- Updated to 3.4-rc1.
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35
36 #include "perf_event.h"
37
38 #if 0
39 #undef wrmsrl
40 #define wrmsrl(msr, val)                                        \
41 do {                                                            \
42         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
43                         (unsigned long)(val));                  \
44         native_write_msr((msr), (u32)((u64)(val)),              \
45                         (u32)((u64)(val) >> 32));               \
46 } while (0)
47 #endif
48
49 struct x86_pmu x86_pmu __read_mostly;
50
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52         .enabled = 1,
53 };
54
55 u64 __read_mostly hw_cache_event_ids
56                                 [PERF_COUNT_HW_CACHE_MAX]
57                                 [PERF_COUNT_HW_CACHE_OP_MAX]
58                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59 u64 __read_mostly hw_cache_extra_regs
60                                 [PERF_COUNT_HW_CACHE_MAX]
61                                 [PERF_COUNT_HW_CACHE_OP_MAX]
62                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
63
64 /*
65  * Propagate event elapsed time into the generic event.
66  * Can only be executed on the CPU where the event is active.
67  * Returns the delta events processed.
68  */
69 u64 x86_perf_event_update(struct perf_event *event)
70 {
71         struct hw_perf_event *hwc = &event->hw;
72         int shift = 64 - x86_pmu.cntval_bits;
73         u64 prev_raw_count, new_raw_count;
74         int idx = hwc->idx;
75         s64 delta;
76
77         if (idx == X86_PMC_IDX_FIXED_BTS)
78                 return 0;
79
80         /*
81          * Careful: an NMI might modify the previous event value.
82          *
83          * Our tactic to handle this is to first atomically read and
84          * exchange a new raw count - then add that new-prev delta
85          * count to the generic event atomically:
86          */
87 again:
88         prev_raw_count = local64_read(&hwc->prev_count);
89         rdmsrl(hwc->event_base, new_raw_count);
90
91         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
92                                         new_raw_count) != prev_raw_count)
93                 goto again;
94
95         /*
96          * Now we have the new raw value and have updated the prev
97          * timestamp already. We can now calculate the elapsed delta
98          * (event-)time and add that to the generic event.
99          *
100          * Careful, not all hw sign-extends above the physical width
101          * of the count.
102          */
103         delta = (new_raw_count << shift) - (prev_raw_count << shift);
104         delta >>= shift;
105
106         local64_add(delta, &event->count);
107         local64_sub(delta, &hwc->period_left);
108
109         return new_raw_count;
110 }
111
112 /*
113  * Find and validate any extra registers to set up.
114  */
115 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 {
117         struct hw_perf_event_extra *reg;
118         struct extra_reg *er;
119
120         reg = &event->hw.extra_reg;
121
122         if (!x86_pmu.extra_regs)
123                 return 0;
124
125         for (er = x86_pmu.extra_regs; er->msr; er++) {
126                 if (er->event != (config & er->config_mask))
127                         continue;
128                 if (event->attr.config1 & ~er->valid_mask)
129                         return -EINVAL;
130
131                 reg->idx = er->idx;
132                 reg->config = event->attr.config1;
133                 reg->reg = er->msr;
134                 break;
135         }
136         return 0;
137 }
138
139 static atomic_t active_events;
140 static DEFINE_MUTEX(pmc_reserve_mutex);
141
142 #ifdef CONFIG_X86_LOCAL_APIC
143
144 static bool reserve_pmc_hardware(void)
145 {
146         int i;
147
148         for (i = 0; i < x86_pmu.num_counters; i++) {
149                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
150                         goto perfctr_fail;
151         }
152
153         for (i = 0; i < x86_pmu.num_counters; i++) {
154                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
155                         goto eventsel_fail;
156         }
157
158         return true;
159
160 eventsel_fail:
161         for (i--; i >= 0; i--)
162                 release_evntsel_nmi(x86_pmu_config_addr(i));
163
164         i = x86_pmu.num_counters;
165
166 perfctr_fail:
167         for (i--; i >= 0; i--)
168                 release_perfctr_nmi(x86_pmu_event_addr(i));
169
170         return false;
171 }
172
173 static void release_pmc_hardware(void)
174 {
175         int i;
176
177         for (i = 0; i < x86_pmu.num_counters; i++) {
178                 release_perfctr_nmi(x86_pmu_event_addr(i));
179                 release_evntsel_nmi(x86_pmu_config_addr(i));
180         }
181 }
182
183 #else
184
185 static bool reserve_pmc_hardware(void) { return true; }
186 static void release_pmc_hardware(void) {}
187
188 #endif
189
190 static bool check_hw_exists(void)
191 {
192         u64 val, val_new = 0;
193         int i, reg, ret = 0;
194
195         /*
196          * Check to see if the BIOS enabled any of the counters, if so
197          * complain and bail.
198          */
199         for (i = 0; i < x86_pmu.num_counters; i++) {
200                 reg = x86_pmu_config_addr(i);
201                 ret = rdmsrl_safe(reg, &val);
202                 if (ret)
203                         goto msr_fail;
204                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
205                         goto bios_fail;
206         }
207
208         if (x86_pmu.num_counters_fixed) {
209                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
210                 ret = rdmsrl_safe(reg, &val);
211                 if (ret)
212                         goto msr_fail;
213                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
214                         if (val & (0x03 << i*4))
215                                 goto bios_fail;
216                 }
217         }
218
219         /*
220          * Now write a value and read it back to see if it matches,
221          * this is needed to detect certain hardware emulators (qemu/kvm)
222          * that don't trap on the MSR access and always return 0s.
