                                 BUG();
397                                 return 0;
398                         }
399                         break;
400                 case CEXPR_NAMES:
401                         if (sp == (CEXPR_MAXDEPTH-1))
402                                 return 0;
403                         c = scontext;
404                         if (e->attr & CEXPR_TARGET)
405                                 c = tcontext;
406                         else if (e->attr & CEXPR_XTARGET) {
407                                 c = xcontext;
408                                 if (!c) {
409                                         BUG();
410                                         return 0;
411                                 }
412                         }
413                         if (e->attr & CEXPR_USER)
414                                 val1 = c->user;
415                         else if (e->attr & CEXPR_ROLE)
416                                 val1 = c->role;
417                         else if (e->attr & CEXPR_TYPE)
418                                 val1 = c->type;
419                         else {
420                                 BUG();
421                                 return 0;
422                         }
423
424                         switch (e->op) {
425                         case CEXPR_EQ:
426                                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
427                                 break;
428                         case CEXPR_NEQ:
429                                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
430                                 break;
431                         default:
432                                 BUG();
433                                 return 0;
434                         }
435                         break;
436                 default:
437                         BUG();
438                         return 0;
439                 }
440         }
441
442         BUG_ON(sp != 0);
443         return s[0];
444 }
445
446 /*
447  * security_dump_masked_av - dumps masked permissions during
448  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449  */
450 static int dump_masked_av_helper(void *k, void *d, void *args)
451 {
452         struct perm_datum *pdatum = d;
453         char **permission_names = args;
454
455         BUG_ON(pdatum->value < 1 || pdatum->value > 32);
456
457         permission_names[pdatum->value - 1] = (char *)k;
458
459         return 0;
460 }
461
462 static void security_dump_masked_av(struct context *scontext,
463                                     struct context *tcontext,
464                                     u16 tclass,
465                                     u32 permissions,
466                                     const char *reason)
467 {
468         struct common_datum *common_dat;
469         struct class_datum *tclass_dat;
470         struct audit_buffer *ab;
471         char *tclass_name;
472         char *scontext_name = NULL;
473         char *tcontext_name = NULL;
474         char *permission_names[32];
475         int index;
476         u32 length;
477         bool need_comma = false;
478
479         if (!permissions)
480                 return;
481
482         tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
483         tclass_dat = policydb.class_val_to_struct[tclass - 1];
484         common_dat = tclass_dat->comdatum;
485
486         /* init permission_names */
487         if (common_dat &&
488             hashtab_map(common_dat->permissions.table,
489                         dump_masked_av_helper, permission_names) < 0)
490                 goto out;
491
492         if (hashtab_map(tclass_dat->permissions.table,
493                         dump_masked_av_helper, permission_names) < 0)
494                 goto out;
495
496         /* get scontext/tcontext in text form */
497         if (context_struct_to_string(scontext,
498                                      &scontext_name, &length) < 0)
499                 goto out;
500
501         if (context_struct_to_string(tcontext,
502                                      &tcontext_name, &length) < 0)
503                 goto out;
504
505         /* audit a message */
506         ab = audit_log_start(current->audit_context,
507                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
508         if (!ab)
509                 goto out;
510
511         audit_log_format(ab, "op=security_compute_av reason=%s "
512                          "scontext=%s tcontext=%s tclass=%s perms=",
513                          reason, scontext_name, tcontext_name, tclass_name);
514
515         for (index = 0; index < 32; index++) {
516                 u32 mask = (1 << index);
517
518                 if ((mask & permissions) == 0)
519                         continue;
520
521                 audit_log_format(ab, "%s%s",
522                                  need_comma ? "," : "",
523                                  permission_names[index]
524                                  ? permission_names[index] : "????");
525                 need_comma = true;
526         }
527         audit_log_end(ab);
528 out:
529         /* release scontext/tcontext */
530         kfree(tcontext_name);
531         kfree(scontext_name);
532
533         return;
534 }
535
536 /*
537  * security_boundary_permission - drops violated permissions
538  * on boundary constraint.
539  */
540 static void type_attribute_bounds_av(struct context *scontext,
541                                      struct context *tcontext,
542                                      u16 tclass,
543                                      struct av_decision *avd)
544 {
545         struct context lo_scontext;
546         struct context lo_tcontext;
547         struct av_decision lo_avd;
548         struct type_datum *source;
549         struct type_datum *target;
550         u32 masked = 0;
551
552         source = flex_array_get_ptr(policydb.type_val_to_struct_array,
553                                     scontext->type - 1);
554         BUG_ON(!source);
555
556         target = flex_array_get_ptr(policydb.type_val_to_struct_array,
557                                     tcontext->type - 1);
558         BUG_ON(!target);
559
560         if (source->bounds) {
561                 memset(&lo_avd, 0, sizeof(lo_avd));
562
563                 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564                 lo_scontext.type = source->bounds;
565
566                 context_struct_compute_av(&lo_scontext,
567                                           tcontext,
568                                           tclass,
569                                           &lo_avd);
570                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
571                         return;         /* no masked permission */
572                 masked = ~lo_avd.allowed & avd->allowed;
573         }
574
575         if (target->bounds) {
576                 memset(&lo_avd, 0, sizeof(lo_avd));
577
578                 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
579                 lo_tcontext.type = target->bounds;
580
581                 context_struct_compute_av(scontext,
582                                           &lo_tcontext,
583                                           tclass,
584                                           &lo_avd);
585                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
586                         return;         /* no masked permission */
587                 masked = ~lo_avd.allowed & avd->allowed;
588         }
589
590         if (source->bounds && target->bounds) {
591                 memset(&lo_avd, 0, sizeof(lo_avd));
592                 /*
593                  * lo_scontext and lo_tcontext are already
594                  * set up.
595                  */
596
597                 context_struct_compute_av(&lo_scontext,
598                                           &lo_tcontext,
599                                           tclass,
600                                           &lo_avd);
601                 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
602                         return;         /* no masked permission */
603                 masked = ~lo_avd.allowed & avd->allowed;
604         }
605
606         if (masked) {
607                 /* mask violated permissions */
608                 avd->allowed &= ~masked;
609
610                 /* audit masked permissions */
611                 security_dump_masked_av(scontext, tcontext,
612                                         tclass, masked, "bounds");
613         }
614 }
615
616 /*
617  * Compute access vectors based on a context structure pair for
618  * the permissions in a particular class.
619  */
620 static void context_struct_compute_av(struct context *scontext,
621                                       struct context *tcontext,
622                                       u16 tclass,
623                                       struct av_decision *avd)
624 {
625         struct constraint_node *constraint;
626         struct role_allow *ra;
627         struct avtab_key avkey;
628         struct avtab_node *node;
629         struct class_datum *tclass_datum;
630         struct ebitmap *sattr, *tattr;
631         struct ebitmap_node *snode, *tnode;
632         unsigned int i, j;
633
634         avd->allowed = 0;
635         avd->auditallow = 0;
636         avd->auditdeny = 0xffffffff;
637
638         if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
639                 if (printk_ratelimit())
640                         printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
641                 return;
642         }
643
644         tclass_datum = policydb.class_val_to_struct[tclass - 1];
645
646         /*
647          * If a specific type enforcement rule was defined for
648          * this permission check, then use it.
649          */
650         avkey.target_class = tclass;
651         avkey.specified = AVTAB_AV;
652         sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
653         BUG_ON(!sattr);
654         tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
655         BUG_ON(!tattr);
656         ebitmap_for_each_positive_bit(sattr, snode, i) {
657                 ebitmap_for_each_positive_bit(tattr, tnode, j) {
658                         avkey.source_type = i + 1;
659                         avkey.target_type = j + 1;
660                         for (node = avtab_search_node(&policydb.te_avtab, &avkey);
661                              node;
662                              node = avtab_search_node_next(node, avkey.specified)) {
663                                 if (node->key.specified == AVTAB_ALLOWED)
664                                         avd->allowed |= node->datum.data;
665                                 else if (node->key.specified == AVTAB_AUDITALLOW)
666                                         avd->auditallow |= node->datum.data;
667                                 else if (node->key.specified == AVTAB_AUDITDENY)
668                                         avd->auditdeny &= node->datum.data;
669                         }
670
671                         /* Check conditional av table for additional permissions */
672                         cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
673
674                 }
675         }
676
677         /*
678          * Remove any permissions prohibited by a constraint (this includes
679          * the MLS policy).
680          */
681         constraint = tclass_datum->constraints;
682         while (constraint) {
683                 if ((constraint->permissions & (avd->allowed)) &&
684                     !constraint_expr_eval(scontext, tcontext, NULL,
685                                           constraint->expr)) {
686                         avd->allowed &= ~(constraint->permissions);
687                 }
688                 constraint = constraint->next;
689         }
690
691         /*
692          * If checking process transition permission and the
693          * role is changing, then check the (current_role, new_role)
694          * pair.
695          */
696         if (tclass == policydb.process_class &&
697             (avd->allowed & policydb.process_trans_perms) &&
698             scontext->role != tcontext->role) {
699                 for (ra = policydb.role_allow; ra; ra = ra->next) {
700                         if (scontext->role == ra->role &&
701                             tcontext->role == ra->new_role)
702                                 break;
703                 }
704                 if (!ra)
705                         avd->allowed &= ~policydb.process_trans_perms;
706         }
707
708         /*
709          * If the given source and target types have boundary
710          * constraint, lazy checks have to mask any violated
711          * permission and notice it to userspace via audit.
