md: two small fixes to handling interrupt resync.
[linux-flexiantxendom0-3.2.10.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101         return mddev->sync_speed_min ?
102                 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107         return mddev->sync_speed_max ?
108                 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114         {
115                 .procname       = "speed_limit_min",
116                 .data           = &sysctl_speed_limit_min,
117                 .maxlen         = sizeof(int),
118                 .mode           = S_IRUGO|S_IWUSR,
119                 .proc_handler   = proc_dointvec,
120         },
121         {
122                 .procname       = "speed_limit_max",
123                 .data           = &sysctl_speed_limit_max,
124                 .maxlen         = sizeof(int),
125                 .mode           = S_IRUGO|S_IWUSR,
126                 .proc_handler   = proc_dointvec,
127         },
128         { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132         {
133                 .procname       = "raid",
134                 .maxlen         = 0,
135                 .mode           = S_IRUGO|S_IXUGO,
136                 .child          = raid_table,
137         },
138         { }
139 };
140
141 static ctl_table raid_root_table[] = {
142         {
143                 .procname       = "dev",
144                 .maxlen         = 0,
145                 .mode           = 0555,
146                 .child          = raid_dir_table,
147         },
148         {  }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161         struct mddev *mddev, **mddevp;
162
163         mddevp = (void*)bio;
164         mddev = mddevp[-1];
165
166         bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170                             struct mddev *mddev)
171 {
172         struct bio *b;
173         struct mddev **mddevp;
174
175         if (!mddev || !mddev->bio_set)
176                 return bio_alloc(gfp_mask, nr_iovecs);
177
178         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179                              mddev->bio_set);
180         if (!b)
181                 return NULL;
182         mddevp = (void*)b;
183         mddevp[-1] = mddev;
184         b->bi_destructor = mddev_bio_destructor;
185         return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190                             struct mddev *mddev)
191 {
192         struct bio *b;
193         struct mddev **mddevp;
194
195         if (!mddev || !mddev->bio_set)
196                 return bio_clone(bio, gfp_mask);
197
198         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199                              mddev->bio_set);
200         if (!b)
201                 return NULL;
202         mddevp = (void*)b;
203         mddevp[-1] = mddev;
204         b->bi_destructor = mddev_bio_destructor;
205         __bio_clone(b, bio);
206         if (bio_integrity(bio)) {
207                 int ret;
208
209                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211                 if (ret < 0) {
212                         bio_put(b);
213                         return NULL;
214                 }
215         }
216
217         return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223         /* 'bio' is a cloned bio which we need to trim to match
224          * the given offset and size.
225          * This requires adjusting bi_sector, bi_size, and bi_io_vec
226          */
227         int i;
228         struct bio_vec *bvec;
229         int sofar = 0;
230
231         size <<= 9;
232         if (offset == 0 && size == bio->bi_size)
233                 return;
234
235         bio->bi_sector += offset;
236         bio->bi_size = size;
237         offset <<= 9;
238         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240         while (bio->bi_idx < bio->bi_vcnt &&
241                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242                 /* remove this whole bio_vec */
243                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244                 bio->bi_idx++;
245         }
246         if (bio->bi_idx < bio->bi_vcnt) {
247                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249         }
250         /* avoid any complications with bi_idx being non-zero*/
251         if (bio->bi_idx) {
252                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254                 bio->bi_vcnt -= bio->bi_idx;
255                 bio->bi_idx = 0;
256         }
257         /* Make sure vcnt and last bv are not too big */
258         bio_for_each_segment(bvec, bio, i) {
259                 if (sofar + bvec->bv_len > size)
260                         bvec->bv_len = size - sofar;
261                 if (bvec->bv_len == 0) {
262                         bio->bi_vcnt = i;
263                         break;
264                 }
265                 sofar += bvec->bv_len;
266         }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284         atomic_inc(&md_event_count);
285         wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294         atomic_inc(&md_event_count);
295         wake_up(&md_event_waiters);
296 }
297
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)                                     \
314                                                                         \
315         for (({ spin_lock(&all_mddevs_lock);                            \
316                 _tmp = all_mddevs.next;                                 \
317                 _mddev = NULL;});                                       \
318              ({ if (_tmp != &all_mddevs)                                \
319                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320                 spin_unlock(&all_mddevs_lock);                          \
321                 if (_mddev) mddev_put(_mddev);                          \
322                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
323                 _tmp != &all_mddevs;});                                 \
324              ({ spin_lock(&all_mddevs_lock);                            \
325                 _tmp = _tmp->next;})                                    \
326                 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338         const int rw = bio_data_dir(bio);
339         struct mddev *mddev = q->queuedata;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return;
347         }
348         smp_rmb(); /* Ensure implications of  'active' are visible */
349         rcu_read_lock();
350         if (mddev->suspended) {
351                 DEFINE_WAIT(__wait);
352                 for (;;) {
353                         prepare_to_wait(&mddev->sb_wait, &__wait,
354                                         TASK_UNINTERRUPTIBLE);
355                         if (!mddev->suspended)
356                                 break;
357                         rcu_read_unlock();
358                         schedule();
359                         rcu_read_lock();
360                 }
361                 finish_wait(&mddev->sb_wait, &__wait);
362         }
363         atomic_inc(&mddev->active_io);
364         rcu_read_unlock();
365
366         /*
367          * save the sectors now since our bio can
368          * go away inside make_request
369          */
370         sectors = bio_sectors(bio);
371         mddev->pers->make_request(mddev, bio);
372
373         cpu = part_stat_lock();
374         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376         part_stat_unlock();
377
378         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379                 wake_up(&mddev->sb_wait);
380 }
381
382 /* mddev_suspend makes sure no new requests are submitted
383  * to the device, and that any requests that have been submitted
384  * are completely handled.
385  * Once ->stop is called and completes, the module will be completely
386  * unused.
387  */
388 void mddev_suspend(struct mddev *mddev)
389 {
390         BUG_ON(mddev->suspended);
391         mddev->suspended = 1;
392         synchronize_rcu();
393         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394         mddev->pers->quiesce(mddev, 1);
395 }
396 EXPORT_SYMBOL_GPL(mddev_suspend);
397
398 void mddev_resume(struct mddev *mddev)
399 {
400         mddev->suspended = 0;
401         wake_up(&mddev->sb_wait);
402         mddev->pers->quiesce(mddev, 0);
403
404         md_wakeup_thread(mddev->thread);
405         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 }
407 EXPORT_SYMBOL_GPL(mddev_resume);
408
409 int mddev_congested(struct mddev *mddev, int bits)
410 {
411         return mddev->suspended;
412 }
413 EXPORT_SYMBOL(mddev_congested);
414
415 /*
416  * Generic flush handling for md
417  */
418
419 static void md_end_flush(struct bio *bio, int err)
420 {
421         struct md_rdev *rdev = bio->bi_private;
422         struct mddev *mddev = rdev->mddev;
423
424         rdev_dec_pending(rdev, mddev);
425
426         if (atomic_dec_and_test(&mddev->flush_pending)) {
427                 /* The pre-request flush has finished */
428                 queue_work(md_wq, &mddev->flush_work);
429         }
430         bio_put(bio);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws);
434
435 static void submit_flushes(struct work_struct *ws)
436 {
437         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438         struct md_rdev *rdev;
439
440         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441         atomic_set(&mddev->flush_pending, 1);
442         rcu_read_lock();
443         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444                 if (rdev->raid_disk >= 0 &&
445                     !test_bit(Faulty, &rdev->flags)) {
446                         /* Take two references, one is dropped
447                          * when request finishes, one after
448                          * we reclaim rcu_read_lock
449                          */
450                         struct bio *bi;
451                         atomic_inc(&rdev->nr_pending);
452                         atomic_inc(&rdev->nr_pending);
453                         rcu_read_unlock();
454                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455                         bi->bi_end_io = md_end_flush;
456                         bi->bi_private = rdev;
457                         bi->bi_bdev = rdev->bdev;
458                         atomic_inc(&mddev->flush_pending);
459                         submit_bio(WRITE_FLUSH, bi);
460                         rcu_read_lock();
461                         rdev_dec_pending(rdev, mddev);
462                 }
463         rcu_read_unlock();
464         if (atomic_dec_and_test(&mddev->flush_pending))
465                 queue_work(md_wq, &mddev->flush_work);
466 }
467
468 static void md_submit_flush_data(struct work_struct *ws)
469 {
470         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471         struct bio *bio = mddev->flush_bio;
472
473         if (bio->bi_size == 0)
474                 /* an empty barrier - all done */
475                 bio_endio(bio, 0);
476         else {
477                 bio->bi_rw &= ~REQ_FLUSH;
478                 mddev->pers->make_request(mddev, bio);
479         }
480
481         mddev->flush_bio = NULL;
482         wake_up(&mddev->sb_wait);
483 }
484
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 {
487         spin_lock_irq(&mddev->write_lock);
488         wait_event_lock_irq(mddev->sb_wait,
489                             !mddev->flush_bio,
490                             mddev->write_lock, /*nothing*/);
491         mddev->flush_bio = bio;
492         spin_unlock_irq(&mddev->write_lock);
493
494         INIT_WORK(&mddev->flush_work, submit_flushes);
495         queue_work(md_wq, &mddev->flush_work);
496 }
497 EXPORT_SYMBOL(md_flush_request);
498
499 /* Support for plugging.
