writeback: trace event writeback_queue_io
[linux-flexiantxendom0-3.2.10.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int tagged_writepages:1;
40         unsigned int for_kupdate:1;
41         unsigned int range_cyclic:1;
42         unsigned int for_background:1;
43
44         struct list_head list;          /* pending work list */
45         struct completion *done;        /* set if the caller waits */
46 };
47
48 /*
49  * Include the creation of the trace points after defining the
50  * wb_writeback_work structure so that the definition remains local to this
51  * file.
52  */
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/writeback.h>
55
56 /*
57  * We don't actually have pdflush, but this one is exported though /proc...
58  */
59 int nr_pdflush_threads;
60
61 /**
62  * writeback_in_progress - determine whether there is writeback in progress
63  * @bdi: the device's backing_dev_info structure.
64  *
65  * Determine whether there is writeback waiting to be handled against a
66  * backing device.
67  */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70         return test_bit(BDI_writeback_running, &bdi->state);
71 }
72
73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 {
75         struct super_block *sb = inode->i_sb;
76
77         if (strcmp(sb->s_type->name, "bdev") == 0)
78                 return inode->i_mapping->backing_dev_info;
79
80         return sb->s_bdi;
81 }
82
83 static inline struct inode *wb_inode(struct list_head *head)
84 {
85         return list_entry(head, struct inode, i_wb_list);
86 }
87
88 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
89 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
90 {
91         if (bdi->wb.task) {
92                 wake_up_process(bdi->wb.task);
93         } else {
94                 /*
95                  * The bdi thread isn't there, wake up the forker thread which
96                  * will create and run it.
97                  */
98                 wake_up_process(default_backing_dev_info.wb.task);
99         }
100 }
101
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103                            struct wb_writeback_work *work)
104 {
105         trace_writeback_queue(bdi, work);
106
107         spin_lock_bh(&bdi->wb_lock);
108         list_add_tail(&work->list, &bdi->work_list);
109         if (!bdi->wb.task)
110                 trace_writeback_nothread(bdi, work);
111         bdi_wakeup_flusher(bdi);
112         spin_unlock_bh(&bdi->wb_lock);
113 }
114
115 static void
116 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
117                       bool range_cyclic)
118 {
119         struct wb_writeback_work *work;
120
121         /*
122          * This is WB_SYNC_NONE writeback, so if allocation fails just
123          * wakeup the thread for old dirty data writeback
124          */
125         work = kzalloc(sizeof(*work), GFP_ATOMIC);
126         if (!work) {
127                 if (bdi->wb.task) {
128                         trace_writeback_nowork(bdi);
129                         wake_up_process(bdi->wb.task);
130                 }
131                 return;
132         }
133
134         work->sync_mode = WB_SYNC_NONE;
135         work->nr_pages  = nr_pages;
136         work->range_cyclic = range_cyclic;
137
138         bdi_queue_work(bdi, work);
139 }
140
141 /**
142  * bdi_start_writeback - start writeback
143  * @bdi: the backing device to write from
144  * @nr_pages: the number of pages to write
145  *
146  * Description:
147  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
148  *   started when this function returns, we make no guarantees on
149  *   completion. Caller need not hold sb s_umount semaphore.
150  *
151  */
152 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
153 {
154         __bdi_start_writeback(bdi, nr_pages, true);
155 }
156
157 /**
158  * bdi_start_background_writeback - start background writeback
159  * @bdi: the backing device to write from
160  *
161  * Description:
162  *   This makes sure WB_SYNC_NONE background writeback happens. When
163  *   this function returns, it is only guaranteed that for given BDI
164  *   some IO is happening if we are over background dirty threshold.
165  *   Caller need not hold sb s_umount semaphore.
166  */
167 void bdi_start_background_writeback(struct backing_dev_info *bdi)
168 {
169         /*
170          * We just wake up the flusher thread. It will perform background
171          * writeback as soon as there is no other work to do.
172          */
173         trace_writeback_wake_background(bdi);
174         spin_lock_bh(&bdi->wb_lock);
175         bdi_wakeup_flusher(bdi);
176         spin_unlock_bh(&bdi->wb_lock);
177 }
178
179 /*
180  * Remove the inode from the writeback list it is on.
181  */
182 void inode_wb_list_del(struct inode *inode)
183 {
184         struct backing_dev_info *bdi = inode_to_bdi(inode);
185
186         spin_lock(&bdi->wb.list_lock);
187         list_del_init(&inode->i_wb_list);
188         spin_unlock(&bdi->wb.list_lock);
189 }
190
191 /*
192  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
193  * furthest end of its superblock's dirty-inode list.
194  *
195  * Before stamping the inode's ->dirtied_when, we check to see whether it is
196  * already the most-recently-dirtied inode on the b_dirty list.  If that is
197  * the case then the inode must have been redirtied while it was being written
198  * out and we don't reset its dirtied_when.
199  */
200 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
201 {
202         assert_spin_locked(&wb->list_lock);
203         if (!list_empty(&wb->b_dirty)) {
204                 struct inode *tail;
205
206                 tail = wb_inode(wb->b_dirty.next);
207                 if (time_before(inode->dirtied_when, tail->dirtied_when))
208                         inode->dirtied_when = jiffies;
209         }
210         list_move(&inode->i_wb_list, &wb->b_dirty);
211 }
212
213 /*
214  * requeue inode for re-scanning after bdi->b_io list is exhausted.
