drivers/net: Remove unnecessary k.alloc/v.alloc OOM messages
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1075),
76         INTEL_E1000_ETHERNET_DEVICE(0x1076),
77         INTEL_E1000_ETHERNET_DEVICE(0x1077),
78         INTEL_E1000_ETHERNET_DEVICE(0x1078),
79         INTEL_E1000_ETHERNET_DEVICE(0x1079),
80         INTEL_E1000_ETHERNET_DEVICE(0x107A),
81         INTEL_E1000_ETHERNET_DEVICE(0x107B),
82         INTEL_E1000_ETHERNET_DEVICE(0x107C),
83         INTEL_E1000_ETHERNET_DEVICE(0x108A),
84         INTEL_E1000_ETHERNET_DEVICE(0x1099),
85         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106                              struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108                              struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void __devexit e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125                                 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127                                 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133                                     struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139                                struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142                                struct e1000_rx_ring *rx_ring,
143                                int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145                                      struct e1000_rx_ring *rx_ring,
146                                      int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148                                    struct e1000_rx_ring *rx_ring,
149                                    int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151                                          struct e1000_rx_ring *rx_ring,
152                                          int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155                            int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162                                        struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166                             netdev_features_t features);
167 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
168 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
169 static void e1000_restore_vlan(struct e1000_adapter *adapter);
170
171 #ifdef CONFIG_PM
172 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
173 static int e1000_resume(struct pci_dev *pdev);
174 #endif
175 static void e1000_shutdown(struct pci_dev *pdev);
176
177 #ifdef CONFIG_NET_POLL_CONTROLLER
178 /* for netdump / net console */
179 static void e1000_netpoll (struct net_device *netdev);
180 #endif
181
182 #define COPYBREAK_DEFAULT 256
183 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
184 module_param(copybreak, uint, 0644);
185 MODULE_PARM_DESC(copybreak,
186         "Maximum size of packet that is copied to a new buffer on receive");
187
188 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
189                      pci_channel_state_t state);
190 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
191 static void e1000_io_resume(struct pci_dev *pdev);
192
193 static struct pci_error_handlers e1000_err_handler = {
194         .error_detected = e1000_io_error_detected,
195         .slot_reset = e1000_io_slot_reset,
196         .resume = e1000_io_resume,
197 };
198
199 static struct pci_driver e1000_driver = {
200         .name     = e1000_driver_name,
201         .id_table = e1000_pci_tbl,
202         .probe    = e1000_probe,
203         .remove   = __devexit_p(e1000_remove),
204 #ifdef CONFIG_PM
205         /* Power Management Hooks */
206         .suspend  = e1000_suspend,
207         .resume   = e1000_resume,
208 #endif
209         .shutdown = e1000_shutdown,
210         .err_handler = &e1000_err_handler
211 };
212
213 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
214 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
215 MODULE_LICENSE("GPL");
216 MODULE_VERSION(DRV_VERSION);
217
218 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
219 module_param(debug, int, 0);
220 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
221
222 /**
223  * e1000_get_hw_dev - return device
224  * used by hardware layer to print debugging information
225  *
226  **/
227 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
228 {
229         struct e1000_adapter *adapter = hw->back;
230         return adapter->netdev;
231 }
232
233 /**
234  * e1000_init_module - Driver Registration Routine
235  *
236  * e1000_init_module is the first routine called when the driver is
237  * loaded. All it does is register with the PCI subsystem.
238  **/
239
240 static int __init e1000_init_module(void)
241 {
242         int ret;
243         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
244
245         pr_info("%s\n", e1000_copyright);
246
247         ret = pci_register_driver(&e1000_driver);
248         if (copybreak != COPYBREAK_DEFAULT) {
249                 if (copybreak == 0)
250                         pr_info("copybreak disabled\n");
251                 else
252                         pr_info("copybreak enabled for "
253                                    "packets <= %u bytes\n", copybreak);
254         }
255         return ret;
256 }
257
258 module_init(e1000_init_module);
259
260 /**
261  * e1000_exit_module - Driver Exit Cleanup Routine
262  *
263  * e1000_exit_module is called just before the driver is removed
264  * from memory.
265  **/
266
267 static void __exit e1000_exit_module(void)
268 {
269         pci_unregister_driver(&e1000_driver);
270 }
271
272 module_exit(e1000_exit_module);
273
274 static int e1000_request_irq(struct e1000_adapter *adapter)
275 {
276         struct net_device *netdev = adapter->netdev;
277         irq_handler_t handler = e1000_intr;
278         int irq_flags = IRQF_SHARED;
279         int err;
280
281         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
282                           netdev);
283         if (err) {
284                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
285         }
286
287         return err;
288 }
289
290 static void e1000_free_irq(struct e1000_adapter *adapter)
291 {
292         struct net_device *netdev = adapter->netdev;
293
294         free_irq(adapter->pdev->irq, netdev);
295 }
296
297 /**
298  * e1000_irq_disable - Mask off interrupt generation on the NIC
299  * @adapter: board private structure
300  **/
301
302 static void e1000_irq_disable(struct e1000_adapter *adapter)
303 {
304         struct e1000_hw *hw = &adapter->hw;
305
306         ew32(IMC, ~0);
307         E1000_WRITE_FLUSH();
308         synchronize_irq(adapter->pdev->irq);
309 }
310
311 /**
312  * e1000_irq_enable - Enable default interrupt generation settings
313  * @adapter: board private structure
314  **/
315
316 static void e1000_irq_enable(struct e1000_adapter *adapter)
317 {
318         struct e1000_hw *hw = &adapter->hw;
319
320         ew32(IMS, IMS_ENABLE_MASK);
321         E1000_WRITE_FLUSH();
322 }
323
324 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
325 {
326         struct e1000_hw *hw = &adapter->hw;
327         struct net_device *netdev = adapter->netdev;
328         u16 vid = hw->mng_cookie.vlan_id;
329         u16 old_vid = adapter->mng_vlan_id;
330
331         if (!e1000_vlan_used(adapter))
332                 return;
333
334         if (!test_bit(vid, adapter->active_vlans)) {
335                 if (hw->mng_cookie.status &
336                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
337                         e1000_vlan_rx_add_vid(netdev, vid);
338                         adapter->mng_vlan_id = vid;
339                 } else {
340                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
341                 }
342                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
343                     (vid != old_vid) &&
344                     !test_bit(old_vid, adapter->active_vlans))
345                         e1000_vlan_rx_kill_vid(netdev, old_vid);
346         } else {
347                 adapter->mng_vlan_id = vid;
348         }
349 }
350
351 static void e1000_init_manageability(struct e1000_adapter *adapter)
352 {
353         struct e1000_hw *hw = &adapter->hw;
354
355         if (adapter->en_mng_pt) {
356                 u32 manc = er32(MANC);
357
358                 /* disable hardware interception of ARP */
359                 manc &= ~(E1000_MANC_ARP_EN);
360
361                 ew32(MANC, manc);
362         }
363 }
364
365 static void e1000_release_manageability(struct e1000_adapter *adapter)
366 {
367         struct e1000_hw *hw = &adapter->hw;
368
369         if (adapter->en_mng_pt) {
370                 u32 manc = er32(MANC);
371
372                 /* re-enable hardware interception of ARP */
373                 manc |= E1000_MANC_ARP_EN;
374
375                 ew32(MANC, manc);
376         }
377 }
378
379 /**
380  * e1000_configure - configure the hardware for RX and TX
381  * @adapter = private board structure
382  **/
383 static void e1000_configure(struct e1000_adapter *adapter)
384 {
385         struct net_device *netdev = adapter->netdev;
386         int i;
387
388         e1000_set_rx_mode(netdev);
389
390         e1000_restore_vlan(adapter);
391         e1000_init_manageability(adapter);
392
393         e1000_configure_tx(adapter);
394         e1000_setup_rctl(adapter);
395         e1000_configure_rx(adapter);
396         /* call E1000_DESC_UNUSED which always leaves
397          * at least 1 descriptor unused to make sure
398          * next_to_use != next_to_clean */
399         for (i = 0; i < adapter->num_rx_queues; i++) {
400                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
401                 adapter->alloc_rx_buf(adapter, ring,
402                                       E1000_DESC_UNUSED(ring));
403         }
404 }
405
406 int e1000_up(struct e1000_adapter *adapter)
407 {
408         struct e1000_hw *hw = &adapter->hw;
409
410         /* hardware has been reset, we need to reload some things */
411         e1000_configure(adapter);
412
413         clear_bit(__E1000_DOWN, &adapter->flags);
414
415         napi_enable(&adapter->napi);
416
417         e1000_irq_enable(adapter);
418
419         netif_wake_queue(adapter->netdev);
420
421         /* fire a link change interrupt to start the watchdog */
422         ew32(ICS, E1000_ICS_LSC);
423         return 0;
424 }
425
426 /**
427  * e1000_power_up_phy - restore link in case the phy was powered down
428  * @adapter: address of board private structure
429  *
430  * The phy may be powered down to save power and turn off link when the
431  * driver is unloaded and wake on lan is not enabled (among others)
432  * *** this routine MUST be followed by a call to e1000_reset ***
433  *
434  **/
435
436 void e1000_power_up_phy(struct e1000_adapter *adapter)
437 {
438         struct e1000_hw *hw = &adapter->hw;
439         u16 mii_reg = 0;
440
441         /* Just clear the power down bit to wake the phy back up */
442         if (hw->media_type == e1000_media_type_copper) {
443                 /* according to the manual, the phy will retain its
444                  * settings across a power-down/up cycle */
445                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
446                 mii_reg &= ~MII_CR_POWER_DOWN;
447                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
448         }
449 }
450
451 static void e1000_power_down_phy(struct e1000_adapter *adapter)
452 {
453         struct e1000_hw *hw = &adapter->hw;
454
455         /* Power down the PHY so no link is implied when interface is down *
456          * The PHY cannot be powered down if any of the following is true *
457          * (a) WoL is enabled
458          * (b) AMT is active
459          * (c) SoL/IDER session is active */
460         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
461            hw->media_type == e1000_media_type_copper) {
462                 u16 mii_reg = 0;
463
464                 switch (hw->mac_type) {
465                 case e1000_82540:
466                 case e1000_82545:
467                 case e1000_82545_rev_3:
468                 case e1000_82546:
469                 case e1000_ce4100:
470                 case e1000_82546_rev_3:
471                 case e1000_82541:
472                 case e1000_82541_rev_2:
473                 case e1000_82547:
474                 case e1000_82547_rev_2:
475                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
476                                 goto out;
477                         break;
478                 default:
479                         goto out;
480                 }
481                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
482                 mii_reg |= MII_CR_POWER_DOWN;
483                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
484                 msleep(1);
485         }
486 out:
487         return;
488 }
489
490 static void e1000_down_and_stop(struct e1000_adapter *adapter)
491 {
492         set_bit(__E1000_DOWN, &adapter->flags);
493         cancel_work_sync(&adapter->reset_task);
494         cancel_delayed_work_sync(&adapter->watchdog_task);
495         cancel_delayed_work_sync(&adapter->phy_info_task);
496         cancel_delayed_work_sync(&adapter->fifo_stall_task);
497 }
498
499 void e1000_down(struct e1000_adapter *adapter)
500 {
501         struct e1000_hw *hw = &adapter->hw;
502         struct net_device *netdev = adapter->netdev;
503         u32 rctl, tctl;
504
505
506         /* disable receives in the hardware */
507         rctl = er32(RCTL);
508         ew32(RCTL, rctl & ~E1000_RCTL_EN);
509         /* flush and sleep below */
510
511         netif_tx_disable(netdev);
512
513         /* disable transmits in the hardware */
514         tctl = er32(TCTL);
515         tctl &= ~E1000_TCTL_EN;
516         ew32(TCTL, tctl);
517         /* flush both disables and wait for them to finish */
518         E1000_WRITE_FLUSH();
519         msleep(10);
520
521         napi_disable(&adapter->napi);
522
523         e1000_irq_disable(adapter);
524
525         /*
526          * Setting DOWN must be after irq_disable to prevent
527          * a screaming interrupt.  Setting DOWN also prevents
528          * tasks from rescheduling.
529          */
530         e1000_down_and_stop(adapter);
531
532         adapter->link_speed = 0;
533         adapter->link_duplex = 0;
534         netif_carrier_off(netdev);
535
536         e1000_reset(adapter);
537         e1000_clean_all_tx_rings(adapter);
538         e1000_clean_all_rx_rings(adapter);
539 }
540
541 static void e1000_reinit_safe(struct e1000_adapter *adapter)
542 {
543         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
544                 msleep(1);
545         mutex_lock(&adapter->mutex);
546         e1000_down(adapter);
547         e1000_up(adapter);
548         mutex_unlock(&adapter->mutex);
549         clear_bit(__E1000_RESETTING, &adapter->flags);
550 }
551
552 void e1000_reinit_locked(struct e1000_adapter *adapter)
553 {
554         /* if rtnl_lock is not held the call path is bogus */
555         ASSERT_RTNL();
556         WARN_ON(in_interrupt());
557         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558                 msleep(1);
559         e1000_down(adapter);
560         e1000_up(adapter);
561         clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566         struct e1000_hw *hw = &adapter->hw;
567         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568         bool legacy_pba_adjust = false;
569         u16 hwm;
570
571         /* Repartition Pba for greater than 9k mtu
572          * To take effect CTRL.RST is required.
573          */
574
575         switch (hw->mac_type) {
576         case e1000_82542_rev2_0:
577         case e1000_82542_rev2_1:
578         case e1000_82543:
579         case e1000_82544:
580         case e1000_82540:
581         case e1000_82541:
582         case e1000_82541_rev_2:
583                 legacy_pba_adjust = true;
584                 pba = E1000_PBA_48K;
585                 break;
586         case e1000_82545:
587         case e1000_82545_rev_3:
588         case e1000_82546:
589         case e1000_ce4100:
590         case e1000_82546_rev_3:
591                 pba = E1000_PBA_48K;
592                 break;
593         case e1000_82547:
594         case e1000_82547_rev_2:
595                 legacy_pba_adjust = true;
596                 pba = E1000_PBA_30K;
597                 break;
598         case e1000_undefined:
599         case e1000_num_macs:
600                 break;
601         }
602
603         if (legacy_pba_adjust) {
604                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605                         pba -= 8; /* allocate more FIFO for Tx */
606
607                 if (hw->mac_type == e1000_82547) {
608                         adapter->tx_fifo_head = 0;
609                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610                         adapter->tx_fifo_size =
611                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612                         atomic_set(&adapter->tx_fifo_stall, 0);
613                 }
614         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
615                 /* adjust PBA for jumbo frames */
616                 ew32(PBA, pba);
617
618                 /* To maintain wire speed transmits, the Tx FIFO should be
619                  * large enough to accommodate two full transmit packets,
620                  * rounded up to the next 1KB and expressed in KB.  Likewise,
621                  * the Rx FIFO should be large enough to accommodate at least
622                  * one full receive packet and is similarly rounded up and
623                  * expressed in KB. */
624                 pba = er32(PBA);
625                 /* upper 16 bits has Tx packet buffer allocation size in KB */
626                 tx_space = pba >> 16;
627                 /* lower 16 bits has Rx packet buffer allocation size in KB */
628                 pba &= 0xffff;
629                 /*
630                  * the tx fifo also stores 16 bytes of information about the tx
631                  * but don't include ethernet FCS because hardware appends it
632                  */
633                 min_tx_space = (hw->max_frame_size +
634                                 sizeof(struct e1000_tx_desc) -
635                                 ETH_FCS_LEN) * 2;
636                 min_tx_space = ALIGN(min_tx_space, 1024);
637                 min_tx_space >>= 10;
638                 /* software strips receive CRC, so leave room for it */
639                 min_rx_space = hw->max_frame_size;
640                 min_rx_space = ALIGN(min_rx_space, 1024);
641                 min_rx_space >>= 10;
642
643                 /* If current Tx allocation is less than the min Tx FIFO size,
644                  * and the min Tx FIFO size is less than the current Rx FIFO
645                  * allocation, take space away from current Rx allocation */
646                 if (tx_space < min_tx_space &&
647                     ((min_tx_space - tx_space) < pba)) {
648                         pba = pba - (min_tx_space - tx_space);
649
650                         /* PCI/PCIx hardware has PBA alignment constraints */
651                         switch (hw->mac_type) {
652                         case e1000_82545 ... e1000_82546_rev_3:
653                                 pba &= ~(E1000_PBA_8K - 1);
654                                 break;
655                         default:
656                                 break;
657                         }
658
659                         /* if short on rx space, rx wins and must trump tx
660                          * adjustment or use Early Receive if available */
661                         if (pba < min_rx_space)
662                                 pba = min_rx_space;
663                 }
664         }
665
666         ew32(PBA, pba);
667
668         /*
669          * flow control settings:
670          * The high water mark must be low enough to fit one full frame
671          * (or the size used for early receive) above it in the Rx FIFO.
672          * Set it to the lower of:
673          * - 90% of the Rx FIFO size, and
674          * - the full Rx FIFO size minus the early receive size (for parts
675          *   with ERT support assuming ERT set to E1000_ERT_2048), or
676          * - the full Rx FIFO size minus one full frame
677          */
678         hwm = min(((pba << 10) * 9 / 10),
679                   ((pba << 10) - hw->max_frame_size));
680
681         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
682         hw->fc_low_water = hw->fc_high_water - 8;
683         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
684         hw->fc_send_xon = 1;
685         hw->fc = hw->original_fc;
686
687         /* Allow time for pending master requests to run */
688         e1000_reset_hw(hw);
689         if (hw->mac_type >= e1000_82544)
690                 ew32(WUC, 0);
691
692         if (e1000_init_hw(hw))
693                 e_dev_err("Hardware Error\n");
694         e1000_update_mng_vlan(adapter);
695
696         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
697         if (hw->mac_type >= e1000_82544 &&
698             hw->autoneg == 1 &&
699             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
700                 u32 ctrl = er32(CTRL);
701                 /* clear phy power management bit if we are in gig only mode,
702                  * which if enabled will attempt negotiation to 100Mb, which
703                  * can cause a loss of link at power off or driver unload */
704                 ctrl &= ~E1000_CTRL_SWDPIN3;
705                 ew32(CTRL, ctrl);
706         }
707
708         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
709         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
710
711         e1000_reset_adaptive(hw);
712         e1000_phy_get_info(hw, &adapter->phy_info);
713
714         e1000_release_manageability(adapter);
715 }
716
717 /**
718  *  Dump the eeprom for users having checksum issues
719  **/
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722         struct net_device *netdev = adapter->netdev;
723         struct ethtool_eeprom eeprom;
724         const struct ethtool_ops *ops = netdev->ethtool_ops;
725         u8 *data;
726         int i;
727         u16 csum_old, csum_new = 0;
728
729         eeprom.len = ops->get_eeprom_len(netdev);
730         eeprom.offset = 0;
731
732         data = kmalloc(eeprom.len, GFP_KERNEL);
733         if (!data)
734                 return;
735
736         ops->get_eeprom(netdev, &eeprom, data);
737
738         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741                 csum_new += data[i] + (data[i + 1] << 8);
742         csum_new = EEPROM_SUM - csum_new;
743
744         pr_err("/*********************/\n");
745         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746         pr_err("Calculated              : 0x%04x\n", csum_new);
747
748         pr_err("Offset    Values\n");
749         pr_err("========  ======\n");
750         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
752         pr_err("Include this output when contacting your support provider.\n");
753         pr_err("This is not a software error! Something bad happened to\n");
754         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755         pr_err("result in further problems, possibly loss of data,\n");
756         pr_err("corruption or system hangs!\n");
757         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758         pr_err("which is invalid and requires you to set the proper MAC\n");
759         pr_err("address manually before continuing to enable this network\n");
760         pr_err("device. Please inspect the EEPROM dump and report the\n");
761         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762         pr_err("/*********************/\n");
763
764         kfree(data);
765 }
766
767 /**
768  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769  * @pdev: PCI device information struct
770  *
771  * Return true if an adapter needs ioport resources
772  **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775         switch (pdev->device) {
776         case E1000_DEV_ID_82540EM:
777         case E1000_DEV_ID_82540EM_LOM:
778         case E1000_DEV_ID_82540EP:
779         case E1000_DEV_ID_82540EP_LOM:
780         case E1000_DEV_ID_82540EP_LP:
781         case E1000_DEV_ID_82541EI:
782         case E1000_DEV_ID_82541EI_MOBILE:
783         case E1000_DEV_ID_82541ER:
784         case E1000_DEV_ID_82541ER_LOM:
785         case E1000_DEV_ID_82541GI:
786         case E1000_DEV_ID_82541GI_LF:
787         case E1000_DEV_ID_82541GI_MOBILE:
788         case E1000_DEV_ID_82544EI_COPPER:
789         case E1000_DEV_ID_82544EI_FIBER:
790         case E1000_DEV_ID_82544GC_COPPER:
791         case E1000_DEV_ID_82544GC_LOM:
792         case E1000_DEV_ID_82545EM_COPPER:
793         case E1000_DEV_ID_82545EM_FIBER:
794         case E1000_DEV_ID_82546EB_COPPER:
795         case E1000_DEV_ID_82546EB_FIBER:
796         case E1000_DEV_ID_82546EB_QUAD_COPPER:
797                 return true;
798         default:
799                 return false;
800         }
801 }
802
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804         netdev_features_t features)
805 {
806         /*
807          * Since there is no support for separate rx/tx vlan accel
808          * enable/disable make sure tx flag is always in same state as rx.