500  * This mirrors the plugging support in request_queue, but does not
501  * require having a whole queue or request structures.
502  * We allocate an md_plug_cb for each md device and each thread it gets
503  * plugged on.  This links tot the private plug_handle structure in the
504  * personality data where we keep a count of the number of outstanding
505  * plugs so other code can see if a plug is active.
506  */
507 struct md_plug_cb {
508         struct blk_plug_cb cb;
509         struct mddev *mddev;
510 };
511
512 static void plugger_unplug(struct blk_plug_cb *cb)
513 {
514         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516                 md_wakeup_thread(mdcb->mddev->thread);
517         kfree(mdcb);
518 }
519
520 /* Check that an unplug wakeup will come shortly.
521  * If not, wakeup the md thread immediately
522  */
523 int mddev_check_plugged(struct mddev *mddev)
524 {
525         struct blk_plug *plug = current->plug;
526         struct md_plug_cb *mdcb;
527
528         if (!plug)
529                 return 0;
530
531         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532                 if (mdcb->cb.callback == plugger_unplug &&
533                     mdcb->mddev == mddev) {
534                         /* Already on the list, move to top */
535                         if (mdcb != list_first_entry(&plug->cb_list,
536                                                     struct md_plug_cb,
537                                                     cb.list))
538                                 list_move(&mdcb->cb.list, &plug->cb_list);
539                         return 1;
540                 }
541         }
542         /* Not currently on the callback list */
543         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
544         if (!mdcb)
545                 return 0;
546
547         mdcb->mddev = mddev;
548         mdcb->cb.callback = plugger_unplug;
549         atomic_inc(&mddev->plug_cnt);
550         list_add(&mdcb->cb.list, &plug->cb_list);
551         return 1;
552 }
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554
555 static inline struct mddev *mddev_get(struct mddev *mddev)
556 {
557         atomic_inc(&mddev->active);
558         return mddev;
559 }
560
561 static void mddev_delayed_delete(struct work_struct *ws);
562
563 static void mddev_put(struct mddev *mddev)
564 {
565         struct bio_set *bs = NULL;
566
567         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568                 return;
569         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570             mddev->ctime == 0 && !mddev->hold_active) {
571                 /* Array is not configured at all, and not held active,
572                  * so destroy it */
573                 list_del_init(&mddev->all_mddevs);
574                 bs = mddev->bio_set;
575                 mddev->bio_set = NULL;
576                 if (mddev->gendisk) {
577                         /* We did a probe so need to clean up.  Call
578                          * queue_work inside the spinlock so that
579                          * flush_workqueue() after mddev_find will
580                          * succeed in waiting for the work to be done.
581                          */
582                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583                         queue_work(md_misc_wq, &mddev->del_work);
584                 } else
585                         kfree(mddev);
586         }
587         spin_unlock(&all_mddevs_lock);
588         if (bs)
589                 bioset_free(bs);
590 }
591
592 void mddev_init(struct mddev *mddev)
593 {
594         mutex_init(&mddev->open_mutex);
595         mutex_init(&mddev->reconfig_mutex);
596         mutex_init(&mddev->bitmap_info.mutex);
597         INIT_LIST_HEAD(&mddev->disks);
598         INIT_LIST_HEAD(&mddev->all_mddevs);
599         init_timer(&mddev->safemode_timer);
600         atomic_set(&mddev->active, 1);
601         atomic_set(&mddev->openers, 0);
602         atomic_set(&mddev->active_io, 0);
603         atomic_set(&mddev->plug_cnt, 0);
604         spin_lock_init(&mddev->write_lock);
605         atomic_set(&mddev->flush_pending, 0);
606         init_waitqueue_head(&mddev->sb_wait);
607         init_waitqueue_head(&mddev->recovery_wait);
608         mddev->reshape_position = MaxSector;
609         mddev->resync_min = 0;
610         mddev->resync_max = MaxSector;
611         mddev->level = LEVEL_NONE;
612 }
613 EXPORT_SYMBOL_GPL(mddev_init);
614
615 static struct mddev * mddev_find(dev_t unit)
616 {
617         struct mddev *mddev, *new = NULL;
618
619         if (unit && MAJOR(unit) != MD_MAJOR)
620                 unit &= ~((1<<MdpMinorShift)-1);
621
622  retry:
623         spin_lock(&all_mddevs_lock);
624
625         if (unit) {
626                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627                         if (mddev->unit == unit) {
628                                 mddev_get(mddev);
629                                 spin_unlock(&all_mddevs_lock);
630                                 kfree(new);
631                                 return mddev;
632                         }
633
634                 if (new) {
635                         list_add(&new->all_mddevs, &all_mddevs);
636                         spin_unlock(&all_mddevs_lock);
637                         new->hold_active = UNTIL_IOCTL;
638                         return new;
639                 }
640         } else if (new) {
641                 /* find an unused unit number */
642                 static int next_minor = 512;
643                 int start = next_minor;
644                 int is_free = 0;
645                 int dev = 0;
646                 while (!is_free) {
647                         dev = MKDEV(MD_MAJOR, next_minor);
648                         next_minor++;
649                         if (next_minor > MINORMASK)
650                                 next_minor = 0;
651                         if (next_minor == start) {
652                                 /* Oh dear, all in use. */
653                                 spin_unlock(&all_mddevs_lock);
654                                 kfree(new);
655                                 return NULL;
656                         }
657                                 
658                         is_free = 1;
659                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660                                 if (mddev->unit == dev) {
661                                         is_free = 0;
662                                         break;
663                                 }
664                 }
665                 new->unit = dev;
666                 new->md_minor = MINOR(dev);
667                 new->hold_active = UNTIL_STOP;
668                 list_add(&new->all_mddevs, &all_mddevs);
669                 spin_unlock(&all_mddevs_lock);
670                 return new;
671         }
672         spin_unlock(&all_mddevs_lock);
673
674         new = kzalloc(sizeof(*new), GFP_KERNEL);
675         if (!new)
676                 return NULL;
677
678         new->unit = unit;
679         if (MAJOR(unit) == MD_MAJOR)
680                 new->md_minor = MINOR(unit);
681         else
682                 new->md_minor = MINOR(unit) >> MdpMinorShift;
683
684         mddev_init(new);
685
686         goto retry;
687 }
688
689 static inline int mddev_lock(struct mddev * mddev)
690 {
691         return mutex_lock_interruptible(&mddev->reconfig_mutex);
692 }
693
694 static inline int mddev_is_locked(struct mddev *mddev)
695 {
696         return mutex_is_locked(&mddev->reconfig_mutex);
697 }
698
699 static inline int mddev_trylock(struct mddev * mddev)
700 {
701         return mutex_trylock(&mddev->reconfig_mutex);
702 }
703
704 static struct attribute_group md_redundancy_group;
705
706 static void mddev_unlock(struct mddev * mddev)
707 {
708         if (mddev->to_remove) {
709                 /* These cannot be removed under reconfig_mutex as
710                  * an access to the files will try to take reconfig_mutex
711                  * while holding the file unremovable, which leads to
712                  * a deadlock.