223          */
224         val = 0xabcdUL;
225         ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
226         ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
227         if (ret || val != val_new)
228                 goto msr_fail;
229
230         return true;
231
232 bios_fail:
233         /*
234          * We still allow the PMU driver to operate:
235          */
236         printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
237         printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
238
239         return true;
240
241 msr_fail:
242         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243
244         return false;
245 }
246
247 static void hw_perf_event_destroy(struct perf_event *event)
248 {
249         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
250                 release_pmc_hardware();
251                 release_ds_buffers();
252                 mutex_unlock(&pmc_reserve_mutex);
253         }
254 }
255
256 static inline int x86_pmu_initialized(void)
257 {
258         return x86_pmu.handle_irq != NULL;
259 }
260
261 static inline int
262 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
263 {
264         struct perf_event_attr *attr = &event->attr;
265         unsigned int cache_type, cache_op, cache_result;
266         u64 config, val;
267
268         config = attr->config;
269
270         cache_type = (config >>  0) & 0xff;
271         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
272                 return -EINVAL;
273
274         cache_op = (config >>  8) & 0xff;
275         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
276                 return -EINVAL;
277
278         cache_result = (config >> 16) & 0xff;
279         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
280                 return -EINVAL;
281
282         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
283
284         if (val == 0)
285                 return -ENOENT;
286
287         if (val == -1)
288                 return -EINVAL;
289
290         hwc->config |= val;
291         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
292         return x86_pmu_extra_regs(val, event);
293 }
294
295 int x86_setup_perfctr(struct perf_event *event)
296 {
297         struct perf_event_attr *attr = &event->attr;
298         struct hw_perf_event *hwc = &event->hw;
299         u64 config;
300
301         if (!is_sampling_event(event)) {
302                 hwc->sample_period = x86_pmu.max_period;
303                 hwc->last_period = hwc->sample_period;
304                 local64_set(&hwc->period_left, hwc->sample_period);
305         } else {
306                 /*
307                  * If we have a PMU initialized but no APIC
308                  * interrupts, we cannot sample hardware
309                  * events (user-space has to fall back and
310                  * sample via a hrtimer based software event):
311                  */
312                 if (!x86_pmu.apic)
313                         return -EOPNOTSUPP;
314         }
315
316         if (attr->type == PERF_TYPE_RAW)
317                 return x86_pmu_extra_regs(event->attr.config, event);
318
319         if (attr->type == PERF_TYPE_HW_CACHE)
320                 return set_ext_hw_attr(hwc, event);
321
322         if (attr->config >= x86_pmu.max_events)
323                 return -EINVAL;
324
325         /*
326          * The generic map:
327          */
328         config = x86_pmu.event_map(attr->config);
329
330         if (config == 0)
331                 return -ENOENT;
332
333         if (config == -1LL)
334                 return -EINVAL;
335
336         /*
337          * Branch tracing:
338          */
339         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
340             !attr->freq && hwc->sample_period == 1) {
341                 /* BTS is not supported by this architecture. */
342                 if (!x86_pmu.bts_active)
343                         return -EOPNOTSUPP;
344
345                 /* BTS is currently only allowed for user-mode. */
346                 if (!attr->exclude_kernel)
347                         return -EOPNOTSUPP;
348         }
349
350         hwc->config |= config;
351
352         return 0;
353 }
354
355 /*
356  * check that branch_sample_type is compatible with
357  * settings needed for precise_ip > 1 which implies
358  * using the LBR to capture ALL taken branches at the
359  * priv levels of the measurement
360  */
361 static inline int precise_br_compat(struct perf_event *event)
362 {
363         u64 m = event->attr.branch_sample_type;
364         u64 b = 0;
365
366         /* must capture all branches */
367         if (!(m & PERF_SAMPLE_BRANCH_ANY))
368                 return 0;
369
370         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
371
372         if (!event->attr.exclude_user)
373                 b |= PERF_SAMPLE_BRANCH_USER;
374
375         if (!event->attr.exclude_kernel)
376                 b |= PERF_SAMPLE_BRANCH_KERNEL;
377
378         /*
379          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
380          */
381
382         return m == b;
383 }
384
385 int x86_pmu_hw_config(struct perf_event *event)
386 {
387         if (event->attr.precise_ip) {
388                 int precise = 0;
389
390                 /* Support for constant skid */
391                 if (x86_pmu.pebs_active) {
392                         precise++;
393
394                         /* Support for IP fixup */
395                         if (x86_pmu.lbr_nr)
396                                 precise++;
397                 }
398
399                 if (event->attr.precise_ip > precise)
400                         return -EOPNOTSUPP;
401                 /*
402                  * check that PEBS LBR correction does not conflict with
403                  * whatever the user is asking with attr->branch_sample_type
404                  */
405                 if (event->attr.precise_ip > 1) {
406                         u64 *br_type = &event->attr.branch_sample_type;
407
408                         if (has_branch_stack(event)) {
409                                 if (!precise_br_compat(event))
410                                         return -EOPNOTSUPP;
411
412                                 /* branch_sample_type is compatible */
413
414                         } else {
415                                 /*
416                                  * user did not specify  branch_sample_type
417                                  *
418                                  * For PEBS fixups, we capture all
419                                  * the branches at the priv level of the
420                                  * event.
421                                  */
422                                 *br_type = PERF_SAMPLE_BRANCH_ANY;
423
424                                 if (!event->attr.exclude_user)
425                                         *br_type |= PERF_SAMPLE_BRANCH_USER;
426
427                                 if (!event->attr.exclude_kernel)
428                                         *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
429                         }
430                 }
431         }
432
433         /*
434          * Generate PMC IRQs:
435          * (keep 'enabled' bit clear for now)
436          */
437         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
438
439         /*
440          * Count user and OS events unless requested not to
441          */
442         if (!event->attr.exclude_user)
443                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
444         if (!event->attr.exclude_kernel)
445                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
446
447         if (event->attr.type == PERF_TYPE_RAW)
448                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
449
450         return x86_setup_perfctr(event);
451 }
452
453 /*
454  * Setup the hardware configuration for a given attr_type
455  */
456 static int __x86_pmu_event_init(struct perf_event *event)
457 {
458         int err;
459
460         if (!x86_pmu_initialized())
461                 return -ENODEV;
462
463         err = 0;
464         if (!atomic_inc_not_zero(&active_events)) {
465                 mutex_lock(&pmc_reserve_mutex);
466                 if (atomic_read(&active_events) == 0) {
467                         if (!reserve_pmc_hardware())
468                                 err = -EBUSY;
469                         else
470                                 reserve_ds_buffers();
471                 }
472                 if (!err)
473                         atomic_inc(&active_events);
474                 mutex_unlock(&pmc_reserve_mutex);
475         }
476         if (err)
477                 return err;
478
479         event->destroy = hw_perf_event_destroy;
480
481         event->hw.idx = -1;
482         event->hw.last_cpu = -1;
483         event->hw.last_tag = ~0ULL;
484
485         /* mark unused */
486         event->hw.extra_reg.idx = EXTRA_REG_NONE;
487
488         /* mark not used */
489         event->hw.extra_reg.idx = EXTRA_REG_NONE;
490         event->hw.branch_reg.idx = EXTRA_REG_NONE;
491
492         return x86_pmu.hw_config(event);
493 }
494
495 void x86_pmu_disable_all(void)
496 {
497         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
498         int idx;
499
500         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
501                 u64 val;
502
503                 if (!test_bit(idx, cpuc->active_mask))
504                         continue;
505                 rdmsrl(x86_pmu_config_addr(idx), val);
506                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
507                         continue;
508                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
509                 wrmsrl(x86_pmu_config_addr(idx), val);
510         }
511 }
512
513 static void x86_pmu_disable(struct pmu *pmu)
514 {
515         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
516
517         if (!x86_pmu_initialized())
518                 return;
519
520         if (!cpuc->enabled)
521                 return;
522
523         cpuc->n_added = 0;
524         cpuc->enabled = 0;
525         barrier();
526
527         x86_pmu.disable_all();
528 }
529
530 void x86_pmu_enable_all(int added)
531 {
532         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
533         int idx;
534
535         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
536                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
537
538                 if (!test_bit(idx, cpuc->active_mask))
539                         continue;
540
541                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
542         }
543 }
544
545 static struct pmu pmu;
546
547 static inline int is_x86_event(struct perf_event *event)
548 {
549         return event->pmu == &pmu;
550 }
551
552 /*
553  * Event scheduler state:
554  *
555  * Assign events iterating over all events and counters, beginning
556  * with events with least weights first. Keep the current iterator
557  * state in struct sched_state.