809          */
810         if (features & NETIF_F_HW_VLAN_RX)
811                 features |= NETIF_F_HW_VLAN_TX;
812         else
813                 features &= ~NETIF_F_HW_VLAN_TX;
814
815         return features;
816 }
817
818 static int e1000_set_features(struct net_device *netdev,
819         netdev_features_t features)
820 {
821         struct e1000_adapter *adapter = netdev_priv(netdev);
822         netdev_features_t changed = features ^ netdev->features;
823
824         if (changed & NETIF_F_HW_VLAN_RX)
825                 e1000_vlan_mode(netdev, features);
826
827         if (!(changed & NETIF_F_RXCSUM))
828                 return 0;
829
830         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832         if (netif_running(netdev))
833                 e1000_reinit_locked(adapter);
834         else
835                 e1000_reset(adapter);
836
837         return 0;
838 }
839
840 static const struct net_device_ops e1000_netdev_ops = {
841         .ndo_open               = e1000_open,
842         .ndo_stop               = e1000_close,
843         .ndo_start_xmit         = e1000_xmit_frame,
844         .ndo_get_stats          = e1000_get_stats,
845         .ndo_set_rx_mode        = e1000_set_rx_mode,
846         .ndo_set_mac_address    = e1000_set_mac,
847         .ndo_tx_timeout         = e1000_tx_timeout,
848         .ndo_change_mtu         = e1000_change_mtu,
849         .ndo_do_ioctl           = e1000_ioctl,
850         .ndo_validate_addr      = eth_validate_addr,
851         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
852         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854         .ndo_poll_controller    = e1000_netpoll,
855 #endif
856         .ndo_fix_features       = e1000_fix_features,
857         .ndo_set_features       = e1000_set_features,
858 };
859
860 /**
861  * e1000_init_hw_struct - initialize members of hw struct
862  * @adapter: board private struct
863  * @hw: structure used by e1000_hw.c
864  *
865  * Factors out initialization of the e1000_hw struct to its own function
866  * that can be called very early at init (just after struct allocation).
867  * Fields are initialized based on PCI device information and
868  * OS network device settings (MTU size).
869  * Returns negative error codes if MAC type setup fails.
870  */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872                                 struct e1000_hw *hw)
873 {
874         struct pci_dev *pdev = adapter->pdev;
875
876         /* PCI config space info */
877         hw->vendor_id = pdev->vendor;
878         hw->device_id = pdev->device;
879         hw->subsystem_vendor_id = pdev->subsystem_vendor;
880         hw->subsystem_id = pdev->subsystem_device;
881         hw->revision_id = pdev->revision;
882
883         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885         hw->max_frame_size = adapter->netdev->mtu +
886                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889         /* identify the MAC */
890         if (e1000_set_mac_type(hw)) {
891                 e_err(probe, "Unknown MAC Type\n");
892                 return -EIO;
893         }
894
895         switch (hw->mac_type) {
896         default:
897                 break;
898         case e1000_82541:
899         case e1000_82547:
900         case e1000_82541_rev_2:
901         case e1000_82547_rev_2:
902                 hw->phy_init_script = 1;
903                 break;
904         }
905
906         e1000_set_media_type(hw);
907         e1000_get_bus_info(hw);
908
909         hw->wait_autoneg_complete = false;
910         hw->tbi_compatibility_en = true;
911         hw->adaptive_ifs = true;
912
913         /* Copper options */
914
915         if (hw->media_type == e1000_media_type_copper) {
916                 hw->mdix = AUTO_ALL_MODES;
917                 hw->disable_polarity_correction = false;
918                 hw->master_slave = E1000_MASTER_SLAVE;
919         }
920
921         return 0;
922 }
923
924 /**
925  * e1000_probe - Device Initialization Routine
926  * @pdev: PCI device information struct
927  * @ent: entry in e1000_pci_tbl
928  *
929  * Returns 0 on success, negative on failure
930  *
931  * e1000_probe initializes an adapter identified by a pci_dev structure.
932  * The OS initialization, configuring of the adapter private structure,
933  * and a hardware reset occur.
934  **/
935 static int __devinit e1000_probe(struct pci_dev *pdev,
936                                  const struct pci_device_id *ent)
937 {
938         struct net_device *netdev;
939         struct e1000_adapter *adapter;
940         struct e1000_hw *hw;
941
942         static int cards_found = 0;
943         static int global_quad_port_a = 0; /* global ksp3 port a indication */
944         int i, err, pci_using_dac;
945         u16 eeprom_data = 0;
946         u16 tmp = 0;
947         u16 eeprom_apme_mask = E1000_EEPROM_APME;
948         int bars, need_ioport;
949
950         /* do not allocate ioport bars when not needed */
951         need_ioport = e1000_is_need_ioport(pdev);
952         if (need_ioport) {
953                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
954                 err = pci_enable_device(pdev);
955         } else {
956                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
957                 err = pci_enable_device_mem(pdev);
958         }
959         if (err)
960                 return err;
961
962         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
963         if (err)
964                 goto err_pci_reg;
965
966         pci_set_master(pdev);
967         err = pci_save_state(pdev);
968         if (err)
969                 goto err_alloc_etherdev;
970
971         err = -ENOMEM;
972         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
973         if (!netdev)
974                 goto err_alloc_etherdev;
975
976         SET_NETDEV_DEV(netdev, &pdev->dev);
977
978         pci_set_drvdata(pdev, netdev);
979         adapter = netdev_priv(netdev);
980         adapter->netdev = netdev;
981         adapter->pdev = pdev;
982         adapter->msg_enable = (1 << debug) - 1;
983         adapter->bars = bars;
984         adapter->need_ioport = need_ioport;
985
986         hw = &adapter->hw;
987         hw->back = adapter;
988
989         err = -EIO;
990         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
991         if (!hw->hw_addr)
992                 goto err_ioremap;
993
994         if (adapter->need_ioport) {
995                 for (i = BAR_1; i <= BAR_5; i++) {
996                         if (pci_resource_len(pdev, i) == 0)
997                                 continue;
998                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
999                                 hw->io_base = pci_resource_start(pdev, i);
1000                                 break;
1001                         }
1002                 }
1003         }
1004
1005         /* make ready for any if (hw->...) below */
1006         err = e1000_init_hw_struct(adapter, hw);
1007         if (err)
1008                 goto err_sw_init;
1009
1010         /*
1011          * there is a workaround being applied below that limits
1012          * 64-bit DMA addresses to 64-bit hardware.  There are some
1013          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1014          */
1015         pci_using_dac = 0;
1016         if ((hw->bus_type == e1000_bus_type_pcix) &&
1017             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1018                 /*
1019                  * according to DMA-API-HOWTO, coherent calls will always
1020                  * succeed if the set call did
1021                  */
1022                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1023                 pci_using_dac = 1;
1024         } else {
1025                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1026                 if (err) {
1027                         pr_err("No usable DMA config, aborting\n");
1028                         goto err_dma;
1029                 }
1030                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1031         }
1032
1033         netdev->netdev_ops = &e1000_netdev_ops;
1034         e1000_set_ethtool_ops(netdev);
1035         netdev->watchdog_timeo = 5 * HZ;
1036         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1037
1038         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1039
1040         adapter->bd_number = cards_found;
1041
1042         /* setup the private structure */
1043
1044         err = e1000_sw_init(adapter);
1045         if (err)
1046                 goto err_sw_init;
1047
1048         err = -EIO;
1049         if (hw->mac_type == e1000_ce4100) {
1050                 hw->ce4100_gbe_mdio_base_virt =
1051                                         ioremap(pci_resource_start(pdev, BAR_1),
1052                                                 pci_resource_len(pdev, BAR_1));
1053
1054                 if (!hw->ce4100_gbe_mdio_base_virt)
1055                         goto err_mdio_ioremap;
1056         }
1057
1058         if (hw->mac_type >= e1000_82543) {
1059                 netdev->hw_features = NETIF_F_SG |
1060                                    NETIF_F_HW_CSUM |
1061                                    NETIF_F_HW_VLAN_RX;
1062                 netdev->features = NETIF_F_HW_VLAN_TX |
1063                                    NETIF_F_HW_VLAN_FILTER;
1064         }
1065
1066         if ((hw->mac_type >= e1000_82544) &&
1067            (hw->mac_type != e1000_82547))
1068                 netdev->hw_features |= NETIF_F_TSO;
1069
1070         netdev->features |= netdev->hw_features;
1071         netdev->hw_features |= NETIF_F_RXCSUM;
1072
1073         if (pci_using_dac) {
1074                 netdev->features |= NETIF_F_HIGHDMA;
1075                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1076         }
1077
1078         netdev->vlan_features |= NETIF_F_TSO;
1079         netdev->vlan_features |= NETIF_F_HW_CSUM;
1080         netdev->vlan_features |= NETIF_F_SG;
1081
1082         netdev->priv_flags |= IFF_UNICAST_FLT;
1083
1084         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1085
1086         /* initialize eeprom parameters */
1087         if (e1000_init_eeprom_params(hw)) {
1088                 e_err(probe, "EEPROM initialization failed\n");
1089                 goto err_eeprom;
1090         }
1091
1092         /* before reading the EEPROM, reset the controller to
1093          * put the device in a known good starting state */
1094
1095         e1000_reset_hw(hw);
1096
1097         /* make sure the EEPROM is good */
1098         if (e1000_validate_eeprom_checksum(hw) < 0) {
1099                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1100                 e1000_dump_eeprom(adapter);
1101                 /*
1102                  * set MAC address to all zeroes to invalidate and temporary
1103                  * disable this device for the user. This blocks regular
1104                  * traffic while still permitting ethtool ioctls from reaching
1105                  * the hardware as well as allowing the user to run the
1106                  * interface after manually setting a hw addr using
1107                  * `ip set address`
1108                  */
1109                 memset(hw->mac_addr, 0, netdev->addr_len);
1110         } else {
1111                 /* copy the MAC address out of the EEPROM */
1112                 if (e1000_read_mac_addr(hw))
1113                         e_err(probe, "EEPROM Read Error\n");
1114         }
1115         /* don't block initalization here due to bad MAC address */
1116         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1117         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1118
1119         if (!is_valid_ether_addr(netdev->perm_addr))
1120                 e_err(probe, "Invalid MAC Address\n");
1121
1122
1123         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1124         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1125                           e1000_82547_tx_fifo_stall_task);
1126         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1127         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1128
1129         e1000_check_options(adapter);
1130
1131         /* Initial Wake on LAN setting
1132          * If APM wake is enabled in the EEPROM,
1133          * enable the ACPI Magic Packet filter
1134          */
1135
1136         switch (hw->mac_type) {
1137         case e1000_82542_rev2_0:
1138         case e1000_82542_rev2_1:
1139         case e1000_82543:
1140                 break;
1141         case e1000_82544:
1142                 e1000_read_eeprom(hw,
1143                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1144                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1145                 break;
1146         case e1000_82546:
1147         case e1000_82546_rev_3:
1148                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1149                         e1000_read_eeprom(hw,
1150                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1151                         break;
1152                 }
1153                 /* Fall Through */
1154         default:
1155                 e1000_read_eeprom(hw,
1156                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1157                 break;
1158         }
1159         if (eeprom_data & eeprom_apme_mask)
1160                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1161
1162         /* now that we have the eeprom settings, apply the special cases
1163          * where the eeprom may be wrong or the board simply won't support
1164          * wake on lan on a particular port */
1165         switch (pdev->device) {
1166         case E1000_DEV_ID_82546GB_PCIE:
1167                 adapter->eeprom_wol = 0;
1168                 break;
1169         case E1000_DEV_ID_82546EB_FIBER:
1170         case E1000_DEV_ID_82546GB_FIBER:
1171                 /* Wake events only supported on port A for dual fiber
1172                  * regardless of eeprom setting */
1173                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1174                         adapter->eeprom_wol = 0;
1175                 break;
1176         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1177                 /* if quad port adapter, disable WoL on all but port A */
1178                 if (global_quad_port_a != 0)
1179                         adapter->eeprom_wol = 0;
1180                 else
1181                         adapter->quad_port_a = true;
1182                 /* Reset for multiple quad port adapters */
1183                 if (++global_quad_port_a == 4)
1184                         global_quad_port_a = 0;
1185                 break;
1186         }
1187
1188         /* initialize the wol settings based on the eeprom settings */
1189         adapter->wol = adapter->eeprom_wol;
1190         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1191
1192         /* Auto detect PHY address */
1193         if (hw->mac_type == e1000_ce4100) {
1194                 for (i = 0; i < 32; i++) {
1195                         hw->phy_addr = i;
1196                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1197                         if (tmp == 0 || tmp == 0xFF) {
1198                                 if (i == 31)
1199                                         goto err_eeprom;
1200                                 continue;
1201                         } else
1202                                 break;
1203                 }
1204         }
1205
1206         /* reset the hardware with the new settings */
1207         e1000_reset(adapter);
1208
1209         strcpy(netdev->name, "eth%d");
1210         err = register_netdev(netdev);
1211         if (err)
1212                 goto err_register;
1213
1214         e1000_vlan_mode(netdev, netdev->features);
1215
1216         /* print bus type/speed/width info */
1217         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1218                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1219                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1220                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1221                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1222                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1223                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1224                netdev->dev_addr);
1225
1226         /* carrier off reporting is important to ethtool even BEFORE open */
1227         netif_carrier_off(netdev);
1228
1229         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1230
1231         cards_found++;
1232         return 0;
1233
1234 err_register:
1235 err_eeprom:
1236         e1000_phy_hw_reset(hw);
1237
1238         if (hw->flash_address)
1239                 iounmap(hw->flash_address);
1240         kfree(adapter->tx_ring);
1241         kfree(adapter->rx_ring);
1242 err_dma:
1243 err_sw_init:
1244 err_mdio_ioremap:
1245         iounmap(hw->ce4100_gbe_mdio_base_virt);
1246         iounmap(hw->hw_addr);
1247 err_ioremap:
1248         free_netdev(netdev);
1249 err_alloc_etherdev:
1250         pci_release_selected_regions(pdev, bars);
1251 err_pci_reg:
1252         pci_disable_device(pdev);
1253         return err;
1254 }
1255
1256 /**
1257  * e1000_remove - Device Removal Routine
1258  * @pdev: PCI device information struct
1259  *
1260  * e1000_remove is called by the PCI subsystem to alert the driver
1261  * that it should release a PCI device.  The could be caused by a
1262  * Hot-Plug event, or because the driver is going to be removed from
1263  * memory.
1264  **/
1265
1266 static void __devexit e1000_remove(struct pci_dev *pdev)
1267 {
1268         struct net_device *netdev = pci_get_drvdata(pdev);
1269         struct e1000_adapter *adapter = netdev_priv(netdev);
1270         struct e1000_hw *hw = &adapter->hw;
1271
1272         e1000_down_and_stop(adapter);
1273         e1000_release_manageability(adapter);
1274
1275         unregister_netdev(netdev);
1276
1277         e1000_phy_hw_reset(hw);
1278
1279         kfree(adapter->tx_ring);
1280         kfree(adapter->rx_ring);
1281
1282         if (hw->mac_type == e1000_ce4100)
1283                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1284         iounmap(hw->hw_addr);
1285         if (hw->flash_address)
1286                 iounmap(hw->flash_address);
1287         pci_release_selected_regions(pdev, adapter->bars);
1288
1289         free_netdev(netdev);
1290
1291         pci_disable_device(pdev);
1292 }
1293
1294 /**
1295  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1296  * @adapter: board private structure to initialize
1297  *
1298  * e1000_sw_init initializes the Adapter private data structure.
1299  * e1000_init_hw_struct MUST be called before this function
1300  **/
1301
1302 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1303 {
1304         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1305
1306         adapter->num_tx_queues = 1;
1307         adapter->num_rx_queues = 1;
1308
1309         if (e1000_alloc_queues(adapter)) {
1310                 e_err(probe, "Unable to allocate memory for queues\n");
1311                 return -ENOMEM;
1312         }
1313
1314         /* Explicitly disable IRQ since the NIC can be in any state. */
1315         e1000_irq_disable(adapter);
1316
1317         spin_lock_init(&adapter->stats_lock);
1318         mutex_init(&adapter->mutex);
1319
1320         set_bit(__E1000_DOWN, &adapter->flags);
1321
1322         return 0;
1323 }
1324
1325 /**
1326  * e1000_alloc_queues - Allocate memory for all rings
1327  * @adapter: board private structure to initialize
1328  *
1329  * We allocate one ring per queue at run-time since we don't know the
1330  * number of queues at compile-time.
1331  **/
1332
1333 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1334 {
1335         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1336                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1337         if (!adapter->tx_ring)
1338                 return -ENOMEM;
1339
1340         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1341                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1342         if (!adapter->rx_ring) {
1343                 kfree(adapter->tx_ring);
1344                 return -ENOMEM;
1345         }
1346
1347         return E1000_SUCCESS;
1348 }
1349
1350 /**
1351  * e1000_open - Called when a network interface is made active
1352  * @netdev: network interface device structure
1353  *
1354  * Returns 0 on success, negative value on failure
1355  *
1356  * The open entry point is called when a network interface is made
1357  * active by the system (IFF_UP).  At this point all resources needed
1358  * for transmit and receive operations are allocated, the interrupt
1359  * handler is registered with the OS, the watchdog task is started,
1360  * and the stack is notified that the interface is ready.