712          */
713         type_attribute_bounds_av(scontext, tcontext,
714                                  tclass, avd);
715 }
716
717 static int security_validtrans_handle_fail(struct context *ocontext,
718                                            struct context *ncontext,
719                                            struct context *tcontext,
720                                            u16 tclass)
721 {
722         char *o = NULL, *n = NULL, *t = NULL;
723         u32 olen, nlen, tlen;
724
725         if (context_struct_to_string(ocontext, &o, &olen))
726                 goto out;
727         if (context_struct_to_string(ncontext, &n, &nlen))
728                 goto out;
729         if (context_struct_to_string(tcontext, &t, &tlen))
730                 goto out;
731         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
732                   "security_validate_transition:  denied for"
733                   " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
734                   o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
735 out:
736         kfree(o);
737         kfree(n);
738         kfree(t);
739
740         if (!selinux_enforcing)
741                 return 0;
742         return -EPERM;
743 }
744
745 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
746                                  u16 orig_tclass)
747 {
748         struct context *ocontext;
749         struct context *ncontext;
750         struct context *tcontext;
751         struct class_datum *tclass_datum;
752         struct constraint_node *constraint;
753         u16 tclass;
754         int rc = 0;
755
756         if (!ss_initialized)
757                 return 0;
758
759         read_lock(&policy_rwlock);
760
761         tclass = unmap_class(orig_tclass);
762
763         if (!tclass || tclass > policydb.p_classes.nprim) {
764                 printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
765                         __func__, tclass);
766                 rc = -EINVAL;
767                 goto out;
768         }
769         tclass_datum = policydb.class_val_to_struct[tclass - 1];
770
771         ocontext = sidtab_search(&sidtab, oldsid);
772         if (!ocontext) {
773                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
774                         __func__, oldsid);
775                 rc = -EINVAL;
776                 goto out;
777         }
778
779         ncontext = sidtab_search(&sidtab, newsid);
780         if (!ncontext) {
781                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
782                         __func__, newsid);
783                 rc = -EINVAL;
784                 goto out;
785         }
786
787         tcontext = sidtab_search(&sidtab, tasksid);
788         if (!tcontext) {
789                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
790                         __func__, tasksid);
791                 rc = -EINVAL;
792                 goto out;
793         }
794
795         constraint = tclass_datum->validatetrans;
796         while (constraint) {
797                 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
798                                           constraint->expr)) {
799                         rc = security_validtrans_handle_fail(ocontext, ncontext,
800                                                              tcontext, tclass);
801                         goto out;
802                 }
803                 constraint = constraint->next;
804         }
805
806 out:
807         read_unlock(&policy_rwlock);
808         return rc;
809 }
810
811 /*
812  * security_bounded_transition - check whether the given
813  * transition is directed to bounded, or not.
814  * It returns 0, if @newsid is bounded by @oldsid.
815  * Otherwise, it returns error code.
816  *
817  * @oldsid : current security identifier
818  * @newsid : destinated security identifier
819  */
820 int security_bounded_transition(u32 old_sid, u32 new_sid)
821 {
822         struct context *old_context, *new_context;
823         struct type_datum *type;
824         int index;
825         int rc;
826
827         read_lock(&policy_rwlock);
828
829         rc = -EINVAL;
830         old_context = sidtab_search(&sidtab, old_sid);
831         if (!old_context) {
832                 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
833                        __func__, old_sid);
834                 goto out;
835         }
836
837         rc = -EINVAL;
838         new_context = sidtab_search(&sidtab, new_sid);
839         if (!new_context) {
840                 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
841                        __func__, new_sid);
842                 goto out;
843         }
844
845         rc = 0;
846         /* type/domain unchanged */
847         if (old_context->type == new_context->type)
848                 goto out;
849
850         index = new_context->type;
851         while (true) {
852                 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
853                                           index - 1);
854                 BUG_ON(!type);
855
856                 /* not bounded anymore */
857                 rc = -EPERM;
858                 if (!type->bounds)
859                         break;
860
861                 /* @newsid is bounded by @oldsid */
862                 rc = 0;
863                 if (type->bounds == old_context->type)
864                         break;
865
866                 index = type->bounds;
867         }
868
869         if (rc) {
870                 char *old_name = NULL;
871                 char *new_name = NULL;
872                 u32 length;
873
874                 if (!context_struct_to_string(old_context,
875                                               &old_name, &length) &&
876                     !context_struct_to_string(new_context,
877                                               &new_name, &length)) {
878                         audit_log(current->audit_context,
879                                   GFP_ATOMIC, AUDIT_SELINUX_ERR,
880                                   "op=security_bounded_transition "
881                                   "result=denied "
882                                   "oldcontext=%s newcontext=%s",
883                                   old_name, new_name);
884                 }
885                 kfree(new_name);
886                 kfree(old_name);
887         }
888 out:
889         read_unlock(&policy_rwlock);
890
891         return rc;
892 }
893
894 static void avd_init(struct av_decision *avd)
895 {
896         avd->allowed = 0;
897         avd->auditallow = 0;
898         avd->auditdeny = 0xffffffff;
899         avd->seqno = latest_granting;
900         avd->flags = 0;
901 }
902
903
904 /**
905  * security_compute_av - Compute access vector decisions.
906  * @ssid: source security identifier
907  * @tsid: target security identifier
908  * @tclass: target security class
909  * @avd: access vector decisions
910  *
911  * Compute a set of access vector decisions based on the
912  * SID pair (@ssid, @tsid) for the permissions in @tclass.
913  */
914 void security_compute_av(u32 ssid,
915                          u32 tsid,
916                          u16 orig_tclass,
917                          struct av_decision *avd)
918 {
919         u16 tclass;
920         struct context *scontext = NULL, *tcontext = NULL;
921
922         read_lock(&policy_rwlock);
923         avd_init(avd);
924         if (!ss_initialized)
925                 goto allow;
926
927         scontext = sidtab_search(&sidtab, ssid);
928         if (!scontext) {
929                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
930                        __func__, ssid);
931                 goto out;
932         }
933
934         /* permissive domain? */
935         if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
936                 avd->flags |= AVD_FLAGS_PERMISSIVE;
937
938         tcontext = sidtab_search(&sidtab, tsid);
939         if (!tcontext) {
940                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
941                        __func__, tsid);
942                 goto out;
943         }
944
945         tclass = unmap_class(orig_tclass);
946         if (unlikely(orig_tclass && !tclass)) {
947                 if (policydb.allow_unknown)
948                         goto allow;
949                 goto out;
950         }
951         context_struct_compute_av(scontext, tcontext, tclass, avd);
952         map_decision(orig_tclass, avd, policydb.allow_unknown);
953 out:
954         read_unlock(&policy_rwlock);
955         return;
956 allow:
957         avd->allowed = 0xffffffff;
958         goto out;
959 }
960
961 void security_compute_av_user(u32 ssid,
962                               u32 tsid,
963                               u16 tclass,
964                               struct av_decision *avd)
965 {
966         struct context *scontext = NULL, *tcontext = NULL;
967
968         read_lock(&policy_rwlock);
969         avd_init(avd);
970         if (!ss_initialized)
971                 goto allow;
972
973         scontext = sidtab_search(&sidtab, ssid);
974         if (!scontext) {
975                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
976                        __func__, ssid);
977                 goto out;
978         }
979
980         /* permissive domain? */
981         if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
982                 avd->flags |= AVD_FLAGS_PERMISSIVE;
983
984         tcontext = sidtab_search(&sidtab, tsid);
985         if (!tcontext) {
986                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
987                        __func__, tsid);
988                 goto out;
989         }
990
991         if (unlikely(!tclass)) {
992                 if (policydb.allow_unknown)
993                         goto allow;
994                 goto out;
995         }
996
997         context_struct_compute_av(scontext, tcontext, tclass, avd);
998  out:
999         read_unlock(&policy_rwlock);
1000         return;
1001 allow:
1002         avd->allowed = 0xffffffff;
1003         goto out;
1004 }
1005
1006 /*
1007  * Write the security context string representation of
1008  * the context structure `context' into a dynamically
1009  * allocated string of the correct size.  Set `*scontext'
1010  * to point to this string and set `*scontext_len' to
1011  * the length of the string.
1012  */
1013 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1014 {
1015         char *scontextp;
1016
1017         if (scontext)
1018                 *scontext = NULL;
1019         *scontext_len = 0;
1020
1021         if (context->len) {
1022                 *scontext_len = context->len;
1023                 *scontext = kstrdup(context->str, GFP_ATOMIC);
1024                 if (!(*scontext))
1025                         return -ENOMEM;
1026                 return 0;
1027         }
1028
1029         /* Compute the size of the context. */
1030         *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031         *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032         *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033         *scontext_len += mls_compute_context_len(context);
1034
1035         if (!scontext)
1036                 return 0;
1037
1038         /* Allocate space for the context; caller must free this space. */
1039         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040         if (!scontextp)
1041                 return -ENOMEM;
1042         *scontext = scontextp;
1043
1044         /*
1045          * Copy the user name, role name and type name into the context.
1046          */
1047         sprintf(scontextp, "%s:%s:%s",
1048                 sym_name(&policydb, SYM_USERS, context->user - 1),
1049                 sym_name(&policydb, SYM_ROLES, context->role - 1),
1050                 sym_name(&policydb, SYM_TYPES, context->type - 1));
1051         scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052                      1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053                      1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055         mls_sid_to_context(context, &scontextp);
1056
1057         *scontextp = 0;
1058
1059         return 0;
1060 }
1061
1062 #include "initial_sid_to_string.h"
1063
1064 const char *security_get_initial_sid_context(u32 sid)
1065 {
1066         if (unlikely(sid > SECINITSID_NUM))
1067                 return NULL;
1068         return initial_sid_to_string[sid];
1069 }
1070
1071 static int security_sid_to_context_core(u32 sid, char **scontext,
1072                                         u32 *scontext_len, int force)
1073 {
1074         struct context *context;
1075         int rc = 0;
1076
1077         if (scontext)
1078                 *scontext = NULL;
1079         *scontext_len  = 0;
1080
1081         if (!ss_initialized) {
1082                 if (sid <= SECINITSID_NUM) {
1083                         char *scontextp;
1084
1085                         *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086                         if (!scontext)
1087                                 goto out;
1088                         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089                         if (!scontextp) {
1090                                 rc = -ENOMEM;
1091                                 goto out;
1092                         }
1093                         strcpy(scontextp, initial_sid_to_string[sid]);
1094                         *scontext = scontextp;
1095                         goto out;
1096                 }
1097                 printk(KERN_ERR "SELinux: %s:  called before initial "
1098                        "load_policy on unknown SID %d\n", __func__, sid);
1099                 rc = -EINVAL;
1100                 goto out;
1101         }
1102         read_lock(&policy_rwlock);
1103         if (force)
1104                 context = sidtab_search_force(&sidtab, sid);
1105         else
1106                 context = sidtab_search(&sidtab, sid);
1107         if (!context) {
1108                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109                         __func__, sid);
1110                 rc = -EINVAL;
1111                 goto out_unlock;
1112         }
1113         rc = context_struct_to_string(context, scontext, scontext_len);
1114 out_unlock:
1115         read_unlock(&policy_rwlock);
1116 out:
1117         return rc;
1118
1119 }
1120
1121 /**
1122  * security_sid_to_context - Obtain a context for a given SID.