215  */
216 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
217 {
218         assert_spin_locked(&wb->list_lock);
219         list_move(&inode->i_wb_list, &wb->b_more_io);
220 }
221
222 static void inode_sync_complete(struct inode *inode)
223 {
224         /*
225          * Prevent speculative execution through
226          * spin_unlock(&wb->list_lock);
227          */
228
229         smp_mb();
230         wake_up_bit(&inode->i_state, __I_SYNC);
231 }
232
233 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
234 {
235         bool ret = time_after(inode->dirtied_when, t);
236 #ifndef CONFIG_64BIT
237         /*
238          * For inodes being constantly redirtied, dirtied_when can get stuck.
239          * It _appears_ to be in the future, but is actually in distant past.
240          * This test is necessary to prevent such wrapped-around relative times
241          * from permanently stopping the whole bdi writeback.
242          */
243         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
244 #endif
245         return ret;
246 }
247
248 /*
249  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
250  */
251 static int move_expired_inodes(struct list_head *delaying_queue,
252                                struct list_head *dispatch_queue,
253                                unsigned long *older_than_this)
254 {
255         LIST_HEAD(tmp);
256         struct list_head *pos, *node;
257         struct super_block *sb = NULL;
258         struct inode *inode;
259         int do_sb_sort = 0;
260         int moved = 0;
261
262         while (!list_empty(delaying_queue)) {
263                 inode = wb_inode(delaying_queue->prev);
264                 if (older_than_this &&
265                     inode_dirtied_after(inode, *older_than_this))
266                         break;
267                 if (sb && sb != inode->i_sb)
268                         do_sb_sort = 1;
269                 sb = inode->i_sb;
270                 list_move(&inode->i_wb_list, &tmp);
271                 moved++;
272         }
273
274         /* just one sb in list, splice to dispatch_queue and we're done */
275         if (!do_sb_sort) {
276                 list_splice(&tmp, dispatch_queue);
277                 goto out;
278         }
279
280         /* Move inodes from one superblock together */
281         while (!list_empty(&tmp)) {
282                 sb = wb_inode(tmp.prev)->i_sb;
283                 list_for_each_prev_safe(pos, node, &tmp) {
284                         inode = wb_inode(pos);
285                         if (inode->i_sb == sb)
286                                 list_move(&inode->i_wb_list, dispatch_queue);
287                 }
288         }
289 out:
290         return moved;
291 }
292
293 /*
294  * Queue all expired dirty inodes for io, eldest first.
295  * Before
296  *         newly dirtied     b_dirty    b_io    b_more_io
297  *         =============>    gf         edc     BA
298  * After
299  *         newly dirtied     b_dirty    b_io    b_more_io
300  *         =============>    g          fBAedc
301  *                                           |
302  *                                           +--> dequeue for IO
303  */
304 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
305 {
306         int moved;
307         assert_spin_locked(&wb->list_lock);
308         list_splice_init(&wb->b_more_io, &wb->b_io);
309         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
310         trace_writeback_queue_io(wb, older_than_this, moved);
311 }
312
313 static int write_inode(struct inode *inode, struct writeback_control *wbc)
314 {
315         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
316                 return inode->i_sb->s_op->write_inode(inode, wbc);
317         return 0;
318 }
319
320 /*
321  * Wait for writeback on an inode to complete.
322  */
323 static void inode_wait_for_writeback(struct inode *inode,
324                                      struct bdi_writeback *wb)
325 {
326         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
327         wait_queue_head_t *wqh;
328
329         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
330         while (inode->i_state & I_SYNC) {
331                 spin_unlock(&inode->i_lock);
332                 spin_unlock(&wb->list_lock);
333                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
334                 spin_lock(&wb->list_lock);
335                 spin_lock(&inode->i_lock);
336         }
337 }
338
339 /*
340  * Write out an inode's dirty pages.  Called under wb->list_lock and
341  * inode->i_lock.  Either the caller has an active reference on the inode or
342  * the inode has I_WILL_FREE set.
343  *
344  * If `wait' is set, wait on the writeout.
345  *
346  * The whole writeout design is quite complex and fragile.  We want to avoid
347  * starvation of particular inodes when others are being redirtied, prevent
348  * livelocks, etc.
349  */
350 static int
351 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
352                        struct writeback_control *wbc)
353 {
354         struct address_space *mapping = inode->i_mapping;
355         long nr_to_write = wbc->nr_to_write;
356         unsigned dirty;
357         int ret;
358
359         assert_spin_locked(&wb->list_lock);
360         assert_spin_locked(&inode->i_lock);
361
362         if (!atomic_read(&inode->i_count))
363                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
364         else
365                 WARN_ON(inode->i_state & I_WILL_FREE);
366
367         if (inode->i_state & I_SYNC) {
368                 /*
369                  * If this inode is locked for writeback and we are not doing
370                  * writeback-for-data-integrity, move it to b_more_io so that
371                  * writeback can proceed with the other inodes on s_io.
372                  *
373                  * We'll have another go at writing back this inode when we
374                  * completed a full scan of b_io.
375                  */
376                 if (wbc->sync_mode != WB_SYNC_ALL) {
377                         requeue_io(inode, wb);
378                         trace_writeback_single_inode_requeue(inode, wbc,
379                                                              nr_to_write);
380                         return 0;
381                 }
382
383                 /*
384                  * It's a data-integrity sync.  We must wait.