1361  **/
1362
1363 static int e1000_open(struct net_device *netdev)
1364 {
1365         struct e1000_adapter *adapter = netdev_priv(netdev);
1366         struct e1000_hw *hw = &adapter->hw;
1367         int err;
1368
1369         /* disallow open during test */
1370         if (test_bit(__E1000_TESTING, &adapter->flags))
1371                 return -EBUSY;
1372
1373         netif_carrier_off(netdev);
1374
1375         /* allocate transmit descriptors */
1376         err = e1000_setup_all_tx_resources(adapter);
1377         if (err)
1378                 goto err_setup_tx;
1379
1380         /* allocate receive descriptors */
1381         err = e1000_setup_all_rx_resources(adapter);
1382         if (err)
1383                 goto err_setup_rx;
1384
1385         e1000_power_up_phy(adapter);
1386
1387         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388         if ((hw->mng_cookie.status &
1389                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390                 e1000_update_mng_vlan(adapter);
1391         }
1392
1393         /* before we allocate an interrupt, we must be ready to handle it.
1394          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395          * as soon as we call pci_request_irq, so we have to setup our
1396          * clean_rx handler before we do so.  */
1397         e1000_configure(adapter);
1398
1399         err = e1000_request_irq(adapter);
1400         if (err)
1401                 goto err_req_irq;
1402
1403         /* From here on the code is the same as e1000_up() */
1404         clear_bit(__E1000_DOWN, &adapter->flags);
1405
1406         napi_enable(&adapter->napi);
1407
1408         e1000_irq_enable(adapter);
1409
1410         netif_start_queue(netdev);
1411
1412         /* fire a link status change interrupt to start the watchdog */
1413         ew32(ICS, E1000_ICS_LSC);
1414
1415         return E1000_SUCCESS;
1416
1417 err_req_irq:
1418         e1000_power_down_phy(adapter);
1419         e1000_free_all_rx_resources(adapter);
1420 err_setup_rx:
1421         e1000_free_all_tx_resources(adapter);
1422 err_setup_tx:
1423         e1000_reset(adapter);
1424
1425         return err;
1426 }
1427
1428 /**
1429  * e1000_close - Disables a network interface
1430  * @netdev: network interface device structure
1431  *
1432  * Returns 0, this is not allowed to fail
1433  *
1434  * The close entry point is called when an interface is de-activated
1435  * by the OS.  The hardware is still under the drivers control, but
1436  * needs to be disabled.  A global MAC reset is issued to stop the
1437  * hardware, and all transmit and receive resources are freed.
1438  **/
1439
1440 static int e1000_close(struct net_device *netdev)
1441 {
1442         struct e1000_adapter *adapter = netdev_priv(netdev);
1443         struct e1000_hw *hw = &adapter->hw;
1444
1445         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1446         e1000_down(adapter);
1447         e1000_power_down_phy(adapter);
1448         e1000_free_irq(adapter);
1449
1450         e1000_free_all_tx_resources(adapter);
1451         e1000_free_all_rx_resources(adapter);
1452
1453         /* kill manageability vlan ID if supported, but not if a vlan with
1454          * the same ID is registered on the host OS (let 8021q kill it) */
1455         if ((hw->mng_cookie.status &
1456                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1457              !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1458                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1459         }
1460
1461         return 0;
1462 }
1463
1464 /**
1465  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1466  * @adapter: address of board private structure
1467  * @start: address of beginning of memory
1468  * @len: length of memory
1469  **/
1470 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1471                                   unsigned long len)
1472 {
1473         struct e1000_hw *hw = &adapter->hw;
1474         unsigned long begin = (unsigned long)start;
1475         unsigned long end = begin + len;
1476
1477         /* First rev 82545 and 82546 need to not allow any memory
1478          * write location to cross 64k boundary due to errata 23 */
1479         if (hw->mac_type == e1000_82545 ||
1480             hw->mac_type == e1000_ce4100 ||
1481             hw->mac_type == e1000_82546) {
1482                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1483         }
1484
1485         return true;
1486 }
1487
1488 /**
1489  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1490  * @adapter: board private structure
1491  * @txdr:    tx descriptor ring (for a specific queue) to setup
1492  *
1493  * Return 0 on success, negative on failure
1494  **/
1495
1496 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1497                                     struct e1000_tx_ring *txdr)
1498 {
1499         struct pci_dev *pdev = adapter->pdev;
1500         int size;
1501
1502         size = sizeof(struct e1000_buffer) * txdr->count;
1503         txdr->buffer_info = vzalloc(size);
1504         if (!txdr->buffer_info) {
1505                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1506                       "ring\n");
1507                 return -ENOMEM;
1508         }
1509
1510         /* round up to nearest 4K */
1511
1512         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1513         txdr->size = ALIGN(txdr->size, 4096);
1514
1515         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1516                                         GFP_KERNEL);
1517         if (!txdr->desc) {
1518 setup_tx_desc_die:
1519                 vfree(txdr->buffer_info);
1520                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1521                       "ring\n");
1522                 return -ENOMEM;
1523         }
1524
1525         /* Fix for errata 23, can't cross 64kB boundary */
1526         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1527                 void *olddesc = txdr->desc;
1528                 dma_addr_t olddma = txdr->dma;
1529                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1530                       txdr->size, txdr->desc);
1531                 /* Try again, without freeing the previous */
1532                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1533                                                 &txdr->dma, GFP_KERNEL);
1534                 /* Failed allocation, critical failure */
1535                 if (!txdr->desc) {
1536                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1537                                           olddma);
1538                         goto setup_tx_desc_die;
1539                 }
1540
1541                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1542                         /* give up */
1543                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1544                                           txdr->dma);
1545                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1546                                           olddma);
1547                         e_err(probe, "Unable to allocate aligned memory "
1548                               "for the transmit descriptor ring\n");
1549                         vfree(txdr->buffer_info);
1550                         return -ENOMEM;
1551                 } else {
1552                         /* Free old allocation, new allocation was successful */
1553                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1554                                           olddma);
1555                 }
1556         }
1557         memset(txdr->desc, 0, txdr->size);
1558
1559         txdr->next_to_use = 0;
1560         txdr->next_to_clean = 0;
1561
1562         return 0;
1563 }
1564
1565 /**
1566  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1567  *                                (Descriptors) for all queues
1568  * @adapter: board private structure
1569  *
1570  * Return 0 on success, negative on failure
1571  **/
1572
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574 {
1575         int i, err = 0;
1576
1577         for (i = 0; i < adapter->num_tx_queues; i++) {
1578                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579                 if (err) {
1580                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581                         for (i-- ; i >= 0; i--)
1582                                 e1000_free_tx_resources(adapter,
1583                                                         &adapter->tx_ring[i]);
1584                         break;
1585                 }
1586         }
1587
1588         return err;
1589 }
1590
1591 /**
1592  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593  * @adapter: board private structure
1594  *
1595  * Configure the Tx unit of the MAC after a reset.
1596  **/
1597
1598 static void e1000_configure_tx(struct e1000_adapter *adapter)
1599 {
1600         u64 tdba;
1601         struct e1000_hw *hw = &adapter->hw;
1602         u32 tdlen, tctl, tipg;
1603         u32 ipgr1, ipgr2;
1604
1605         /* Setup the HW Tx Head and Tail descriptor pointers */
1606
1607         switch (adapter->num_tx_queues) {
1608         case 1:
1609         default:
1610                 tdba = adapter->tx_ring[0].dma;
1611                 tdlen = adapter->tx_ring[0].count *
1612                         sizeof(struct e1000_tx_desc);
1613                 ew32(TDLEN, tdlen);
1614                 ew32(TDBAH, (tdba >> 32));
1615                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1616                 ew32(TDT, 0);
1617                 ew32(TDH, 0);
1618                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1619                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1620                 break;
1621         }
1622
1623         /* Set the default values for the Tx Inter Packet Gap timer */
1624         if ((hw->media_type == e1000_media_type_fiber ||
1625              hw->media_type == e1000_media_type_internal_serdes))
1626                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1627         else
1628                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1629
1630         switch (hw->mac_type) {
1631         case e1000_82542_rev2_0:
1632         case e1000_82542_rev2_1:
1633                 tipg = DEFAULT_82542_TIPG_IPGT;
1634                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1635                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1636                 break;
1637         default:
1638                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1639                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1640                 break;
1641         }
1642         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1643         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1644         ew32(TIPG, tipg);
1645
1646         /* Set the Tx Interrupt Delay register */
1647
1648         ew32(TIDV, adapter->tx_int_delay);
1649         if (hw->mac_type >= e1000_82540)
1650                 ew32(TADV, adapter->tx_abs_int_delay);
1651
1652         /* Program the Transmit Control Register */
1653
1654         tctl = er32(TCTL);
1655         tctl &= ~E1000_TCTL_CT;
1656         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1657                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1658
1659         e1000_config_collision_dist(hw);
1660
1661         /* Setup Transmit Descriptor Settings for eop descriptor */
1662         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1663
1664         /* only set IDE if we are delaying interrupts using the timers */
1665         if (adapter->tx_int_delay)
1666                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1667
1668         if (hw->mac_type < e1000_82543)
1669                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1670         else
1671                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1672
1673         /* Cache if we're 82544 running in PCI-X because we'll
1674          * need this to apply a workaround later in the send path. */
1675         if (hw->mac_type == e1000_82544 &&
1676             hw->bus_type == e1000_bus_type_pcix)
1677                 adapter->pcix_82544 = true;
1678
1679         ew32(TCTL, tctl);
1680
1681 }
1682
1683 /**
1684  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685  * @adapter: board private structure
1686  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1687  *
1688  * Returns 0 on success, negative on failure
1689  **/
1690
1691 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1692                                     struct e1000_rx_ring *rxdr)
1693 {
1694         struct pci_dev *pdev = adapter->pdev;
1695         int size, desc_len;
1696
1697         size = sizeof(struct e1000_buffer) * rxdr->count;
1698         rxdr->buffer_info = vzalloc(size);
1699         if (!rxdr->buffer_info) {
1700                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1701                       "ring\n");
1702                 return -ENOMEM;
1703         }
1704
1705         desc_len = sizeof(struct e1000_rx_desc);
1706
1707         /* Round up to nearest 4K */
1708
1709         rxdr->size = rxdr->count * desc_len;
1710         rxdr->size = ALIGN(rxdr->size, 4096);
1711
1712         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1713                                         GFP_KERNEL);
1714
1715         if (!rxdr->desc) {
1716                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1717                       "ring\n");
1718 setup_rx_desc_die:
1719                 vfree(rxdr->buffer_info);
1720                 return -ENOMEM;
1721         }
1722
1723         /* Fix for errata 23, can't cross 64kB boundary */
1724         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1725                 void *olddesc = rxdr->desc;
1726                 dma_addr_t olddma = rxdr->dma;
1727                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1728                       rxdr->size, rxdr->desc);
1729                 /* Try again, without freeing the previous */
1730                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1731                                                 &rxdr->dma, GFP_KERNEL);
1732                 /* Failed allocation, critical failure */
1733                 if (!rxdr->desc) {
1734                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735                                           olddma);
1736                         e_err(probe, "Unable to allocate memory for the Rx "
1737                               "descriptor ring\n");
1738                         goto setup_rx_desc_die;
1739                 }
1740
1741                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1742                         /* give up */
1743                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1744                                           rxdr->dma);
1745                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746                                           olddma);
1747                         e_err(probe, "Unable to allocate aligned memory for "
1748                               "the Rx descriptor ring\n");
1749                         goto setup_rx_desc_die;
1750                 } else {
1751                         /* Free old allocation, new allocation was successful */
1752                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1753                                           olddma);
1754                 }
1755         }
1756         memset(rxdr->desc, 0, rxdr->size);
1757
1758         rxdr->next_to_clean = 0;
1759         rxdr->next_to_use = 0;
1760         rxdr->rx_skb_top = NULL;
1761
1762         return 0;
1763 }
1764
1765 /**
1766  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1767  *                                (Descriptors) for all queues
1768  * @adapter: board private structure
1769  *
1770  * Return 0 on success, negative on failure
1771  **/
1772
1773 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1774 {
1775         int i, err = 0;
1776
1777         for (i = 0; i < adapter->num_rx_queues; i++) {
1778                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1779                 if (err) {
1780                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1781                         for (i-- ; i >= 0; i--)
1782                                 e1000_free_rx_resources(adapter,
1783                                                         &adapter->rx_ring[i]);
1784                         break;
1785                 }
1786         }
1787
1788         return err;
1789 }
1790
1791 /**
1792  * e1000_setup_rctl - configure the receive control registers
1793  * @adapter: Board private structure
1794  **/
1795 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1796 {
1797         struct e1000_hw *hw = &adapter->hw;
1798         u32 rctl;
1799
1800         rctl = er32(RCTL);
1801
1802         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1803
1804         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1805                 E1000_RCTL_RDMTS_HALF |
1806                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1807
1808         if (hw->tbi_compatibility_on == 1)
1809                 rctl |= E1000_RCTL_SBP;
1810         else
1811                 rctl &= ~E1000_RCTL_SBP;
1812
1813         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1814                 rctl &= ~E1000_RCTL_LPE;
1815         else
1816                 rctl |= E1000_RCTL_LPE;
1817
1818         /* Setup buffer sizes */
1819         rctl &= ~E1000_RCTL_SZ_4096;
1820         rctl |= E1000_RCTL_BSEX;
1821         switch (adapter->rx_buffer_len) {
1822                 case E1000_RXBUFFER_2048:
1823                 default:
1824                         rctl |= E1000_RCTL_SZ_2048;
1825                         rctl &= ~E1000_RCTL_BSEX;
1826                         break;
1827                 case E1000_RXBUFFER_4096:
1828                         rctl |= E1000_RCTL_SZ_4096;
1829                         break;
1830                 case E1000_RXBUFFER_8192:
1831                         rctl |= E1000_RCTL_SZ_8192;
1832                         break;
1833                 case E1000_RXBUFFER_16384:
1834                         rctl |= E1000_RCTL_SZ_16384;
1835                         break;
1836         }
1837
1838         ew32(RCTL, rctl);
1839 }
1840
1841 /**
1842  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1843  * @adapter: board private structure
1844  *
1845  * Configure the Rx unit of the MAC after a reset.