1123  * @sid: security identifier, SID
1124  * @scontext: security context
1125  * @scontext_len: length in bytes
1126  *
1127  * Write the string representation of the context associated with @sid
1128  * into a dynamically allocated string of the correct size.  Set @scontext
1129  * to point to this string and set @scontext_len to the length of the string.
1130  */
1131 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132 {
1133         return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134 }
1135
1136 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137 {
1138         return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139 }
1140
1141 /*
1142  * Caveat:  Mutates scontext.
1143  */
1144 static int string_to_context_struct(struct policydb *pol,
1145                                     struct sidtab *sidtabp,
1146                                     char *scontext,
1147                                     u32 scontext_len,
1148                                     struct context *ctx,
1149                                     u32 def_sid)
1150 {
1151         struct role_datum *role;
1152         struct type_datum *typdatum;
1153         struct user_datum *usrdatum;
1154         char *scontextp, *p, oldc;
1155         int rc = 0;
1156
1157         context_init(ctx);
1158
1159         /* Parse the security context. */
1160
1161         rc = -EINVAL;
1162         scontextp = (char *) scontext;
1163
1164         /* Extract the user. */
1165         p = scontextp;
1166         while (*p && *p != ':')
1167                 p++;
1168
1169         if (*p == 0)
1170                 goto out;
1171
1172         *p++ = 0;
1173
1174         usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175         if (!usrdatum)
1176                 goto out;
1177
1178         ctx->user = usrdatum->value;
1179
1180         /* Extract role. */
1181         scontextp = p;
1182         while (*p && *p != ':')
1183                 p++;
1184
1185         if (*p == 0)
1186                 goto out;
1187
1188         *p++ = 0;
1189
1190         role = hashtab_search(pol->p_roles.table, scontextp);
1191         if (!role)
1192                 goto out;
1193         ctx->role = role->value;
1194
1195         /* Extract type. */
1196         scontextp = p;
1197         while (*p && *p != ':')
1198                 p++;
1199         oldc = *p;
1200         *p++ = 0;
1201
1202         typdatum = hashtab_search(pol->p_types.table, scontextp);
1203         if (!typdatum || typdatum->attribute)
1204                 goto out;
1205
1206         ctx->type = typdatum->value;
1207
1208         rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209         if (rc)
1210                 goto out;
1211
1212         rc = -EINVAL;
1213         if ((p - scontext) < scontext_len)
1214                 goto out;
1215
1216         /* Check the validity of the new context. */
1217         if (!policydb_context_isvalid(pol, ctx))
1218                 goto out;
1219         rc = 0;
1220 out:
1221         if (rc)
1222                 context_destroy(ctx);
1223         return rc;
1224 }
1225
1226 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227                                         u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228                                         int force)
1229 {
1230         char *scontext2, *str = NULL;
1231         struct context context;
1232         int rc = 0;
1233
1234         if (!ss_initialized) {
1235                 int i;
1236
1237                 for (i = 1; i < SECINITSID_NUM; i++) {
1238                         if (!strcmp(initial_sid_to_string[i], scontext)) {
1239                                 *sid = i;
1240                                 return 0;
1241                         }
1242                 }
1243                 *sid = SECINITSID_KERNEL;
1244                 return 0;
1245         }
1246         *sid = SECSID_NULL;
1247
1248         /* Copy the string so that we can modify the copy as we parse it. */
1249         scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250         if (!scontext2)
1251                 return -ENOMEM;
1252         memcpy(scontext2, scontext, scontext_len);
1253         scontext2[scontext_len] = 0;
1254
1255         if (force) {
1256                 /* Save another copy for storing in uninterpreted form */
1257                 rc = -ENOMEM;
1258                 str = kstrdup(scontext2, gfp_flags);
1259                 if (!str)
1260                         goto out;
1261         }
1262
1263         read_lock(&policy_rwlock);
1264         rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265                                       scontext_len, &context, def_sid);
1266         if (rc == -EINVAL && force) {
1267                 context.str = str;
1268                 context.len = scontext_len;
1269                 str = NULL;
1270         } else if (rc)
1271                 goto out_unlock;
1272         rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273         context_destroy(&context);
1274 out_unlock:
1275         read_unlock(&policy_rwlock);
1276 out:
1277         kfree(scontext2);
1278         kfree(str);
1279         return rc;
1280 }
1281
1282 /**
1283  * security_context_to_sid - Obtain a SID for a given security context.
1284  * @scontext: security context
1285  * @scontext_len: length in bytes
1286  * @sid: security identifier, SID
1287  *
1288  * Obtains a SID associated with the security context that
1289  * has the string representation specified by @scontext.
1290  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291  * memory is available, or 0 on success.
1292  */
1293 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294 {
1295         return security_context_to_sid_core(scontext, scontext_len,
1296                                             sid, SECSID_NULL, GFP_KERNEL, 0);
1297 }
1298
1299 /**
1300  * security_context_to_sid_default - Obtain a SID for a given security context,
1301  * falling back to specified default if needed.
1302  *
1303  * @scontext: security context
1304  * @scontext_len: length in bytes
1305  * @sid: security identifier, SID
1306  * @def_sid: default SID to assign on error
1307  *
1308  * Obtains a SID associated with the security context that
1309  * has the string representation specified by @scontext.
1310  * The default SID is passed to the MLS layer to be used to allow
1311  * kernel labeling of the MLS field if the MLS field is not present
1312  * (for upgrading to MLS without full relabel).
1313  * Implicitly forces adding of the context even if it cannot be mapped yet.
1314  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315  * memory is available, or 0 on success.
1316  */
1317 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318                                     u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319 {
1320         return security_context_to_sid_core(scontext, scontext_len,
1321                                             sid, def_sid, gfp_flags, 1);
1322 }
1323
1324 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325                                   u32 *sid)
1326 {
1327         return security_context_to_sid_core(scontext, scontext_len,
1328                                             sid, SECSID_NULL, GFP_KERNEL, 1);
1329 }
1330
1331 static int compute_sid_handle_invalid_context(
1332         struct context *scontext,
1333         struct context *tcontext,
1334         u16 tclass,
1335         struct context *newcontext)
1336 {
1337         char *s = NULL, *t = NULL, *n = NULL;
1338         u32 slen, tlen, nlen;
1339
1340         if (context_struct_to_string(scontext, &s, &slen))
1341                 goto out;
1342         if (context_struct_to_string(tcontext, &t, &tlen))
1343                 goto out;
1344         if (context_struct_to_string(newcontext, &n, &nlen))
1345                 goto out;
1346         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347                   "security_compute_sid:  invalid context %s"
1348                   " for scontext=%s"
1349                   " tcontext=%s"
1350                   " tclass=%s",
1351                   n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352 out:
1353         kfree(s);
1354         kfree(t);
1355         kfree(n);
1356         if (!selinux_enforcing)
1357                 return 0;
1358         return -EACCES;
1359 }
1360
1361 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362                                   u32 scon, u32 tcon, u16 tclass,
1363                                   const struct qstr *qstr)
1364 {
1365         struct filename_trans *ft;
1366         for (ft = p->filename_trans; ft; ft = ft->next) {
1367                 if (ft->stype == scon &&
1368                     ft->ttype == tcon &&
1369                     ft->tclass == tclass &&
1370                     !strcmp(ft->name, qstr->name)) {
1371                         newcontext->type = ft->otype;
1372                         return;
1373                 }
1374         }
1375 }
1376
1377 static int security_compute_sid(u32 ssid,
1378                                 u32 tsid,
1379                                 u16 orig_tclass,
1380                                 u32 specified,
1381                                 const struct qstr *qstr,
1382                                 u32 *out_sid,
1383                                 bool kern)
1384 {
1385         struct context *scontext = NULL, *tcontext = NULL, newcontext;
1386         struct role_trans *roletr = NULL;
1387         struct avtab_key avkey;
1388         struct avtab_datum *avdatum;
1389         struct avtab_node *node;
1390         u16 tclass;
1391         int rc = 0;
1392         bool sock;
1393
1394         if (!ss_initialized) {
1395                 switch (orig_tclass) {
1396                 case SECCLASS_PROCESS: /* kernel value */
1397                         *out_sid = ssid;
1398                         break;
1399                 default:
1400                         *out_sid = tsid;
1401                         break;
1402                 }
1403                 goto out;
1404         }
1405
1406         context_init(&newcontext);
1407
1408         read_lock(&policy_rwlock);
1409
1410         if (kern) {
1411                 tclass = unmap_class(orig_tclass);
1412                 sock = security_is_socket_class(orig_tclass);
1413         } else {
1414                 tclass = orig_tclass;
1415                 sock = security_is_socket_class(map_class(tclass));
1416         }
1417
1418         scontext = sidtab_search(&sidtab, ssid);
1419         if (!scontext) {
1420                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1421                        __func__, ssid);
1422                 rc = -EINVAL;
1423                 goto out_unlock;
1424         }
1425         tcontext = sidtab_search(&sidtab, tsid);
1426         if (!tcontext) {
1427                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1428                        __func__, tsid);
1429                 rc = -EINVAL;
1430                 goto out_unlock;
1431         }
1432
1433         /* Set the user identity. */
1434         switch (specified) {
1435         case AVTAB_TRANSITION:
1436         case AVTAB_CHANGE:
1437                 /* Use the process user identity. */
1438                 newcontext.user = scontext->user;
1439                 break;
1440         case AVTAB_MEMBER:
1441                 /* Use the related object owner. */
1442                 newcontext.user = tcontext->user;
1443                 break;
1444         }
1445
1446         /* Set the role and type to default values. */
1447         if ((tclass == policydb.process_class) || (sock == true)) {
1448                 /* Use the current role and type of process. */
1449                 newcontext.role = scontext->role;
1450                 newcontext.type = scontext->type;
1451         } else {
1452                 /* Use the well-defined object role. */
1453                 newcontext.role = OBJECT_R_VAL;
1454                 /* Use the type of the related object. */
1455                 newcontext.type = tcontext->type;
1456         }
1457
1458         /* Look for a type transition/member/change rule. */
1459         avkey.source_type = scontext->type;
1460         avkey.target_type = tcontext->type;
1461         avkey.target_class = tclass;
1462         avkey.specified = specified;
1463         avdatum = avtab_search(&policydb.te_avtab, &avkey);
1464
1465         /* If no permanent rule, also check for enabled conditional rules */
1466         if (!avdatum) {
1467                 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1468                 for (; node; node = avtab_search_node_next(node, specified)) {
1469                         if (node->key.specified & AVTAB_ENABLED) {
1470                                 avdatum = &node->datum;
1471                                 break;
1472                         }
1473                 }
1474         }
1475
1476         if (avdatum) {
1477                 /* Use the type from the type transition/member/change rule. */
1478                 newcontext.type = avdatum->data;
1479         }
1480
1481         /* if we have a qstr this is a file trans check so check those rules */
1482         if (qstr)
1483                 filename_compute_type(&policydb, &newcontext, scontext->type,
1484                                       tcontext->type, tclass, qstr);
1485
1486         /* Check for class-specific changes. */
1487         if  (tclass == policydb.process_class) {
1488                 if (specified & AVTAB_TRANSITION) {
1489                         /* Look for a role transition rule. */
1490                         for (roletr = policydb.role_tr; roletr;
1491                              roletr = roletr->next) {
1492                                 if (roletr->role == scontext->role &&
1493                                     roletr->type == tcontext->type) {
1494                                         /* Use the role transition rule. */
1495                                         newcontext.role = roletr->new_role;
1496                                         break;
1497                                 }
1498                         }
1499                 }
1500         }
1501
1502         /* Set the MLS attributes.