385                  */
386                 inode_wait_for_writeback(inode, wb);
387         }
388
389         BUG_ON(inode->i_state & I_SYNC);
390
391         /* Set I_SYNC, reset I_DIRTY_PAGES */
392         inode->i_state |= I_SYNC;
393         inode->i_state &= ~I_DIRTY_PAGES;
394         spin_unlock(&inode->i_lock);
395         spin_unlock(&wb->list_lock);
396
397         ret = do_writepages(mapping, wbc);
398
399         /*
400          * Make sure to wait on the data before writing out the metadata.
401          * This is important for filesystems that modify metadata on data
402          * I/O completion.
403          */
404         if (wbc->sync_mode == WB_SYNC_ALL) {
405                 int err = filemap_fdatawait(mapping);
406                 if (ret == 0)
407                         ret = err;
408         }
409
410         /*
411          * Some filesystems may redirty the inode during the writeback
412          * due to delalloc, clear dirty metadata flags right before
413          * write_inode()
414          */
415         spin_lock(&inode->i_lock);
416         dirty = inode->i_state & I_DIRTY;
417         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
418         spin_unlock(&inode->i_lock);
419         /* Don't write the inode if only I_DIRTY_PAGES was set */
420         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
421                 int err = write_inode(inode, wbc);
422                 if (ret == 0)
423                         ret = err;
424         }
425
426         spin_lock(&wb->list_lock);
427         spin_lock(&inode->i_lock);
428         inode->i_state &= ~I_SYNC;
429         if (!(inode->i_state & I_FREEING)) {
430                 /*
431                  * Sync livelock prevention. Each inode is tagged and synced in
432                  * one shot. If still dirty, it will be redirty_tail()'ed below.
433                  * Update the dirty time to prevent enqueue and sync it again.
434                  */
435                 if ((inode->i_state & I_DIRTY) &&
436                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
437                         inode->dirtied_when = jiffies;
438
439                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
440                         /*
441                          * We didn't write back all the pages.  nfs_writepages()
442                          * sometimes bales out without doing anything.
443                          */
444                         inode->i_state |= I_DIRTY_PAGES;
445                         if (wbc->nr_to_write <= 0) {
446                                 /*
447                                  * slice used up: queue for next turn
448                                  */
449                                 requeue_io(inode, wb);
450                         } else {
451                                 /*
452                                  * Writeback blocked by something other than
453                                  * congestion. Delay the inode for some time to
454                                  * avoid spinning on the CPU (100% iowait)
455                                  * retrying writeback of the dirty page/inode
456                                  * that cannot be performed immediately.
457                                  */
458                                 redirty_tail(inode, wb);
459                         }
460                 } else if (inode->i_state & I_DIRTY) {
461                         /*
462                          * Filesystems can dirty the inode during writeback
463                          * operations, such as delayed allocation during
464                          * submission or metadata updates after data IO
465                          * completion.
466                          */
467                         redirty_tail(inode, wb);
468                 } else {
469                         /*
470                          * The inode is clean.  At this point we either have
471                          * a reference to the inode or it's on it's way out.
472                          * No need to add it back to the LRU.
473                          */
474                         list_del_init(&inode->i_wb_list);
475                         wbc->inodes_written++;
476                 }
477         }
478         inode_sync_complete(inode);
479         trace_writeback_single_inode(inode, wbc, nr_to_write);
480         return ret;
481 }
482
483 /*
484  * For background writeback the caller does not have the sb pinned
485  * before calling writeback. So make sure that we do pin it, so it doesn't
486  * go away while we are writing inodes from it.
487  */
488 static bool pin_sb_for_writeback(struct super_block *sb)
489 {
490         spin_lock(&sb_lock);
491         if (list_empty(&sb->s_instances)) {
492                 spin_unlock(&sb_lock);
493                 return false;
494         }
495
496         sb->s_count++;
497         spin_unlock(&sb_lock);
498
499         if (down_read_trylock(&sb->s_umount)) {
500                 if (sb->s_root)
501                         return true;
502                 up_read(&sb->s_umount);
503         }
504
505         put_super(sb);
506         return false;
507 }
508
509 /*
510  * Write a portion of b_io inodes which belong to @sb.
511  *
512  * If @only_this_sb is true, then find and write all such
513  * inodes. Otherwise write only ones which go sequentially
514  * in reverse order.
515  *
516  * Return 1, if the caller writeback routine should be
517  * interrupted. Otherwise return 0.
518  */
519 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
520                 struct writeback_control *wbc, bool only_this_sb)
521 {
522         while (!list_empty(&wb->b_io)) {
523                 long pages_skipped;
524                 struct inode *inode = wb_inode(wb->b_io.prev);
525
526                 if (inode->i_sb != sb) {
527                         if (only_this_sb) {
528                                 /*
529                                  * We only want to write back data for this
530                                  * superblock, move all inodes not belonging
531                                  * to it back onto the dirty list.
532                                  */
533                                 redirty_tail(inode, wb);
534                                 continue;
535                         }
536
537                         /*
538                          * The inode belongs to a different superblock.
539                          * Bounce back to the caller to unpin this and
540                          * pin the next superblock.