1846  **/
1847
1848 static void e1000_configure_rx(struct e1000_adapter *adapter)
1849 {
1850         u64 rdba;
1851         struct e1000_hw *hw = &adapter->hw;
1852         u32 rdlen, rctl, rxcsum;
1853
1854         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855                 rdlen = adapter->rx_ring[0].count *
1856                         sizeof(struct e1000_rx_desc);
1857                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859         } else {
1860                 rdlen = adapter->rx_ring[0].count *
1861                         sizeof(struct e1000_rx_desc);
1862                 adapter->clean_rx = e1000_clean_rx_irq;
1863                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864         }
1865
1866         /* disable receives while setting up the descriptors */
1867         rctl = er32(RCTL);
1868         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870         /* set the Receive Delay Timer Register */
1871         ew32(RDTR, adapter->rx_int_delay);
1872
1873         if (hw->mac_type >= e1000_82540) {
1874                 ew32(RADV, adapter->rx_abs_int_delay);
1875                 if (adapter->itr_setting != 0)
1876                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1877         }
1878
1879         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1880          * the Base and Length of the Rx Descriptor Ring */
1881         switch (adapter->num_rx_queues) {
1882         case 1:
1883         default:
1884                 rdba = adapter->rx_ring[0].dma;
1885                 ew32(RDLEN, rdlen);
1886                 ew32(RDBAH, (rdba >> 32));
1887                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1888                 ew32(RDT, 0);
1889                 ew32(RDH, 0);
1890                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1891                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1892                 break;
1893         }
1894
1895         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1896         if (hw->mac_type >= e1000_82543) {
1897                 rxcsum = er32(RXCSUM);
1898                 if (adapter->rx_csum)
1899                         rxcsum |= E1000_RXCSUM_TUOFL;
1900                 else
1901                         /* don't need to clear IPPCSE as it defaults to 0 */
1902                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1903                 ew32(RXCSUM, rxcsum);
1904         }
1905
1906         /* Enable Receives */
1907         ew32(RCTL, rctl | E1000_RCTL_EN);
1908 }
1909
1910 /**
1911  * e1000_free_tx_resources - Free Tx Resources per Queue
1912  * @adapter: board private structure
1913  * @tx_ring: Tx descriptor ring for a specific queue
1914  *
1915  * Free all transmit software resources
1916  **/
1917
1918 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1919                                     struct e1000_tx_ring *tx_ring)
1920 {
1921         struct pci_dev *pdev = adapter->pdev;
1922
1923         e1000_clean_tx_ring(adapter, tx_ring);
1924
1925         vfree(tx_ring->buffer_info);
1926         tx_ring->buffer_info = NULL;
1927
1928         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1929                           tx_ring->dma);
1930
1931         tx_ring->desc = NULL;
1932 }
1933
1934 /**
1935  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1936  * @adapter: board private structure
1937  *
1938  * Free all transmit software resources
1939  **/
1940
1941 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1942 {
1943         int i;
1944
1945         for (i = 0; i < adapter->num_tx_queues; i++)
1946                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1947 }
1948
1949 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1950                                              struct e1000_buffer *buffer_info)
1951 {
1952         if (buffer_info->dma) {
1953                 if (buffer_info->mapped_as_page)
1954                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1955                                        buffer_info->length, DMA_TO_DEVICE);
1956                 else
1957                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1958                                          buffer_info->length,
1959                                          DMA_TO_DEVICE);
1960                 buffer_info->dma = 0;
1961         }
1962         if (buffer_info->skb) {
1963                 dev_kfree_skb_any(buffer_info->skb);
1964                 buffer_info->skb = NULL;
1965         }
1966         buffer_info->time_stamp = 0;
1967         /* buffer_info must be completely set up in the transmit path */
1968 }
1969
1970 /**
1971  * e1000_clean_tx_ring - Free Tx Buffers
1972  * @adapter: board private structure
1973  * @tx_ring: ring to be cleaned
1974  **/
1975
1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977                                 struct e1000_tx_ring *tx_ring)
1978 {
1979         struct e1000_hw *hw = &adapter->hw;
1980         struct e1000_buffer *buffer_info;
1981         unsigned long size;
1982         unsigned int i;
1983
1984         /* Free all the Tx ring sk_buffs */
1985
1986         for (i = 0; i < tx_ring->count; i++) {
1987                 buffer_info = &tx_ring->buffer_info[i];
1988                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989         }
1990
1991         size = sizeof(struct e1000_buffer) * tx_ring->count;
1992         memset(tx_ring->buffer_info, 0, size);
1993
1994         /* Zero out the descriptor ring */
1995
1996         memset(tx_ring->desc, 0, tx_ring->size);
1997
1998         tx_ring->next_to_use = 0;
1999         tx_ring->next_to_clean = 0;
2000         tx_ring->last_tx_tso = false;
2001
2002         writel(0, hw->hw_addr + tx_ring->tdh);
2003         writel(0, hw->hw_addr + tx_ring->tdt);
2004 }
2005
2006 /**
2007  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2008  * @adapter: board private structure
2009  **/
2010
2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012 {
2013         int i;
2014
2015         for (i = 0; i < adapter->num_tx_queues; i++)
2016                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017 }
2018
2019 /**
2020  * e1000_free_rx_resources - Free Rx Resources
2021  * @adapter: board private structure
2022  * @rx_ring: ring to clean the resources from
2023  *
2024  * Free all receive software resources
2025  **/
2026
2027 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2028                                     struct e1000_rx_ring *rx_ring)
2029 {
2030         struct pci_dev *pdev = adapter->pdev;
2031
2032         e1000_clean_rx_ring(adapter, rx_ring);
2033
2034         vfree(rx_ring->buffer_info);
2035         rx_ring->buffer_info = NULL;
2036
2037         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2038                           rx_ring->dma);
2039
2040         rx_ring->desc = NULL;
2041 }
2042
2043 /**
2044  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2045  * @adapter: board private structure
2046  *
2047  * Free all receive software resources
2048  **/
2049
2050 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2051 {
2052         int i;
2053
2054         for (i = 0; i < adapter->num_rx_queues; i++)
2055                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2056 }
2057
2058 /**
2059  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2060  * @adapter: board private structure
2061  * @rx_ring: ring to free buffers from
2062  **/
2063
2064 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2065                                 struct e1000_rx_ring *rx_ring)
2066 {
2067         struct e1000_hw *hw = &adapter->hw;
2068         struct e1000_buffer *buffer_info;
2069         struct pci_dev *pdev = adapter->pdev;
2070         unsigned long size;
2071         unsigned int i;
2072
2073         /* Free all the Rx ring sk_buffs */
2074         for (i = 0; i < rx_ring->count; i++) {
2075                 buffer_info = &rx_ring->buffer_info[i];
2076                 if (buffer_info->dma &&
2077                     adapter->clean_rx == e1000_clean_rx_irq) {
2078                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2079                                          buffer_info->length,
2080                                          DMA_FROM_DEVICE);
2081                 } else if (buffer_info->dma &&
2082                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2083                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2084                                        buffer_info->length,
2085                                        DMA_FROM_DEVICE);
2086                 }
2087
2088                 buffer_info->dma = 0;
2089                 if (buffer_info->page) {
2090                         put_page(buffer_info->page);
2091                         buffer_info->page = NULL;
2092                 }
2093                 if (buffer_info->skb) {
2094                         dev_kfree_skb(buffer_info->skb);
2095                         buffer_info->skb = NULL;
2096                 }
2097         }
2098
2099         /* there also may be some cached data from a chained receive */
2100         if (rx_ring->rx_skb_top) {
2101                 dev_kfree_skb(rx_ring->rx_skb_top);
2102                 rx_ring->rx_skb_top = NULL;
2103         }
2104
2105         size = sizeof(struct e1000_buffer) * rx_ring->count;
2106         memset(rx_ring->buffer_info, 0, size);
2107
2108         /* Zero out the descriptor ring */
2109         memset(rx_ring->desc, 0, rx_ring->size);
2110
2111         rx_ring->next_to_clean = 0;
2112         rx_ring->next_to_use = 0;
2113
2114         writel(0, hw->hw_addr + rx_ring->rdh);
2115         writel(0, hw->hw_addr + rx_ring->rdt);
2116 }
2117
2118 /**
2119  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2120  * @adapter: board private structure
2121  **/
2122
2123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2124 {
2125         int i;
2126
2127         for (i = 0; i < adapter->num_rx_queues; i++)
2128                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2129 }
2130
2131 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2132  * and memory write and invalidate disabled for certain operations
2133  */
2134 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2135 {
2136         struct e1000_hw *hw = &adapter->hw;
2137         struct net_device *netdev = adapter->netdev;
2138         u32 rctl;
2139
2140         e1000_pci_clear_mwi(hw);
2141
2142         rctl = er32(RCTL);
2143         rctl |= E1000_RCTL_RST;
2144         ew32(RCTL, rctl);
2145         E1000_WRITE_FLUSH();
2146         mdelay(5);
2147
2148         if (netif_running(netdev))
2149                 e1000_clean_all_rx_rings(adapter);
2150 }
2151
2152 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2153 {
2154         struct e1000_hw *hw = &adapter->hw;
2155         struct net_device *netdev = adapter->netdev;
2156         u32 rctl;
2157
2158         rctl = er32(RCTL);
2159         rctl &= ~E1000_RCTL_RST;
2160         ew32(RCTL, rctl);
2161         E1000_WRITE_FLUSH();
2162         mdelay(5);
2163
2164         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2165                 e1000_pci_set_mwi(hw);
2166
2167         if (netif_running(netdev)) {
2168                 /* No need to loop, because 82542 supports only 1 queue */
2169                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2170                 e1000_configure_rx(adapter);
2171                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2172         }
2173 }
2174
2175 /**
2176  * e1000_set_mac - Change the Ethernet Address of the NIC
2177  * @netdev: network interface device structure
2178  * @p: pointer to an address structure
2179  *
2180  * Returns 0 on success, negative on failure
2181  **/
2182
2183 static int e1000_set_mac(struct net_device *netdev, void *p)
2184 {
2185         struct e1000_adapter *adapter = netdev_priv(netdev);
2186         struct e1000_hw *hw = &adapter->hw;
2187         struct sockaddr *addr = p;
2188
2189         if (!is_valid_ether_addr(addr->sa_data))
2190                 return -EADDRNOTAVAIL;
2191
2192         /* 82542 2.0 needs to be in reset to write receive address registers */
2193
2194         if (hw->mac_type == e1000_82542_rev2_0)
2195                 e1000_enter_82542_rst(adapter);
2196
2197         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2198         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2199
2200         e1000_rar_set(hw, hw->mac_addr, 0);
2201
2202         if (hw->mac_type == e1000_82542_rev2_0)
2203                 e1000_leave_82542_rst(adapter);
2204
2205         return 0;
2206 }
2207
2208 /**
2209  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2210  * @netdev: network interface device structure
2211  *
2212  * The set_rx_mode entry point is called whenever the unicast or multicast
2213  * address lists or the network interface flags are updated. This routine is
2214  * responsible for configuring the hardware for proper unicast, multicast,
2215  * promiscuous mode, and all-multi behavior.
2216  **/
2217
2218 static void e1000_set_rx_mode(struct net_device *netdev)
2219 {
2220         struct e1000_adapter *adapter = netdev_priv(netdev);
2221         struct e1000_hw *hw = &adapter->hw;
2222         struct netdev_hw_addr *ha;
2223         bool use_uc = false;
2224         u32 rctl;
2225         u32 hash_value;
2226         int i, rar_entries = E1000_RAR_ENTRIES;
2227         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2228         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2229
2230         if (!mcarray) {
2231                 e_err(probe, "memory allocation failed\n");
2232                 return;
2233         }
2234
2235         /* Check for Promiscuous and All Multicast modes */
2236
2237         rctl = er32(RCTL);
2238
2239         if (netdev->flags & IFF_PROMISC) {
2240                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2241                 rctl &= ~E1000_RCTL_VFE;
2242         } else {
2243                 if (netdev->flags & IFF_ALLMULTI)
2244                         rctl |= E1000_RCTL_MPE;
2245                 else
2246                         rctl &= ~E1000_RCTL_MPE;
2247                 /* Enable VLAN filter if there is a VLAN */
2248                 if (e1000_vlan_used(adapter))
2249                         rctl |= E1000_RCTL_VFE;
2250         }
2251
2252         if (netdev_uc_count(netdev) > rar_entries - 1) {
2253                 rctl |= E1000_RCTL_UPE;
2254         } else if (!(netdev->flags & IFF_PROMISC)) {
2255                 rctl &= ~E1000_RCTL_UPE;
2256                 use_uc = true;
2257         }
2258
2259         ew32(RCTL, rctl);
2260
2261         /* 82542 2.0 needs to be in reset to write receive address registers */
2262
2263         if (hw->mac_type == e1000_82542_rev2_0)
2264                 e1000_enter_82542_rst(adapter);
2265
2266         /* load the first 14 addresses into the exact filters 1-14. Unicast
2267          * addresses take precedence to avoid disabling unicast filtering
2268          * when possible.
2269          *
2270          * RAR 0 is used for the station MAC address
2271          * if there are not 14 addresses, go ahead and clear the filters
2272          */
2273         i = 1;
2274         if (use_uc)
2275                 netdev_for_each_uc_addr(ha, netdev) {
2276                         if (i == rar_entries)
2277                                 break;
2278                         e1000_rar_set(hw, ha->addr, i++);
2279                 }
2280
2281         netdev_for_each_mc_addr(ha, netdev) {
2282                 if (i == rar_entries) {
2283                         /* load any remaining addresses into the hash table */
2284                         u32 hash_reg, hash_bit, mta;
2285                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2286                         hash_reg = (hash_value >> 5) & 0x7F;
2287                         hash_bit = hash_value & 0x1F;
2288                         mta = (1 << hash_bit);
2289                         mcarray[hash_reg] |= mta;
2290                 } else {
2291                         e1000_rar_set(hw, ha->addr, i++);
2292                 }
2293         }
2294
2295         for (; i < rar_entries; i++) {
2296                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2297                 E1000_WRITE_FLUSH();
2298                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2299                 E1000_WRITE_FLUSH();
2300         }
2301
2302         /* write the hash table completely, write from bottom to avoid
2303          * both stupid write combining chipsets, and flushing each write */
2304         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2305                 /*
2306                  * If we are on an 82544 has an errata where writing odd
2307                  * offsets overwrites the previous even offset, but writing
2308                  * backwards over the range solves the issue by always
2309                  * writing the odd offset first
2310                  */
2311                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2312         }
2313         E1000_WRITE_FLUSH();
2314
2315         if (hw->mac_type == e1000_82542_rev2_0)
2316                 e1000_leave_82542_rst(adapter);
2317
2318         kfree(mcarray);
2319 }
2320
2321 /**
2322  * e1000_update_phy_info_task - get phy info
2323  * @work: work struct contained inside adapter struct
2324  *
2325  * Need to wait a few seconds after link up to get diagnostic information from
2326  * the phy
2327  */
2328 static void e1000_update_phy_info_task(struct work_struct *work)
2329 {
2330         struct e1000_adapter *adapter = container_of(work,
2331                                                      struct e1000_adapter,
2332                                                      phy_info_task.work);
2333         if (test_bit(__E1000_DOWN, &adapter->flags))
2334                 return;
2335         mutex_lock(&adapter->mutex);
2336         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2337         mutex_unlock(&adapter->mutex);
2338 }
2339
2340 /**
2341  * e1000_82547_tx_fifo_stall_task - task to complete work
2342  * @work: work struct contained inside adapter struct
2343  **/
2344 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2345 {
2346         struct e1000_adapter *adapter = container_of(work,
2347                                                      struct e1000_adapter,
2348                                                      fifo_stall_task.work);
2349         struct e1000_hw *hw = &adapter->hw;
2350         struct net_device *netdev = adapter->netdev;
2351         u32 tctl;
2352
2353         if (test_bit(__E1000_DOWN, &adapter->flags))
2354                 return;
2355         mutex_lock(&adapter->mutex);
2356         if (atomic_read(&adapter->tx_fifo_stall)) {
2357                 if ((er32(TDT) == er32(TDH)) &&
2358                    (er32(TDFT) == er32(TDFH)) &&
2359                    (er32(TDFTS) == er32(TDFHS))) {
2360                         tctl = er32(TCTL);
2361                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2362                         ew32(TDFT, adapter->tx_head_addr);
2363                         ew32(TDFH, adapter->tx_head_addr);
2364                         ew32(TDFTS, adapter->tx_head_addr);
2365                         ew32(TDFHS, adapter->tx_head_addr);
2366                         ew32(TCTL, tctl);
2367                         E1000_WRITE_FLUSH();
2368
2369                         adapter->tx_fifo_head = 0;
2370                         atomic_set(&adapter->tx_fifo_stall, 0);
2371                         netif_wake_queue(netdev);
2372                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2373                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2374                 }
2375         }
2376         mutex_unlock(&adapter->mutex);
2377 }
2378
2379 bool e1000_has_link(struct e1000_adapter *adapter)
2380 {
2381         struct e1000_hw *hw = &adapter->hw;
2382         bool link_active = false;
2383
2384         /* get_link_status is set on LSC (link status) interrupt or rx
2385          * sequence error interrupt (except on intel ce4100).
2386          * get_link_status will stay false until the
2387          * e1000_check_for_link establishes link for copper adapters
2388          * ONLY
2389          */
2390         switch (hw->media_type) {
2391         case e1000_media_type_copper:
2392                 if (hw->mac_type == e1000_ce4100)
2393                         hw->get_link_status = 1;
2394                 if (hw->get_link_status) {
2395                         e1000_check_for_link(hw);
2396                         link_active = !hw->get_link_status;
2397                 } else {
2398                         link_active = true;
2399                 }
2400                 break;
2401         case e1000_media_type_fiber:
2402                 e1000_check_for_link(hw);
2403                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2404                 break;
2405         case e1000_media_type_internal_serdes:
2406                 e1000_check_for_link(hw);
2407                 link_active = hw->serdes_has_link;
2408                 break;
2409         default:
2410                 break;
2411         }
2412
2413         return link_active;
2414 }
2415
2416 /**
2417  * e1000_watchdog - work function
2418  * @work: work struct contained inside adapter struct
2419  **/
2420 static void e1000_watchdog(struct work_struct *work)
2421 {
2422         struct e1000_adapter *adapter = container_of(work,
2423                                                      struct e1000_adapter,
2424                                                      watchdog_task.work);
2425         struct e1000_hw *hw = &adapter->hw;
2426         struct net_device *netdev = adapter->netdev;
2427         struct e1000_tx_ring *txdr = adapter->tx_ring;
2428         u32 link, tctl;
2429
2430         if (test_bit(__E1000_DOWN, &adapter->flags))
2431                 return;
2432
2433         mutex_lock(&adapter->mutex);
2434         link = e1000_has_link(adapter);
2435         if ((netif_carrier_ok(netdev)) && link)
2436                 goto link_up;
2437
2438         if (link) {
2439                 if (!netif_carrier_ok(netdev)) {
2440                         u32 ctrl;
2441                         bool txb2b = true;
2442                         /* update snapshot of PHY registers on LSC */
2443                         e1000_get_speed_and_duplex(hw,
2444                                                    &adapter->link_speed,
2445                                                    &adapter->link_duplex);
2446
2447                         ctrl = er32(CTRL);
2448                         pr_info("%s NIC Link is Up %d Mbps %s, "
2449                                 "Flow Control: %s\n",
2450                                 netdev->name,
2451                                 adapter->link_speed,
2452                                 adapter->link_duplex == FULL_DUPLEX ?
2453                                 "Full Duplex" : "Half Duplex",
2454                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2455                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2456                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2457                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2458
2459                         /* adjust timeout factor according to speed/duplex */
2460                         adapter->tx_timeout_factor = 1;
2461                         switch (adapter->link_speed) {
2462                         case SPEED_10:
2463                                 txb2b = false;
2464                                 adapter->tx_timeout_factor = 16;
2465                                 break;
2466                         case SPEED_100:
2467                                 txb2b = false;
2468                                 /* maybe add some timeout factor ? */
2469                                 break;
2470                         }
2471
2472                         /* enable transmits in the hardware */
2473                         tctl = er32(TCTL);
2474                         tctl |= E1000_TCTL_EN;
2475                         ew32(TCTL, tctl);
2476
2477                         netif_carrier_on(netdev);
2478                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2479                                 schedule_delayed_work(&adapter->phy_info_task,
2480                                                       2 * HZ);
2481                         adapter->smartspeed = 0;
2482                 }
2483         } else {
2484                 if (netif_carrier_ok(netdev)) {
2485                         adapter->link_speed = 0;
2486                         adapter->link_duplex = 0;
2487                         pr_info("%s NIC Link is Down\n",
2488                                 netdev->name);
2489                         netif_carrier_off(netdev);
2490
2491                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2492                                 schedule_delayed_work(&adapter->phy_info_task,
2493                                                       2 * HZ);
2494                 }
2495
2496                 e1000_smartspeed(adapter);
2497         }
2498
2499 link_up:
2500         e1000_update_stats(adapter);
2501
2502         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2503         adapter->tpt_old = adapter->stats.tpt;
2504         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2505         adapter->colc_old = adapter->stats.colc;
2506
2507         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2508         adapter->gorcl_old = adapter->stats.gorcl;
2509         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2510         adapter->gotcl_old = adapter->stats.gotcl;
2511
2512         e1000_update_adaptive(hw);
2513
2514         if (!netif_carrier_ok(netdev)) {
2515                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2516                         /* We've lost link, so the controller stops DMA,
2517                          * but we've got queued Tx work that's never going
2518                          * to get done, so reset controller to flush Tx.
2519                          * (Do the reset outside of interrupt context). */
2520                         adapter->tx_timeout_count++;
2521                         schedule_work(&adapter->reset_task);
2522                         /* exit immediately since reset is imminent */
2523                         goto unlock;
2524                 }
2525         }
2526
2527         /* Simple mode for Interrupt Throttle Rate (ITR) */
2528         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2529                 /*
2530                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2531                  * Total asymmetrical Tx or Rx gets ITR=8000;
2532                  * everyone else is between 2000-8000.
2533                  */
2534                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2535                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2536                             adapter->gotcl - adapter->gorcl :
2537                             adapter->gorcl - adapter->gotcl) / 10000;
2538                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2539
2540                 ew32(ITR, 1000000000 / (itr * 256));
2541         }
2542
2543         /* Cause software interrupt to ensure rx ring is cleaned */
2544         ew32(ICS, E1000_ICS_RXDMT0);
2545
2546         /* Force detection of hung controller every watchdog period */
2547         adapter->detect_tx_hung = true;
2548
2549         /* Reschedule the task */
2550         if (!test_bit(__E1000_DOWN, &adapter->flags))
2551                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2552
2553 unlock:
2554         mutex_unlock(&adapter->mutex);
2555 }
2556
2557 enum latency_range {
2558         lowest_latency = 0,
2559         low_latency = 1,
2560         bulk_latency = 2,
2561         latency_invalid = 255
2562 };
2563
2564 /**
2565  * e1000_update_itr - update the dynamic ITR value based on statistics
2566  * @adapter: pointer to adapter
2567  * @itr_setting: current adapter->itr
2568  * @packets: the number of packets during this measurement interval
2569  * @bytes: the number of bytes during this measurement interval
2570  *
2571  *      Stores a new ITR value based on packets and byte
2572  *      counts during the last interrupt.  The advantage of per interrupt
2573  *      computation is faster updates and more accurate ITR for the current
2574  *      traffic pattern.  Constants in this function were computed
2575  *      based on theoretical maximum wire speed and thresholds were set based
2576  *      on testing data as well as attempting to minimize response time
2577  *      while increasing bulk throughput.