1503            This is done last because it may allocate memory. */
1504         rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1505                              &newcontext, sock);
1506         if (rc)
1507                 goto out_unlock;
1508
1509         /* Check the validity of the context. */
1510         if (!policydb_context_isvalid(&policydb, &newcontext)) {
1511                 rc = compute_sid_handle_invalid_context(scontext,
1512                                                         tcontext,
1513                                                         tclass,
1514                                                         &newcontext);
1515                 if (rc)
1516                         goto out_unlock;
1517         }
1518         /* Obtain the sid for the context. */
1519         rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1520 out_unlock:
1521         read_unlock(&policy_rwlock);
1522         context_destroy(&newcontext);
1523 out:
1524         return rc;
1525 }
1526
1527 /**
1528  * security_transition_sid - Compute the SID for a new subject/object.
1529  * @ssid: source security identifier
1530  * @tsid: target security identifier
1531  * @tclass: target security class
1532  * @out_sid: security identifier for new subject/object
1533  *
1534  * Compute a SID to use for labeling a new subject or object in the
1535  * class @tclass based on a SID pair (@ssid, @tsid).
1536  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1537  * if insufficient memory is available, or %0 if the new SID was
1538  * computed successfully.
1539  */
1540 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1541                             const struct qstr *qstr, u32 *out_sid)
1542 {
1543         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1544                                     qstr, out_sid, true);
1545 }
1546
1547 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass, u32 *out_sid)
1548 {
1549         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1550                                     NULL, out_sid, false);
1551 }
1552
1553 /**
1554  * security_member_sid - Compute the SID for member selection.
1555  * @ssid: source security identifier
1556  * @tsid: target security identifier
1557  * @tclass: target security class
1558  * @out_sid: security identifier for selected member
1559  *
1560  * Compute a SID to use when selecting a member of a polyinstantiated
1561  * object of class @tclass based on a SID pair (@ssid, @tsid).
1562  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1563  * if insufficient memory is available, or %0 if the SID was
1564  * computed successfully.
1565  */
1566 int security_member_sid(u32 ssid,
1567                         u32 tsid,
1568                         u16 tclass,
1569                         u32 *out_sid)
1570 {
1571         return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1572                                     out_sid, false);
1573 }
1574
1575 /**
1576  * security_change_sid - Compute the SID for object relabeling.
1577  * @ssid: source security identifier
1578  * @tsid: target security identifier
1579  * @tclass: target security class
1580  * @out_sid: security identifier for selected member
1581  *
1582  * Compute a SID to use for relabeling an object of class @tclass
1583  * based on a SID pair (@ssid, @tsid).
1584  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1585  * if insufficient memory is available, or %0 if the SID was
1586  * computed successfully.
1587  */
1588 int security_change_sid(u32 ssid,
1589                         u32 tsid,
1590                         u16 tclass,
1591                         u32 *out_sid)
1592 {
1593         return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1594                                     out_sid, false);
1595 }
1596
1597 /* Clone the SID into the new SID table. */
1598 static int clone_sid(u32 sid,
1599                      struct context *context,
1600                      void *arg)
1601 {
1602         struct sidtab *s = arg;
1603
1604         if (sid > SECINITSID_NUM)
1605                 return sidtab_insert(s, sid, context);
1606         else
1607                 return 0;
1608 }
1609
1610 static inline int convert_context_handle_invalid_context(struct context *context)
1611 {
1612         char *s;
1613         u32 len;
1614
1615         if (selinux_enforcing)
1616                 return -EINVAL;
1617
1618         if (!context_struct_to_string(context, &s, &len)) {
1619                 printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1620                 kfree(s);
1621         }
1622         return 0;
1623 }
1624
1625 struct convert_context_args {
1626         struct policydb *oldp;
1627         struct policydb *newp;
1628 };
1629
1630 /*
1631  * Convert the values in the security context
1632  * structure `c' from the values specified
1633  * in the policy `p->oldp' to the values specified
1634  * in the policy `p->newp'.  Verify that the
1635  * context is valid under the new policy.
1636  */
1637 static int convert_context(u32 key,
1638                            struct context *c,
1639                            void *p)
1640 {
1641         struct convert_context_args *args;
1642         struct context oldc;
1643         struct ocontext *oc;
1644         struct mls_range *range;
1645         struct role_datum *role;
1646         struct type_datum *typdatum;
1647         struct user_datum *usrdatum;
1648         char *s;
1649         u32 len;
1650         int rc = 0;
1651
1652         if (key <= SECINITSID_NUM)
1653                 goto out;
1654
1655         args = p;
1656
1657         if (c->str) {
1658                 struct context ctx;
1659
1660                 rc = -ENOMEM;
1661                 s = kstrdup(c->str, GFP_KERNEL);
1662                 if (!s)
1663                         goto out;
1664
1665                 rc = string_to_context_struct(args->newp, NULL, s,
1666                                               c->len, &ctx, SECSID_NULL);
1667                 kfree(s);
1668                 if (!rc) {
1669                         printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1670                                c->str);
1671                         /* Replace string with mapped representation. */
1672                         kfree(c->str);
1673                         memcpy(c, &ctx, sizeof(*c));
1674                         goto out;
1675                 } else if (rc == -EINVAL) {
1676                         /* Retain string representation for later mapping. */
1677                         rc = 0;
1678                         goto out;
1679                 } else {
1680                         /* Other error condition, e.g. ENOMEM. */
1681                         printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1682                                c->str, -rc);
1683                         goto out;
1684                 }
1685         }
1686
1687         rc = context_cpy(&oldc, c);
1688         if (rc)
1689                 goto out;
1690
1691         /* Convert the user. */
1692         rc = -EINVAL;
1693         usrdatum = hashtab_search(args->newp->p_users.table,
1694                                   sym_name(args->oldp, SYM_USERS, c->user - 1));
1695         if (!usrdatum)
1696                 goto bad;
1697         c->user = usrdatum->value;
1698
1699         /* Convert the role. */
1700         rc = -EINVAL;
1701         role = hashtab_search(args->newp->p_roles.table,
1702                               sym_name(args->oldp, SYM_ROLES, c->role - 1));
1703         if (!role)
1704                 goto bad;
1705         c->role = role->value;
1706
1707         /* Convert the type. */
1708         rc = -EINVAL;
1709         typdatum = hashtab_search(args->newp->p_types.table,
1710                                   sym_name(args->oldp, SYM_TYPES, c->type - 1));
1711         if (!typdatum)
1712                 goto bad;
1713         c->type = typdatum->value;
1714
1715         /* Convert the MLS fields if dealing with MLS policies */
1716         if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1717                 rc = mls_convert_context(args->oldp, args->newp, c);
1718                 if (rc)
1719                         goto bad;
1720         } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1721                 /*
1722                  * Switching between MLS and non-MLS policy:
1723                  * free any storage used by the MLS fields in the
1724                  * context for all existing entries in the sidtab.
1725                  */
1726                 mls_context_destroy(c);
1727         } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1728                 /*
1729                  * Switching between non-MLS and MLS policy:
1730                  * ensure that the MLS fields of the context for all
1731                  * existing entries in the sidtab are filled in with a
1732                  * suitable default value, likely taken from one of the
1733                  * initial SIDs.
1734                  */
1735                 oc = args->newp->ocontexts[OCON_ISID];
1736                 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1737                         oc = oc->next;
1738                 rc = -EINVAL;
1739                 if (!oc) {
1740                         printk(KERN_ERR "SELinux:  unable to look up"
1741                                 " the initial SIDs list\n");
1742                         goto bad;
1743                 }
1744                 range = &oc->context[0].range;
1745                 rc = mls_range_set(c, range);
1746                 if (rc)
1747                         goto bad;
1748         }
1749
1750         /* Check the validity of the new context. */
1751         if (!policydb_context_isvalid(args->newp, c)) {
1752                 rc = convert_context_handle_invalid_context(&oldc);
1753                 if (rc)
1754                         goto bad;
1755         }
1756
1757         context_destroy(&oldc);
1758
1759         rc = 0;
1760 out:
1761         return rc;
1762 bad:
1763         /* Map old representation to string and save it. */
1764         rc = context_struct_to_string(&oldc, &s, &len);
1765         if (rc)
1766                 return rc;
1767         context_destroy(&oldc);
1768         context_destroy(c);
1769         c->str = s;
1770         c->len = len;
1771         printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1772                c->str);
1773         rc = 0;
1774         goto out;
1775 }
1776
1777 static void security_load_policycaps(void)
1778 {
1779         selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1780                                                   POLICYDB_CAPABILITY_NETPEER);
1781         selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1782                                                   POLICYDB_CAPABILITY_OPENPERM);
1783 }
1784
1785 extern void selinux_complete_init(void);
1786 static int security_preserve_bools(struct policydb *p);
1787
1788 /**
1789  * security_load_policy - Load a security policy configuration.
1790  * @data: binary policy data
1791  * @len: length of data in bytes
1792  *
1793  * Load a new set of security policy configuration data,
1794  * validate it and convert the SID table as necessary.
1795  * This function will flush the access vector cache after
1796  * loading the new policy.