713                  * So hold set sysfs_active while the remove in happeing,
714                  * and anything else which might set ->to_remove or my
715                  * otherwise change the sysfs namespace will fail with
716                  * -EBUSY if sysfs_active is still set.
717                  * We set sysfs_active under reconfig_mutex and elsewhere
718                  * test it under the same mutex to ensure its correct value
719                  * is seen.
720                  */
721                 struct attribute_group *to_remove = mddev->to_remove;
722                 mddev->to_remove = NULL;
723                 mddev->sysfs_active = 1;
724                 mutex_unlock(&mddev->reconfig_mutex);
725
726                 if (mddev->kobj.sd) {
727                         if (to_remove != &md_redundancy_group)
728                                 sysfs_remove_group(&mddev->kobj, to_remove);
729                         if (mddev->pers == NULL ||
730                             mddev->pers->sync_request == NULL) {
731                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732                                 if (mddev->sysfs_action)
733                                         sysfs_put(mddev->sysfs_action);
734                                 mddev->sysfs_action = NULL;
735                         }
736                 }
737                 mddev->sysfs_active = 0;
738         } else
739                 mutex_unlock(&mddev->reconfig_mutex);
740
741         /* As we've dropped the mutex we need a spinlock to
742          * make sure the thread doesn't disappear
743          */
744         spin_lock(&pers_lock);
745         md_wakeup_thread(mddev->thread);
746         spin_unlock(&pers_lock);
747 }
748
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 {
751         struct md_rdev *rdev;
752
753         list_for_each_entry(rdev, &mddev->disks, same_set)
754                 if (rdev->desc_nr == nr)
755                         return rdev;
756
757         return NULL;
758 }
759
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 {
762         struct md_rdev *rdev;
763
764         list_for_each_entry(rdev, &mddev->disks, same_set)
765                 if (rdev->bdev->bd_dev == dev)
766                         return rdev;
767
768         return NULL;
769 }
770
771 static struct md_personality *find_pers(int level, char *clevel)
772 {
773         struct md_personality *pers;
774         list_for_each_entry(pers, &pers_list, list) {
775                 if (level != LEVEL_NONE && pers->level == level)
776                         return pers;
777                 if (strcmp(pers->name, clevel)==0)
778                         return pers;
779         }
780         return NULL;
781 }
782
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 {
786         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787         return MD_NEW_SIZE_SECTORS(num_sectors);
788 }
789
790 static int alloc_disk_sb(struct md_rdev * rdev)
791 {
792         if (rdev->sb_page)
793                 MD_BUG();
794
795         rdev->sb_page = alloc_page(GFP_KERNEL);
796         if (!rdev->sb_page) {
797                 printk(KERN_ALERT "md: out of memory.\n");
798                 return -ENOMEM;
799         }
800
801         return 0;
802 }
803
804 static void free_disk_sb(struct md_rdev * rdev)
805 {
806         if (rdev->sb_page) {
807                 put_page(rdev->sb_page);
808                 rdev->sb_loaded = 0;
809                 rdev->sb_page = NULL;
810                 rdev->sb_start = 0;
811                 rdev->sectors = 0;
812         }
813         if (rdev->bb_page) {
814                 put_page(rdev->bb_page);
815                 rdev->bb_page = NULL;
816         }
817 }
818
819
820 static void super_written(struct bio *bio, int error)
821 {
822         struct md_rdev *rdev = bio->bi_private;
823         struct mddev *mddev = rdev->mddev;
824
825         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826                 printk("md: super_written gets error=%d, uptodate=%d\n",
827                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829                 md_error(mddev, rdev);
830         }
831
832         if (atomic_dec_and_test(&mddev->pending_writes))
833                 wake_up(&mddev->sb_wait);
834         bio_put(bio);
835 }
836
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838                    sector_t sector, int size, struct page *page)
839 {
840         /* write first size bytes of page to sector of rdev
841          * Increment mddev->pending_writes before returning
842          * and decrement it on completion, waking up sb_wait
843          * if zero is reached.
844          * If an error occurred, call md_error
845          */
846         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847
848         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849         bio->bi_sector = sector;
850         bio_add_page(bio, page, size, 0);
851         bio->bi_private = rdev;
852         bio->bi_end_io = super_written;
853
854         atomic_inc(&mddev->pending_writes);
855         submit_bio(WRITE_FLUSH_FUA, bio);
856 }
857
858 void md_super_wait(struct mddev *mddev)
859 {
860         /* wait for all superblock writes that were scheduled to complete */
861         DEFINE_WAIT(wq);
862         for(;;) {
863                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864                 if (atomic_read(&mddev->pending_writes)==0)
865                         break;
866                 schedule();
867         }
868         finish_wait(&mddev->sb_wait, &wq);
869 }
870
871 static void bi_complete(struct bio *bio, int error)
872 {
873         complete((struct completion*)bio->bi_private);
874 }
875
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877                  struct page *page, int rw, bool metadata_op)
878 {
879         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880         struct completion event;
881         int ret;
882
883         rw |= REQ_SYNC;
884
885         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886                 rdev->meta_bdev : rdev->bdev;
887         if (metadata_op)
888                 bio->bi_sector = sector + rdev->sb_start;
889         else
890                 bio->bi_sector = sector + rdev->data_offset;
891         bio_add_page(bio, page, size, 0);
892         init_completion(&event);
893         bio->bi_private = &event;
894         bio->bi_end_io = bi_complete;
895         submit_bio(rw, bio);
896         wait_for_completion(&event);
897
898         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
899         bio_put(bio);
900         return ret;
901 }
902 EXPORT_SYMBOL_GPL(sync_page_io);
903
904 static int read_disk_sb(struct md_rdev * rdev, int size)
905 {
906         char b[BDEVNAME_SIZE];
907         if (!rdev->sb_page) {
908                 MD_BUG();
909                 return -EINVAL;
910         }
911         if (rdev->sb_loaded)
912                 return 0;
913
914
915         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
916                 goto fail;
917         rdev->sb_loaded = 1;
918         return 0;
919
920 fail:
921         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922                 bdevname(rdev->bdev,b));
923         return -EINVAL;
924 }
925
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 {
928         return  sb1->set_uuid0 == sb2->set_uuid0 &&
929                 sb1->set_uuid1 == sb2->set_uuid1 &&
930                 sb1->set_uuid2 == sb2->set_uuid2 &&
931                 sb1->set_uuid3 == sb2->set_uuid3;
932 }
933
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 {
936         int ret;
937         mdp_super_t *tmp1, *tmp2;
938
939         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941
942         if (!tmp1 || !tmp2) {
943                 ret = 0;
944                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
945                 goto abort;
946         }
947
948         *tmp1 = *sb1;
949         *tmp2 = *sb2;
950
951         /*
952          * nr_disks is not constant
953          */
954         tmp1->nr_disks = 0;
955         tmp2->nr_disks = 0;
956
957         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
958 abort:
959         kfree(tmp1);
960         kfree(tmp2);
961         return ret;
962 }
963
964
965 static u32 md_csum_fold(u32 csum)
966 {
967         csum = (csum & 0xffff) + (csum >> 16);
968         return (csum & 0xffff) + (csum >> 16);
969 }
970
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
972 {
973         u64 newcsum = 0;
974         u32 *sb32 = (u32*)sb;
975         int i;
976         unsigned int disk_csum, csum;
977
978         disk_csum = sb->sb_csum;
979         sb->sb_csum = 0;
980
981         for (i = 0; i < MD_SB_BYTES/4 ; i++)
982                 newcsum += sb32[i];
983         csum = (newcsum & 0xffffffff) + (newcsum>>32);
984
985
986 #ifdef CONFIG_ALPHA
987         /* This used to use csum_partial, which was wrong for several
988          * reasons including that different results are returned on
989          * different architectures.  It isn't critical that we get exactly
990          * the same return value as before (we always csum_fold before
991          * testing, and that removes any differences).  However as we
992          * know that csum_partial always returned a 16bit value on
993          * alphas, do a fold to maximise conformity to previous behaviour.