2578  *      this functionality is controlled by the InterruptThrottleRate module
2579  *      parameter (see e1000_param.c)
2580  **/
2581 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2582                                      u16 itr_setting, int packets, int bytes)
2583 {
2584         unsigned int retval = itr_setting;
2585         struct e1000_hw *hw = &adapter->hw;
2586
2587         if (unlikely(hw->mac_type < e1000_82540))
2588                 goto update_itr_done;
2589
2590         if (packets == 0)
2591                 goto update_itr_done;
2592
2593         switch (itr_setting) {
2594         case lowest_latency:
2595                 /* jumbo frames get bulk treatment*/
2596                 if (bytes/packets > 8000)
2597                         retval = bulk_latency;
2598                 else if ((packets < 5) && (bytes > 512))
2599                         retval = low_latency;
2600                 break;
2601         case low_latency:  /* 50 usec aka 20000 ints/s */
2602                 if (bytes > 10000) {
2603                         /* jumbo frames need bulk latency setting */
2604                         if (bytes/packets > 8000)
2605                                 retval = bulk_latency;
2606                         else if ((packets < 10) || ((bytes/packets) > 1200))
2607                                 retval = bulk_latency;
2608                         else if ((packets > 35))
2609                                 retval = lowest_latency;
2610                 } else if (bytes/packets > 2000)
2611                         retval = bulk_latency;
2612                 else if (packets <= 2 && bytes < 512)
2613                         retval = lowest_latency;
2614                 break;
2615         case bulk_latency: /* 250 usec aka 4000 ints/s */
2616                 if (bytes > 25000) {
2617                         if (packets > 35)
2618                                 retval = low_latency;
2619                 } else if (bytes < 6000) {
2620                         retval = low_latency;
2621                 }
2622                 break;
2623         }
2624
2625 update_itr_done:
2626         return retval;
2627 }
2628
2629 static void e1000_set_itr(struct e1000_adapter *adapter)
2630 {
2631         struct e1000_hw *hw = &adapter->hw;
2632         u16 current_itr;
2633         u32 new_itr = adapter->itr;
2634
2635         if (unlikely(hw->mac_type < e1000_82540))
2636                 return;
2637
2638         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2639         if (unlikely(adapter->link_speed != SPEED_1000)) {
2640                 current_itr = 0;
2641                 new_itr = 4000;
2642                 goto set_itr_now;
2643         }
2644
2645         adapter->tx_itr = e1000_update_itr(adapter,
2646                                     adapter->tx_itr,
2647                                     adapter->total_tx_packets,
2648                                     adapter->total_tx_bytes);
2649         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2650         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2651                 adapter->tx_itr = low_latency;
2652
2653         adapter->rx_itr = e1000_update_itr(adapter,
2654                                     adapter->rx_itr,
2655                                     adapter->total_rx_packets,
2656                                     adapter->total_rx_bytes);
2657         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659                 adapter->rx_itr = low_latency;
2660
2661         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663         switch (current_itr) {
2664         /* counts and packets in update_itr are dependent on these numbers */
2665         case lowest_latency:
2666                 new_itr = 70000;
2667                 break;
2668         case low_latency:
2669                 new_itr = 20000; /* aka hwitr = ~200 */
2670                 break;
2671         case bulk_latency:
2672                 new_itr = 4000;
2673                 break;
2674         default:
2675                 break;
2676         }
2677
2678 set_itr_now:
2679         if (new_itr != adapter->itr) {
2680                 /* this attempts to bias the interrupt rate towards Bulk
2681                  * by adding intermediate steps when interrupt rate is
2682                  * increasing */
2683                 new_itr = new_itr > adapter->itr ?
2684                              min(adapter->itr + (new_itr >> 2), new_itr) :
2685                              new_itr;
2686                 adapter->itr = new_itr;
2687                 ew32(ITR, 1000000000 / (new_itr * 256));
2688         }
2689 }
2690
2691 #define E1000_TX_FLAGS_CSUM             0x00000001
2692 #define E1000_TX_FLAGS_VLAN             0x00000002
2693 #define E1000_TX_FLAGS_TSO              0x00000004
2694 #define E1000_TX_FLAGS_IPV4             0x00000008
2695 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2696 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2697
2698 static int e1000_tso(struct e1000_adapter *adapter,
2699                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2700 {
2701         struct e1000_context_desc *context_desc;
2702         struct e1000_buffer *buffer_info;
2703         unsigned int i;
2704         u32 cmd_length = 0;
2705         u16 ipcse = 0, tucse, mss;
2706         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2707         int err;
2708
2709         if (skb_is_gso(skb)) {
2710                 if (skb_header_cloned(skb)) {
2711                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2712                         if (err)
2713                                 return err;
2714                 }
2715
2716                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2717                 mss = skb_shinfo(skb)->gso_size;
2718                 if (skb->protocol == htons(ETH_P_IP)) {
2719                         struct iphdr *iph = ip_hdr(skb);
2720                         iph->tot_len = 0;
2721                         iph->check = 0;
2722                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2723                                                                  iph->daddr, 0,
2724                                                                  IPPROTO_TCP,
2725                                                                  0);
2726                         cmd_length = E1000_TXD_CMD_IP;
2727                         ipcse = skb_transport_offset(skb) - 1;
2728                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2729                         ipv6_hdr(skb)->payload_len = 0;
2730                         tcp_hdr(skb)->check =
2731                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2732                                                  &ipv6_hdr(skb)->daddr,
2733                                                  0, IPPROTO_TCP, 0);
2734                         ipcse = 0;
2735                 }
2736                 ipcss = skb_network_offset(skb);
2737                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2738                 tucss = skb_transport_offset(skb);
2739                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2740                 tucse = 0;
2741
2742                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2743                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2744
2745                 i = tx_ring->next_to_use;
2746                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2747                 buffer_info = &tx_ring->buffer_info[i];
2748
2749                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2750                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2751                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2752                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2753                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2754                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2755                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2756                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2757                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2758
2759                 buffer_info->time_stamp = jiffies;
2760                 buffer_info->next_to_watch = i;
2761
2762                 if (++i == tx_ring->count) i = 0;
2763                 tx_ring->next_to_use = i;
2764
2765                 return true;
2766         }
2767         return false;
2768 }
2769
2770 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2771                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2772 {
2773         struct e1000_context_desc *context_desc;
2774         struct e1000_buffer *buffer_info;
2775         unsigned int i;
2776         u8 css;
2777         u32 cmd_len = E1000_TXD_CMD_DEXT;
2778
2779         if (skb->ip_summed != CHECKSUM_PARTIAL)
2780                 return false;
2781
2782         switch (skb->protocol) {
2783         case cpu_to_be16(ETH_P_IP):
2784                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2785                         cmd_len |= E1000_TXD_CMD_TCP;
2786                 break;
2787         case cpu_to_be16(ETH_P_IPV6):
2788                 /* XXX not handling all IPV6 headers */
2789                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2790                         cmd_len |= E1000_TXD_CMD_TCP;
2791                 break;
2792         default:
2793                 if (unlikely(net_ratelimit()))
2794                         e_warn(drv, "checksum_partial proto=%x!\n",
2795                                skb->protocol);
2796                 break;
2797         }
2798
2799         css = skb_checksum_start_offset(skb);
2800
2801         i = tx_ring->next_to_use;
2802         buffer_info = &tx_ring->buffer_info[i];
2803         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2804
2805         context_desc->lower_setup.ip_config = 0;
2806         context_desc->upper_setup.tcp_fields.tucss = css;
2807         context_desc->upper_setup.tcp_fields.tucso =
2808                 css + skb->csum_offset;
2809         context_desc->upper_setup.tcp_fields.tucse = 0;
2810         context_desc->tcp_seg_setup.data = 0;
2811         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2812
2813         buffer_info->time_stamp = jiffies;
2814         buffer_info->next_to_watch = i;
2815
2816         if (unlikely(++i == tx_ring->count)) i = 0;
2817         tx_ring->next_to_use = i;
2818
2819         return true;
2820 }
2821
2822 #define E1000_MAX_TXD_PWR       12
2823 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2824
2825 static int e1000_tx_map(struct e1000_adapter *adapter,
2826                         struct e1000_tx_ring *tx_ring,
2827                         struct sk_buff *skb, unsigned int first,
2828                         unsigned int max_per_txd, unsigned int nr_frags,
2829                         unsigned int mss)
2830 {
2831         struct e1000_hw *hw = &adapter->hw;
2832         struct pci_dev *pdev = adapter->pdev;
2833         struct e1000_buffer *buffer_info;
2834         unsigned int len = skb_headlen(skb);
2835         unsigned int offset = 0, size, count = 0, i;
2836         unsigned int f, bytecount, segs;
2837
2838         i = tx_ring->next_to_use;
2839
2840         while (len) {
2841                 buffer_info = &tx_ring->buffer_info[i];
2842                 size = min(len, max_per_txd);
2843                 /* Workaround for Controller erratum --
2844                  * descriptor for non-tso packet in a linear SKB that follows a
2845                  * tso gets written back prematurely before the data is fully
2846                  * DMA'd to the controller */
2847                 if (!skb->data_len && tx_ring->last_tx_tso &&
2848                     !skb_is_gso(skb)) {
2849                         tx_ring->last_tx_tso = false;
2850                         size -= 4;
2851                 }
2852
2853                 /* Workaround for premature desc write-backs
2854                  * in TSO mode.  Append 4-byte sentinel desc */
2855                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2856                         size -= 4;
2857                 /* work-around for errata 10 and it applies
2858                  * to all controllers in PCI-X mode
2859                  * The fix is to make sure that the first descriptor of a
2860                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861                  */
2862                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863                                 (size > 2015) && count == 0))
2864                         size = 2015;
2865
2866                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2867                  * terminating buffers within evenly-aligned dwords. */
2868                 if (unlikely(adapter->pcix_82544 &&
2869                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2870                    size > 4))
2871                         size -= 4;
2872
2873                 buffer_info->length = size;
2874                 /* set time_stamp *before* dma to help avoid a possible race */
2875                 buffer_info->time_stamp = jiffies;
2876                 buffer_info->mapped_as_page = false;
2877                 buffer_info->dma = dma_map_single(&pdev->dev,
2878                                                   skb->data + offset,
2879                                                   size, DMA_TO_DEVICE);
2880                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2881                         goto dma_error;
2882                 buffer_info->next_to_watch = i;
2883
2884                 len -= size;
2885                 offset += size;
2886                 count++;
2887                 if (len) {
2888                         i++;
2889                         if (unlikely(i == tx_ring->count))
2890                                 i = 0;
2891                 }
2892         }
2893
2894         for (f = 0; f < nr_frags; f++) {
2895                 const struct skb_frag_struct *frag;
2896
2897                 frag = &skb_shinfo(skb)->frags[f];
2898                 len = skb_frag_size(frag);
2899                 offset = 0;
2900
2901                 while (len) {
2902                         unsigned long bufend;
2903                         i++;
2904                         if (unlikely(i == tx_ring->count))
2905                                 i = 0;
2906
2907                         buffer_info = &tx_ring->buffer_info[i];
2908                         size = min(len, max_per_txd);
2909                         /* Workaround for premature desc write-backs
2910                          * in TSO mode.  Append 4-byte sentinel desc */
2911                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2912                                 size -= 4;
2913                         /* Workaround for potential 82544 hang in PCI-X.
2914                          * Avoid terminating buffers within evenly-aligned
2915                          * dwords. */
2916                         bufend = (unsigned long)
2917                                 page_to_phys(skb_frag_page(frag));
2918                         bufend += offset + size - 1;
2919                         if (unlikely(adapter->pcix_82544 &&
2920                                      !(bufend & 4) &&
2921                                      size > 4))
2922                                 size -= 4;
2923
2924                         buffer_info->length = size;
2925                         buffer_info->time_stamp = jiffies;
2926                         buffer_info->mapped_as_page = true;
2927                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2928                                                 offset, size, DMA_TO_DEVICE);
2929                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2930                                 goto dma_error;
2931                         buffer_info->next_to_watch = i;
2932
2933                         len -= size;
2934                         offset += size;
2935                         count++;
2936                 }
2937         }
2938
2939         segs = skb_shinfo(skb)->gso_segs ?: 1;
2940         /* multiply data chunks by size of headers */
2941         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2942
2943         tx_ring->buffer_info[i].skb = skb;
2944         tx_ring->buffer_info[i].segs = segs;
2945         tx_ring->buffer_info[i].bytecount = bytecount;
2946         tx_ring->buffer_info[first].next_to_watch = i;
2947
2948         return count;
2949
2950 dma_error:
2951         dev_err(&pdev->dev, "TX DMA map failed\n");
2952         buffer_info->dma = 0;
2953         if (count)
2954                 count--;
2955
2956         while (count--) {
2957                 if (i==0)
2958                         i += tx_ring->count;
2959                 i--;
2960                 buffer_info = &tx_ring->buffer_info[i];
2961                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2962         }
2963
2964         return 0;
2965 }
2966
2967 static void e1000_tx_queue(struct e1000_adapter *adapter,
2968                            struct e1000_tx_ring *tx_ring, int tx_flags,
2969                            int count)
2970 {
2971         struct e1000_hw *hw = &adapter->hw;
2972         struct e1000_tx_desc *tx_desc = NULL;
2973         struct e1000_buffer *buffer_info;
2974         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975         unsigned int i;
2976
2977         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979                              E1000_TXD_CMD_TSE;
2980                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981
2982                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984         }
2985
2986         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989         }
2990
2991         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992                 txd_lower |= E1000_TXD_CMD_VLE;
2993                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994         }
2995
2996         i = tx_ring->next_to_use;
2997
2998         while (count--) {
2999                 buffer_info = &tx_ring->buffer_info[i];
3000                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3001                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3002                 tx_desc->lower.data =
3003                         cpu_to_le32(txd_lower | buffer_info->length);
3004                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3005                 if (unlikely(++i == tx_ring->count)) i = 0;
3006         }
3007
3008         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3009
3010         /* Force memory writes to complete before letting h/w
3011          * know there are new descriptors to fetch.  (Only
3012          * applicable for weak-ordered memory model archs,
3013          * such as IA-64). */
3014         wmb();
3015
3016         tx_ring->next_to_use = i;
3017         writel(i, hw->hw_addr + tx_ring->tdt);
3018         /* we need this if more than one processor can write to our tail
3019          * at a time, it syncronizes IO on IA64/Altix systems */
3020         mmiowb();
3021 }
3022
3023 /**
3024  * 82547 workaround to avoid controller hang in half-duplex environment.
3025  * The workaround is to avoid queuing a large packet that would span
3026  * the internal Tx FIFO ring boundary by notifying the stack to resend
3027  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3028  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3029  * to the beginning of the Tx FIFO.
3030  **/
3031
3032 #define E1000_FIFO_HDR                  0x10
3033 #define E1000_82547_PAD_LEN             0x3E0
3034
3035 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3036                                        struct sk_buff *skb)
3037 {
3038         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3039         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3040
3041         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3042
3043         if (adapter->link_duplex != HALF_DUPLEX)
3044                 goto no_fifo_stall_required;
3045
3046         if (atomic_read(&adapter->tx_fifo_stall))
3047                 return 1;
3048
3049         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3050                 atomic_set(&adapter->tx_fifo_stall, 1);
3051                 return 1;
3052         }
3053
3054 no_fifo_stall_required:
3055         adapter->tx_fifo_head += skb_fifo_len;
3056         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3057                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3058         return 0;
3059 }
3060
3061 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3062 {
3063         struct e1000_adapter *adapter = netdev_priv(netdev);
3064         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3065
3066         netif_stop_queue(netdev);
3067         /* Herbert's original patch had:
3068          *  smp_mb__after_netif_stop_queue();
3069          * but since that doesn't exist yet, just open code it. */
3070         smp_mb();
3071
3072         /* We need to check again in a case another CPU has just
3073          * made room available. */
3074         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3075                 return -EBUSY;
3076
3077         /* A reprieve! */
3078         netif_start_queue(netdev);
3079         ++adapter->restart_queue;
3080         return 0;
3081 }
3082
3083 static int e1000_maybe_stop_tx(struct net_device *netdev,
3084                                struct e1000_tx_ring *tx_ring, int size)
3085 {
3086         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3087                 return 0;
3088         return __e1000_maybe_stop_tx(netdev, size);
3089 }
3090
3091 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3092 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3093                                     struct net_device *netdev)
3094 {
3095         struct e1000_adapter *adapter = netdev_priv(netdev);
3096         struct e1000_hw *hw = &adapter->hw;
3097         struct e1000_tx_ring *tx_ring;
3098         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3099         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3100         unsigned int tx_flags = 0;
3101         unsigned int len = skb_headlen(skb);
3102         unsigned int nr_frags;
3103         unsigned int mss;
3104         int count = 0;
3105         int tso;
3106         unsigned int f;
3107
3108         /* This goes back to the question of how to logically map a tx queue
3109          * to a flow.  Right now, performance is impacted slightly negatively
3110          * if using multiple tx queues.  If the stack breaks away from a
3111          * single qdisc implementation, we can look at this again. */
3112         tx_ring = adapter->tx_ring;
3113
3114         if (unlikely(skb->len <= 0)) {
3115                 dev_kfree_skb_any(skb);
3116                 return NETDEV_TX_OK;
3117         }
3118
3119         mss = skb_shinfo(skb)->gso_size;
3120         /* The controller does a simple calculation to
3121          * make sure there is enough room in the FIFO before
3122          * initiating the DMA for each buffer.  The calc is:
3123          * 4 = ceil(buffer len/mss).  To make sure we don't
3124          * overrun the FIFO, adjust the max buffer len if mss
3125          * drops. */
3126         if (mss) {
3127                 u8 hdr_len;
3128                 max_per_txd = min(mss << 2, max_per_txd);
3129                 max_txd_pwr = fls(max_per_txd) - 1;
3130
3131                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3132                 if (skb->data_len && hdr_len == len) {
3133                         switch (hw->mac_type) {
3134                                 unsigned int pull_size;
3135                         case e1000_82544:
3136                                 /* Make sure we have room to chop off 4 bytes,
3137                                  * and that the end alignment will work out to
3138                                  * this hardware's requirements
3139                                  * NOTE: this is a TSO only workaround
3140                                  * if end byte alignment not correct move us
3141                                  * into the next dword */
3142                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3143                                         break;
3144                                 /* fall through */
3145                                 pull_size = min((unsigned int)4, skb->data_len);
3146                                 if (!__pskb_pull_tail(skb, pull_size)) {
3147                                         e_err(drv, "__pskb_pull_tail "
3148                                               "failed.\n");
3149                                         dev_kfree_skb_any(skb);
3150                                         return NETDEV_TX_OK;
3151                                 }
3152                                 len = skb_headlen(skb);
3153                                 break;
3154                         default:
3155                                 /* do nothing */
3156                                 break;
3157                         }
3158                 }
3159         }
3160
3161         /* reserve a descriptor for the offload context */
3162         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3163                 count++;
3164         count++;
3165
3166         /* Controller Erratum workaround */
3167         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3168                 count++;
3169
3170         count += TXD_USE_COUNT(len, max_txd_pwr);
3171
3172         if (adapter->pcix_82544)
3173                 count++;
3174
3175         /* work-around for errata 10 and it applies to all controllers
3176          * in PCI-X mode, so add one more descriptor to the count
3177          */
3178         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3179                         (len > 2015)))
3180                 count++;
3181
3182         nr_frags = skb_shinfo(skb)->nr_frags;
3183         for (f = 0; f < nr_frags; f++)
3184                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3185                                        max_txd_pwr);
3186         if (adapter->pcix_82544)
3187                 count += nr_frags;
3188
3189         /* need: count + 2 desc gap to keep tail from touching
3190          * head, otherwise try next time */
3191         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3192                 return NETDEV_TX_BUSY;
3193
3194         if (unlikely((hw->mac_type == e1000_82547) &&
3195                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3196                 netif_stop_queue(netdev);
3197                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3198                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3199                 return NETDEV_TX_BUSY;
3200         }
3201
3202         if (vlan_tx_tag_present(skb)) {
3203                 tx_flags |= E1000_TX_FLAGS_VLAN;
3204                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3205         }
3206
3207         first = tx_ring->next_to_use;
3208
3209         tso = e1000_tso(adapter, tx_ring, skb);
3210         if (tso < 0) {
3211                 dev_kfree_skb_any(skb);
3212                 return NETDEV_TX_OK;
3213         }
3214
3215         if (likely(tso)) {
3216                 if (likely(hw->mac_type != e1000_82544))
3217                         tx_ring->last_tx_tso = true;
3218                 tx_flags |= E1000_TX_FLAGS_TSO;
3219         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3220                 tx_flags |= E1000_TX_FLAGS_CSUM;
3221
3222         if (likely(skb->protocol == htons(ETH_P_IP)))
3223                 tx_flags |= E1000_TX_FLAGS_IPV4;
3224
3225         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3226                              nr_frags, mss);
3227
3228         if (count) {
3229                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3230                 /* Make sure there is space in the ring for the next send. */
3231                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3232
3233         } else {
3234                 dev_kfree_skb_any(skb);
3235                 tx_ring->buffer_info[first].time_stamp = 0;
3236                 tx_ring->next_to_use = first;
3237         }
3238
3239         return NETDEV_TX_OK;
3240 }
3241
3242 /**
3243  * e1000_tx_timeout - Respond to a Tx Hang
3244  * @netdev: network interface device structure
3245  **/
3246
3247 static void e1000_tx_timeout(struct net_device *netdev)
3248 {
3249         struct e1000_adapter *adapter = netdev_priv(netdev);
3250
3251         /* Do the reset outside of interrupt context */
3252         adapter->tx_timeout_count++;
3253         schedule_work(&adapter->reset_task);
3254 }
3255
3256 static void e1000_reset_task(struct work_struct *work)
3257 {
3258         struct e1000_adapter *adapter =
3259                 container_of(work, struct e1000_adapter, reset_task);
3260
3261         if (test_bit(__E1000_DOWN, &adapter->flags))
3262                 return;
3263         e1000_reinit_safe(adapter);
3264 }
3265
3266 /**
3267  * e1000_get_stats - Get System Network Statistics
3268  * @netdev: network interface device structure
3269  *
3270  * Returns the address of the device statistics structure.