541                          */
542                         return 0;
543                 }
544
545                 /*
546                  * Don't bother with new inodes or inodes beeing freed, first
547                  * kind does not need peridic writeout yet, and for the latter
548                  * kind writeout is handled by the freer.
549                  */
550                 spin_lock(&inode->i_lock);
551                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
552                         spin_unlock(&inode->i_lock);
553                         requeue_io(inode, wb);
554                         continue;
555                 }
556
557                 __iget(inode);
558
559                 pages_skipped = wbc->pages_skipped;
560                 writeback_single_inode(inode, wb, wbc);
561                 if (wbc->pages_skipped != pages_skipped) {
562                         /*
563                          * writeback is not making progress due to locked
564                          * buffers.  Skip this inode for now.
565                          */
566                         redirty_tail(inode, wb);
567                 }
568                 spin_unlock(&inode->i_lock);
569                 spin_unlock(&wb->list_lock);
570                 iput(inode);
571                 cond_resched();
572                 spin_lock(&wb->list_lock);
573                 if (wbc->nr_to_write <= 0)
574                         return 1;
575         }
576         /* b_io is empty */
577         return 1;
578 }
579
580 static void __writeback_inodes_wb(struct bdi_writeback *wb,
581                                   struct writeback_control *wbc)
582 {
583         int ret = 0;
584
585         while (!list_empty(&wb->b_io)) {
586                 struct inode *inode = wb_inode(wb->b_io.prev);
587                 struct super_block *sb = inode->i_sb;
588
589                 if (!pin_sb_for_writeback(sb)) {
590                         requeue_io(inode, wb);
591                         continue;
592                 }
593                 ret = writeback_sb_inodes(sb, wb, wbc, false);
594                 drop_super(sb);
595
596                 if (ret)
597                         break;
598         }
599         /* Leave any unwritten inodes on b_io */
600 }
601
602 void writeback_inodes_wb(struct bdi_writeback *wb,
603                 struct writeback_control *wbc)
604 {
605         spin_lock(&wb->list_lock);
606         if (list_empty(&wb->b_io))
607                 queue_io(wb, wbc->older_than_this);
608         __writeback_inodes_wb(wb, wbc);
609         spin_unlock(&wb->list_lock);
610 }
611
612 /*
613  * The maximum number of pages to writeout in a single bdi flush/kupdate
614  * operation.  We do this so we don't hold I_SYNC against an inode for
615  * enormous amounts of time, which would block a userspace task which has
616  * been forced to throttle against that inode.  Also, the code reevaluates
617  * the dirty each time it has written this many pages.
618  */
619 #define MAX_WRITEBACK_PAGES     1024
620
621 static inline bool over_bground_thresh(void)
622 {
623         unsigned long background_thresh, dirty_thresh;
624
625         global_dirty_limits(&background_thresh, &dirty_thresh);
626
627         return (global_page_state(NR_FILE_DIRTY) +
628                 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
629 }
630
631 /*
632  * Explicit flushing or periodic writeback of "old" data.
633  *
634  * Define "old": the first time one of an inode's pages is dirtied, we mark the
635  * dirtying-time in the inode's address_space.  So this periodic writeback code
636  * just walks the superblock inode list, writing back any inodes which are
637  * older than a specific point in time.
638  *
639  * Try to run once per dirty_writeback_interval.  But if a writeback event
640  * takes longer than a dirty_writeback_interval interval, then leave a
641  * one-second gap.
642  *
643  * older_than_this takes precedence over nr_to_write.  So we'll only write back
644  * all dirty pages if they are all attached to "old" mappings.
645  */
646 static long wb_writeback(struct bdi_writeback *wb,
647                          struct wb_writeback_work *work)
648 {
649         struct writeback_control wbc = {
650                 .sync_mode              = work->sync_mode,
651                 .tagged_writepages      = work->tagged_writepages,
652                 .older_than_this        = NULL,
653                 .for_kupdate            = work->for_kupdate,
654                 .for_background         = work->for_background,
655                 .range_cyclic           = work->range_cyclic,
656         };
657         unsigned long oldest_jif;
658         long wrote = 0;
659         long write_chunk = MAX_WRITEBACK_PAGES;
660         struct inode *inode;
661
662         if (!wbc.range_cyclic) {
663                 wbc.range_start = 0;
664                 wbc.range_end = LLONG_MAX;
665         }
666
667         /*
668          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
669          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
670          * here avoids calling into writeback_inodes_wb() more than once.
671          *
672          * The intended call sequence for WB_SYNC_ALL writeback is:
673          *
674          *      wb_writeback()
675          *          writeback_sb_inodes()       <== called only once
676          *              write_cache_pages()     <== called once for each inode
677          *                   (quickly) tag currently dirty pages
678          *                   (maybe slowly) sync all tagged pages
679          */
680         if (wbc.sync_mode == WB_SYNC_ALL || wbc.tagged_writepages)
681                 write_chunk = LONG_MAX;
682
683         oldest_jif = jiffies;
684         wbc.older_than_this = &oldest_jif;
685
686         spin_lock(&wb->list_lock);
687         for (;;) {
688                 /*
689                  * Stop writeback when nr_pages has been consumed
690                  */
691                 if (work->nr_pages <= 0)
692                         break;
693
694                 /*
695                  * Background writeout and kupdate-style writeback may
696                  * run forever. Stop them if there is other work to do
697                  * so that e.g. sync can proceed. They'll be restarted
698                  * after the other works are all done.