994          */
995         sb->sb_csum = md_csum_fold(disk_csum);
996 #else
997         sb->sb_csum = disk_csum;
998 #endif
999         return csum;
1000 }
1001
1002
1003 /*
1004  * Handle superblock details.
1005  * We want to be able to handle multiple superblock formats
1006  * so we have a common interface to them all, and an array of
1007  * different handlers.
1008  * We rely on user-space to write the initial superblock, and support
1009  * reading and updating of superblocks.
1010  * Interface methods are:
1011  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012  *      loads and validates a superblock on dev.
1013  *      if refdev != NULL, compare superblocks on both devices
1014  *    Return:
1015  *      0 - dev has a superblock that is compatible with refdev
1016  *      1 - dev has a superblock that is compatible and newer than refdev
1017  *          so dev should be used as the refdev in future
1018  *     -EINVAL superblock incompatible or invalid
1019  *     -othererror e.g. -EIO
1020  *
1021  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022  *      Verify that dev is acceptable into mddev.
1023  *       The first time, mddev->raid_disks will be 0, and data from
1024  *       dev should be merged in.  Subsequent calls check that dev
1025  *       is new enough.  Return 0 or -EINVAL
1026  *
1027  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028  *     Update the superblock for rdev with data in mddev
1029  *     This does not write to disc.
1030  *
1031  */
1032
1033 struct super_type  {
1034         char                *name;
1035         struct module       *owner;
1036         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037                                           int minor_version);
1038         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1041                                                 sector_t num_sectors);
1042 };
1043
1044 /*
1045  * Check that the given mddev has no bitmap.
1046  *
1047  * This function is called from the run method of all personalities that do not
1048  * support bitmaps. It prints an error message and returns non-zero if mddev
1049  * has a bitmap. Otherwise, it returns 0.
1050  *
1051  */
1052 int md_check_no_bitmap(struct mddev *mddev)
1053 {
1054         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055                 return 0;
1056         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057                 mdname(mddev), mddev->pers->name);
1058         return 1;
1059 }
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1061
1062 /*
1063  * load_super for 0.90.0 
1064  */
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 {
1067         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1068         mdp_super_t *sb;
1069         int ret;
1070
1071         /*
1072          * Calculate the position of the superblock (512byte sectors),
1073          * it's at the end of the disk.
1074          *
1075          * It also happens to be a multiple of 4Kb.
1076          */
1077         rdev->sb_start = calc_dev_sboffset(rdev);
1078
1079         ret = read_disk_sb(rdev, MD_SB_BYTES);
1080         if (ret) return ret;
1081
1082         ret = -EINVAL;
1083
1084         bdevname(rdev->bdev, b);
1085         sb = page_address(rdev->sb_page);
1086
1087         if (sb->md_magic != MD_SB_MAGIC) {
1088                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1089                        b);
1090                 goto abort;
1091         }
1092
1093         if (sb->major_version != 0 ||
1094             sb->minor_version < 90 ||
1095             sb->minor_version > 91) {
1096                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097                         sb->major_version, sb->minor_version,
1098                         b);
1099                 goto abort;
1100         }
1101
1102         if (sb->raid_disks <= 0)
1103                 goto abort;
1104
1105         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1107                         b);
1108                 goto abort;
1109         }
1110
1111         rdev->preferred_minor = sb->md_minor;
1112         rdev->data_offset = 0;
1113         rdev->sb_size = MD_SB_BYTES;
1114         rdev->badblocks.shift = -1;
1115
1116         if (sb->level == LEVEL_MULTIPATH)
1117                 rdev->desc_nr = -1;
1118         else
1119                 rdev->desc_nr = sb->this_disk.number;
1120
1121         if (!refdev) {
1122                 ret = 1;
1123         } else {
1124                 __u64 ev1, ev2;
1125                 mdp_super_t *refsb = page_address(refdev->sb_page);
1126                 if (!uuid_equal(refsb, sb)) {
1127                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128                                 b, bdevname(refdev->bdev,b2));
1129                         goto abort;
1130                 }
1131                 if (!sb_equal(refsb, sb)) {
1132                         printk(KERN_WARNING "md: %s has same UUID"
1133                                " but different superblock to %s\n",
1134                                b, bdevname(refdev->bdev, b2));
1135                         goto abort;
1136                 }
1137                 ev1 = md_event(sb);
1138                 ev2 = md_event(refsb);
1139                 if (ev1 > ev2)
1140                         ret = 1;
1141                 else 
1142                         ret = 0;
1143         }
1144         rdev->sectors = rdev->sb_start;
1145         /* Limit to 4TB as metadata cannot record more than that */
1146         if (rdev->sectors >= (2ULL << 32))
1147                 rdev->sectors = (2ULL << 32) - 2;
1148
1149         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150                 /* "this cannot possibly happen" ... */
1151                 ret = -EINVAL;
1152
1153  abort:
1154         return ret;
1155 }
1156
1157 /*
1158  * validate_super for 0.90.0
1159  */
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162         mdp_disk_t *desc;
1163         mdp_super_t *sb = page_address(rdev->sb_page);
1164         __u64 ev1 = md_event(sb);
1165
1166         rdev->raid_disk = -1;
1167         clear_bit(Faulty, &rdev->flags);
1168         clear_bit(In_sync, &rdev->flags);
1169         clear_bit(WriteMostly, &rdev->flags);
1170
1171         if (mddev->raid_disks == 0) {
1172                 mddev->major_version = 0;
1173                 mddev->minor_version = sb->minor_version;
1174                 mddev->patch_version = sb->patch_version;
1175                 mddev->external = 0;
1176                 mddev->chunk_sectors = sb->chunk_size >> 9;
1177                 mddev->ctime = sb->ctime;
1178                 mddev->utime = sb->utime;
1179                 mddev->level = sb->level;
1180                 mddev->clevel[0] = 0;
1181                 mddev->layout = sb->layout;
1182                 mddev->raid_disks = sb->raid_disks;
1183                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184                 mddev->events = ev1;
1185                 mddev->bitmap_info.offset = 0;
1186                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187
1188                 if (mddev->minor_version >= 91) {
1189                         mddev->reshape_position = sb->reshape_position;
1190                         mddev->delta_disks = sb->delta_disks;
1191                         mddev->new_level = sb->new_level;
1192                         mddev->new_layout = sb->new_layout;
1193                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194                 } else {
1195                         mddev->reshape_position = MaxSector;
1196                         mddev->delta_disks = 0;
1197                         mddev->new_level = mddev->level;
1198                         mddev->new_layout = mddev->layout;
1199                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1200                 }
1201
1202                 if (sb->state & (1<<MD_SB_CLEAN))
1203                         mddev->recovery_cp = MaxSector;
1204                 else {
1205                         if (sb->events_hi == sb->cp_events_hi && 
1206                                 sb->events_lo == sb->cp_events_lo) {
1207                                 mddev->recovery_cp = sb->recovery_cp;
1208                         } else
1209                                 mddev->recovery_cp = 0;
1210                 }
1211
1212                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216
1217                 mddev->max_disks = MD_SB_DISKS;
1218
1219                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220                     mddev->bitmap_info.file == NULL)
1221                         mddev->bitmap_info.offset =
1222                                 mddev->bitmap_info.default_offset;
1223
1224         } else if (mddev->pers == NULL) {
1225                 /* Insist on good event counter while assembling, except
1226                  * for spares (which don't need an event count) */
1227                 ++ev1;
1228                 if (sb->disks[rdev->desc_nr].state & (
1229                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230                         if (ev1 < mddev->events) 
1231                                 return -EINVAL;
1232         } else if (mddev->bitmap) {
1233                 /* if adding to array with a bitmap, then we can accept an
1234                  * older device ... but not too old.