558  */
559 struct sched_state {
560         int     weight;
561         int     event;          /* event index */
562         int     counter;        /* counter index */
563         int     unassigned;     /* number of events to be assigned left */
564         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
565 };
566
567 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
568 #define SCHED_STATES_MAX        2
569
570 struct perf_sched {
571         int                     max_weight;
572         int                     max_events;
573         struct event_constraint **constraints;
574         struct sched_state      state;
575         int                     saved_states;
576         struct sched_state      saved[SCHED_STATES_MAX];
577 };
578
579 /*
580  * Initialize interator that runs through all events and counters.
581  */
582 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
583                             int num, int wmin, int wmax)
584 {
585         int idx;
586
587         memset(sched, 0, sizeof(*sched));
588         sched->max_events       = num;
589         sched->max_weight       = wmax;
590         sched->constraints      = c;
591
592         for (idx = 0; idx < num; idx++) {
593                 if (c[idx]->weight == wmin)
594                         break;
595         }
596
597         sched->state.event      = idx;          /* start with min weight */
598         sched->state.weight     = wmin;
599         sched->state.unassigned = num;
600 }
601
602 static void perf_sched_save_state(struct perf_sched *sched)
603 {
604         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
605                 return;
606
607         sched->saved[sched->saved_states] = sched->state;
608         sched->saved_states++;
609 }
610
611 static bool perf_sched_restore_state(struct perf_sched *sched)
612 {
613         if (!sched->saved_states)
614                 return false;
615
616         sched->saved_states--;
617         sched->state = sched->saved[sched->saved_states];
618
619         /* continue with next counter: */
620         clear_bit(sched->state.counter++, sched->state.used);
621
622         return true;
623 }
624
625 /*
626  * Select a counter for the current event to schedule. Return true on
627  * success.
628  */
629 static bool __perf_sched_find_counter(struct perf_sched *sched)
630 {
631         struct event_constraint *c;
632         int idx;
633
634         if (!sched->state.unassigned)
635                 return false;
636
637         if (sched->state.event >= sched->max_events)
638                 return false;
639
640         c = sched->constraints[sched->state.event];
641
642         /* Prefer fixed purpose counters */
643         if (x86_pmu.num_counters_fixed) {
644                 idx = X86_PMC_IDX_FIXED;
645                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
646                         if (!__test_and_set_bit(idx, sched->state.used))
647                                 goto done;
648                 }
649         }
650         /* Grab the first unused counter starting with idx */
651         idx = sched->state.counter;
652         for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_FIXED) {
653                 if (!__test_and_set_bit(idx, sched->state.used))
654                         goto done;
655         }
656
657         return false;
658
659 done:
660         sched->state.counter = idx;
661
662         if (c->overlap)
663                 perf_sched_save_state(sched);
664
665         return true;
666 }
667
668 static bool perf_sched_find_counter(struct perf_sched *sched)
669 {
670         while (!__perf_sched_find_counter(sched)) {
671                 if (!perf_sched_restore_state(sched))
672                         return false;
673         }
674
675         return true;
676 }
677
678 /*
679  * Go through all unassigned events and find the next one to schedule.
680  * Take events with the least weight first. Return true on success.
681  */
682 static bool perf_sched_next_event(struct perf_sched *sched)
683 {
684         struct event_constraint *c;
685
686         if (!sched->state.unassigned || !--sched->state.unassigned)
687                 return false;
688
689         do {
690                 /* next event */
691                 sched->state.event++;
692                 if (sched->state.event >= sched->max_events) {
693                         /* next weight */
694                         sched->state.event = 0;
695                         sched->state.weight++;
696                         if (sched->state.weight > sched->max_weight)
697                                 return false;
698                 }
699                 c = sched->constraints[sched->state.event];
700         } while (c->weight != sched->state.weight);
701
702         sched->state.counter = 0;       /* start with first counter */
703
704         return true;
705 }
706
707 /*
708  * Assign a counter for each event.