699                  */
700                 if ((work->for_background || work->for_kupdate) &&
701                     !list_empty(&wb->bdi->work_list))
702                         break;
703
704                 /*
705                  * For background writeout, stop when we are below the
706                  * background dirty threshold
707                  */
708                 if (work->for_background && !over_bground_thresh())
709                         break;
710
711                 if (work->for_kupdate) {
712                         oldest_jif = jiffies -
713                                 msecs_to_jiffies(dirty_expire_interval * 10);
714                         wbc.older_than_this = &oldest_jif;
715                 }
716
717                 wbc.nr_to_write = write_chunk;
718                 wbc.pages_skipped = 0;
719                 wbc.inodes_written = 0;
720
721                 trace_wbc_writeback_start(&wbc, wb->bdi);
722                 if (list_empty(&wb->b_io))
723                         queue_io(wb, wbc.older_than_this);
724                 if (work->sb)
725                         writeback_sb_inodes(work->sb, wb, &wbc, true);
726                 else
727                         __writeback_inodes_wb(wb, &wbc);
728                 trace_wbc_writeback_written(&wbc, wb->bdi);
729
730                 work->nr_pages -= write_chunk - wbc.nr_to_write;
731                 wrote += write_chunk - wbc.nr_to_write;
732
733                 /*
734                  * Did we write something? Try for more
735                  *
736                  * Dirty inodes are moved to b_io for writeback in batches.
737                  * The completion of the current batch does not necessarily
738                  * mean the overall work is done. So we keep looping as long
739                  * as made some progress on cleaning pages or inodes.
740                  */
741                 if (wbc.nr_to_write < write_chunk)
742                         continue;
743                 if (wbc.inodes_written)
744                         continue;
745                 /*
746                  * No more inodes for IO, bail
747                  */
748                 if (list_empty(&wb->b_more_io))
749                         break;
750                 /*
751                  * Nothing written. Wait for some inode to
752                  * become available for writeback. Otherwise
753                  * we'll just busyloop.
754                  */
755                 if (!list_empty(&wb->b_more_io))  {
756                         inode = wb_inode(wb->b_more_io.prev);
757                         trace_wbc_writeback_wait(&wbc, wb->bdi);
758                         spin_lock(&inode->i_lock);
759                         inode_wait_for_writeback(inode, wb);
760                         spin_unlock(&inode->i_lock);
761                 }
762         }
763         spin_unlock(&wb->list_lock);
764
765         return wrote;
766 }
767
768 /*
769  * Return the next wb_writeback_work struct that hasn't been processed yet.
770  */
771 static struct wb_writeback_work *
772 get_next_work_item(struct backing_dev_info *bdi)
773 {
774         struct wb_writeback_work *work = NULL;
775
776         spin_lock_bh(&bdi->wb_lock);
777         if (!list_empty(&bdi->work_list)) {
778                 work = list_entry(bdi->work_list.next,
779                                   struct wb_writeback_work, list);
780                 list_del_init(&work->list);
781         }
782         spin_unlock_bh(&bdi->wb_lock);
783         return work;
784 }
785
786 /*
787  * Add in the number of potentially dirty inodes, because each inode
788  * write can dirty pagecache in the underlying blockdev.
789  */
790 static unsigned long get_nr_dirty_pages(void)
791 {
792         return global_page_state(NR_FILE_DIRTY) +
793                 global_page_state(NR_UNSTABLE_NFS) +
794                 get_nr_dirty_inodes();
795 }
796
797 static long wb_check_background_flush(struct bdi_writeback *wb)
798 {
799         if (over_bground_thresh()) {
800
801                 struct wb_writeback_work work = {
802                         .nr_pages       = LONG_MAX,
803                         .sync_mode      = WB_SYNC_NONE,
804                         .for_background = 1,
805                         .range_cyclic   = 1,
806                 };
807
808                 return wb_writeback(wb, &work);
809         }
810
811         return 0;
812 }
813
814 static long wb_check_old_data_flush(struct bdi_writeback *wb)
815 {
816         unsigned long expired;
817         long nr_pages;
818
819         /*
820          * When set to zero, disable periodic writeback
821          */
822         if (!dirty_writeback_interval)
823                 return 0;
824
825         expired = wb->last_old_flush +
826                         msecs_to_jiffies(dirty_writeback_interval * 10);
827         if (time_before(jiffies, expired))
828                 return 0;
829
830         wb->last_old_flush = jiffies;
831         nr_pages = get_nr_dirty_pages();
832
833         if (nr_pages) {
834                 struct wb_writeback_work work = {
835                         .nr_pages       = nr_pages,
836                         .sync_mode      = WB_SYNC_NONE,
837                         .for_kupdate    = 1,
838                         .range_cyclic   = 1,
839                 };
840
841                 return wb_writeback(wb, &work);
842         }
843
844         return 0;
845 }
846
847 /*
848  * Retrieve work items and do the writeback they describe
849  */
850 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
851 {
852         struct backing_dev_info *bdi = wb->bdi;
853         struct wb_writeback_work *work;
854         long wrote = 0;
855
856         set_bit(BDI_writeback_running, &wb->bdi->state);
857         while ((work = get_next_work_item(bdi)) != NULL) {
858                 /*
859                  * Override sync mode, in case we must wait for completion
860                  * because this thread is exiting now.