1235                  */
1236                 if (ev1 < mddev->bitmap->events_cleared)
1237                         return 0;
1238         } else {
1239                 if (ev1 < mddev->events)
1240                         /* just a hot-add of a new device, leave raid_disk at -1 */
1241                         return 0;
1242         }
1243
1244         if (mddev->level != LEVEL_MULTIPATH) {
1245                 desc = sb->disks + rdev->desc_nr;
1246
1247                 if (desc->state & (1<<MD_DISK_FAULTY))
1248                         set_bit(Faulty, &rdev->flags);
1249                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250                             desc->raid_disk < mddev->raid_disks */) {
1251                         set_bit(In_sync, &rdev->flags);
1252                         rdev->raid_disk = desc->raid_disk;
1253                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254                         /* active but not in sync implies recovery up to
1255                          * reshape position.  We don't know exactly where
1256                          * that is, so set to zero for now */
1257                         if (mddev->minor_version >= 91) {
1258                                 rdev->recovery_offset = 0;
1259                                 rdev->raid_disk = desc->raid_disk;
1260                         }
1261                 }
1262                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263                         set_bit(WriteMostly, &rdev->flags);
1264         } else /* MULTIPATH are always insync */
1265                 set_bit(In_sync, &rdev->flags);
1266         return 0;
1267 }
1268
1269 /*
1270  * sync_super for 0.90.0
1271  */
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1273 {
1274         mdp_super_t *sb;
1275         struct md_rdev *rdev2;
1276         int next_spare = mddev->raid_disks;
1277
1278
1279         /* make rdev->sb match mddev data..
1280          *
1281          * 1/ zero out disks
1282          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283          * 3/ any empty disks < next_spare become removed
1284          *
1285          * disks[0] gets initialised to REMOVED because
1286          * we cannot be sure from other fields if it has
1287          * been initialised or not.
1288          */
1289         int i;
1290         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291
1292         rdev->sb_size = MD_SB_BYTES;
1293
1294         sb = page_address(rdev->sb_page);
1295
1296         memset(sb, 0, sizeof(*sb));
1297
1298         sb->md_magic = MD_SB_MAGIC;
1299         sb->major_version = mddev->major_version;
1300         sb->patch_version = mddev->patch_version;
1301         sb->gvalid_words  = 0; /* ignored */
1302         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306
1307         sb->ctime = mddev->ctime;
1308         sb->level = mddev->level;
1309         sb->size = mddev->dev_sectors / 2;
1310         sb->raid_disks = mddev->raid_disks;
1311         sb->md_minor = mddev->md_minor;
1312         sb->not_persistent = 0;
1313         sb->utime = mddev->utime;
1314         sb->state = 0;
1315         sb->events_hi = (mddev->events>>32);
1316         sb->events_lo = (u32)mddev->events;
1317
1318         if (mddev->reshape_position == MaxSector)
1319                 sb->minor_version = 90;
1320         else {
1321                 sb->minor_version = 91;
1322                 sb->reshape_position = mddev->reshape_position;
1323                 sb->new_level = mddev->new_level;
1324                 sb->delta_disks = mddev->delta_disks;
1325                 sb->new_layout = mddev->new_layout;
1326                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1327         }
1328         mddev->minor_version = sb->minor_version;
1329         if (mddev->in_sync)
1330         {
1331                 sb->recovery_cp = mddev->recovery_cp;
1332                 sb->cp_events_hi = (mddev->events>>32);
1333                 sb->cp_events_lo = (u32)mddev->events;
1334                 if (mddev->recovery_cp == MaxSector)
1335                         sb->state = (1<< MD_SB_CLEAN);
1336         } else
1337                 sb->recovery_cp = 0;
1338
1339         sb->layout = mddev->layout;
1340         sb->chunk_size = mddev->chunk_sectors << 9;
1341
1342         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344
1345         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1347                 mdp_disk_t *d;
1348                 int desc_nr;
1349                 int is_active = test_bit(In_sync, &rdev2->flags);
1350
1351                 if (rdev2->raid_disk >= 0 &&
1352                     sb->minor_version >= 91)
1353                         /* we have nowhere to store the recovery_offset,
1354                          * but if it is not below the reshape_position,
1355                          * we can piggy-back on that.
1356                          */
1357                         is_active = 1;
1358                 if (rdev2->raid_disk < 0 ||
1359                     test_bit(Faulty, &rdev2->flags))
1360                         is_active = 0;
1361                 if (is_active)
1362                         desc_nr = rdev2->raid_disk;
1363                 else
1364                         desc_nr = next_spare++;
1365                 rdev2->desc_nr = desc_nr;
1366                 d = &sb->disks[rdev2->desc_nr];
1367                 nr_disks++;
1368                 d->number = rdev2->desc_nr;
1369                 d->major = MAJOR(rdev2->bdev->bd_dev);
1370                 d->minor = MINOR(rdev2->bdev->bd_dev);
1371                 if (is_active)
1372                         d->raid_disk = rdev2->raid_disk;
1373                 else
1374                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1375                 if (test_bit(Faulty, &rdev2->flags))
1376                         d->state = (1<<MD_DISK_FAULTY);
1377                 else if (is_active) {
1378                         d->state = (1<<MD_DISK_ACTIVE);
1379                         if (test_bit(In_sync, &rdev2->flags))
1380                                 d->state |= (1<<MD_DISK_SYNC);
1381                         active++;
1382                         working++;
1383                 } else {
1384                         d->state = 0;
1385                         spare++;
1386                         working++;
1387                 }
1388                 if (test_bit(WriteMostly, &rdev2->flags))
1389                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390         }
1391         /* now set the "removed" and "faulty" bits on any missing devices */
1392         for (i=0 ; i < mddev->raid_disks ; i++) {
1393                 mdp_disk_t *d = &sb->disks[i];
1394                 if (d->state == 0 && d->number == 0) {
1395                         d->number = i;
1396                         d->raid_disk = i;
1397                         d->state = (1<<MD_DISK_REMOVED);
1398                         d->state |= (1<<MD_DISK_FAULTY);
1399                         failed++;
1400                 }
1401         }
1402         sb->nr_disks = nr_disks;
1403         sb->active_disks = active;
1404         sb->working_disks = working;
1405         sb->failed_disks = failed;
1406         sb->spare_disks = spare;
1407
1408         sb->this_disk = sb->disks[rdev->desc_nr];
1409         sb->sb_csum = calc_sb_csum(sb);
1410 }
1411
1412 /*
1413  * rdev_size_change for 0.90.0
1414  */
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 {
1418         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419                 return 0; /* component must fit device */
1420         if (rdev->mddev->bitmap_info.offset)
1421                 return 0; /* can't move bitmap */
1422         rdev->sb_start = calc_dev_sboffset(rdev);
1423         if (!num_sectors || num_sectors > rdev->sb_start)
1424                 num_sectors = rdev->sb_start;
1425         /* Limit to 4TB as metadata cannot record more than that.