1797  */
1798 int security_load_policy(void *data, size_t len)
1799 {
1800         struct policydb oldpolicydb, newpolicydb;
1801         struct sidtab oldsidtab, newsidtab;
1802         struct selinux_mapping *oldmap, *map = NULL;
1803         struct convert_context_args args;
1804         u32 seqno;
1805         u16 map_size;
1806         int rc = 0;
1807         struct policy_file file = { data, len }, *fp = &file;
1808
1809         if (!ss_initialized) {
1810                 avtab_cache_init();
1811                 rc = policydb_read(&policydb, fp);
1812                 if (rc) {
1813                         avtab_cache_destroy();
1814                         return rc;
1815                 }
1816
1817                 policydb.len = len;
1818                 rc = selinux_set_mapping(&policydb, secclass_map,
1819                                          &current_mapping,
1820                                          &current_mapping_size);
1821                 if (rc) {
1822                         policydb_destroy(&policydb);
1823                         avtab_cache_destroy();
1824                         return rc;
1825                 }
1826
1827                 rc = policydb_load_isids(&policydb, &sidtab);
1828                 if (rc) {
1829                         policydb_destroy(&policydb);
1830                         avtab_cache_destroy();
1831                         return rc;
1832                 }
1833
1834                 security_load_policycaps();
1835                 ss_initialized = 1;
1836                 seqno = ++latest_granting;
1837                 selinux_complete_init();
1838                 avc_ss_reset(seqno);
1839                 selnl_notify_policyload(seqno);
1840                 selinux_status_update_policyload(seqno);
1841                 selinux_netlbl_cache_invalidate();
1842                 selinux_xfrm_notify_policyload();
1843                 return 0;
1844         }
1845
1846 #if 0
1847         sidtab_hash_eval(&sidtab, "sids");
1848 #endif
1849
1850         rc = policydb_read(&newpolicydb, fp);
1851         if (rc)
1852                 return rc;
1853
1854         newpolicydb.len = len;
1855         /* If switching between different policy types, log MLS status */
1856         if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1857                 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1858         else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1859                 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1860
1861         rc = policydb_load_isids(&newpolicydb, &newsidtab);
1862         if (rc) {
1863                 printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1864                 policydb_destroy(&newpolicydb);
1865                 return rc;
1866         }
1867
1868         rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1869         if (rc)
1870                 goto err;
1871
1872         rc = security_preserve_bools(&newpolicydb);
1873         if (rc) {
1874                 printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1875                 goto err;
1876         }
1877
1878         /* Clone the SID table. */
1879         sidtab_shutdown(&sidtab);
1880
1881         rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1882         if (rc)
1883                 goto err;
1884
1885         /*
1886          * Convert the internal representations of contexts
1887          * in the new SID table.
1888          */
1889         args.oldp = &policydb;
1890         args.newp = &newpolicydb;
1891         rc = sidtab_map(&newsidtab, convert_context, &args);
1892         if (rc) {
1893                 printk(KERN_ERR "SELinux:  unable to convert the internal"
1894                         " representation of contexts in the new SID"
1895                         " table\n");
1896                 goto err;
1897         }
1898
1899         /* Save the old policydb and SID table to free later. */
1900         memcpy(&oldpolicydb, &policydb, sizeof policydb);
1901         sidtab_set(&oldsidtab, &sidtab);
1902
1903         /* Install the new policydb and SID table. */
1904         write_lock_irq(&policy_rwlock);
1905         memcpy(&policydb, &newpolicydb, sizeof policydb);
1906         sidtab_set(&sidtab, &newsidtab);
1907         security_load_policycaps();
1908         oldmap = current_mapping;
1909         current_mapping = map;
1910         current_mapping_size = map_size;
1911         seqno = ++latest_granting;
1912         write_unlock_irq(&policy_rwlock);
1913
1914         /* Free the old policydb and SID table. */
1915         policydb_destroy(&oldpolicydb);
1916         sidtab_destroy(&oldsidtab);
1917         kfree(oldmap);
1918
1919         avc_ss_reset(seqno);
1920         selnl_notify_policyload(seqno);
1921         selinux_status_update_policyload(seqno);
1922         selinux_netlbl_cache_invalidate();
1923         selinux_xfrm_notify_policyload();
1924
1925         return 0;
1926
1927 err:
1928         kfree(map);
1929         sidtab_destroy(&newsidtab);
1930         policydb_destroy(&newpolicydb);
1931         return rc;
1932
1933 }
1934
1935 size_t security_policydb_len(void)
1936 {
1937         size_t len;
1938
1939         read_lock(&policy_rwlock);
1940         len = policydb.len;
1941         read_unlock(&policy_rwlock);
1942
1943         return len;
1944 }
1945
1946 /**
1947  * security_port_sid - Obtain the SID for a port.
1948  * @protocol: protocol number
1949  * @port: port number
1950  * @out_sid: security identifier
1951  */
1952 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1953 {
1954         struct ocontext *c;
1955         int rc = 0;
1956
1957         read_lock(&policy_rwlock);
1958
1959         c = policydb.ocontexts[OCON_PORT];
1960         while (c) {
1961                 if (c->u.port.protocol == protocol &&
1962                     c->u.port.low_port <= port &&
1963                     c->u.port.high_port >= port)
1964                         break;
1965                 c = c->next;
1966         }
1967
1968         if (c) {
1969                 if (!c->sid[0]) {
1970                         rc = sidtab_context_to_sid(&sidtab,
1971                                                    &c->context[0],
1972                                                    &c->sid[0]);
1973                         if (rc)
1974                                 goto out;
1975                 }
1976                 *out_sid = c->sid[0];
1977         } else {
1978                 *out_sid = SECINITSID_PORT;
1979         }
1980
1981 out:
1982         read_unlock(&policy_rwlock);
1983         return rc;
1984 }
1985
1986 /**
1987  * security_netif_sid - Obtain the SID for a network interface.
1988  * @name: interface name
1989  * @if_sid: interface SID
1990  */
1991 int security_netif_sid(char *name, u32 *if_sid)
1992 {
1993         int rc = 0;
1994         struct ocontext *c;
1995
1996         read_lock(&policy_rwlock);
1997
1998         c = policydb.ocontexts[OCON_NETIF];
1999         while (c) {
2000                 if (strcmp(name, c->u.name) == 0)
2001                         break;
2002                 c = c->next;
2003         }
2004
2005         if (c) {
2006                 if (!c->sid[0] || !c->sid[1]) {
2007                         rc = sidtab_context_to_sid(&sidtab,
2008                                                   &c->context[0],
2009                                                   &c->sid[0]);
2010                         if (rc)
2011                                 goto out;
2012                         rc = sidtab_context_to_sid(&sidtab,
2013                                                    &c->context[1],
2014                                                    &c->sid[1]);
2015                         if (rc)
2016                                 goto out;
2017                 }
2018                 *if_sid = c->sid[0];
2019         } else
2020                 *if_sid = SECINITSID_NETIF;
2021
2022 out:
2023         read_unlock(&policy_rwlock);
2024         return rc;
2025 }
2026
2027 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2028 {
2029         int i, fail = 0;
2030
2031         for (i = 0; i < 4; i++)
2032                 if (addr[i] != (input[i] & mask[i])) {
2033                         fail = 1;
2034                         break;
2035                 }
2036
2037         return !fail;
2038 }
2039
2040 /**
2041  * security_node_sid - Obtain the SID for a node (host).
2042  * @domain: communication domain aka address family
2043  * @addrp: address
2044  * @addrlen: address length in bytes
2045  * @out_sid: security identifier
2046  */
2047 int security_node_sid(u16 domain,
2048                       void *addrp,
2049                       u32 addrlen,
2050                       u32 *out_sid)
2051 {
2052         int rc;
2053         struct ocontext *c;
2054
2055         read_lock(&policy_rwlock);
2056
2057         switch (domain) {
2058         case AF_INET: {
2059                 u32 addr;
2060
2061                 rc = -EINVAL;
2062                 if (addrlen != sizeof(u32))
2063                         goto out;
2064
2065                 addr = *((u32 *)addrp);
2066
2067                 c = policydb.ocontexts[OCON_NODE];
2068                 while (c) {
2069                         if (c->u.node.addr == (addr & c->u.node.mask))
2070                                 break;
2071                         c = c->next;
2072                 }
2073                 break;
2074         }
2075
2076         case AF_INET6:
2077                 rc = -EINVAL;
2078                 if (addrlen != sizeof(u64) * 2)
2079                         goto out;
2080                 c = policydb.ocontexts[OCON_NODE6];
2081                 while (c) {
2082                         if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2083                                                 c->u.node6.mask))
2084                                 break;
2085                         c = c->next;
2086                 }
2087                 break;
2088
2089         default:
2090                 rc = 0;
2091                 *out_sid = SECINITSID_NODE;
2092                 goto out;
2093         }
2094
2095         if (c) {
2096                 if (!c->sid[0]) {
2097                         rc = sidtab_context_to_sid(&sidtab,
2098                                                    &c->context[0],
2099                                                    &c->sid[0]);
2100                         if (rc)
2101                                 goto out;
2102                 }
2103                 *out_sid = c->sid[0];
2104         } else {
2105                 *out_sid = SECINITSID_NODE;
2106         }
2107
2108         rc = 0;
2109 out:
2110         read_unlock(&policy_rwlock);
2111         return rc;
2112 }
2113
2114 #define SIDS_NEL 25
2115
2116 /**
2117  * security_get_user_sids - Obtain reachable SIDs for a user.
2118  * @fromsid: starting SID
2119  * @username: username
2120  * @sids: array of reachable SIDs for user
2121  * @nel: number of elements in @sids
2122  *
2123  * Generate the set of SIDs for legal security contexts
2124  * for a given user that can be reached by @fromsid.
2125  * Set *@sids to point to a dynamically allocated
2126  * array containing the set of SIDs.  Set *@nel to the
2127  * number of elements in the array.