861                  */
862                 if (force_wait)
863                         work->sync_mode = WB_SYNC_ALL;
864
865                 trace_writeback_exec(bdi, work);
866
867                 wrote += wb_writeback(wb, work);
868
869                 /*
870                  * Notify the caller of completion if this is a synchronous
871                  * work item, otherwise just free it.
872                  */
873                 if (work->done)
874                         complete(work->done);
875                 else
876                         kfree(work);
877         }
878
879         /*
880          * Check for periodic writeback, kupdated() style
881          */
882         wrote += wb_check_old_data_flush(wb);
883         wrote += wb_check_background_flush(wb);
884         clear_bit(BDI_writeback_running, &wb->bdi->state);
885
886         return wrote;
887 }
888
889 /*
890  * Handle writeback of dirty data for the device backed by this bdi. Also
891  * wakes up periodically and does kupdated style flushing.
892  */
893 int bdi_writeback_thread(void *data)
894 {
895         struct bdi_writeback *wb = data;
896         struct backing_dev_info *bdi = wb->bdi;
897         long pages_written;
898
899         current->flags |= PF_SWAPWRITE;
900         set_freezable();
901         wb->last_active = jiffies;
902
903         /*
904          * Our parent may run at a different priority, just set us to normal
905          */
906         set_user_nice(current, 0);
907
908         trace_writeback_thread_start(bdi);
909
910         while (!kthread_should_stop()) {
911                 /*
912                  * Remove own delayed wake-up timer, since we are already awake
913                  * and we'll take care of the preriodic write-back.
914                  */
915                 del_timer(&wb->wakeup_timer);
916
917                 pages_written = wb_do_writeback(wb, 0);
918
919                 trace_writeback_pages_written(pages_written);
920
921                 if (pages_written)
922                         wb->last_active = jiffies;
923
924                 set_current_state(TASK_INTERRUPTIBLE);
925                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
926                         __set_current_state(TASK_RUNNING);
927                         continue;
928                 }
929
930                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
931                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
932                 else {
933                         /*
934                          * We have nothing to do, so can go sleep without any
935                          * timeout and save power. When a work is queued or
936                          * something is made dirty - we will be woken up.
937                          */
938                         schedule();
939                 }
940
941                 try_to_freeze();
942         }
943
944         /* Flush any work that raced with us exiting */
945         if (!list_empty(&bdi->work_list))
946                 wb_do_writeback(wb, 1);
947
948         trace_writeback_thread_stop(bdi);
949         return 0;
950 }
951
952
953 /*
954  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
955  * the whole world.
956  */
957 void wakeup_flusher_threads(long nr_pages)
958 {
959         struct backing_dev_info *bdi;
960
961         if (!nr_pages) {
962                 nr_pages = global_page_state(NR_FILE_DIRTY) +
963                                 global_page_state(NR_UNSTABLE_NFS);
964         }
965
966         rcu_read_lock();
967         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
968                 if (!bdi_has_dirty_io(bdi))
969                         continue;
970                 __bdi_start_writeback(bdi, nr_pages, false);
971         }
972         rcu_read_unlock();
973 }
974
975 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
976 {
977         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
978                 struct dentry *dentry;
979                 const char *name = "?";
980
981                 dentry = d_find_alias(inode);
982                 if (dentry) {
983                         spin_lock(&dentry->d_lock);
984                         name = (const char *) dentry->d_name.name;
985                 }
986                 printk(KERN_DEBUG
987                        "%s(%d): dirtied inode %lu (%s) on %s\n",
988                        current->comm, task_pid_nr(current), inode->i_ino,
989                        name, inode->i_sb->s_id);
990                 if (dentry) {
991                         spin_unlock(&dentry->d_lock);
992                         dput(dentry);
993                 }
994         }
995 }
996
997 /**
998  *      __mark_inode_dirty -    internal function
999  *      @inode: inode to mark
1000  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1001  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1002  *      mark_inode_dirty_sync.
1003  *
1004  * Put the inode on the super block's dirty list.
1005  *
1006  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1007  * dirty list only if it is hashed or if it refers to a blockdev.
1008  * If it was not hashed, it will never be added to the dirty list
1009  * even if it is later hashed, as it will have been marked dirty already.
1010  *
1011  * In short, make sure you hash any inodes _before_ you start marking
1012  * them dirty.
1013  *
1014  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1015  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1016  * the kernel-internal blockdev inode represents the dirtying time of the
1017  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1018  * page->mapping->host, so the page-dirtying time is recorded in the internal
1019  * blockdev inode.
1020  */
1021 void __mark_inode_dirty(struct inode *inode, int flags)
1022 {
1023         struct super_block *sb = inode->i_sb;
1024         struct backing_dev_info *bdi = NULL;
1025
1026         /*
1027          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1028          * dirty the inode itself
1029          */
1030         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1031                 if (sb->s_op->dirty_inode)
1032                         sb->s_op->dirty_inode(inode, flags);
1033         }
1034
1035         /*
1036          * make sure that changes are seen by all cpus before we test i_state
1037          * -- mikulas
1038          */
1039         smp_mb();
1040
1041         /* avoid the locking if we can */
1042         if ((inode->i_state & flags) == flags)
1043                 return;
1044
1045         if (unlikely(block_dump))
1046                 block_dump___mark_inode_dirty(inode);
1047
1048         spin_lock(&inode->i_lock);
1049         if ((inode->i_state & flags) != flags) {
1050                 const int was_dirty = inode->i_state & I_DIRTY;
1051
1052                 inode->i_state |= flags;
1053
1054                 /*
1055                  * If the inode is being synced, just update its dirty state.