3271  * The statistics are actually updated from the watchdog.
3272  **/
3273
3274 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3275 {
3276         /* only return the current stats */
3277         return &netdev->stats;
3278 }
3279
3280 /**
3281  * e1000_change_mtu - Change the Maximum Transfer Unit
3282  * @netdev: network interface device structure
3283  * @new_mtu: new value for maximum frame size
3284  *
3285  * Returns 0 on success, negative on failure
3286  **/
3287
3288 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3289 {
3290         struct e1000_adapter *adapter = netdev_priv(netdev);
3291         struct e1000_hw *hw = &adapter->hw;
3292         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3293
3294         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3295             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3296                 e_err(probe, "Invalid MTU setting\n");
3297                 return -EINVAL;
3298         }
3299
3300         /* Adapter-specific max frame size limits. */
3301         switch (hw->mac_type) {
3302         case e1000_undefined ... e1000_82542_rev2_1:
3303                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3304                         e_err(probe, "Jumbo Frames not supported.\n");
3305                         return -EINVAL;
3306                 }
3307                 break;
3308         default:
3309                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3310                 break;
3311         }
3312
3313         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3314                 msleep(1);
3315         /* e1000_down has a dependency on max_frame_size */
3316         hw->max_frame_size = max_frame;
3317         if (netif_running(netdev))
3318                 e1000_down(adapter);
3319
3320         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3321          * means we reserve 2 more, this pushes us to allocate from the next
3322          * larger slab size.
3323          * i.e. RXBUFFER_2048 --> size-4096 slab
3324          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3325          *  fragmented skbs */
3326
3327         if (max_frame <= E1000_RXBUFFER_2048)
3328                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3329         else
3330 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3331                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3332 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3333                 adapter->rx_buffer_len = PAGE_SIZE;
3334 #endif
3335
3336         /* adjust allocation if LPE protects us, and we aren't using SBP */
3337         if (!hw->tbi_compatibility_on &&
3338             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3339              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3340                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3341
3342         pr_info("%s changing MTU from %d to %d\n",
3343                 netdev->name, netdev->mtu, new_mtu);
3344         netdev->mtu = new_mtu;
3345
3346         if (netif_running(netdev))
3347                 e1000_up(adapter);
3348         else
3349                 e1000_reset(adapter);
3350
3351         clear_bit(__E1000_RESETTING, &adapter->flags);
3352
3353         return 0;
3354 }
3355
3356 /**
3357  * e1000_update_stats - Update the board statistics counters
3358  * @adapter: board private structure
3359  **/
3360
3361 void e1000_update_stats(struct e1000_adapter *adapter)
3362 {
3363         struct net_device *netdev = adapter->netdev;
3364         struct e1000_hw *hw = &adapter->hw;
3365         struct pci_dev *pdev = adapter->pdev;
3366         unsigned long flags;
3367         u16 phy_tmp;
3368
3369 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3370
3371         /*
3372          * Prevent stats update while adapter is being reset, or if the pci
3373          * connection is down.
3374          */
3375         if (adapter->link_speed == 0)
3376                 return;
3377         if (pci_channel_offline(pdev))
3378                 return;
3379
3380         spin_lock_irqsave(&adapter->stats_lock, flags);
3381
3382         /* these counters are modified from e1000_tbi_adjust_stats,
3383          * called from the interrupt context, so they must only
3384          * be written while holding adapter->stats_lock
3385          */
3386
3387         adapter->stats.crcerrs += er32(CRCERRS);
3388         adapter->stats.gprc += er32(GPRC);
3389         adapter->stats.gorcl += er32(GORCL);
3390         adapter->stats.gorch += er32(GORCH);
3391         adapter->stats.bprc += er32(BPRC);
3392         adapter->stats.mprc += er32(MPRC);
3393         adapter->stats.roc += er32(ROC);
3394
3395         adapter->stats.prc64 += er32(PRC64);
3396         adapter->stats.prc127 += er32(PRC127);
3397         adapter->stats.prc255 += er32(PRC255);
3398         adapter->stats.prc511 += er32(PRC511);
3399         adapter->stats.prc1023 += er32(PRC1023);
3400         adapter->stats.prc1522 += er32(PRC1522);
3401
3402         adapter->stats.symerrs += er32(SYMERRS);
3403         adapter->stats.mpc += er32(MPC);
3404         adapter->stats.scc += er32(SCC);
3405         adapter->stats.ecol += er32(ECOL);
3406         adapter->stats.mcc += er32(MCC);
3407         adapter->stats.latecol += er32(LATECOL);
3408         adapter->stats.dc += er32(DC);
3409         adapter->stats.sec += er32(SEC);
3410         adapter->stats.rlec += er32(RLEC);
3411         adapter->stats.xonrxc += er32(XONRXC);
3412         adapter->stats.xontxc += er32(XONTXC);
3413         adapter->stats.xoffrxc += er32(XOFFRXC);
3414         adapter->stats.xofftxc += er32(XOFFTXC);
3415         adapter->stats.fcruc += er32(FCRUC);
3416         adapter->stats.gptc += er32(GPTC);
3417         adapter->stats.gotcl += er32(GOTCL);
3418         adapter->stats.gotch += er32(GOTCH);
3419         adapter->stats.rnbc += er32(RNBC);
3420         adapter->stats.ruc += er32(RUC);
3421         adapter->stats.rfc += er32(RFC);
3422         adapter->stats.rjc += er32(RJC);
3423         adapter->stats.torl += er32(TORL);
3424         adapter->stats.torh += er32(TORH);
3425         adapter->stats.totl += er32(TOTL);
3426         adapter->stats.toth += er32(TOTH);
3427         adapter->stats.tpr += er32(TPR);
3428
3429         adapter->stats.ptc64 += er32(PTC64);
3430         adapter->stats.ptc127 += er32(PTC127);
3431         adapter->stats.ptc255 += er32(PTC255);
3432         adapter->stats.ptc511 += er32(PTC511);
3433         adapter->stats.ptc1023 += er32(PTC1023);
3434         adapter->stats.ptc1522 += er32(PTC1522);
3435
3436         adapter->stats.mptc += er32(MPTC);
3437         adapter->stats.bptc += er32(BPTC);
3438
3439         /* used for adaptive IFS */
3440
3441         hw->tx_packet_delta = er32(TPT);
3442         adapter->stats.tpt += hw->tx_packet_delta;
3443         hw->collision_delta = er32(COLC);
3444         adapter->stats.colc += hw->collision_delta;
3445
3446         if (hw->mac_type >= e1000_82543) {
3447                 adapter->stats.algnerrc += er32(ALGNERRC);
3448                 adapter->stats.rxerrc += er32(RXERRC);
3449                 adapter->stats.tncrs += er32(TNCRS);
3450                 adapter->stats.cexterr += er32(CEXTERR);
3451                 adapter->stats.tsctc += er32(TSCTC);
3452                 adapter->stats.tsctfc += er32(TSCTFC);
3453         }
3454
3455         /* Fill out the OS statistics structure */
3456         netdev->stats.multicast = adapter->stats.mprc;
3457         netdev->stats.collisions = adapter->stats.colc;
3458
3459         /* Rx Errors */
3460
3461         /* RLEC on some newer hardware can be incorrect so build
3462         * our own version based on RUC and ROC */
3463         netdev->stats.rx_errors = adapter->stats.rxerrc +
3464                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3465                 adapter->stats.ruc + adapter->stats.roc +
3466                 adapter->stats.cexterr;
3467         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3468         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3469         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3470         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3471         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3472
3473         /* Tx Errors */
3474         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3475         netdev->stats.tx_errors = adapter->stats.txerrc;
3476         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3477         netdev->stats.tx_window_errors = adapter->stats.latecol;
3478         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3479         if (hw->bad_tx_carr_stats_fd &&
3480             adapter->link_duplex == FULL_DUPLEX) {
3481                 netdev->stats.tx_carrier_errors = 0;
3482                 adapter->stats.tncrs = 0;
3483         }
3484
3485         /* Tx Dropped needs to be maintained elsewhere */
3486
3487         /* Phy Stats */
3488         if (hw->media_type == e1000_media_type_copper) {
3489                 if ((adapter->link_speed == SPEED_1000) &&
3490                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3491                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3492                         adapter->phy_stats.idle_errors += phy_tmp;
3493                 }
3494
3495                 if ((hw->mac_type <= e1000_82546) &&
3496                    (hw->phy_type == e1000_phy_m88) &&
3497                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3498                         adapter->phy_stats.receive_errors += phy_tmp;
3499         }
3500
3501         /* Management Stats */
3502         if (hw->has_smbus) {
3503                 adapter->stats.mgptc += er32(MGTPTC);
3504                 adapter->stats.mgprc += er32(MGTPRC);
3505                 adapter->stats.mgpdc += er32(MGTPDC);
3506         }
3507
3508         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3509 }
3510
3511 /**
3512  * e1000_intr - Interrupt Handler
3513  * @irq: interrupt number
3514  * @data: pointer to a network interface device structure
3515  **/
3516
3517 static irqreturn_t e1000_intr(int irq, void *data)
3518 {
3519         struct net_device *netdev = data;
3520         struct e1000_adapter *adapter = netdev_priv(netdev);
3521         struct e1000_hw *hw = &adapter->hw;
3522         u32 icr = er32(ICR);
3523
3524         if (unlikely((!icr)))
3525                 return IRQ_NONE;  /* Not our interrupt */
3526
3527         /*
3528          * we might have caused the interrupt, but the above
3529          * read cleared it, and just in case the driver is
3530          * down there is nothing to do so return handled
3531          */
3532         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3533                 return IRQ_HANDLED;
3534
3535         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3536                 hw->get_link_status = 1;
3537                 /* guard against interrupt when we're going down */
3538                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3539                         schedule_delayed_work(&adapter->watchdog_task, 1);
3540         }
3541
3542         /* disable interrupts, without the synchronize_irq bit */
3543         ew32(IMC, ~0);
3544         E1000_WRITE_FLUSH();
3545
3546         if (likely(napi_schedule_prep(&adapter->napi))) {
3547                 adapter->total_tx_bytes = 0;
3548                 adapter->total_tx_packets = 0;
3549                 adapter->total_rx_bytes = 0;
3550                 adapter->total_rx_packets = 0;
3551                 __napi_schedule(&adapter->napi);
3552         } else {
3553                 /* this really should not happen! if it does it is basically a
3554                  * bug, but not a hard error, so enable ints and continue */
3555                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3556                         e1000_irq_enable(adapter);
3557         }
3558
3559         return IRQ_HANDLED;
3560 }
3561
3562 /**
3563  * e1000_clean - NAPI Rx polling callback
3564  * @adapter: board private structure
3565  **/
3566 static int e1000_clean(struct napi_struct *napi, int budget)
3567 {
3568         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3569         int tx_clean_complete = 0, work_done = 0;
3570
3571         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3572
3573         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3574
3575         if (!tx_clean_complete)
3576                 work_done = budget;
3577
3578         /* If budget not fully consumed, exit the polling mode */
3579         if (work_done < budget) {
3580                 if (likely(adapter->itr_setting & 3))
3581                         e1000_set_itr(adapter);
3582                 napi_complete(napi);
3583                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3584                         e1000_irq_enable(adapter);
3585         }
3586
3587         return work_done;
3588 }
3589
3590 /**
3591  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3592  * @adapter: board private structure
3593  **/
3594 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3595                                struct e1000_tx_ring *tx_ring)
3596 {
3597         struct e1000_hw *hw = &adapter->hw;
3598         struct net_device *netdev = adapter->netdev;
3599         struct e1000_tx_desc *tx_desc, *eop_desc;
3600         struct e1000_buffer *buffer_info;
3601         unsigned int i, eop;
3602         unsigned int count = 0;
3603         unsigned int total_tx_bytes=0, total_tx_packets=0;
3604
3605         i = tx_ring->next_to_clean;
3606         eop = tx_ring->buffer_info[i].next_to_watch;
3607         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3608
3609         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3610                (count < tx_ring->count)) {
3611                 bool cleaned = false;
3612                 rmb();  /* read buffer_info after eop_desc */
3613                 for ( ; !cleaned; count++) {
3614                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3615                         buffer_info = &tx_ring->buffer_info[i];
3616                         cleaned = (i == eop);
3617
3618                         if (cleaned) {
3619                                 total_tx_packets += buffer_info->segs;
3620                                 total_tx_bytes += buffer_info->bytecount;
3621                         }
3622                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3623                         tx_desc->upper.data = 0;
3624
3625                         if (unlikely(++i == tx_ring->count)) i = 0;
3626                 }
3627
3628                 eop = tx_ring->buffer_info[i].next_to_watch;
3629                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3630         }
3631
3632         tx_ring->next_to_clean = i;
3633
3634 #define TX_WAKE_THRESHOLD 32
3635         if (unlikely(count && netif_carrier_ok(netdev) &&
3636                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3637                 /* Make sure that anybody stopping the queue after this
3638                  * sees the new next_to_clean.