1426          * 4TB == 2^32 KB, or 2*2^32 sectors.
1427          */
1428         if (num_sectors >= (2ULL << 32))
1429                 num_sectors = (2ULL << 32) - 2;
1430         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431                        rdev->sb_page);
1432         md_super_wait(rdev->mddev);
1433         return num_sectors;
1434 }
1435
1436
1437 /*
1438  * version 1 superblock
1439  */
1440
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1442 {
1443         __le32 disk_csum;
1444         u32 csum;
1445         unsigned long long newcsum;
1446         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447         __le32 *isuper = (__le32*)sb;
1448         int i;
1449
1450         disk_csum = sb->sb_csum;
1451         sb->sb_csum = 0;
1452         newcsum = 0;
1453         for (i=0; size>=4; size -= 4 )
1454                 newcsum += le32_to_cpu(*isuper++);
1455
1456         if (size == 2)
1457                 newcsum += le16_to_cpu(*(__le16*) isuper);
1458
1459         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460         sb->sb_csum = disk_csum;
1461         return cpu_to_le32(csum);
1462 }
1463
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465                             int acknowledged);
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 {
1468         struct mdp_superblock_1 *sb;
1469         int ret;
1470         sector_t sb_start;
1471         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1472         int bmask;
1473
1474         /*
1475          * Calculate the position of the superblock in 512byte sectors.
1476          * It is always aligned to a 4K boundary and
1477          * depeding on minor_version, it can be:
1478          * 0: At least 8K, but less than 12K, from end of device
1479          * 1: At start of device
1480          * 2: 4K from start of device.
1481          */
1482         switch(minor_version) {
1483         case 0:
1484                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485                 sb_start -= 8*2;
1486                 sb_start &= ~(sector_t)(4*2-1);
1487                 break;
1488         case 1:
1489                 sb_start = 0;
1490                 break;
1491         case 2:
1492                 sb_start = 8;
1493                 break;
1494         default:
1495                 return -EINVAL;
1496         }
1497         rdev->sb_start = sb_start;
1498
1499         /* superblock is rarely larger than 1K, but it can be larger,
1500          * and it is safe to read 4k, so we do that
1501          */
1502         ret = read_disk_sb(rdev, 4096);
1503         if (ret) return ret;
1504
1505
1506         sb = page_address(rdev->sb_page);
1507
1508         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509             sb->major_version != cpu_to_le32(1) ||
1510             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1513                 return -EINVAL;
1514
1515         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516                 printk("md: invalid superblock checksum on %s\n",
1517                         bdevname(rdev->bdev,b));
1518                 return -EINVAL;
1519         }
1520         if (le64_to_cpu(sb->data_size) < 10) {
1521                 printk("md: data_size too small on %s\n",
1522                        bdevname(rdev->bdev,b));
1523                 return -EINVAL;
1524         }
1525
1526         rdev->preferred_minor = 0xffff;
1527         rdev->data_offset = le64_to_cpu(sb->data_offset);
1528         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529
1530         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532         if (rdev->sb_size & bmask)
1533                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1534
1535         if (minor_version
1536             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1537                 return -EINVAL;
1538
1539         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1540                 rdev->desc_nr = -1;
1541         else
1542                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543
1544         if (!rdev->bb_page) {
1545                 rdev->bb_page = alloc_page(GFP_KERNEL);
1546                 if (!rdev->bb_page)
1547                         return -ENOMEM;
1548         }
1549         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550             rdev->badblocks.count == 0) {
1551                 /* need to load the bad block list.
1552                  * Currently we limit it to one page.
1553                  */
1554                 s32 offset;
1555                 sector_t bb_sector;
1556                 u64 *bbp;
1557                 int i;
1558                 int sectors = le16_to_cpu(sb->bblog_size);
1559                 if (sectors > (PAGE_SIZE / 512))
1560                         return -EINVAL;
1561                 offset = le32_to_cpu(sb->bblog_offset);
1562                 if (offset == 0)
1563                         return -EINVAL;
1564                 bb_sector = (long long)offset;
1565                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566                                   rdev->bb_page, READ, true))
1567                         return -EIO;
1568                 bbp = (u64 *)page_address(rdev->bb_page);
1569                 rdev->badblocks.shift = sb->bblog_shift;
1570                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571                         u64 bb = le64_to_cpu(*bbp);
1572                         int count = bb & (0x3ff);
1573                         u64 sector = bb >> 10;
1574                         sector <<= sb->bblog_shift;
1575                         count <<= sb->bblog_shift;
1576                         if (bb + 1 == 0)
1577                                 break;
1578                         if (md_set_badblocks(&rdev->badblocks,
1579                                              sector, count, 1) == 0)
1580                                 return -EINVAL;
1581                 }
1582         } else if (sb->bblog_offset == 0)
1583                 rdev->badblocks.shift = -1;
1584
1585         if (!refdev) {
1586                 ret = 1;
1587         } else {
1588                 __u64 ev1, ev2;
1589                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590
1591                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592                     sb->level != refsb->level ||
1593                     sb->layout != refsb->layout ||
1594                     sb->chunksize != refsb->chunksize) {
1595                         printk(KERN_WARNING "md: %s has strangely different"
1596                                 " superblock to %s\n",
1597                                 bdevname(rdev->bdev,b),
1598                                 bdevname(refdev->bdev,b2));
1599                         return -EINVAL;
1600                 }
1601                 ev1 = le64_to_cpu(sb->events);
1602                 ev2 = le64_to_cpu(refsb->events);
1603
1604                 if (ev1 > ev2)
1605                         ret = 1;
1606                 else
1607                         ret = 0;
1608         }
1609         if (minor_version)
1610                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611                         le64_to_cpu(sb->data_offset);
1612         else
1613                 rdev->sectors = rdev->sb_start;
1614         if (rdev->sectors < le64_to_cpu(sb->data_size))
1615                 return -EINVAL;
1616         rdev->sectors = le64_to_cpu(sb->data_size);
1617         if (le64_to_cpu(sb->size) > rdev->sectors)
1618                 return -EINVAL;
1619         return ret;
1620 }
1621
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 {
1624         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625         __u64 ev1 = le64_to_cpu(sb->events);
1626
1627         rdev->raid_disk = -1;
1628         clear_bit(Faulty, &rdev->flags);
1629         clear_bit(In_sync, &rdev->flags);
1630         clear_bit(WriteMostly, &rdev->flags);
1631
1632         if (mddev->raid_disks == 0) {
1633                 mddev->major_version = 1;
1634                 mddev->patch_version = 0;
1635                 mddev->external = 0;
1636                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639                 mddev->level = le32_to_cpu(sb->level);
1640                 mddev->clevel[0] = 0;
1641                 mddev->layout = le32_to_cpu(sb->layout);
1642                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643                 mddev->dev_sectors = le64_to_cpu(sb->size);
1644                 mddev->events = ev1;
1645                 mddev->bitmap_info.offset = 0;
1646                 mddev->bitmap_info.default_offset = 1024 >> 9;
1647                 
1648                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649                 memcpy(mddev->uuid, sb->set_uuid, 16);
1650
1651                 mddev->max_disks =  (4096-256)/2;
1652
1653                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654                     mddev->bitmap_info.file == NULL )
1655                         mddev->bitmap_info.offset =
1656                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1657
1658                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661                         mddev->new_level = le32_to_cpu(sb->new_level);
1662                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1663                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664                 } else {
1665                         mddev->reshape_position = MaxSector;
1666                         mddev->delta_disks = 0;
1667                         mddev->new_level = mddev->level;
1668                         mddev->new_layout = mddev->layout;
1669                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1670                 }
1671
1672         } else if (mddev->pers == NULL) {
1673                 /* Insist of good event counter while assembling, except for
1674                  * spares (which don't need an event count) */
1675                 ++ev1;
1676                 if (rdev->desc_nr >= 0 &&
1677                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679                         if (ev1 < mddev->events)
1680                                 return -EINVAL;
1681         } else if (mddev->bitmap) {
1682                 /* If adding to array with a bitmap, then we can accept an
1683                  * older device, but not too old.