1056                  * The unlocker will place the inode on the appropriate
1057                  * superblock list, based upon its state.
1058                  */
1059                 if (inode->i_state & I_SYNC)
1060                         goto out_unlock_inode;
1061
1062                 /*
1063                  * Only add valid (hashed) inodes to the superblock's
1064                  * dirty list.  Add blockdev inodes as well.
1065                  */
1066                 if (!S_ISBLK(inode->i_mode)) {
1067                         if (inode_unhashed(inode))
1068                                 goto out_unlock_inode;
1069                 }
1070                 if (inode->i_state & I_FREEING)
1071                         goto out_unlock_inode;
1072
1073                 /*
1074                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1075                  * reposition it (that would break b_dirty time-ordering).
1076                  */
1077                 if (!was_dirty) {
1078                         bool wakeup_bdi = false;
1079                         bdi = inode_to_bdi(inode);
1080
1081                         if (bdi_cap_writeback_dirty(bdi)) {
1082                                 WARN(!test_bit(BDI_registered, &bdi->state),
1083                                      "bdi-%s not registered\n", bdi->name);
1084
1085                                 /*
1086                                  * If this is the first dirty inode for this
1087                                  * bdi, we have to wake-up the corresponding
1088                                  * bdi thread to make sure background
1089                                  * write-back happens later.
1090                                  */
1091                                 if (!wb_has_dirty_io(&bdi->wb))
1092                                         wakeup_bdi = true;
1093                         }
1094
1095                         spin_unlock(&inode->i_lock);
1096                         spin_lock(&bdi->wb.list_lock);
1097                         inode->dirtied_when = jiffies;
1098                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1099                         spin_unlock(&bdi->wb.list_lock);
1100
1101                         if (wakeup_bdi)
1102                                 bdi_wakeup_thread_delayed(bdi);
1103                         return;
1104                 }
1105         }
1106 out_unlock_inode:
1107         spin_unlock(&inode->i_lock);
1108
1109 }
1110 EXPORT_SYMBOL(__mark_inode_dirty);
1111
1112 /*
1113  * Write out a superblock's list of dirty inodes.  A wait will be performed
1114  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1115  *
1116  * If older_than_this is non-NULL, then only write out inodes which
1117  * had their first dirtying at a time earlier than *older_than_this.
1118  *
1119  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1120  * This function assumes that the blockdev superblock's inodes are backed by
1121  * a variety of queues, so all inodes are searched.  For other superblocks,
1122  * assume that all inodes are backed by the same queue.
1123  *
1124  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1125  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1126  * on the writer throttling path, and we get decent balancing between many
1127  * throttled threads: we don't want them all piling up on inode_sync_wait.
1128  */
1129 static void wait_sb_inodes(struct super_block *sb)
1130 {
1131         struct inode *inode, *old_inode = NULL;
1132
1133         /*
1134          * We need to be protected against the filesystem going from
1135          * r/o to r/w or vice versa.
1136          */
1137         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1138
1139         spin_lock(&inode_sb_list_lock);
1140
1141         /*
1142          * Data integrity sync. Must wait for all pages under writeback,
1143          * because there may have been pages dirtied before our sync
1144          * call, but which had writeout started before we write it out.
1145          * In which case, the inode may not be on the dirty list, but
1146          * we still have to wait for that writeout.
1147          */
1148         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1149                 struct address_space *mapping = inode->i_mapping;
1150
1151                 spin_lock(&inode->i_lock);
1152                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1153                     (mapping->nrpages == 0)) {
1154                         spin_unlock(&inode->i_lock);
1155                         continue;
1156                 }
1157                 __iget(inode);
1158                 spin_unlock(&inode->i_lock);
1159                 spin_unlock(&inode_sb_list_lock);
1160
1161                 /*
1162                  * We hold a reference to 'inode' so it couldn't have been
1163                  * removed from s_inodes list while we dropped the
1164                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1165                  * be holding the last reference and we cannot iput it under
1166                  * inode_sb_list_lock. So we keep the reference and iput it
1167                  * later.
1168                  */
1169                 iput(old_inode);
1170                 old_inode = inode;
1171
1172                 filemap_fdatawait(mapping);
1173
1174                 cond_resched();
1175
1176                 spin_lock(&inode_sb_list_lock);
1177         }
1178         spin_unlock(&inode_sb_list_lock);
1179         iput(old_inode);
1180 }
1181
1182 /**
1183  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1184  * @sb: the superblock
1185  * @nr: the number of pages to write
1186  *
1187  * Start writeback on some inodes on this super_block. No guarantees are made
1188  * on how many (if any) will be written, and this function does not wait
1189  * for IO completion of submitted IO.