2128  */
2129
2130 int security_get_user_sids(u32 fromsid,
2131                            char *username,
2132                            u32 **sids,
2133                            u32 *nel)
2134 {
2135         struct context *fromcon, usercon;
2136         u32 *mysids = NULL, *mysids2, sid;
2137         u32 mynel = 0, maxnel = SIDS_NEL;
2138         struct user_datum *user;
2139         struct role_datum *role;
2140         struct ebitmap_node *rnode, *tnode;
2141         int rc = 0, i, j;
2142
2143         *sids = NULL;
2144         *nel = 0;
2145
2146         if (!ss_initialized)
2147                 goto out;
2148
2149         read_lock(&policy_rwlock);
2150
2151         context_init(&usercon);
2152
2153         rc = -EINVAL;
2154         fromcon = sidtab_search(&sidtab, fromsid);
2155         if (!fromcon)
2156                 goto out_unlock;
2157
2158         rc = -EINVAL;
2159         user = hashtab_search(policydb.p_users.table, username);
2160         if (!user)
2161                 goto out_unlock;
2162
2163         usercon.user = user->value;
2164
2165         rc = -ENOMEM;
2166         mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2167         if (!mysids)
2168                 goto out_unlock;
2169
2170         ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2171                 role = policydb.role_val_to_struct[i];
2172                 usercon.role = i + 1;
2173                 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2174                         usercon.type = j + 1;
2175
2176                         if (mls_setup_user_range(fromcon, user, &usercon))
2177                                 continue;
2178
2179                         rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2180                         if (rc)
2181                                 goto out_unlock;
2182                         if (mynel < maxnel) {
2183                                 mysids[mynel++] = sid;
2184                         } else {
2185                                 rc = -ENOMEM;
2186                                 maxnel += SIDS_NEL;
2187                                 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2188                                 if (!mysids2)
2189                                         goto out_unlock;
2190                                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2191                                 kfree(mysids);
2192                                 mysids = mysids2;
2193                                 mysids[mynel++] = sid;
2194                         }
2195                 }
2196         }
2197         rc = 0;
2198 out_unlock:
2199         read_unlock(&policy_rwlock);
2200         if (rc || !mynel) {
2201                 kfree(mysids);
2202                 goto out;
2203         }
2204
2205         rc = -ENOMEM;
2206         mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2207         if (!mysids2) {
2208                 kfree(mysids);
2209                 goto out;
2210         }
2211         for (i = 0, j = 0; i < mynel; i++) {
2212                 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2213                                           SECCLASS_PROCESS, /* kernel value */
2214                                           PROCESS__TRANSITION, AVC_STRICT,
2215                                           NULL);
2216                 if (!rc)
2217                         mysids2[j++] = mysids[i];
2218                 cond_resched();
2219         }
2220         rc = 0;
2221         kfree(mysids);
2222         *sids = mysids2;
2223         *nel = j;
2224 out:
2225         return rc;
2226 }
2227
2228 /**
2229  * security_genfs_sid - Obtain a SID for a file in a filesystem
2230  * @fstype: filesystem type
2231  * @path: path from root of mount
2232  * @sclass: file security class
2233  * @sid: SID for path
2234  *
2235  * Obtain a SID to use for a file in a filesystem that
2236  * cannot support xattr or use a fixed labeling behavior like
2237  * transition SIDs or task SIDs.
2238  */
2239 int security_genfs_sid(const char *fstype,
2240                        char *path,
2241                        u16 orig_sclass,
2242                        u32 *sid)
2243 {
2244         int len;
2245         u16 sclass;
2246         struct genfs *genfs;
2247         struct ocontext *c;
2248         int rc, cmp = 0;
2249
2250         while (path[0] == '/' && path[1] == '/')
2251                 path++;
2252
2253         read_lock(&policy_rwlock);
2254
2255         sclass = unmap_class(orig_sclass);
2256         *sid = SECINITSID_UNLABELED;
2257
2258         for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2259                 cmp = strcmp(fstype, genfs->fstype);
2260                 if (cmp <= 0)
2261                         break;
2262         }
2263
2264         rc = -ENOENT;
2265         if (!genfs || cmp)
2266                 goto out;
2267
2268         for (c = genfs->head; c; c = c->next) {
2269                 len = strlen(c->u.name);
2270                 if ((!c->v.sclass || sclass == c->v.sclass) &&
2271                     (strncmp(c->u.name, path, len) == 0))
2272                         break;
2273         }
2274
2275         rc = -ENOENT;
2276         if (!c)
2277                 goto out;
2278
2279         if (!c->sid[0]) {
2280                 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2281                 if (rc)
2282                         goto out;
2283         }
2284
2285         *sid = c->sid[0];
2286         rc = 0;
2287 out:
2288         read_unlock(&policy_rwlock);
2289         return rc;
2290 }
2291
2292 /**
2293  * security_fs_use - Determine how to handle labeling for a filesystem.
2294  * @fstype: filesystem type
2295  * @behavior: labeling behavior
2296  * @sid: SID for filesystem (superblock)
2297  */
2298 int security_fs_use(
2299         const char *fstype,
2300         unsigned int *behavior,
2301         u32 *sid)
2302 {
2303         int rc = 0;
2304         struct ocontext *c;
2305
2306         read_lock(&policy_rwlock);
2307
2308         c = policydb.ocontexts[OCON_FSUSE];
2309         while (c) {
2310                 if (strcmp(fstype, c->u.name) == 0)
2311                         break;
2312                 c = c->next;
2313         }
2314
2315         if (c) {
2316                 *behavior = c->v.behavior;
2317                 if (!c->sid[0]) {
2318                         rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2319                                                    &c->sid[0]);
2320                         if (rc)
2321                                 goto out;
2322                 }
2323                 *sid = c->sid[0];
2324         } else {
2325                 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2326                 if (rc) {
2327                         *behavior = SECURITY_FS_USE_NONE;
2328                         rc = 0;
2329                 } else {
2330                         *behavior = SECURITY_FS_USE_GENFS;
2331                 }
2332         }
2333
2334 out:
2335         read_unlock(&policy_rwlock);
2336         return rc;
2337 }
2338
2339 int security_get_bools(int *len, char ***names, int **values)
2340 {
2341         int i, rc;
2342
2343         read_lock(&policy_rwlock);
2344         *names = NULL;
2345         *values = NULL;
2346
2347         rc = 0;
2348         *len = policydb.p_bools.nprim;
2349         if (!*len)
2350                 goto out;
2351
2352         rc = -ENOMEM;
2353         *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2354         if (!*names)
2355                 goto err;
2356
2357         rc = -ENOMEM;
2358         *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2359         if (!*values)
2360                 goto err;
2361
2362         for (i = 0; i < *len; i++) {
2363                 size_t name_len;
2364
2365                 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2366                 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2367
2368                 rc = -ENOMEM;
2369                 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2370                 if (!(*names)[i])
2371                         goto err;
2372
2373                 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2374                 (*names)[i][name_len - 1] = 0;
2375         }
2376         rc = 0;
2377 out:
2378         read_unlock(&policy_rwlock);
2379         return rc;
2380 err:
2381         if (*names) {
2382                 for (i = 0; i < *len; i++)
2383                         kfree((*names)[i]);
2384         }
2385         kfree(*values);
2386         goto out;
2387 }
2388
2389
2390 int security_set_bools(int len, int *values)
2391 {
2392         int i, rc;
2393         int lenp, seqno = 0;
2394         struct cond_node *cur;
2395
2396         write_lock_irq(&policy_rwlock);
2397
2398         rc = -EFAULT;
2399         lenp = policydb.p_bools.nprim;
2400         if (len != lenp)
2401                 goto out;
2402
2403         for (i = 0; i < len; i++) {
2404                 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2405                         audit_log(current->audit_context, GFP_ATOMIC,
2406                                 AUDIT_MAC_CONFIG_CHANGE,
2407                                 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2408                                 sym_name(&policydb, SYM_BOOLS, i),
2409                                 !!values[i],
2410                                 policydb.bool_val_to_struct[i]->state,
2411                                 audit_get_loginuid(current),
2412                                 audit_get_sessionid(current));
2413                 }
2414                 if (values[i])
2415                         policydb.bool_val_to_struct[i]->state = 1;
2416                 else
2417                         policydb.bool_val_to_struct[i]->state = 0;
2418         }
2419
2420         for (cur = policydb.cond_list; cur; cur = cur->next) {
2421                 rc = evaluate_cond_node(&policydb, cur);
2422                 if (rc)
2423                         goto out;
2424         }
2425
2426         seqno = ++latest_granting;
2427         rc = 0;
2428 out:
2429         write_unlock_irq(&policy_rwlock);
2430         if (!rc) {
2431                 avc_ss_reset(seqno);
2432                 selnl_notify_policyload(seqno);
2433                 selinux_status_update_policyload(seqno);
2434                 selinux_xfrm_notify_policyload();
2435         }
2436         return rc;
2437 }
2438
2439 int security_get_bool_value(int bool)
2440 {
2441         int rc;
2442         int len;
2443
2444         read_lock(&policy_rwlock);
2445
2446         rc = -EFAULT;
2447         len = policydb.p_bools.nprim;
2448         if (bool >= len)
2449                 goto out;
2450
2451         rc = policydb.bool_val_to_struct[bool]->state;
2452 out:
2453         read_unlock(&policy_rwlock);
2454         return rc;
2455 }
2456
2457 static int security_preserve_bools(struct policydb *p)
2458 {
2459         int rc, nbools = 0, *bvalues = NULL, i;
2460         char **bnames = NULL;
2461         struct cond_bool_datum *booldatum;
2462         struct cond_node *cur;
2463
2464         rc = security_get_bools(&nbools, &bnames, &bvalues);
2465         if (rc)
2466                 goto out;
2467         for (i = 0; i < nbools; i++) {
2468                 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2469                 if (booldatum)
2470                         booldatum->state = bvalues[i];
2471         }
2472         for (cur = p->cond_list; cur; cur = cur->next) {
2473                 rc = evaluate_cond_node(p, cur);
2474                 if (rc)
2475                         goto out;
2476         }
2477
2478 out:
2479         if (bnames) {
2480                 for (i = 0; i < nbools; i++)
2481                         kfree(bnames[i]);
2482         }
2483         kfree(bnames);
2484         kfree(bvalues);
2485         return rc;
2486 }
2487
2488 /*
2489  * security_sid_mls_copy() - computes a new sid based on the given
2490  * sid and the mls portion of mls_sid.