709  */
710 static int perf_assign_events(struct event_constraint **constraints, int n,
711                               int wmin, int wmax, int *assign)
712 {
713         struct perf_sched sched;
714
715         perf_sched_init(&sched, constraints, n, wmin, wmax);
716
717         do {
718                 if (!perf_sched_find_counter(&sched))
719                         break;  /* failed */
720                 if (assign)
721                         assign[sched.state.event] = sched.state.counter;
722         } while (perf_sched_next_event(&sched));
723
724         return sched.state.unassigned;
725 }
726
727 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
728 {
729         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
730         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
731         int i, wmin, wmax, num = 0;
732         struct hw_perf_event *hwc;
733
734         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
735
736         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
737                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
738                 constraints[i] = c;
739                 wmin = min(wmin, c->weight);
740                 wmax = max(wmax, c->weight);
741         }
742
743         /*
744          * fastpath, try to reuse previous register
745          */
746         for (i = 0; i < n; i++) {
747                 hwc = &cpuc->event_list[i]->hw;
748                 c = constraints[i];
749
750                 /* never assigned */
751                 if (hwc->idx == -1)
752                         break;
753
754                 /* constraint still honored */
755                 if (!test_bit(hwc->idx, c->idxmsk))
756                         break;
757
758                 /* not already used */
759                 if (test_bit(hwc->idx, used_mask))
760                         break;
761
762                 __set_bit(hwc->idx, used_mask);
763                 if (assign)
764                         assign[i] = hwc->idx;
765         }
766
767         /* slow path */
768         if (i != n)
769                 num = perf_assign_events(constraints, n, wmin, wmax, assign);
770
771         /*
772          * scheduling failed or is just a simulation,
773          * free resources if necessary
774          */
775         if (!assign || num) {
776                 for (i = 0; i < n; i++) {
777                         if (x86_pmu.put_event_constraints)
778                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
779                 }
780         }
781         return num ? -EINVAL : 0;
782 }
783
784 /*
785  * dogrp: true if must collect siblings events (group)
786  * returns total number of events and error code
787  */
788 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
789 {
790         struct perf_event *event;
791         int n, max_count;
792
793         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
794
795         /* current number of events already accepted */
796         n = cpuc->n_events;
797
798         if (is_x86_event(leader)) {
799                 if (n >= max_count)
800                         return -EINVAL;
801                 cpuc->event_list[n] = leader;
802                 n++;
803         }
804         if (!dogrp)
805                 return n;
806
807         list_for_each_entry(event, &leader->sibling_list, group_entry) {
808                 if (!is_x86_event(event) ||
809                     event->state <= PERF_EVENT_STATE_OFF)
810                         continue;
811
812                 if (n >= max_count)
813                         return -EINVAL;
814
815                 cpuc->event_list[n] = event;
816                 n++;
817         }
818         return n;
819 }
820
821 static inline void x86_assign_hw_event(struct perf_event *event,
822                                 struct cpu_hw_events *cpuc, int i)
823 {
824         struct hw_perf_event *hwc = &event->hw;
825
826         hwc->idx = cpuc->assign[i];
827         hwc->last_cpu = smp_processor_id();
828         hwc->last_tag = ++cpuc->tags[i];
829
830         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
831                 hwc->config_base = 0;
832                 hwc->event_base = 0;
833         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
834                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
835                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
836         } else {
837                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
838                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
839         }
840 }
841
842 static inline int match_prev_assignment(struct hw_perf_event *hwc,
843                                         struct cpu_hw_events *cpuc,
844                                         int i)
845 {
846         return hwc->idx == cpuc->assign[i] &&
847                 hwc->last_cpu == smp_processor_id() &&
848                 hwc->last_tag == cpuc->tags[i];
849 }
850
851 static void x86_pmu_start(struct perf_event *event, int flags);
852
853 static void x86_pmu_enable(struct pmu *pmu)
854 {
855         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
856         struct perf_event *event;
857         struct hw_perf_event *hwc;
858         int i, added = cpuc->n_added;
859
860         if (!x86_pmu_initialized())
861                 return;
862
863         if (cpuc->enabled)
864                 return;
865
866         if (cpuc->n_added) {
867                 int n_running = cpuc->n_events - cpuc->n_added;
868                 /*
869                  * apply assignment obtained either from
870                  * hw_perf_group_sched_in() or x86_pmu_enable()
871                  *
872                  * step1: save events moving to new counters
873                  * step2: reprogram moved events into new counters
874                  */
875                 for (i = 0; i < n_running; i++) {
876                         event = cpuc->event_list[i];
877                         hwc = &event->hw;
878
879                         /*
880                          * we can avoid reprogramming counter if:
881                          * - assigned same counter as last time
882                          * - running on same CPU as last time
883                          * - no other event has used the counter since
884                          */
885                         if (hwc->idx == -1 ||
886                             match_prev_assignment(hwc, cpuc, i))
887                                 continue;
888
889                         /*
890                          * Ensure we don't accidentally enable a stopped
891                          * counter simply because we rescheduled.
892                          */
893                         if (hwc->state & PERF_HES_STOPPED)
894                                 hwc->state |= PERF_HES_ARCH;
895
896                         x86_pmu_stop(event, PERF_EF_UPDATE);
897                 }
898
899                 for (i = 0; i < cpuc->n_events; i++) {
900                         event = cpuc->event_list[i];
901                         hwc = &event->hw;
902
903                         if (!match_prev_assignment(hwc, cpuc, i))
904                                 x86_assign_hw_event(event, cpuc, i);
905                         else if (i < n_running)
906                                 continue;
907
908                         if (hwc->state & PERF_HES_ARCH)
909                                 continue;
910
911                         x86_pmu_start(event, PERF_EF_RELOAD);
912                 }
913                 cpuc->n_added = 0;
914                 perf_events_lapic_init();
915         }
916
917         cpuc->enabled = 1;
918         barrier();
919
920         x86_pmu.enable_all(added);
921 }
922
923 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
924
925 /*
926  * Set the next IRQ period, based on the hwc->period_left value.
927  * To be called with the event disabled in hw:
928  */
929 int x86_perf_event_set_period(struct perf_event *event)
930 {
931         struct hw_perf_event *hwc = &event->hw;
932         s64 left = local64_read(&hwc->period_left);
933         s64 period = hwc->sample_period;
934         int ret = 0, idx = hwc->idx;
935
936         if (idx == X86_PMC_IDX_FIXED_BTS)
937                 return 0;
938
939         /*
940          * If we are way outside a reasonable range then just skip forward:
941          */
942         if (unlikely(left <= -period)) {
943                 left = period;
944                 local64_set(&hwc->period_left, left);
945                 hwc->last_period = period;
946                 ret = 1;
947         }
948
949         if (unlikely(left <= 0)) {
950                 left += period;
951                 local64_set(&hwc->period_left, left);
952                 hwc->last_period = period;
953                 ret = 1;
954         }
955         /*
956          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
957          */
958         if (unlikely(left < 2))
959                 left = 2;
960
961         if (left > x86_pmu.max_period)
962                 left = x86_pmu.max_period;
963
964         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
965
966         /*
967          * The hw event starts counting from this event offset,
968          * mark it to be able to extra future deltas:
969          */
970         local64_set(&hwc->prev_count, (u64)-left);
971
972         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
973
974         /*
975          * Due to erratum on certan cpu we need
976          * a second write to be sure the register
977          * is updated properly
978          */
979         if (x86_pmu.perfctr_second_write) {
980                 wrmsrl(hwc->event_base,
981                         (u64)(-left) & x86_pmu.cntval_mask);
982         }
983
984         perf_event_update_userpage(event);
985
986         return ret;
987 }
988
989 void x86_pmu_enable_event(struct perf_event *event)
990 {
991         if (__this_cpu_read(cpu_hw_events.enabled))
992                 __x86_pmu_enable_event(&event->hw,
993                                        ARCH_PERFMON_EVENTSEL_ENABLE);
994 }
995
996 /*
997  * Add a single event to the PMU.