1190  */
1191 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1192 {
1193         DECLARE_COMPLETION_ONSTACK(done);
1194         struct wb_writeback_work work = {
1195                 .sb                     = sb,
1196                 .sync_mode              = WB_SYNC_NONE,
1197                 .tagged_writepages      = 1,
1198                 .done                   = &done,
1199                 .nr_pages               = nr,
1200         };
1201
1202         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1203         bdi_queue_work(sb->s_bdi, &work);
1204         wait_for_completion(&done);
1205 }
1206 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1207
1208 /**
1209  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1210  * @sb: the superblock
1211  *
1212  * Start writeback on some inodes on this super_block. No guarantees are made
1213  * on how many (if any) will be written, and this function does not wait
1214  * for IO completion of submitted IO.
1215  */
1216 void writeback_inodes_sb(struct super_block *sb)
1217 {
1218         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1219 }
1220 EXPORT_SYMBOL(writeback_inodes_sb);
1221
1222 /**
1223  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1224  * @sb: the superblock
1225  *
1226  * Invoke writeback_inodes_sb if no writeback is currently underway.
1227  * Returns 1 if writeback was started, 0 if not.
1228  */
1229 int writeback_inodes_sb_if_idle(struct super_block *sb)
1230 {
1231         if (!writeback_in_progress(sb->s_bdi)) {
1232                 down_read(&sb->s_umount);
1233                 writeback_inodes_sb(sb);
1234                 up_read(&sb->s_umount);
1235                 return 1;
1236         } else
1237                 return 0;
1238 }
1239 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1240
1241 /**
1242  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1243  * @sb: the superblock
1244  * @nr: the number of pages to write
1245  *
1246  * Invoke writeback_inodes_sb if no writeback is currently underway.
1247  * Returns 1 if writeback was started, 0 if not.
1248  */
1249 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1250                                    unsigned long nr)
1251 {
1252         if (!writeback_in_progress(sb->s_bdi)) {
1253                 down_read(&sb->s_umount);
1254                 writeback_inodes_sb_nr(sb, nr);
1255                 up_read(&sb->s_umount);
1256                 return 1;
1257         } else
1258                 return 0;
1259 }
1260 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1261
1262 /**
1263  * sync_inodes_sb       -       sync sb inode pages
1264  * @sb: the superblock
1265  *
1266  * This function writes and waits on any dirty inode belonging to this
1267  * super_block.
1268  */
1269 void sync_inodes_sb(struct super_block *sb)
1270 {
1271         DECLARE_COMPLETION_ONSTACK(done);
1272         struct wb_writeback_work work = {
1273                 .sb             = sb,
1274                 .sync_mode      = WB_SYNC_ALL,
1275                 .nr_pages       = LONG_MAX,
1276                 .range_cyclic   = 0,
1277                 .done           = &done,
1278         };
1279
1280         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1281
1282         bdi_queue_work(sb->s_bdi, &work);
1283         wait_for_completion(&done);
1284
1285         wait_sb_inodes(sb);
1286 }
1287 EXPORT_SYMBOL(sync_inodes_sb);
1288
1289 /**
1290  * write_inode_now      -       write an inode to disk
1291  * @inode: inode to write to disk
1292  * @sync: whether the write should be synchronous or not
1293  *
1294  * This function commits an inode to disk immediately if it is dirty. This is
1295  * primarily needed by knfsd.
1296  *
1297  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1298  */
1299 int write_inode_now(struct inode *inode, int sync)
1300 {
1301         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1302         int ret;
1303         struct writeback_control wbc = {
1304                 .nr_to_write = LONG_MAX,
1305                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1306                 .range_start = 0,
1307                 .range_end = LLONG_MAX,
1308         };
1309
1310         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1311                 wbc.nr_to_write = 0;
1312
1313         might_sleep();
1314         spin_lock(&wb->list_lock);
1315         spin_lock(&inode->i_lock);
1316         ret = writeback_single_inode(inode, wb, &wbc);
1317         spin_unlock(&inode->i_lock);
1318         spin_unlock(&wb->list_lock);
1319         if (sync)
1320                 inode_sync_wait(inode);
1321         return ret;
1322 }
1323 EXPORT_SYMBOL(write_inode_now);
1324
1325 /**
1326  * sync_inode - write an inode and its pages to disk.
1327  * @inode: the inode to sync
1328  * @wbc: controls the writeback mode
1329  *
1330  * sync_inode() will write an inode and its pages to disk.  It will also
1331  * correctly update the inode on its superblock's dirty inode lists and will
1332  * update inode->i_state.
1333  *
1334  * The caller must have a ref on the inode.
1335  */
1336 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1337 {
1338         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1339         int ret;
1340
1341         spin_lock(&wb->list_lock);
1342         spin_lock(&inode->i_lock);
1343         ret = writeback_single_inode(inode, wb, wbc);
1344         spin_unlock(&inode->i_lock);
1345         spin_unlock(&wb->list_lock);
1346         return ret;
1347 }
1348 EXPORT_SYMBOL(sync_inode);
1349
1350 /**
1351  * sync_inode_metadata - write an inode to disk
1352  * @inode: the inode to sync
1353  * @wait: wait for I/O to complete.
1354  *
1355  * Write an inode to disk and adjust its dirty state after completion.
1356  *
1357  * Note: only writes the actual inode, no associated data or other metadata.
1358  */
1359 int sync_inode_metadata(struct inode *inode, int wait)
1360 {
1361         struct writeback_control wbc = {
1362                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1363                 .nr_to_write = 0, /* metadata-only */
1364         };
1365
1366         return sync_inode(inode, &wbc);
1367 }
1368 EXPORT_SYMBOL(sync_inode_metadata);