1684                  */
1685                 if (ev1 < mddev->bitmap->events_cleared)
1686                         return 0;
1687         } else {
1688                 if (ev1 < mddev->events)
1689                         /* just a hot-add of a new device, leave raid_disk at -1 */
1690                         return 0;
1691         }
1692         if (mddev->level != LEVEL_MULTIPATH) {
1693                 int role;
1694                 if (rdev->desc_nr < 0 ||
1695                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1696                         role = 0xffff;
1697                         rdev->desc_nr = -1;
1698                 } else
1699                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700                 switch(role) {
1701                 case 0xffff: /* spare */
1702                         break;
1703                 case 0xfffe: /* faulty */
1704                         set_bit(Faulty, &rdev->flags);
1705                         break;
1706                 default:
1707                         if ((le32_to_cpu(sb->feature_map) &
1708                              MD_FEATURE_RECOVERY_OFFSET))
1709                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710                         else
1711                                 set_bit(In_sync, &rdev->flags);
1712                         rdev->raid_disk = role;
1713                         break;
1714                 }
1715                 if (sb->devflags & WriteMostly1)
1716                         set_bit(WriteMostly, &rdev->flags);
1717                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1718                         set_bit(Replacement, &rdev->flags);
1719         } else /* MULTIPATH are always insync */
1720                 set_bit(In_sync, &rdev->flags);
1721
1722         return 0;
1723 }
1724
1725 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1726 {
1727         struct mdp_superblock_1 *sb;
1728         struct md_rdev *rdev2;
1729         int max_dev, i;
1730         /* make rdev->sb match mddev and rdev data. */
1731
1732         sb = page_address(rdev->sb_page);
1733
1734         sb->feature_map = 0;
1735         sb->pad0 = 0;
1736         sb->recovery_offset = cpu_to_le64(0);
1737         memset(sb->pad1, 0, sizeof(sb->pad1));
1738         memset(sb->pad3, 0, sizeof(sb->pad3));
1739
1740         sb->utime = cpu_to_le64((__u64)mddev->utime);
1741         sb->events = cpu_to_le64(mddev->events);
1742         if (mddev->in_sync)
1743                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1744         else
1745                 sb->resync_offset = cpu_to_le64(0);
1746
1747         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1748
1749         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1750         sb->size = cpu_to_le64(mddev->dev_sectors);
1751         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1752         sb->level = cpu_to_le32(mddev->level);
1753         sb->layout = cpu_to_le32(mddev->layout);
1754
1755         if (test_bit(WriteMostly, &rdev->flags))
1756                 sb->devflags |= WriteMostly1;
1757         else
1758                 sb->devflags &= ~WriteMostly1;
1759
1760         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1761                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1762                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1763         }
1764
1765         if (rdev->raid_disk >= 0 &&
1766             !test_bit(In_sync, &rdev->flags)) {
1767                 sb->feature_map |=
1768                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1769                 sb->recovery_offset =
1770                         cpu_to_le64(rdev->recovery_offset);
1771         }
1772         if (test_bit(Replacement, &rdev->flags))
1773                 sb->feature_map |=
1774                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1775
1776         if (mddev->reshape_position != MaxSector) {
1777                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1778                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1779                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1780                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1781                 sb->new_level = cpu_to_le32(mddev->new_level);
1782                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1783         }
1784
1785         if (rdev->badblocks.count == 0)
1786                 /* Nothing to do for bad blocks*/ ;
1787         else if (sb->bblog_offset == 0)
1788                 /* Cannot record bad blocks on this device */
1789                 md_error(mddev, rdev);
1790         else {
1791                 struct badblocks *bb = &rdev->badblocks;
1792                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1793                 u64 *p = bb->page;
1794                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1795                 if (bb->changed) {
1796                         unsigned seq;
1797
1798 retry:
1799                         seq = read_seqbegin(&bb->lock);
1800
1801                         memset(bbp, 0xff, PAGE_SIZE);
1802
1803                         for (i = 0 ; i < bb->count ; i++) {
1804                                 u64 internal_bb = *p++;
1805                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1806                                                 | BB_LEN(internal_bb));
1807                                 *bbp++ = cpu_to_le64(store_bb);
1808                         }
1809                         if (read_seqretry(&bb->lock, seq))
1810                                 goto retry;
1811
1812                         bb->sector = (rdev->sb_start +
1813                                       (int)le32_to_cpu(sb->bblog_offset));
1814                         bb->size = le16_to_cpu(sb->bblog_size);
1815                         bb->changed = 0;
1816                 }
1817         }
1818
1819         max_dev = 0;
1820         list_for_each_entry(rdev2, &mddev->disks, same_set)
1821                 if (rdev2->desc_nr+1 > max_dev)
1822                         max_dev = rdev2->desc_nr+1;
1823
1824         if (max_dev > le32_to_cpu(sb->max_dev)) {
1825                 int bmask;
1826                 sb->max_dev = cpu_to_le32(max_dev);
1827                 rdev->sb_size = max_dev * 2 + 256;
1828                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1829                 if (rdev->sb_size & bmask)
1830                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1831         } else
1832                 max_dev = le32_to_cpu(sb->max_dev);
1833
1834         for (i=0; i<max_dev;i++)
1835                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836         
1837         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1838                 i = rdev2->desc_nr;
1839                 if (test_bit(Faulty, &rdev2->flags))
1840                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1841                 else if (test_bit(In_sync, &rdev2->flags))
1842                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843                 else if (rdev2->raid_disk >= 0)
1844                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1845                 else
1846                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1847         }
1848
1849         sb->sb_csum = calc_sb_1_csum(sb);
1850 }
1851
1852 static unsigned long long
1853 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1854 {
1855         struct mdp_superblock_1 *sb;
1856         sector_t max_sectors;
1857         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1858                 return 0; /* component must fit device */
1859         if (rdev->sb_start < rdev->data_offset) {
1860                 /* minor versions 1 and 2; superblock before data */
1861                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1862                 max_sectors -= rdev->data_offset;
1863                 if (!num_sectors || num_sectors > max_sectors)
1864                         num_sectors = max_sectors;
1865         } else if (rdev->mddev->bitmap_info.offset) {
1866                 /* minor version 0 with bitmap we can't move */
1867                 return 0;
1868         } else {
1869                 /* minor version 0; superblock after data */
1870                 sector_t sb_start;
1871                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1872                 sb_start &= ~(sector_t)(4*2 - 1);
1873                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1874                 if (!num_sectors || num_sectors > max_sectors)
1875                         num_sectors = max_sectors;
1876                 rdev->sb_start = sb_start;
1877         }
1878         sb = page_address(rdev->sb_page);
1879         sb->data_size = cpu_to_le64(num_sectors);
1880         sb->super_offset = rdev->sb_start;
1881         sb->sb_csum = calc_sb_1_csum(sb);
1882         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1883                        rdev->sb_page);
1884         md_super_wait(rdev->mddev);
1885         return num_sectors;
1886 }
1887
1888 static struct super_type super_types[] = {
1889         [0] = {
1890                 .name   = "0.90.0",
1891                 .owner  = THIS_MODULE,
1892                 .load_super         = super_90_load,
1893                 .validate_super     = super_90_validate,
1894                 .sync_super         = super_90_sync,
1895                 .rdev_size_change   = super_90_rdev_size_change,
1896         },
1897         [1] = {
1898                 .name   = "md-1",
1899                 .owner  = THIS_MODULE,
1900                 .load_super         = super_1_load,
1901                 .validate_super     = super_1_validate,
1902                 .sync_super         = super_1_sync,
1903                 .rdev_size_change   = super_1_rdev_size_change,
1904         },
1905 };
1906
1907 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1908 {
1909         if (mddev->sync_super) {
1910                 mddev->sync_super(mddev, rdev);
1911                 return;
1912         }
1913
1914         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1915
1916         super_types[mddev->major_version].sync_super(mddev, rdev);
1917 }
1918
1919 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1920 {
1921         struct md_rdev *rdev, *rdev2;
1922
1923         rcu_read_lock();
1924         rdev_for_each_rcu(rdev, mddev1)
1925                 rdev_for_each_rcu(rdev2, mddev2)
1926                         if (rdev->bdev->bd_contains ==
1927                             rdev2->bdev->bd_contains) {
1928                                 rcu_read_unlock();
1929                                 return 1;
1930                         }
1931         rcu_read_unlock();
1932         return 0;
1933 }
1934
1935 static LIST_HEAD(pending_raid_disks);
1936
1937 /*
1938  * Try to register data integrity profile for an mddev
1939  *
1940  * This is called when an array is started and after a disk has been kicked
1941  * from the array. It only succeeds if all working and active component devices
1942  * are integrity capable with matching profiles.