998  *
999  * The event is added to the group of enabled events
1000  * but only if it can be scehduled with existing events.
1001  */
1002 static int x86_pmu_add(struct perf_event *event, int flags)
1003 {
1004         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005         struct hw_perf_event *hwc;
1006         int assign[X86_PMC_IDX_MAX];
1007         int n, n0, ret;
1008
1009         hwc = &event->hw;
1010
1011         perf_pmu_disable(event->pmu);
1012         n0 = cpuc->n_events;
1013         ret = n = collect_events(cpuc, event, false);
1014         if (ret < 0)
1015                 goto out;
1016
1017         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1018         if (!(flags & PERF_EF_START))
1019                 hwc->state |= PERF_HES_ARCH;
1020
1021         /*
1022          * If group events scheduling transaction was started,
1023          * skip the schedulability test here, it will be performed
1024          * at commit time (->commit_txn) as a whole
1025          */
1026         if (cpuc->group_flag & PERF_EVENT_TXN)
1027                 goto done_collect;
1028
1029         ret = x86_pmu.schedule_events(cpuc, n, assign);
1030         if (ret)
1031                 goto out;
1032         /*
1033          * copy new assignment, now we know it is possible
1034          * will be used by hw_perf_enable()
1035          */
1036         memcpy(cpuc->assign, assign, n*sizeof(int));
1037
1038 done_collect:
1039         cpuc->n_events = n;
1040         cpuc->n_added += n - n0;
1041         cpuc->n_txn += n - n0;
1042
1043         ret = 0;
1044 out:
1045         perf_pmu_enable(event->pmu);
1046         return ret;
1047 }
1048
1049 static void x86_pmu_start(struct perf_event *event, int flags)
1050 {
1051         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1052         int idx = event->hw.idx;
1053
1054         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1055                 return;
1056
1057         if (WARN_ON_ONCE(idx == -1))
1058                 return;
1059
1060         if (flags & PERF_EF_RELOAD) {
1061                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1062                 x86_perf_event_set_period(event);
1063         }
1064
1065         event->hw.state = 0;
1066
1067         cpuc->events[idx] = event;
1068         __set_bit(idx, cpuc->active_mask);
1069         __set_bit(idx, cpuc->running);
1070         x86_pmu.enable(event);
1071         perf_event_update_userpage(event);
1072 }
1073
1074 void perf_event_print_debug(void)
1075 {
1076         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1077         u64 pebs;
1078         struct cpu_hw_events *cpuc;
1079         unsigned long flags;
1080         int cpu, idx;
1081
1082         if (!x86_pmu.num_counters)
1083                 return;
1084
1085         local_irq_save(flags);
1086
1087         cpu = smp_processor_id();
1088         cpuc = &per_cpu(cpu_hw_events, cpu);
1089
1090         if (x86_pmu.version >= 2) {
1091                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1092                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1093                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1094                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1095                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1096
1097                 pr_info("\n");
1098                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1099                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1100                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1101                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1102                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1103         }
1104         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1105
1106         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1107                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1108                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1109
1110                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1111
1112                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1113                         cpu, idx, pmc_ctrl);
1114                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1115                         cpu, idx, pmc_count);
1116                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1117                         cpu, idx, prev_left);
1118         }
1119         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1120                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1121
1122                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1123                         cpu, idx, pmc_count);
1124         }
1125         local_irq_restore(flags);
1126 }
1127
1128 void x86_pmu_stop(struct perf_event *event, int flags)
1129 {
1130         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1131         struct hw_perf_event *hwc = &event->hw;
1132
1133         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1134                 x86_pmu.disable(event);
1135                 cpuc->events[hwc->idx] = NULL;
1136                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1137                 hwc->state |= PERF_HES_STOPPED;
1138         }
1139
1140         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1141                 /*
1142                  * Drain the remaining delta count out of a event
1143                  * that we are disabling:
1144                  */
1145                 x86_perf_event_update(event);
1146                 hwc->state |= PERF_HES_UPTODATE;
1147         }
1148 }
1149
1150 static void x86_pmu_del(struct perf_event *event, int flags)
1151 {
1152         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1153         int i;
1154
1155         /*
1156          * If we're called during a txn, we don't need to do anything.
1157          * The events never got scheduled and ->cancel_txn will truncate
1158          * the event_list.
1159          */
1160         if (cpuc->group_flag & PERF_EVENT_TXN)
1161                 return;
1162
1163         x86_pmu_stop(event, PERF_EF_UPDATE);
1164
1165         for (i = 0; i < cpuc->n_events; i++) {
1166                 if (event == cpuc->event_list[i]) {
1167
1168                         if (x86_pmu.put_event_constraints)
1169                                 x86_pmu.put_event_constraints(cpuc, event);
1170
1171                         while (++i < cpuc->n_events)
1172                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1173
1174                         --cpuc->n_events;
1175                         break;
1176                 }
1177         }
1178         perf_event_update_userpage(event);
1179 }
1180
1181 int x86_pmu_handle_irq(struct pt_regs *regs)
1182 {
1183         struct perf_sample_data data;
1184         struct cpu_hw_events *cpuc;
1185         struct perf_event *event;
1186         int idx, handled = 0;
1187         u64 val;
1188
1189         perf_sample_data_init(&data, 0);
1190
1191         cpuc = &__get_cpu_var(cpu_hw_events);
1192
1193         /*
1194          * Some chipsets need to unmask the LVTPC in a particular spot
1195          * inside the nmi handler.  As a result, the unmasking was pushed
1196          * into all the nmi handlers.
1197          *
1198          * This generic handler doesn't seem to have any issues where the
1199          * unmasking occurs so it was left at the top.