2491  */
2492 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2493 {
2494         struct context *context1;
2495         struct context *context2;
2496         struct context newcon;
2497         char *s;
2498         u32 len;
2499         int rc;
2500
2501         rc = 0;
2502         if (!ss_initialized || !policydb.mls_enabled) {
2503                 *new_sid = sid;
2504                 goto out;
2505         }
2506
2507         context_init(&newcon);
2508
2509         read_lock(&policy_rwlock);
2510
2511         rc = -EINVAL;
2512         context1 = sidtab_search(&sidtab, sid);
2513         if (!context1) {
2514                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2515                         __func__, sid);
2516                 goto out_unlock;
2517         }
2518
2519         rc = -EINVAL;
2520         context2 = sidtab_search(&sidtab, mls_sid);
2521         if (!context2) {
2522                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2523                         __func__, mls_sid);
2524                 goto out_unlock;
2525         }
2526
2527         newcon.user = context1->user;
2528         newcon.role = context1->role;
2529         newcon.type = context1->type;
2530         rc = mls_context_cpy(&newcon, context2);
2531         if (rc)
2532                 goto out_unlock;
2533
2534         /* Check the validity of the new context. */
2535         if (!policydb_context_isvalid(&policydb, &newcon)) {
2536                 rc = convert_context_handle_invalid_context(&newcon);
2537                 if (rc) {
2538                         if (!context_struct_to_string(&newcon, &s, &len)) {
2539                                 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2540                                           "security_sid_mls_copy: invalid context %s", s);
2541                                 kfree(s);
2542                         }
2543                         goto out_unlock;
2544                 }
2545         }
2546
2547         rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2548 out_unlock:
2549         read_unlock(&policy_rwlock);
2550         context_destroy(&newcon);
2551 out:
2552         return rc;
2553 }
2554
2555 /**
2556  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2557  * @nlbl_sid: NetLabel SID
2558  * @nlbl_type: NetLabel labeling protocol type
2559  * @xfrm_sid: XFRM SID
2560  *
2561  * Description:
2562  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2563  * resolved into a single SID it is returned via @peer_sid and the function
2564  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2565  * returns a negative value.  A table summarizing the behavior is below:
2566  *
2567  *                                 | function return |      @sid
2568  *   ------------------------------+-----------------+-----------------
2569  *   no peer labels                |        0        |    SECSID_NULL
2570  *   single peer label             |        0        |    <peer_label>
2571  *   multiple, consistent labels   |        0        |    <peer_label>
2572  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2573  *
2574  */
2575 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2576                                  u32 xfrm_sid,
2577                                  u32 *peer_sid)
2578 {
2579         int rc;
2580         struct context *nlbl_ctx;
2581         struct context *xfrm_ctx;
2582
2583         *peer_sid = SECSID_NULL;
2584
2585         /* handle the common (which also happens to be the set of easy) cases
2586          * right away, these two if statements catch everything involving a
2587          * single or absent peer SID/label */
2588         if (xfrm_sid == SECSID_NULL) {
2589                 *peer_sid = nlbl_sid;
2590                 return 0;
2591         }
2592         /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2593          * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2594          * is present */
2595         if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2596                 *peer_sid = xfrm_sid;
2597                 return 0;
2598         }
2599
2600         /* we don't need to check ss_initialized here since the only way both
2601          * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2602          * security server was initialized and ss_initialized was true */
2603         if (!policydb.mls_enabled)
2604                 return 0;
2605
2606         read_lock(&policy_rwlock);
2607
2608         rc = -EINVAL;
2609         nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2610         if (!nlbl_ctx) {
2611                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2612                        __func__, nlbl_sid);
2613                 goto out;
2614         }
2615         rc = -EINVAL;
2616         xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2617         if (!xfrm_ctx) {
2618                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2619                        __func__, xfrm_sid);
2620                 goto out;
2621         }
2622         rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2623         if (rc)
2624                 goto out;
2625
2626         /* at present NetLabel SIDs/labels really only carry MLS
2627          * information so if the MLS portion of the NetLabel SID
2628          * matches the MLS portion of the labeled XFRM SID/label
2629          * then pass along the XFRM SID as it is the most
2630          * expressive */
2631         *peer_sid = xfrm_sid;
2632 out:
2633         read_unlock(&policy_rwlock);
2634         return rc;
2635 }
2636
2637 static int get_classes_callback(void *k, void *d, void *args)
2638 {
2639         struct class_datum *datum = d;
2640         char *name = k, **classes = args;
2641         int value = datum->value - 1;
2642
2643         classes[value] = kstrdup(name, GFP_ATOMIC);
2644         if (!classes[value])
2645                 return -ENOMEM;
2646
2647         return 0;
2648 }
2649
2650 int security_get_classes(char ***classes, int *nclasses)
2651 {
2652         int rc;
2653
2654         read_lock(&policy_rwlock);
2655
2656         rc = -ENOMEM;
2657         *nclasses = policydb.p_classes.nprim;
2658         *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2659         if (!*classes)
2660                 goto out;
2661
2662         rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2663                         *classes);
2664         if (rc) {
2665                 int i;
2666                 for (i = 0; i < *nclasses; i++)
2667                         kfree((*classes)[i]);
2668                 kfree(*classes);
2669         }
2670
2671 out:
2672         read_unlock(&policy_rwlock);
2673         return rc;
2674 }
2675
2676 static int get_permissions_callback(void *k, void *d, void *args)
2677 {
2678         struct perm_datum *datum = d;
2679         char *name = k, **perms = args;
2680         int value = datum->value - 1;
2681
2682         perms[value] = kstrdup(name, GFP_ATOMIC);
2683         if (!perms[value])
2684                 return -ENOMEM;
2685
2686         return 0;
2687 }
2688
2689 int security_get_permissions(char *class, char ***perms, int *nperms)
2690 {
2691         int rc, i;
2692         struct class_datum *match;
2693
2694         read_lock(&policy_rwlock);
2695
2696         rc = -EINVAL;
2697         match = hashtab_search(policydb.p_classes.table, class);
2698         if (!match) {
2699                 printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2700                         __func__, class);
2701                 goto out;
2702         }
2703
2704         rc = -ENOMEM;
2705         *nperms = match->permissions.nprim;
2706         *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2707         if (!*perms)
2708                 goto out;
2709
2710         if (match->comdatum) {
2711                 rc = hashtab_map(match->comdatum->permissions.table,
2712                                 get_permissions_callback, *perms);
2713                 if (rc)
2714                         goto err;
2715         }
2716
2717         rc = hashtab_map(match->permissions.table, get_permissions_callback,
2718                         *perms);
2719         if (rc)
2720                 goto err;
2721
2722 out:
2723         read_unlock(&policy_rwlock);
2724         return rc;
2725
2726 err:
2727         read_unlock(&policy_rwlock);
2728         for (i = 0; i < *nperms; i++)
2729                 kfree((*perms)[i]);
2730         kfree(*perms);
2731         return rc;
2732 }
2733
2734 int security_get_reject_unknown(void)
2735 {
2736         return policydb.reject_unknown;
2737 }
2738
2739 int security_get_allow_unknown(void)
2740 {
2741         return policydb.allow_unknown;
2742 }
2743
2744 /**
2745  * security_policycap_supported - Check for a specific policy capability
2746  * @req_cap: capability
2747  *
2748  * Description:
2749  * This function queries the currently loaded policy to see if it supports the
2750  * capability specified by @req_cap.  Returns true (1) if the capability is
2751  * supported, false (0) if it isn't supported.
2752  *
2753  */
2754 int security_policycap_supported(unsigned int req_cap)
2755 {
2756         int rc;
2757
2758         read_lock(&policy_rwlock);
2759         rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2760         read_unlock(&policy_rwlock);
2761
2762         return rc;
2763 }
2764
2765 struct selinux_audit_rule {
2766         u32 au_seqno;
2767         struct context au_ctxt;
2768 };
2769
2770 void selinux_audit_rule_free(void *vrule)
2771 {
2772         struct selinux_audit_rule *rule = vrule;
2773
2774         if (rule) {
2775                 context_destroy(&rule->au_ctxt);
2776                 kfree(rule);
2777         }
2778 }
2779
2780 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2781 {
2782         struct selinux_audit_rule *tmprule;
2783         struct role_datum *roledatum;
2784         struct type_datum *typedatum;
2785         struct user_datum *userdatum;
2786         struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2787         int rc = 0;
2788
2789         *rule = NULL;
2790
2791         if (!ss_initialized)
2792                 return -EOPNOTSUPP;
2793
2794         switch (field) {
2795         case AUDIT_SUBJ_USER:
2796         case AUDIT_SUBJ_ROLE:
2797         case AUDIT_SUBJ_TYPE:
2798         case AUDIT_OBJ_USER:
2799         case AUDIT_OBJ_ROLE:
2800         case AUDIT_OBJ_TYPE:
2801                 /* only 'equals' and 'not equals' fit user, role, and type */
2802                 if (op != Audit_equal && op != Audit_not_equal)
2803                         return -EINVAL;
2804                 break;
2805         case AUDIT_SUBJ_SEN:
2806         case AUDIT_SUBJ_CLR:
2807         case AUDIT_OBJ_LEV_LOW:
2808         case AUDIT_OBJ_LEV_HIGH:
2809                 /* we do not allow a range, indicated by the presense of '-' */
2810                 if (strchr(rulestr, '-'))
2811                         return -EINVAL;
2812                 break;
2813         default:
2814                 /* only the above fields are valid */
2815                 return -EINVAL;
2816         }
2817
2818         tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2819         if (!tmprule)
2820                 return -ENOMEM;
2821
2822         context_init(&tmprule->au_ctxt);
2823
2824         read_lock(&policy_rwlock);
2825
2826         tmprule->au_seqno = latest_granting;
2827
2828         switch (field) {
2829         case AUDIT_SUBJ_USER:
2830         case AUDIT_OBJ_USER:
2831                 rc = -EINVAL;
2832                 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2833                 if (!userdatum)
2834                         goto out;
2835                 tmprule->au_ctxt.user = userdatum->value;
2836                 break;
2837         case AUDIT_SUBJ_ROLE:
2838         case AUDIT_OBJ_ROLE:
2839                 rc = -EINVAL;
2840                 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2841                 if (!roledatum)
2842                         goto out;
2843                 tmprule->au_ctxt.role = roledatum->value;
2844                 break;
2845         case AUDIT_SUBJ_TYPE:
2846         case AUDIT_OBJ_TYPE:
2847                 rc = -EINVAL;
2848                 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2849                 if (!typedatum)
2850                         goto out;
2851                 tmprule->au_ctxt.type = typedatum->value;
2852                 break;
2853         case AUDIT_SUBJ_SEN:
2854         case AUDIT_SUBJ_CLR:
2855         case AUDIT_OBJ_LEV_LOW:
2856         case AUDIT_OBJ_LEV_HIGH:
2857                 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2858                 if (rc)
2859                         goto out;
2860                 break;
2861         }
2862         rc = 0;
2863 out:
2864         read_unlock(&policy_rwlock);
2865
2866         if (rc) {
2867                 selinux_audit_rule_free(tmprule);
2868                 tmprule = NULL;
2869         }
2870
2871         *rule = tmprule;
2872
2873         return rc;
2874 }
2875
2876 /* Check to see if the rule contains any selinux fields */
2877 int selinux_audit_rule_known(struct audit_krule *rule)
2878 {
2879         int i;
2880
2881         for (i = 0; i < rule->field_count; i++) {
2882                 struct audit_field *f = &rule->fields[i];
2883                 switch (f->type) {
2884                 case AUDIT_SUBJ_USER:
2885                 case AUDIT_SUBJ_ROLE:
2886                 case AUDIT_SUBJ_TYPE:
2887                 case AUDIT_SUBJ_SEN:
2888                 case AUDIT_SUBJ_CLR:
2889                 case AUDIT_OBJ_USER:
2890                 case AUDIT_OBJ_ROLE:
2891                 case AUDIT_OBJ_TYPE:
2892                 case AUDIT_OBJ_LEV_LOW:
2893                 case AUDIT_OBJ_LEV_HIGH:
2894                         return 1;
2895                 }
2896         }
2897
2898         return 0;
2899 }
2900
2901 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2902                              struct audit_context *actx)
2903 {
2904         struct context *ctxt;
2905         struct mls_level *level;
2906         struct selinux_audit_rule *rule = vrule;
2907         int match = 0;
2908
2909         if (!rule) {
2910                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2911                           "selinux_audit_rule_match: missing rule\n");
2912                 return -ENOENT;
2913         }
2914
2915         read_lock(&policy_rwlock);
2916
2917         if (rule->au_seqno < latest_granting) {
2918                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2919                           "selinux_audit_rule_match: stale rule\n");
2920                 match = -ESTALE;
2921                 goto out;
2922         }
2923
2924         ctxt = sidtab_search(&sidtab, sid);
2925         if (!ctxt) {
2926                 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2927                           "selinux_audit_rule_match: unrecognized SID %d\n",
2928                           sid);
2929                 match = -ENOENT;
2930                 goto out;
2931         }
2932
2933         /* a field/op pair that is not caught here will simply fall through
2934            without a match */
2935         switch (field) {
2936         case AUDIT_SUBJ_USER:
2937         case AUDIT_OBJ_USER:
2938                 switch (op) {
2939                 case Audit_equal:
2940                         match = (ctxt->user == rule->au_ctxt.user);
2941                         break;
2942                 case Audit_not_equal:
2943                         match = (ctxt->user != rule->au_ctxt.user);
2944                         break;
2945                 }
2946                 break;
2947         case AUDIT_SUBJ_ROLE:
2948         case AUDIT_OBJ_ROLE:
2949                 switch (op) {
2950                 case Audit_equal:
2951                         match = (ctxt->role == rule->au_ctxt.role);
2952                         break;
2953                 case Audit_not_equal:
2954                         match = (ctxt->role != rule->au_ctxt.role);
2955                         break;
2956                 }
2957                 break;
2958         case AUDIT_SUBJ_TYPE:
2959         case AUDIT_OBJ_TYPE:
2960                 switch (op) {
2961                 case Audit_equal:
2962                         match = (ctxt->type == rule->au_ctxt.type);
2963                         break;
2964                 case Audit_not_equal:
2965                         match = (ctxt->type != rule->au_ctxt.type);
2966                         break;
2967                 }
2968                 break;
2969         case AUDIT_SUBJ_SEN:
2970         case AUDIT_SUBJ_CLR:
2971         case AUDIT_OBJ_LEV_LOW:
2972         case AUDIT_OBJ_LEV_HIGH:
2973                 level = ((field == AUDIT_SUBJ_SEN ||
2974                           field == AUDIT_OBJ_LEV_LOW) ?
2975                          &ctxt->range.level[0] : &ctxt->range.level[1]);
2976                 switch (op) {
2977                 case Audit_equal:
2978                         match = mls_level_eq(&rule->au_ctxt.range.level[0],
2979                                              level);
2980                         break;
2981                 case Audit_not_equal:
2982                         match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2983                                               level);
2984                         break;
2985                 case Audit_lt:
2986                         match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2987                                                level) &&
2988                                  !mls_level_eq(&rule->au_ctxt.range.level[0],
2989                                                level));
2990                         break;
2991                 case Audit_le:
2992                         match = mls_level_dom(&rule->au_ctxt.range.level[0],
2993                                               level);
2994                         break;
2995                 case Audit_gt:
2996                         match = (mls_level_dom(level,
2997                                               &rule->au_ctxt.range.level[0]) &&
2998                                  !mls_level_eq(level,
2999                                                &rule->au_ctxt.range.level[0]));
3000                         break;
3001                 case Audit_ge:
3002                         match = mls_level_dom(level,
3003                                               &rule->au_ctxt.range.level[0]);
3004                         break;
3005                 }
3006         }
3007
3008 out:
3009         read_unlock(&policy_rwlock);
3010         return match;
3011 }
3012
3013 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3014
3015 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3016                                u16 class, u32 perms, u32 *retained)
3017 {
3018         int err = 0;
3019
3020         if (event == AVC_CALLBACK_RESET && aurule_callback)
3021                 err = aurule_callback();
3022         return err;
3023 }
3024
3025 static int __init aurule_init(void)
3026 {
3027         int err;
3028
3029         err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3030                                SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3031         if (err)
3032                 panic("avc_add_callback() failed, error %d\n", err);
3033
3034         return err;
3035 }
3036 __initcall(aurule_init);
3037
3038 #ifdef CONFIG_NETLABEL
3039 /**
3040  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3041  * @secattr: the NetLabel packet security attributes
3042  * @sid: the SELinux SID
3043  *
3044  * Description:
3045  * Attempt to cache the context in @ctx, which was derived from the packet in
3046  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3047  * already been initialized.
3048  *
3049  */
3050 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3051                                       u32 sid)
3052 {
3053         u32 *sid_cache;
3054
3055         sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3056         if (sid_cache == NULL)
3057                 return;
3058         secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3059         if (secattr->cache == NULL) {
3060                 kfree(sid_cache);
3061                 return;
3062         }
3063
3064         *sid_cache = sid;
3065         secattr->cache->free = kfree;
3066         secattr->cache->data = sid_cache;
3067         secattr->flags |= NETLBL_SECATTR_CACHE;
3068 }
3069
3070 /**
3071  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3072  * @secattr: the NetLabel packet security attributes
3073  * @sid: the SELinux SID
3074  *
3075  * Description:
3076  * Convert the given NetLabel security attributes in @secattr into a
3077  * SELinux SID.  If the @secattr field does not contain a full SELinux
3078  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
3079  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3080  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3081  * conversion for future lookups.  Returns zero on success, negative values on
3082  * failure.
3083  *
3084  */
3085 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3086                                    u32 *sid)
3087 {
3088         int rc;
3089         struct context *ctx;
3090         struct context ctx_new;
3091
3092         if (!ss_initialized) {
3093                 *sid = SECSID_NULL;
3094                 return 0;
3095         }
3096
3097         read_lock(&policy_rwlock);
3098
3099         if (secattr->flags & NETLBL_SECATTR_CACHE)
3100                 *sid = *(u32 *)secattr->cache->data;
3101         else if (secattr->flags & NETLBL_SECATTR_SECID)
3102                 *sid = secattr->attr.secid;
3103         else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3104                 rc = -EIDRM;
3105                 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3106                 if (ctx == NULL)
3107                         goto out;
3108
3109                 context_init(&ctx_new);
3110                 ctx_new.user = ctx->user;
3111                 ctx_new.role = ctx->role;
3112                 ctx_new.type = ctx->type;
3113                 mls_import_netlbl_lvl(&ctx_new, secattr);
3114                 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3115                         rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3116                                                    secattr->attr.mls.cat);
3117                         if (rc)
3118                                 goto out;
3119                         memcpy(&ctx_new.range.level[1].cat,
3120                                &ctx_new.range.level[0].cat,
3121                                sizeof(ctx_new.range.level[0].cat));
3122                 }
3123                 rc = -EIDRM;
3124                 if (!mls_context_isvalid(&policydb, &ctx_new))
3125                         goto out_free;
3126
3127                 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3128                 if (rc)
3129                         goto out_free;
3130
3131                 security_netlbl_cache_add(secattr, *sid);
3132
3133                 ebitmap_destroy(&ctx_new.range.level[0].cat);
3134         } else
3135                 *sid = SECSID_NULL;
3136
3137         read_unlock(&policy_rwlock);
3138         return 0;
3139 out_free:
3140         ebitmap_destroy(&ctx_new.range.level[0].cat);
3141 out:
3142         read_unlock(&policy_rwlock);
3143         return rc;
3144 }
3145
3146 /**
3147  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3148  * @sid: the SELinux SID
3149  * @secattr: the NetLabel packet security attributes
3150  *
3151  * Description:
3152  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3153  * Returns zero on success, negative values on failure.
3154  *
3155  */
3156 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3157 {
3158         int rc;
3159         struct context *ctx;
3160
3161         if (!ss_initialized)
3162                 return 0;
3163
3164         read_lock(&policy_rwlock);
3165
3166         rc = -ENOENT;
3167         ctx = sidtab_search(&sidtab, sid);
3168         if (ctx == NULL)
3169                 goto out;
3170
3171         rc = -ENOMEM;
3172         secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3173                                   GFP_ATOMIC);
3174         if (secattr->domain == NULL)
3175                 goto out;
3176
3177         secattr->attr.secid = sid;
3178         secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3179         mls_export_netlbl_lvl(ctx, secattr);
3180         rc = mls_export_netlbl_cat(ctx, secattr);
3181 out:
3182         read_unlock(&policy_rwlock);
3183         return rc;
3184 }
3185 #endif /* CONFIG_NETLABEL */
3186
3187 /**
3188  * security_read_policy - read the policy.
3189  * @data: binary policy data
3190  * @len: length of data in bytes
3191  *
3192  */
3193 int security_read_policy(void **data, ssize_t *len)
3194 {
3195         int rc;
3196         struct policy_file fp;
3197
3198         if (!ss_initialized)
3199                 return -EINVAL;
3200
3201         *len = security_policydb_len();
3202
3203         *data = vmalloc_user(*len);
3204         if (!*data)
3205                 return -ENOMEM;
3206
3207         fp.data = *data;
3208         fp.len = *len;
3209
3210         read_lock(&policy_rwlock);
3211         rc = policydb_write(&policydb, &fp);
3212         read_unlock(&policy_rwlock);
3213
3214         if (rc)
3215                 return rc;
3216
3217         *len = (unsigned long)fp.data - (unsigned long)*data;
3218         return 0;
3219
3220 }