3639                  */
3640                 smp_mb();
3641
3642                 if (netif_queue_stopped(netdev) &&
3643                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3644                         netif_wake_queue(netdev);
3645                         ++adapter->restart_queue;
3646                 }
3647         }
3648
3649         if (adapter->detect_tx_hung) {
3650                 /* Detect a transmit hang in hardware, this serializes the
3651                  * check with the clearing of time_stamp and movement of i */
3652                 adapter->detect_tx_hung = false;
3653                 if (tx_ring->buffer_info[eop].time_stamp &&
3654                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3655                                (adapter->tx_timeout_factor * HZ)) &&
3656                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3657
3658                         /* detected Tx unit hang */
3659                         e_err(drv, "Detected Tx Unit Hang\n"
3660                               "  Tx Queue             <%lu>\n"
3661                               "  TDH                  <%x>\n"
3662                               "  TDT                  <%x>\n"
3663                               "  next_to_use          <%x>\n"
3664                               "  next_to_clean        <%x>\n"
3665                               "buffer_info[next_to_clean]\n"
3666                               "  time_stamp           <%lx>\n"
3667                               "  next_to_watch        <%x>\n"
3668                               "  jiffies              <%lx>\n"
3669                               "  next_to_watch.status <%x>\n",
3670                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3671                                         sizeof(struct e1000_tx_ring)),
3672                                 readl(hw->hw_addr + tx_ring->tdh),
3673                                 readl(hw->hw_addr + tx_ring->tdt),
3674                                 tx_ring->next_to_use,
3675                                 tx_ring->next_to_clean,
3676                                 tx_ring->buffer_info[eop].time_stamp,
3677                                 eop,
3678                                 jiffies,
3679                                 eop_desc->upper.fields.status);
3680                         netif_stop_queue(netdev);
3681                 }
3682         }
3683         adapter->total_tx_bytes += total_tx_bytes;
3684         adapter->total_tx_packets += total_tx_packets;
3685         netdev->stats.tx_bytes += total_tx_bytes;
3686         netdev->stats.tx_packets += total_tx_packets;
3687         return count < tx_ring->count;
3688 }
3689
3690 /**
3691  * e1000_rx_checksum - Receive Checksum Offload for 82543
3692  * @adapter:     board private structure
3693  * @status_err:  receive descriptor status and error fields
3694  * @csum:        receive descriptor csum field
3695  * @sk_buff:     socket buffer with received data
3696  **/
3697
3698 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3699                               u32 csum, struct sk_buff *skb)
3700 {
3701         struct e1000_hw *hw = &adapter->hw;
3702         u16 status = (u16)status_err;
3703         u8 errors = (u8)(status_err >> 24);
3704
3705         skb_checksum_none_assert(skb);
3706
3707         /* 82543 or newer only */
3708         if (unlikely(hw->mac_type < e1000_82543)) return;
3709         /* Ignore Checksum bit is set */
3710         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3711         /* TCP/UDP checksum error bit is set */
3712         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3713                 /* let the stack verify checksum errors */
3714                 adapter->hw_csum_err++;
3715                 return;
3716         }
3717         /* TCP/UDP Checksum has not been calculated */
3718         if (!(status & E1000_RXD_STAT_TCPCS))
3719                 return;
3720
3721         /* It must be a TCP or UDP packet with a valid checksum */
3722         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3723                 /* TCP checksum is good */
3724                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3725         }
3726         adapter->hw_csum_good++;
3727 }
3728
3729 /**
3730  * e1000_consume_page - helper function
3731  **/
3732 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3733                                u16 length)
3734 {
3735         bi->page = NULL;
3736         skb->len += length;
3737         skb->data_len += length;
3738         skb->truesize += PAGE_SIZE;
3739 }
3740
3741 /**
3742  * e1000_receive_skb - helper function to handle rx indications
3743  * @adapter: board private structure
3744  * @status: descriptor status field as written by hardware
3745  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3746  * @skb: pointer to sk_buff to be indicated to stack
3747  */
3748 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3749                               __le16 vlan, struct sk_buff *skb)
3750 {
3751         skb->protocol = eth_type_trans(skb, adapter->netdev);
3752
3753         if (status & E1000_RXD_STAT_VP) {
3754                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3755
3756                 __vlan_hwaccel_put_tag(skb, vid);
3757         }
3758         napi_gro_receive(&adapter->napi, skb);
3759 }
3760
3761 /**
3762  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3763  * @adapter: board private structure
3764  * @rx_ring: ring to clean
3765  * @work_done: amount of napi work completed this call
3766  * @work_to_do: max amount of work allowed for this call to do
3767  *
3768  * the return value indicates whether actual cleaning was done, there
3769  * is no guarantee that everything was cleaned
3770  */
3771 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3772                                      struct e1000_rx_ring *rx_ring,
3773                                      int *work_done, int work_to_do)
3774 {
3775         struct e1000_hw *hw = &adapter->hw;
3776         struct net_device *netdev = adapter->netdev;
3777         struct pci_dev *pdev = adapter->pdev;
3778         struct e1000_rx_desc *rx_desc, *next_rxd;
3779         struct e1000_buffer *buffer_info, *next_buffer;
3780         unsigned long irq_flags;
3781         u32 length;
3782         unsigned int i;
3783         int cleaned_count = 0;
3784         bool cleaned = false;
3785         unsigned int total_rx_bytes=0, total_rx_packets=0;
3786
3787         i = rx_ring->next_to_clean;
3788         rx_desc = E1000_RX_DESC(*rx_ring, i);
3789         buffer_info = &rx_ring->buffer_info[i];
3790
3791         while (rx_desc->status & E1000_RXD_STAT_DD) {
3792                 struct sk_buff *skb;
3793                 u8 status;
3794
3795                 if (*work_done >= work_to_do)
3796                         break;
3797                 (*work_done)++;
3798                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3799
3800                 status = rx_desc->status;
3801                 skb = buffer_info->skb;
3802                 buffer_info->skb = NULL;
3803
3804                 if (++i == rx_ring->count) i = 0;
3805                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3806                 prefetch(next_rxd);
3807
3808                 next_buffer = &rx_ring->buffer_info[i];
3809
3810                 cleaned = true;
3811                 cleaned_count++;
3812                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3813                                buffer_info->length, DMA_FROM_DEVICE);
3814                 buffer_info->dma = 0;
3815
3816                 length = le16_to_cpu(rx_desc->length);
3817
3818                 /* errors is only valid for DD + EOP descriptors */
3819                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3820                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3821                         u8 last_byte = *(skb->data + length - 1);
3822                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3823                                        last_byte)) {
3824                                 spin_lock_irqsave(&adapter->stats_lock,
3825                                                   irq_flags);
3826                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3827                                                        length, skb->data);
3828                                 spin_unlock_irqrestore(&adapter->stats_lock,
3829                                                        irq_flags);
3830                                 length--;
3831                         } else {
3832                                 /* recycle both page and skb */
3833                                 buffer_info->skb = skb;
3834                                 /* an error means any chain goes out the window
3835                                  * too */
3836                                 if (rx_ring->rx_skb_top)
3837                                         dev_kfree_skb(rx_ring->rx_skb_top);
3838                                 rx_ring->rx_skb_top = NULL;
3839                                 goto next_desc;
3840                         }
3841                 }
3842
3843 #define rxtop rx_ring->rx_skb_top
3844                 if (!(status & E1000_RXD_STAT_EOP)) {
3845                         /* this descriptor is only the beginning (or middle) */
3846                         if (!rxtop) {
3847                                 /* this is the beginning of a chain */
3848                                 rxtop = skb;
3849                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3850                                                    0, length);
3851                         } else {
3852                                 /* this is the middle of a chain */
3853                                 skb_fill_page_desc(rxtop,
3854                                     skb_shinfo(rxtop)->nr_frags,
3855                                     buffer_info->page, 0, length);
3856                                 /* re-use the skb, only consumed the page */
3857                                 buffer_info->skb = skb;
3858                         }
3859                         e1000_consume_page(buffer_info, rxtop, length);
3860                         goto next_desc;
3861                 } else {
3862                         if (rxtop) {
3863                                 /* end of the chain */
3864                                 skb_fill_page_desc(rxtop,
3865                                     skb_shinfo(rxtop)->nr_frags,
3866                                     buffer_info->page, 0, length);
3867                                 /* re-use the current skb, we only consumed the
3868                                  * page */
3869                                 buffer_info->skb = skb;
3870                                 skb = rxtop;
3871                                 rxtop = NULL;
3872                                 e1000_consume_page(buffer_info, skb, length);
3873                         } else {
3874                                 /* no chain, got EOP, this buf is the packet
3875                                  * copybreak to save the put_page/alloc_page */
3876                                 if (length <= copybreak &&
3877                                     skb_tailroom(skb) >= length) {
3878                                         u8 *vaddr;
3879                                         vaddr = kmap_atomic(buffer_info->page,
3880                                                             KM_SKB_DATA_SOFTIRQ);
3881                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3882                                         kunmap_atomic(vaddr,
3883                                                       KM_SKB_DATA_SOFTIRQ);
3884                                         /* re-use the page, so don't erase
3885                                          * buffer_info->page */
3886                                         skb_put(skb, length);
3887                                 } else {
3888                                         skb_fill_page_desc(skb, 0,
3889                                                            buffer_info->page, 0,
3890                                                            length);
3891                                         e1000_consume_page(buffer_info, skb,
3892                                                            length);
3893                                 }
3894                         }
3895                 }
3896
3897                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3898                 e1000_rx_checksum(adapter,
3899                                   (u32)(status) |
3900                                   ((u32)(rx_desc->errors) << 24),
3901                                   le16_to_cpu(rx_desc->csum), skb);
3902
3903                 pskb_trim(skb, skb->len - 4);
3904
3905                 /* probably a little skewed due to removing CRC */
3906                 total_rx_bytes += skb->len;
3907                 total_rx_packets++;
3908
3909                 /* eth type trans needs skb->data to point to something */
3910                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3911                         e_err(drv, "pskb_may_pull failed.\n");
3912                         dev_kfree_skb(skb);
3913                         goto next_desc;
3914                 }
3915
3916                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3917
3918 next_desc:
3919                 rx_desc->status = 0;
3920
3921                 /* return some buffers to hardware, one at a time is too slow */
3922                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3923                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3924                         cleaned_count = 0;
3925                 }
3926
3927                 /* use prefetched values */
3928                 rx_desc = next_rxd;
3929                 buffer_info = next_buffer;
3930         }
3931         rx_ring->next_to_clean = i;
3932
3933         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3934         if (cleaned_count)
3935                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3936
3937         adapter->total_rx_packets += total_rx_packets;
3938         adapter->total_rx_bytes += total_rx_bytes;
3939         netdev->stats.rx_bytes += total_rx_bytes;
3940         netdev->stats.rx_packets += total_rx_packets;
3941         return cleaned;
3942 }
3943
3944 /*
3945  * this should improve performance for small packets with large amounts
3946  * of reassembly being done in the stack
3947  */
3948 static void e1000_check_copybreak(struct net_device *netdev,
3949                                  struct e1000_buffer *buffer_info,
3950                                  u32 length, struct sk_buff **skb)
3951 {
3952         struct sk_buff *new_skb;
3953
3954         if (length > copybreak)
3955                 return;
3956
3957         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3958         if (!new_skb)
3959                 return;
3960
3961         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3962                                        (*skb)->data - NET_IP_ALIGN,
3963                                        length + NET_IP_ALIGN);
3964         /* save the skb in buffer_info as good */
3965         buffer_info->skb = *skb;
3966         *skb = new_skb;
3967 }
3968
3969 /**
3970  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3971  * @adapter: board private structure
3972  * @rx_ring: ring to clean
3973  * @work_done: amount of napi work completed this call
3974  * @work_to_do: max amount of work allowed for this call to do
3975  */
3976 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3977                                struct e1000_rx_ring *rx_ring,
3978                                int *work_done, int work_to_do)
3979 {
3980         struct e1000_hw *hw = &adapter->hw;
3981         struct net_device *netdev = adapter->netdev;
3982         struct pci_dev *pdev = adapter->pdev;
3983         struct e1000_rx_desc *rx_desc, *next_rxd;
3984         struct e1000_buffer *buffer_info, *next_buffer;
3985         unsigned long flags;
3986         u32 length;
3987         unsigned int i;
3988         int cleaned_count = 0;
3989         bool cleaned = false;
3990         unsigned int total_rx_bytes=0, total_rx_packets=0;
3991
3992         i = rx_ring->next_to_clean;
3993         rx_desc = E1000_RX_DESC(*rx_ring, i);
3994         buffer_info = &rx_ring->buffer_info[i];
3995
3996         while (rx_desc->status & E1000_RXD_STAT_DD) {
3997                 struct sk_buff *skb;
3998                 u8 status;
3999
4000                 if (*work_done >= work_to_do)
4001                         break;
4002                 (*work_done)++;
4003                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4004
4005                 status = rx_desc->status;
4006                 skb = buffer_info->skb;
4007                 buffer_info->skb = NULL;
4008
4009                 prefetch(skb->data - NET_IP_ALIGN);
4010
4011                 if (++i == rx_ring->count) i = 0;
4012                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4013                 prefetch(next_rxd);
4014
4015                 next_buffer = &rx_ring->buffer_info[i];
4016
4017                 cleaned = true;
4018                 cleaned_count++;
4019                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4020                                  buffer_info->length, DMA_FROM_DEVICE);
4021                 buffer_info->dma = 0;
4022
4023                 length = le16_to_cpu(rx_desc->length);
4024                 /* !EOP means multiple descriptors were used to store a single
4025                  * packet, if thats the case we need to toss it.  In fact, we
4026                  * to toss every packet with the EOP bit clear and the next
4027                  * frame that _does_ have the EOP bit set, as it is by
4028                  * definition only a frame fragment
4029                  */
4030                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4031                         adapter->discarding = true;
4032
4033                 if (adapter->discarding) {
4034                         /* All receives must fit into a single buffer */
4035                         e_dbg("Receive packet consumed multiple buffers\n");
4036                         /* recycle */
4037                         buffer_info->skb = skb;
4038                         if (status & E1000_RXD_STAT_EOP)
4039                                 adapter->discarding = false;
4040                         goto next_desc;
4041                 }
4042
4043                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4044                         u8 last_byte = *(skb->data + length - 1);
4045                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4046                                        last_byte)) {
4047                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4048                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4049                                                        length, skb->data);
4050                                 spin_unlock_irqrestore(&adapter->stats_lock,
4051                                                        flags);
4052                                 length--;
4053                         } else {
4054                                 /* recycle */
4055                                 buffer_info->skb = skb;
4056                                 goto next_desc;
4057                         }
4058                 }
4059
4060                 /* adjust length to remove Ethernet CRC, this must be
4061                  * done after the TBI_ACCEPT workaround above */
4062                 length -= 4;
4063
4064                 /* probably a little skewed due to removing CRC */
4065                 total_rx_bytes += length;
4066                 total_rx_packets++;
4067
4068                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4069
4070                 skb_put(skb, length);
4071
4072                 /* Receive Checksum Offload */
4073                 e1000_rx_checksum(adapter,
4074                                   (u32)(status) |
4075                                   ((u32)(rx_desc->errors) << 24),
4076                                   le16_to_cpu(rx_desc->csum), skb);
4077
4078                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4079
4080 next_desc:
4081                 rx_desc->status = 0;
4082
4083                 /* return some buffers to hardware, one at a time is too slow */
4084                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4085                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4086                         cleaned_count = 0;
4087                 }
4088
4089                 /* use prefetched values */
4090                 rx_desc = next_rxd;
4091                 buffer_info = next_buffer;
4092         }
4093         rx_ring->next_to_clean = i;
4094
4095         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4096         if (cleaned_count)
4097                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4098
4099         adapter->total_rx_packets += total_rx_packets;
4100         adapter->total_rx_bytes += total_rx_bytes;
4101         netdev->stats.rx_bytes += total_rx_bytes;
4102         netdev->stats.rx_packets += total_rx_packets;
4103         return cleaned;
4104 }
4105
4106 /**
4107  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4108  * @adapter: address of board private structure
4109  * @rx_ring: pointer to receive ring structure
4110  * @cleaned_count: number of buffers to allocate this pass
4111  **/
4112
4113 static void
4114 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4115                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4116 {
4117         struct net_device *netdev = adapter->netdev;
4118         struct pci_dev *pdev = adapter->pdev;
4119         struct e1000_rx_desc *rx_desc;
4120         struct e1000_buffer *buffer_info;
4121         struct sk_buff *skb;
4122         unsigned int i;
4123         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4124
4125         i = rx_ring->next_to_use;
4126         buffer_info = &rx_ring->buffer_info[i];
4127
4128         while (cleaned_count--) {
4129                 skb = buffer_info->skb;
4130                 if (skb) {
4131                         skb_trim(skb, 0);
4132                         goto check_page;
4133                 }
4134
4135                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4136                 if (unlikely(!skb)) {
4137                         /* Better luck next round */
4138                         adapter->alloc_rx_buff_failed++;
4139                         break;
4140                 }
4141
4142                 /* Fix for errata 23, can't cross 64kB boundary */
4143                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4144                         struct sk_buff *oldskb = skb;
4145                         e_err(rx_err, "skb align check failed: %u bytes at "
4146                               "%p\n", bufsz, skb->data);
4147                         /* Try again, without freeing the previous */
4148                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4149                         /* Failed allocation, critical failure */
4150                         if (!skb) {
4151                                 dev_kfree_skb(oldskb);
4152                                 adapter->alloc_rx_buff_failed++;
4153                                 break;
4154                         }
4155
4156                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4157                                 /* give up */
4158                                 dev_kfree_skb(skb);
4159                                 dev_kfree_skb(oldskb);
4160                                 break; /* while (cleaned_count--) */
4161                         }
4162
4163                         /* Use new allocation */
4164                         dev_kfree_skb(oldskb);
4165                 }
4166                 buffer_info->skb = skb;
4167                 buffer_info->length = adapter->rx_buffer_len;
4168 check_page:
4169                 /* allocate a new page if necessary */
4170                 if (!buffer_info->page) {
4171                         buffer_info->page = alloc_page(GFP_ATOMIC);
4172                         if (unlikely(!buffer_info->page)) {
4173                                 adapter->alloc_rx_buff_failed++;
4174                                 break;
4175                         }
4176                 }
4177
4178                 if (!buffer_info->dma) {
4179                         buffer_info->dma = dma_map_page(&pdev->dev,
4180                                                         buffer_info->page, 0,
4181                                                         buffer_info->length,
4182                                                         DMA_FROM_DEVICE);
4183                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4184                                 put_page(buffer_info->page);
4185                                 dev_kfree_skb(skb);
4186                                 buffer_info->page = NULL;
4187                                 buffer_info->skb = NULL;
4188                                 buffer_info->dma = 0;
4189                                 adapter->alloc_rx_buff_failed++;
4190                                 break; /* while !buffer_info->skb */
4191                         }
4192                 }
4193
4194                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4195                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4196
4197                 if (unlikely(++i == rx_ring->count))
4198                         i = 0;
4199                 buffer_info = &rx_ring->buffer_info[i];
4200         }
4201
4202         if (likely(rx_ring->next_to_use != i)) {
4203                 rx_ring->next_to_use = i;
4204                 if (unlikely(i-- == 0))
4205                         i = (rx_ring->count - 1);
4206
4207                 /* Force memory writes to complete before letting h/w
4208                  * know there are new descriptors to fetch.  (Only
4209                  * applicable for weak-ordered memory model archs,
4210                  * such as IA-64). */
4211                 wmb();
4212                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4213         }
4214 }
4215
4216 /**
4217  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4218  * @adapter: address of board private structure
4219  **/
4220
4221 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4222                                    struct e1000_rx_ring *rx_ring,
4223                                    int cleaned_count)
4224 {
4225         struct e1000_hw *hw = &adapter->hw;
4226         struct net_device *netdev = adapter->netdev;
4227         struct pci_dev *pdev = adapter->pdev;
4228         struct e1000_rx_desc *rx_desc;
4229         struct e1000_buffer *buffer_info;
4230         struct sk_buff *skb;
4231         unsigned int i;
4232         unsigned int bufsz = adapter->rx_buffer_len;
4233
4234         i = rx_ring->next_to_use;
4235         buffer_info = &rx_ring->buffer_info[i];
4236
4237         while (cleaned_count--) {
4238                 skb = buffer_info->skb;
4239                 if (skb) {
4240                         skb_trim(skb, 0);
4241                         goto map_skb;
4242                 }
4243
4244                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4245                 if (unlikely(!skb)) {