1200          */
1201         apic_write(APIC_LVTPC, APIC_DM_NMI);
1202
1203         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1204                 if (!test_bit(idx, cpuc->active_mask)) {
1205                         /*
1206                          * Though we deactivated the counter some cpus
1207                          * might still deliver spurious interrupts still
1208                          * in flight. Catch them:
1209                          */
1210                         if (__test_and_clear_bit(idx, cpuc->running))
1211                                 handled++;
1212                         continue;
1213                 }
1214
1215                 event = cpuc->events[idx];
1216
1217                 val = x86_perf_event_update(event);
1218                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1219                         continue;
1220
1221                 /*
1222                  * event overflow
1223                  */
1224                 handled++;
1225                 data.period     = event->hw.last_period;
1226
1227                 if (!x86_perf_event_set_period(event))
1228                         continue;
1229
1230                 if (perf_event_overflow(event, &data, regs))
1231                         x86_pmu_stop(event, 0);
1232         }
1233
1234         if (handled)
1235                 inc_irq_stat(apic_perf_irqs);
1236
1237         return handled;
1238 }
1239
1240 void perf_events_lapic_init(void)
1241 {
1242         if (!x86_pmu.apic || !x86_pmu_initialized())
1243                 return;
1244
1245         /*
1246          * Always use NMI for PMU
1247          */
1248         apic_write(APIC_LVTPC, APIC_DM_NMI);
1249 }
1250
1251 static int __kprobes
1252 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1253 {
1254         if (!atomic_read(&active_events))
1255                 return NMI_DONE;
1256
1257         return x86_pmu.handle_irq(regs);
1258 }
1259
1260 struct event_constraint emptyconstraint;
1261 struct event_constraint unconstrained;
1262
1263 static int __cpuinit
1264 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1265 {
1266         unsigned int cpu = (long)hcpu;
1267         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1268         int ret = NOTIFY_OK;
1269
1270         switch (action & ~CPU_TASKS_FROZEN) {
1271         case CPU_UP_PREPARE:
1272                 cpuc->kfree_on_online = NULL;
1273                 if (x86_pmu.cpu_prepare)
1274                         ret = x86_pmu.cpu_prepare(cpu);
1275                 break;
1276
1277         case CPU_STARTING:
1278                 if (x86_pmu.attr_rdpmc)
1279                         set_in_cr4(X86_CR4_PCE);
1280                 if (x86_pmu.cpu_starting)
1281                         x86_pmu.cpu_starting(cpu);
1282                 break;
1283
1284         case CPU_ONLINE:
1285                 kfree(cpuc->kfree_on_online);
1286                 break;
1287
1288         case CPU_DYING:
1289                 if (x86_pmu.cpu_dying)
1290                         x86_pmu.cpu_dying(cpu);
1291                 break;
1292
1293         case CPU_UP_CANCELED:
1294         case CPU_DEAD:
1295                 if (x86_pmu.cpu_dead)
1296                         x86_pmu.cpu_dead(cpu);
1297                 break;
1298
1299         default:
1300                 break;
1301         }
1302
1303         return ret;
1304 }
1305
1306 static void __init pmu_check_apic(void)
1307 {
1308         if (cpu_has_apic)
1309                 return;
1310
1311         x86_pmu.apic = 0;
1312         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1313         pr_info("no hardware sampling interrupt available.\n");
1314 }
1315
1316 static struct attribute_group x86_pmu_format_group = {
1317         .name = "format",
1318         .attrs = NULL,
1319 };
1320
1321 static int __init init_hw_perf_events(void)
1322 {
1323         struct x86_pmu_quirk *quirk;
1324         struct event_constraint *c;
1325         int err;
1326
1327         pr_info("Performance Events: ");
1328
1329         switch (boot_cpu_data.x86_vendor) {
1330         case X86_VENDOR_INTEL:
1331                 err = intel_pmu_init();
1332                 break;
1333         case X86_VENDOR_AMD:
1334                 err = amd_pmu_init();
1335                 break;
1336         default:
1337                 return 0;
1338         }
1339         if (err != 0) {
1340                 pr_cont("no PMU driver, software events only.\n");
1341                 return 0;
1342         }
1343
1344         pmu_check_apic();
1345
1346         /* sanity check that the hardware exists or is emulated */
1347         if (!check_hw_exists())
1348                 return 0;
1349
1350         pr_cont("%s PMU driver.\n", x86_pmu.name);
1351
1352         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1353                 quirk->func();
1354
1355         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1356                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1357                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1358                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1359         }
1360         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1361
1362         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1363                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1364                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1365                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1366         }
1367
1368         x86_pmu.intel_ctrl |=
1369                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1370
1371         perf_events_lapic_init();
1372         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1373
1374         unconstrained = (struct event_constraint)
1375                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1376                                    0, x86_pmu.num_counters, 0);
1377
1378         if (x86_pmu.event_constraints) {
1379                 /*
1380                  * event on fixed counter2 (REF_CYCLES) only works on this
1381                  * counter, so do not extend mask to generic counters
1382                  */
1383                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1384                         if (c->cmask != X86_RAW_EVENT_MASK
1385                             || c->idxmsk64 == X86_PMC_MSK_FIXED_REF_CYCLES) {
1386                                 continue;
1387                         }
1388
1389                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1390                         c->weight += x86_pmu.num_counters;
1391                 }
1392         }
1393
1394         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1395         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1396
1397         pr_info("... version:                %d\n",     x86_pmu.version);
1398         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1399         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1400         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1401         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1402         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1403         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1404
1405         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1406         perf_cpu_notifier(x86_pmu_notifier);
1407
1408         return 0;
1409 }
1410 early_initcall(init_hw_perf_events);
1411
1412 static inline void x86_pmu_read(struct perf_event *event)
1413 {
1414         x86_perf_event_update(event);
1415 }
1416
1417 /*
1418  * Start group events scheduling transaction
1419  * Set the flag to make pmu::enable() not perform the
1420  * schedulability test, it will be performed at commit time
1421  */
1422 static void x86_pmu_start_txn(struct pmu *pmu)
1423 {
1424         perf_pmu_disable(pmu);
1425         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1426         __this_cpu_write(cpu_hw_events.n_txn, 0);
1427 }
1428
1429 /*
1430  * Stop group events scheduling transaction
1431  * Clear the flag and pmu::enable() will perform the
1432  * schedulability test.
1433  */
1434 static void x86_pmu_cancel_txn(struct pmu *pmu)
1435 {
1436         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1437         /*
1438          * Truncate the collected events.
1439          */
1440         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1441         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1442         perf_pmu_enable(pmu);
1443 }
1444
1445 /*
1446  * Commit group events scheduling transaction
1447  * Perform the group schedulability test as a whole
1448  * Return 0 if success
1449  */
1450 static int x86_pmu_commit_txn(struct pmu *pmu)
1451 {
1452         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1453         int assign[X86_PMC_IDX_MAX];
1454         int n, ret;
1455
1456         n = cpuc->n_events;
1457
1458         if (!x86_pmu_initialized())
1459                 return -EAGAIN;
1460
1461         ret = x86_pmu.schedule_events(cpuc, n, assign);
1462         if (ret)
1463                 return ret;
1464
1465         /*
1466          * copy new assignment, now we know it is possible
1467          * will be used by hw_perf_enable()
1468          */
1469         memcpy(cpuc->assign, assign, n*sizeof(int));
1470
1471         cpuc->group_flag &= ~PERF_EVENT_TXN;
1472         perf_pmu_enable(pmu);
1473         return 0;
1474 }
1475 /*
1476  * a fake_cpuc is used to validate event groups. Due to
1477  * the extra reg logic, we need to also allocate a fake
1478  * per_core and per_cpu structure. Otherwise, group events
1479  * using extra reg may conflict without the kernel being
1480  * able to catch this when the last event gets added to
1481  * the group.
1482  */
1483 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1484 {
1485         kfree(cpuc->shared_regs);
1486         kfree(cpuc);
1487 }
1488
1489 static struct cpu_hw_events *allocate_fake_cpuc(void)
1490 {
1491         struct cpu_hw_events *cpuc;
1492         int cpu = raw_smp_processor_id();
1493
1494         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1495         if (!cpuc)
1496                 return ERR_PTR(-ENOMEM);
1497
1498         /* only needed, if we have extra_regs */
1499         if (x86_pmu.extra_regs) {
1500                 cpuc->shared_regs = allocate_shared_regs(cpu);
1501                 if (!cpuc->shared_regs)
1502                         goto error;
1503         }
1504         return cpuc;
1505 error:
1506         free_fake_cpuc(cpuc);
1507         return ERR_PTR(-ENOMEM);
1508 }
1509
1510 /*
1511  * validate that we can schedule this event
1512  */
1513 static int validate_event(struct perf_event *event)
1514 {
1515         struct cpu_hw_events *fake_cpuc;
1516         struct event_constraint *c;
1517         int ret = 0;
1518
1519         fake_cpuc = allocate_fake_cpuc();
1520         if (IS_ERR(fake_cpuc))
1521                 return PTR_ERR(fake_cpuc);
1522
1523         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1524
1525         if (!c || !c->weight)
1526                 ret = -EINVAL;
1527
1528         if (x86_pmu.put_event_constraints)
1529                 x86_pmu.put_event_constraints(fake_cpuc, event);
1530
1531         free_fake_cpuc(fake_cpuc);
1532
1533         return ret;
1534 }
1535
1536 /*
1537  * validate a single event group
1538  *
1539  * validation include:
1540  *      - check events are compatible which each other
1541  *      - events do not compete for the same counter
1542  *      - number of events <= number of counters
1543  *
1544  * validation ensures the group can be loaded onto the
1545  * PMU if it was the only group available.
1546  */
1547 static int validate_group(struct perf_event *event)
1548 {
1549         struct perf_event *leader = event->group_leader;
1550         struct cpu_hw_events *fake_cpuc;
1551         int ret = -EINVAL, n;
1552
1553         fake_cpuc = allocate_fake_cpuc();
1554         if (IS_ERR(fake_cpuc))
1555                 return PTR_ERR(fake_cpuc);
1556         /*
1557          * the event is not yet connected with its
1558          * siblings therefore we must first collect
1559          * existing siblings, then add the new event
1560          * before we can simulate the scheduling
1561          */
1562         n = collect_events(fake_cpuc, leader, true);
1563         if (n < 0)
1564                 goto out;
1565
1566         fake_cpuc->n_events = n;
1567         n = collect_events(fake_cpuc, event, false);
1568         if (n < 0)
1569                 goto out;
1570
1571         fake_cpuc->n_events = n;
1572
1573         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1574
1575 out:
1576         free_fake_cpuc(fake_cpuc);
1577         return ret;
1578 }
1579
1580 static int x86_pmu_event_init(struct perf_event *event)
1581 {
1582         struct pmu *tmp;
1583         int err;
1584
1585         switch (event->attr.type) {
1586         case PERF_TYPE_RAW:
1587         case PERF_TYPE_HARDWARE:
1588         case PERF_TYPE_HW_CACHE:
1589                 break;
1590
1591         default:
1592                 return -ENOENT;
1593         }
1594
1595         err = __x86_pmu_event_init(event);
1596         if (!err) {
1597                 /*
1598                  * we temporarily connect event to its pmu
1599                  * such that validate_group() can classify
1600                  * it as an x86 event using is_x86_event()
1601                  */
1602                 tmp = event->pmu;
1603                 event->pmu = &pmu;
1604
1605                 if (event->group_leader != event)
1606                         err = validate_group(event);
1607                 else
1608                         err = validate_event(event);
1609
1610                 event->pmu = tmp;
1611         }
1612         if (err) {
1613                 if (event->destroy)
1614                         event->destroy(event);
1615         }
1616
1617         return err;
1618 }
1619
1620 static int x86_pmu_event_idx(struct perf_event *event)
1621 {
1622         int idx = event->hw.idx;
1623
1624         if (!x86_pmu.attr_rdpmc)
1625                 return 0;
1626
1627         if (x86_pmu.num_counters_fixed && idx >= X86_PMC_IDX_FIXED) {
1628                 idx -= X86_PMC_IDX_FIXED;
1629                 idx |= 1 << 30;
1630         }
1631
1632         return idx + 1;
1633 }
1634
1635 static ssize_t get_attr_rdpmc(struct device *cdev,
1636                               struct device_attribute *attr,
1637                               char *buf)
1638 {
1639         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1640 }
1641
1642 static void change_rdpmc(void *info)
1643 {
1644         bool enable = !!(unsigned long)info;
1645
1646         if (enable)
1647                 set_in_cr4(X86_CR4_PCE);
1648         else
1649                 clear_in_cr4(X86_CR4_PCE);
1650 }
1651
1652 static ssize_t set_attr_rdpmc(struct device *cdev,
1653                               struct device_attribute *attr,
1654                               const char *buf, size_t count)
1655 {
1656         unsigned long val = simple_strtoul(buf, NULL, 0);
1657
1658         if (!!val != !!x86_pmu.attr_rdpmc) {
1659                 x86_pmu.attr_rdpmc = !!val;
1660                 smp_call_function(change_rdpmc, (void *)val, 1);
1661         }
1662
1663         return count;
1664 }
1665
1666 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1667
1668 static struct attribute *x86_pmu_attrs[] = {
1669         &dev_attr_rdpmc.attr,
1670         NULL,
1671 };
1672
1673 static struct attribute_group x86_pmu_attr_group = {