4246                         /* Better luck next round */
4247                         adapter->alloc_rx_buff_failed++;
4248                         break;
4249                 }
4250
4251                 /* Fix for errata 23, can't cross 64kB boundary */
4252                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4253                         struct sk_buff *oldskb = skb;
4254                         e_err(rx_err, "skb align check failed: %u bytes at "
4255                               "%p\n", bufsz, skb->data);
4256                         /* Try again, without freeing the previous */
4257                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4258                         /* Failed allocation, critical failure */
4259                         if (!skb) {
4260                                 dev_kfree_skb(oldskb);
4261                                 adapter->alloc_rx_buff_failed++;
4262                                 break;
4263                         }
4264
4265                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4266                                 /* give up */
4267                                 dev_kfree_skb(skb);
4268                                 dev_kfree_skb(oldskb);
4269                                 adapter->alloc_rx_buff_failed++;
4270                                 break; /* while !buffer_info->skb */
4271                         }
4272
4273                         /* Use new allocation */
4274                         dev_kfree_skb(oldskb);
4275                 }
4276                 buffer_info->skb = skb;
4277                 buffer_info->length = adapter->rx_buffer_len;
4278 map_skb:
4279                 buffer_info->dma = dma_map_single(&pdev->dev,
4280                                                   skb->data,
4281                                                   buffer_info->length,
4282                                                   DMA_FROM_DEVICE);
4283                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4284                         dev_kfree_skb(skb);
4285                         buffer_info->skb = NULL;
4286                         buffer_info->dma = 0;
4287                         adapter->alloc_rx_buff_failed++;
4288                         break; /* while !buffer_info->skb */
4289                 }
4290
4291                 /*
4292                  * XXX if it was allocated cleanly it will never map to a
4293                  * boundary crossing
4294                  */
4295
4296                 /* Fix for errata 23, can't cross 64kB boundary */
4297                 if (!e1000_check_64k_bound(adapter,
4298                                         (void *)(unsigned long)buffer_info->dma,
4299                                         adapter->rx_buffer_len)) {
4300                         e_err(rx_err, "dma align check failed: %u bytes at "
4301                               "%p\n", adapter->rx_buffer_len,
4302                               (void *)(unsigned long)buffer_info->dma);
4303                         dev_kfree_skb(skb);
4304                         buffer_info->skb = NULL;
4305
4306                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4307                                          adapter->rx_buffer_len,
4308                                          DMA_FROM_DEVICE);
4309                         buffer_info->dma = 0;
4310
4311                         adapter->alloc_rx_buff_failed++;
4312                         break; /* while !buffer_info->skb */
4313                 }
4314                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4315                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4316
4317                 if (unlikely(++i == rx_ring->count))
4318                         i = 0;
4319                 buffer_info = &rx_ring->buffer_info[i];
4320         }
4321
4322         if (likely(rx_ring->next_to_use != i)) {
4323                 rx_ring->next_to_use = i;
4324                 if (unlikely(i-- == 0))
4325                         i = (rx_ring->count - 1);
4326
4327                 /* Force memory writes to complete before letting h/w
4328                  * know there are new descriptors to fetch.  (Only
4329                  * applicable for weak-ordered memory model archs,
4330                  * such as IA-64). */
4331                 wmb();
4332                 writel(i, hw->hw_addr + rx_ring->rdt);
4333         }
4334 }
4335
4336 /**
4337  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4338  * @adapter:
4339  **/
4340
4341 static void e1000_smartspeed(struct e1000_adapter *adapter)
4342 {
4343         struct e1000_hw *hw = &adapter->hw;
4344         u16 phy_status;
4345         u16 phy_ctrl;
4346
4347         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4348            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4349                 return;
4350
4351         if (adapter->smartspeed == 0) {
4352                 /* If Master/Slave config fault is asserted twice,
4353                  * we assume back-to-back */
4354                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4355                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4356                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4357                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4358                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4359                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4360                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4361                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4362                                             phy_ctrl);
4363                         adapter->smartspeed++;
4364                         if (!e1000_phy_setup_autoneg(hw) &&
4365                            !e1000_read_phy_reg(hw, PHY_CTRL,
4366                                                &phy_ctrl)) {
4367                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4368                                              MII_CR_RESTART_AUTO_NEG);
4369                                 e1000_write_phy_reg(hw, PHY_CTRL,
4370                                                     phy_ctrl);
4371                         }
4372                 }
4373                 return;
4374         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4375                 /* If still no link, perhaps using 2/3 pair cable */
4376                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4377                 phy_ctrl |= CR_1000T_MS_ENABLE;
4378                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4379                 if (!e1000_phy_setup_autoneg(hw) &&
4380                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4381                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4382                                      MII_CR_RESTART_AUTO_NEG);
4383                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4384                 }
4385         }
4386         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4387         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4388                 adapter->smartspeed = 0;
4389 }
4390
4391 /**
4392  * e1000_ioctl -
4393  * @netdev:
4394  * @ifreq:
4395  * @cmd:
4396  **/
4397
4398 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4399 {
4400         switch (cmd) {
4401         case SIOCGMIIPHY:
4402         case SIOCGMIIREG:
4403         case SIOCSMIIREG:
4404                 return e1000_mii_ioctl(netdev, ifr, cmd);
4405         default:
4406                 return -EOPNOTSUPP;
4407         }
4408 }
4409
4410 /**
4411  * e1000_mii_ioctl -
4412  * @netdev:
4413  * @ifreq:
4414  * @cmd:
4415  **/
4416
4417 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4418                            int cmd)
4419 {
4420         struct e1000_adapter *adapter = netdev_priv(netdev);
4421         struct e1000_hw *hw = &adapter->hw;
4422         struct mii_ioctl_data *data = if_mii(ifr);
4423         int retval;
4424         u16 mii_reg;
4425         unsigned long flags;
4426
4427         if (hw->media_type != e1000_media_type_copper)
4428                 return -EOPNOTSUPP;
4429
4430         switch (cmd) {
4431         case SIOCGMIIPHY:
4432                 data->phy_id = hw->phy_addr;
4433                 break;
4434         case SIOCGMIIREG:
4435                 spin_lock_irqsave(&adapter->stats_lock, flags);
4436                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4437                                    &data->val_out)) {
4438                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4439                         return -EIO;
4440                 }
4441                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4442                 break;
4443         case SIOCSMIIREG:
4444                 if (data->reg_num & ~(0x1F))
4445                         return -EFAULT;
4446                 mii_reg = data->val_in;
4447                 spin_lock_irqsave(&adapter->stats_lock, flags);
4448                 if (e1000_write_phy_reg(hw, data->reg_num,
4449                                         mii_reg)) {
4450                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4451                         return -EIO;
4452                 }
4453                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4454                 if (hw->media_type == e1000_media_type_copper) {
4455                         switch (data->reg_num) {
4456                         case PHY_CTRL:
4457                                 if (mii_reg & MII_CR_POWER_DOWN)
4458                                         break;
4459                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4460                                         hw->autoneg = 1;
4461                                         hw->autoneg_advertised = 0x2F;
4462                                 } else {
4463                                         u32 speed;
4464                                         if (mii_reg & 0x40)
4465                                                 speed = SPEED_1000;
4466                                         else if (mii_reg & 0x2000)
4467                                                 speed = SPEED_100;
4468                                         else
4469                                                 speed = SPEED_10;
4470                                         retval = e1000_set_spd_dplx(
4471                                                 adapter, speed,
4472                                                 ((mii_reg & 0x100)
4473                                                  ? DUPLEX_FULL :
4474                                                  DUPLEX_HALF));
4475                                         if (retval)
4476                                                 return retval;
4477                                 }
4478                                 if (netif_running(adapter->netdev))
4479                                         e1000_reinit_locked(adapter);
4480                                 else
4481                                         e1000_reset(adapter);
4482                                 break;
4483                         case M88E1000_PHY_SPEC_CTRL:
4484                         case M88E1000_EXT_PHY_SPEC_CTRL:
4485                                 if (e1000_phy_reset(hw))
4486                                         return -EIO;
4487                                 break;
4488                         }
4489                 } else {
4490                         switch (data->reg_num) {
4491                         case PHY_CTRL:
4492                                 if (mii_reg & MII_CR_POWER_DOWN)
4493                                         break;
4494                                 if (netif_running(adapter->netdev))
4495                                         e1000_reinit_locked(adapter);
4496                                 else
4497                                         e1000_reset(adapter);
4498                                 break;
4499                         }
4500                 }
4501                 break;
4502         default:
4503                 return -EOPNOTSUPP;
4504         }
4505         return E1000_SUCCESS;
4506 }
4507
4508 void e1000_pci_set_mwi(struct e1000_hw *hw)
4509 {
4510         struct e1000_adapter *adapter = hw->back;
4511         int ret_val = pci_set_mwi(adapter->pdev);
4512
4513         if (ret_val)
4514                 e_err(probe, "Error in setting MWI\n");
4515 }
4516
4517 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4518 {
4519         struct e1000_adapter *adapter = hw->back;
4520
4521         pci_clear_mwi(adapter->pdev);
4522 }
4523
4524 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4525 {
4526         struct e1000_adapter *adapter = hw->back;
4527         return pcix_get_mmrbc(adapter->pdev);
4528 }
4529
4530 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4531 {
4532         struct e1000_adapter *adapter = hw->back;
4533         pcix_set_mmrbc(adapter->pdev, mmrbc);
4534 }
4535
4536 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4537 {
4538         outl(value, port);
4539 }
4540
4541 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4542 {
4543         u16 vid;
4544
4545         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4546                 return true;
4547         return false;
4548 }
4549
4550 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4551                                      bool filter_on)
4552 {
4553         struct e1000_hw *hw = &adapter->hw;
4554         u32 rctl;
4555
4556         if (!test_bit(__E1000_DOWN, &adapter->flags))
4557                 e1000_irq_disable(adapter);
4558
4559         if (filter_on) {
4560                 /* enable VLAN receive filtering */
4561                 rctl = er32(RCTL);
4562                 rctl &= ~E1000_RCTL_CFIEN;
4563                 if (!(adapter->netdev->flags & IFF_PROMISC))
4564                         rctl |= E1000_RCTL_VFE;
4565                 ew32(RCTL, rctl);
4566                 e1000_update_mng_vlan(adapter);
4567         } else {
4568                 /* disable VLAN receive filtering */
4569                 rctl = er32(RCTL);
4570                 rctl &= ~E1000_RCTL_VFE;
4571                 ew32(RCTL, rctl);
4572         }
4573
4574         if (!test_bit(__E1000_DOWN, &adapter->flags))
4575                 e1000_irq_enable(adapter);
4576 }
4577
4578 static void e1000_vlan_mode(struct net_device *netdev,
4579         netdev_features_t features)
4580 {
4581         struct e1000_adapter *adapter = netdev_priv(netdev);
4582         struct e1000_hw *hw = &adapter->hw;
4583         u32 ctrl;
4584
4585         if (!test_bit(__E1000_DOWN, &adapter->flags))
4586                 e1000_irq_disable(adapter);
4587
4588         ctrl = er32(CTRL);
4589         if (features & NETIF_F_HW_VLAN_RX) {
4590                 /* enable VLAN tag insert/strip */
4591                 ctrl |= E1000_CTRL_VME;
4592         } else {
4593                 /* disable VLAN tag insert/strip */
4594                 ctrl &= ~E1000_CTRL_VME;
4595         }
4596         ew32(CTRL, ctrl);
4597
4598         if (!test_bit(__E1000_DOWN, &adapter->flags))
4599                 e1000_irq_enable(adapter);
4600 }
4601
4602 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4603 {
4604         struct e1000_adapter *adapter = netdev_priv(netdev);
4605         struct e1000_hw *hw = &adapter->hw;
4606         u32 vfta, index;
4607
4608         if ((hw->mng_cookie.status &
4609              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4610             (vid == adapter->mng_vlan_id))
4611                 return 0;
4612
4613         if (!e1000_vlan_used(adapter))
4614                 e1000_vlan_filter_on_off(adapter, true);
4615
4616         /* add VID to filter table */
4617         index = (vid >> 5) & 0x7F;
4618         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4619         vfta |= (1 << (vid & 0x1F));
4620         e1000_write_vfta(hw, index, vfta);
4621
4622         set_bit(vid, adapter->active_vlans);
4623
4624         return 0;
4625 }
4626
4627 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4628 {
4629         struct e1000_adapter *adapter = netdev_priv(netdev);
4630         struct e1000_hw *hw = &adapter->hw;
4631         u32 vfta, index;
4632
4633         if (!test_bit(__E1000_DOWN, &adapter->flags))
4634                 e1000_irq_disable(adapter);
4635         if (!test_bit(__E1000_DOWN, &adapter->flags))
4636                 e1000_irq_enable(adapter);
4637
4638         /* remove VID from filter table */
4639         index = (vid >> 5) & 0x7F;
4640         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4641         vfta &= ~(1 << (vid & 0x1F));
4642         e1000_write_vfta(hw, index, vfta);
4643
4644         clear_bit(vid, adapter->active_vlans);
4645
4646         if (!e1000_vlan_used(adapter))
4647                 e1000_vlan_filter_on_off(adapter, false);
4648
4649         return 0;
4650 }
4651
4652 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4653 {
4654         u16 vid;
4655
4656         if (!e1000_vlan_used(adapter))
4657                 return;
4658
4659         e1000_vlan_filter_on_off(adapter, true);
4660         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4661                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4662 }
4663
4664 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4665 {
4666         struct e1000_hw *hw = &adapter->hw;
4667
4668         hw->autoneg = 0;
4669
4670         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4671          * for the switch() below to work */
4672         if ((spd & 1) || (dplx & ~1))
4673                 goto err_inval;
4674
4675         /* Fiber NICs only allow 1000 gbps Full duplex */
4676         if ((hw->media_type == e1000_media_type_fiber) &&
4677             spd != SPEED_1000 &&
4678             dplx != DUPLEX_FULL)
4679                 goto err_inval;
4680
4681         switch (spd + dplx) {
4682         case SPEED_10 + DUPLEX_HALF:
4683                 hw->forced_speed_duplex = e1000_10_half;
4684                 break;
4685         case SPEED_10 + DUPLEX_FULL:
4686                 hw->forced_speed_duplex = e1000_10_full;
4687                 break;
4688         case SPEED_100 + DUPLEX_HALF:
4689                 hw->forced_speed_duplex = e1000_100_half;
4690                 break;
4691         case SPEED_100 + DUPLEX_FULL:
4692                 hw->forced_speed_duplex = e1000_100_full;
4693                 break;
4694         case SPEED_1000 + DUPLEX_FULL:
4695                 hw->autoneg = 1;
4696                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4697                 break;
4698         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4699         default:
4700                 goto err_inval;
4701         }
4702         return 0;
4703
4704 err_inval:
4705         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4706         return -EINVAL;
4707 }
4708
4709 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4710 {
4711         struct net_device *netdev = pci_get_drvdata(pdev);
4712         struct e1000_adapter *adapter = netdev_priv(netdev);
4713         struct e1000_hw *hw = &adapter->hw;
4714         u32 ctrl, ctrl_ext, rctl, status;
4715         u32 wufc = adapter->wol;
4716 #ifdef CONFIG_PM
4717         int retval = 0;
4718 #endif
4719
4720         netif_device_detach(netdev);
4721
4722         if (netif_running(netdev)) {
4723                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4724                 e1000_down(adapter);
4725         }
4726
4727 #ifdef CONFIG_PM
4728         retval = pci_save_state(pdev);
4729         if (retval)
4730                 return retval;
4731 #endif
4732
4733         status = er32(STATUS);
4734         if (status & E1000_STATUS_LU)
4735                 wufc &= ~E1000_WUFC_LNKC;
4736
4737         if (wufc) {
4738                 e1000_setup_rctl(adapter);
4739                 e1000_set_rx_mode(netdev);
4740
4741                 /* turn on all-multi mode if wake on multicast is enabled */
4742                 if (wufc & E1000_WUFC_MC) {
4743                         rctl = er32(RCTL);
4744                         rctl |= E1000_RCTL_MPE;
4745                         ew32(RCTL, rctl);
4746                 }
4747
4748                 if (hw->mac_type >= e1000_82540) {
4749                         ctrl = er32(CTRL);
4750                         /* advertise wake from D3Cold */
4751                         #define E1000_CTRL_ADVD3WUC 0x00100000
4752                         /* phy power management enable */
4753                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4754                         ctrl |= E1000_CTRL_ADVD3WUC |
4755                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4756                         ew32(CTRL, ctrl);
4757                 }
4758
4759                 if (hw->media_type == e1000_media_type_fiber ||
4760                     hw->media_type == e1000_media_type_internal_serdes) {
4761                         /* keep the laser running in D3 */
4762                         ctrl_ext = er32(CTRL_EXT);
4763                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4764                         ew32(CTRL_EXT, ctrl_ext);
4765                 }
4766
4767                 ew32(WUC, E1000_WUC_PME_EN);
4768                 ew32(WUFC, wufc);
4769         } else {
4770                 ew32(WUC, 0);
4771                 ew32(WUFC, 0);
4772         }
4773
4774         e1000_release_manageability(adapter);
4775
4776         *enable_wake = !!wufc;
4777
4778         /* make sure adapter isn't asleep if manageability is enabled */
4779         if (adapter->en_mng_pt)
4780                 *enable_wake = true;
4781
4782         if (netif_running(netdev))
4783                 e1000_free_irq(adapter);
4784
4785         pci_disable_device(pdev);
4786
4787         return 0;
4788 }
4789
4790 #ifdef CONFIG_PM
4791 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4792 {
4793         int retval;
4794         bool wake;
4795
4796         retval = __e1000_shutdown(pdev, &wake);
4797         if (retval)
4798                 return retval;
4799
4800         if (wake) {
4801                 pci_prepare_to_sleep(pdev);
4802         } else {
4803                 pci_wake_from_d3(pdev, false);
4804                 pci_set_power_state(pdev, PCI_D3hot);
4805         }
4806
4807         return 0;
4808 }
4809
4810 static int e1000_resume(struct pci_dev *pdev)
4811 {
4812         struct net_device *netdev = pci_get_drvdata(pdev);
4813         struct e1000_adapter *adapter = netdev_priv(netdev);
4814         struct e1000_hw *hw = &adapter->hw;
4815         u32 err;
4816
4817         pci_set_power_state(pdev, PCI_D0);
4818         pci_restore_state(pdev);
4819         pci_save_state(pdev);
4820
4821         if (adapter->need_ioport)
4822                 err = pci_enable_device(pdev);
4823         else
4824                 err = pci_enable_device_mem(pdev);
4825         if (err) {
4826                 pr_err("Cannot enable PCI device from suspend\n");
4827                 return err;
4828         }
4829         pci_set_master(pdev);
4830
4831         pci_enable_wake(pdev, PCI_D3hot, 0);
4832         pci_enable_wake(pdev, PCI_D3cold, 0);
4833
4834         if (netif_running(netdev)) {
4835                 err = e1000_request_irq(adapter);
4836                 if (err)
4837                         return err;
4838         }
4839
4840         e1000_power_up_phy(adapter);
4841         e1000_reset(adapter);
4842         ew32(WUS, ~0);
4843
4844         e1000_init_manageability(adapter);
4845
4846         if (netif_running(netdev))
4847                 e1000_up(adapter);
4848
4849         netif_device_attach(netdev);
4850
4851         return 0;
4852 }
4853 #endif
4854
4855 static void e1000_shutdown(struct pci_dev *pdev)
4856 {
4857         bool wake;
4858
4859         __e1000_shutdown(pdev, &wake);
4860
4861         if (system_state == SYSTEM_POWER_OFF) {
4862                 pci_wake_from_d3(pdev, wake);
4863                 pci_set_power_state(pdev, PCI_D3hot);
4864         }
4865 }
4866
4867 #ifdef CONFIG_NET_POLL_CONTROLLER
4868 /*
4869  * Polling 'interrupt' - used by things like netconsole to send skbs
4870  * without having to re-enable interrupts. It's not called while
4871  * the interrupt routine is executing.
4872  */
4873 static void e1000_netpoll(struct net_device *netdev)
4874 {
4875         struct e1000_adapter *adapter = netdev_priv(netdev);
4876
4877         disable_irq(adapter->pdev->irq);
4878         e1000_intr(adapter->pdev->irq, netdev);
4879         enable_irq(adapter->pdev->irq);
4880 }
4881 #endif
4882
4883 /**
4884  * e1000_io_error_detected - called when PCI error is detected
4885  * @pdev: Pointer to PCI device
4886  * @state: The current pci connection state
4887  *
4888  * This function is called after a PCI bus error affecting
4889  * this device has been detected.
4890  */
4891 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4892                                                 pci_channel_state_t state)
4893 {
4894         struct net_device *netdev = pci_get_drvdata(pdev);
4895         struct e1000_adapter *adapter = netdev_priv(netdev);
4896
4897         netif_device_detach(netdev);
4898
4899         if (state == pci_channel_io_perm_failure)
4900                 return PCI_ERS_RESULT_DISCONNECT;
4901
4902         if (netif_running(netdev))
4903                 e1000_down(adapter);
4904         pci_disable_device(pdev);
4905
4906         /* Request a slot slot reset. */
4907         return PCI_ERS_RESULT_NEED_RESET;
4908 }
4909
4910 /**
4911  * e1000_io_slot_reset - called after the pci bus has been reset.
4912  * @pdev: Pointer to PCI device
4913  *
4914  * Restart the card from scratch, as if from a cold-boot. Implementation
4915  * resembles the first-half of the e1000_resume routine.
4916  */
4917 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4918 {
4919         struct net_device *netdev = pci_get_drvdata(pdev);
4920         struct e1000_adapter *adapter = netdev_priv(netdev);
4921         struct e1000_hw *hw = &adapter->hw;
4922         int err;
4923
4924         if (adapter->need_ioport)
4925                 err = pci_enable_device(pdev);
4926         else
4927                 err = pci_enable_device_mem(pdev);
4928         if (err) {
4929                 pr_err("Cannot re-enable PCI device after reset.\n");
4930                 return PCI_ERS_RESULT_DISCONNECT;
4931         }
4932         pci_set_master(pdev);
4933
4934         pci_enable_wake(pdev, PCI_D3hot, 0);
4935         pci_enable_wake(pdev, PCI_D3cold, 0);
4936
4937         e1000_reset(adapter);
4938         ew32(WUS, ~0);
4939
4940         return PCI_ERS_RESULT_RECOVERED;
4941 }
4942
4943 /**
4944  * e1000_io_resume - called when traffic can start flowing again.
4945  * @pdev: Pointer to PCI device
4946  *
4947  * This callback is called when the error recovery driver tells us that
4948  * its OK to resume normal operation. Implementation resembles the
4949  * second-half of the e1000_resume routine.
4950  */
4951 static void e1000_io_resume(struct pci_dev *pdev)
4952 {
4953         struct net_device *netdev = pci_get_drvdata(pdev);
4954         struct e1000_adapter *adapter = netdev_priv(netdev);
4955
4956         e1000_init_manageability(adapter);
4957
4958         if (netif_running(netdev)) {
4959                 if (e1000_up(adapter)) {
4960                         pr_info("can't bring device back up after reset\n");
4961                         return;
4962                 }
4963         }
4964
4965         netif_device_attach(netdev);
4966 }
4967
4968 /* e1000_main.c */