1674         .attrs = x86_pmu_attrs,
1675 };
1676
1677 static const struct attribute_group *x86_pmu_attr_groups[] = {
1678         &x86_pmu_attr_group,
1679         &x86_pmu_format_group,
1680         NULL,
1681 };
1682
1683 static void x86_pmu_flush_branch_stack(void)
1684 {
1685         if (x86_pmu.flush_branch_stack)
1686                 x86_pmu.flush_branch_stack();
1687 }
1688
1689 static struct pmu pmu = {
1690         .pmu_enable             = x86_pmu_enable,
1691         .pmu_disable            = x86_pmu_disable,
1692
1693         .attr_groups    = x86_pmu_attr_groups,
1694
1695         .event_init     = x86_pmu_event_init,
1696
1697         .add                    = x86_pmu_add,
1698         .del                    = x86_pmu_del,
1699         .start                  = x86_pmu_start,
1700         .stop                   = x86_pmu_stop,
1701         .read                   = x86_pmu_read,
1702
1703         .start_txn      = x86_pmu_start_txn,
1704         .cancel_txn     = x86_pmu_cancel_txn,
1705         .commit_txn     = x86_pmu_commit_txn,
1706
1707         .event_idx      = x86_pmu_event_idx,
1708         .flush_branch_stack     = x86_pmu_flush_branch_stack,
1709 };
1710
1711 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1712 {
1713         userpg->cap_usr_time = 0;
1714         userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1715         userpg->pmc_width = x86_pmu.cntval_bits;
1716
1717         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1718                 return;
1719
1720         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1721                 return;
1722
1723         userpg->cap_usr_time = 1;
1724         userpg->time_mult = this_cpu_read(cyc2ns);
1725         userpg->time_shift = CYC2NS_SCALE_FACTOR;
1726         userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1727 }
1728
1729 /*
1730  * callchain support
1731  */
1732
1733 static void
1734 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1735 {
1736         /* Ignore warnings */
1737 }
1738
1739 static void backtrace_warning(void *data, char *msg)
1740 {
1741         /* Ignore warnings */
1742 }
1743
1744 static int backtrace_stack(void *data, char *name)
1745 {
1746         return 0;
1747 }
1748
1749 static void backtrace_address(void *data, unsigned long addr, int reliable)
1750 {
1751         struct perf_callchain_entry *entry = data;
1752
1753         perf_callchain_store(entry, addr);
1754 }
1755
1756 static const struct stacktrace_ops backtrace_ops = {
1757         .warning                = backtrace_warning,
1758         .warning_symbol         = backtrace_warning_symbol,
1759         .stack                  = backtrace_stack,
1760         .address                = backtrace_address,
1761         .walk_stack             = print_context_stack_bp,
1762 };
1763
1764 void
1765 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1766 {
1767         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1768                 /* TODO: We don't support guest os callchain now */
1769                 return;
1770         }
1771
1772         perf_callchain_store(entry, regs->ip);
1773
1774         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1775 }
1776
1777 #ifdef CONFIG_COMPAT
1778
1779 #include <asm/compat.h>
1780
1781 static inline int
1782 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1783 {
1784         /* 32-bit process in 64-bit kernel. */
1785         struct stack_frame_ia32 frame;
1786         const void __user *fp;
1787
1788         if (!test_thread_flag(TIF_IA32))
1789                 return 0;
1790
1791         fp = compat_ptr(regs->bp);
1792         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1793                 unsigned long bytes;
1794                 frame.next_frame     = 0;
1795                 frame.return_address = 0;
1796
1797                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1798                 if (bytes != sizeof(frame))
1799                         break;
1800
1801                 if (fp < compat_ptr(regs->sp))
1802                         break;
1803
1804                 perf_callchain_store(entry, frame.return_address);
1805                 fp = compat_ptr(frame.next_frame);
1806         }
1807         return 1;
1808 }
1809 #else
1810 static inline int
1811 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1812 {
1813     return 0;
1814 }
1815 #endif
1816
1817 void
1818 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1819 {
1820         struct stack_frame frame;
1821         const void __user *fp;
1822
1823         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1824                 /* TODO: We don't support guest os callchain now */
1825                 return;
1826         }
1827
1828         fp = (void __user *)regs->bp;
1829
1830         perf_callchain_store(entry, regs->ip);
1831
1832         if (!current->mm)
1833                 return;
1834
1835         if (perf_callchain_user32(regs, entry))
1836                 return;
1837
1838         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1839                 unsigned long bytes;
1840                 frame.next_frame             = NULL;
1841                 frame.return_address = 0;
1842
1843                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1844                 if (bytes != sizeof(frame))
1845                         break;
1846
1847                 if ((unsigned long)fp < regs->sp)
1848                         break;
1849
1850                 perf_callchain_store(entry, frame.return_address);
1851                 fp = frame.next_frame;
1852         }
1853 }
1854
1855 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1856 {
1857         unsigned long ip;
1858
1859         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1860                 ip = perf_guest_cbs->get_guest_ip();
1861         else
1862                 ip = instruction_pointer(regs);
1863
1864         return ip;
1865 }
1866
1867 unsigned long perf_misc_flags(struct pt_regs *regs)
1868 {
1869         int misc = 0;
1870
1871         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1872                 if (perf_guest_cbs->is_user_mode())
1873                         misc |= PERF_RECORD_MISC_GUEST_USER;
1874                 else
1875                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1876         } else {
1877                 if (user_mode(regs))
1878                         misc |= PERF_RECORD_MISC_USER;
1879                 else
1880                         misc |= PERF_RECORD_MISC_KERNEL;
1881         }
1882
1883         if (regs->flags & PERF_EFLAGS_EXACT)
1884                 misc |= PERF_RECORD_MISC_EXACT_IP;
1885
1886         return misc;
1887 }
1888
1889 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1890 {
1891         cap->version            = x86_pmu.version;
1892         cap->num_counters_gp    = x86_pmu.num_counters;
1893         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
1894         cap->bit_width_gp       = x86_pmu.cntval_bits;
1895         cap->bit_width_fixed    = x86_pmu.cntval_bits;
1896         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
1897         cap->events_mask_len    = x86_pmu.events_mask_len;
1898 }
1899 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);