1943  */
1944 int md_integrity_register(struct mddev *mddev)
1945 {
1946         struct md_rdev *rdev, *reference = NULL;
1947
1948         if (list_empty(&mddev->disks))
1949                 return 0; /* nothing to do */
1950         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1951                 return 0; /* shouldn't register, or already is */
1952         list_for_each_entry(rdev, &mddev->disks, same_set) {
1953                 /* skip spares and non-functional disks */
1954                 if (test_bit(Faulty, &rdev->flags))
1955                         continue;
1956                 if (rdev->raid_disk < 0)
1957                         continue;
1958                 if (!reference) {
1959                         /* Use the first rdev as the reference */
1960                         reference = rdev;
1961                         continue;
1962                 }
1963                 /* does this rdev's profile match the reference profile? */
1964                 if (blk_integrity_compare(reference->bdev->bd_disk,
1965                                 rdev->bdev->bd_disk) < 0)
1966                         return -EINVAL;
1967         }
1968         if (!reference || !bdev_get_integrity(reference->bdev))
1969                 return 0;
1970         /*
1971          * All component devices are integrity capable and have matching
1972          * profiles, register the common profile for the md device.
1973          */
1974         if (blk_integrity_register(mddev->gendisk,
1975                         bdev_get_integrity(reference->bdev)) != 0) {
1976                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1977                         mdname(mddev));
1978                 return -EINVAL;
1979         }
1980         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1981         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1982                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1983                        mdname(mddev));
1984                 return -EINVAL;
1985         }
1986         return 0;
1987 }
1988 EXPORT_SYMBOL(md_integrity_register);
1989
1990 /* Disable data integrity if non-capable/non-matching disk is being added */
1991 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1992 {
1993         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1994         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1995
1996         if (!bi_mddev) /* nothing to do */
1997                 return;
1998         if (rdev->raid_disk < 0) /* skip spares */
1999                 return;
2000         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2001                                              rdev->bdev->bd_disk) >= 0)
2002                 return;
2003         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2004         blk_integrity_unregister(mddev->gendisk);
2005 }
2006 EXPORT_SYMBOL(md_integrity_add_rdev);
2007
2008 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2009 {
2010         char b[BDEVNAME_SIZE];
2011         struct kobject *ko;
2012         char *s;
2013         int err;
2014
2015         if (rdev->mddev) {
2016                 MD_BUG();
2017                 return -EINVAL;
2018         }
2019
2020         /* prevent duplicates */
2021         if (find_rdev(mddev, rdev->bdev->bd_dev))
2022                 return -EEXIST;
2023
2024         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2025         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2026                         rdev->sectors < mddev->dev_sectors)) {
2027                 if (mddev->pers) {
2028                         /* Cannot change size, so fail
2029                          * If mddev->level <= 0, then we don't care
2030                          * about aligning sizes (e.g. linear)
2031                          */
2032                         if (mddev->level > 0)
2033                                 return -ENOSPC;
2034                 } else
2035                         mddev->dev_sectors = rdev->sectors;
2036         }
2037
2038         /* Verify rdev->desc_nr is unique.
2039          * If it is -1, assign a free number, else
2040          * check number is not in use
2041          */
2042         if (rdev->desc_nr < 0) {
2043                 int choice = 0;
2044                 if (mddev->pers) choice = mddev->raid_disks;
2045                 while (find_rdev_nr(mddev, choice))
2046                         choice++;
2047                 rdev->desc_nr = choice;
2048         } else {
2049                 if (find_rdev_nr(mddev, rdev->desc_nr))
2050                         return -EBUSY;
2051         }
2052         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2053                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2054                        mdname(mddev), mddev->max_disks);
2055                 return -EBUSY;
2056         }
2057         bdevname(rdev->bdev,b);
2058         while ( (s=strchr(b, '/')) != NULL)
2059                 *s = '!';
2060
2061         rdev->mddev = mddev;
2062         printk(KERN_INFO "md: bind<%s>\n", b);
2063
2064         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2065                 goto fail;
2066
2067         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2068         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2069                 /* failure here is OK */;
2070         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2071
2072         list_add_rcu(&rdev->same_set, &mddev->disks);
2073         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2074
2075         /* May as well allow recovery to be retried once */
2076         mddev->recovery_disabled++;
2077
2078         return 0;
2079
2080  fail:
2081         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2082                b, mdname(mddev));
2083         return err;
2084 }
2085
2086 static void md_delayed_delete(struct work_struct *ws)
2087 {
2088         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2089         kobject_del(&rdev->kobj);
2090         kobject_put(&rdev->kobj);
2091 }
2092
2093 static void unbind_rdev_from_array(struct md_rdev * rdev)
2094 {
2095         char b[BDEVNAME_SIZE];
2096         if (!rdev->mddev) {
2097                 MD_BUG();
2098                 return;
2099         }
2100         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2101         list_del_rcu(&rdev->same_set);
2102         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2103         rdev->mddev = NULL;
2104         sysfs_remove_link(&rdev->kobj, "block");
2105         sysfs_put(rdev->sysfs_state);
2106         rdev->sysfs_state = NULL;
2107         kfree(rdev->badblocks.page);
2108         rdev->badblocks.count = 0;
2109         rdev->badblocks.page = NULL;
2110         /* We need to delay this, otherwise we can deadlock when
2111          * writing to 'remove' to "dev/state".  We also need
2112          * to delay it due to rcu usage.
2113          */
2114         synchronize_rcu();
2115         INIT_WORK(&rdev->del_work, md_delayed_delete);
2116         kobject_get(&rdev->kobj);
2117         queue_work(md_misc_wq, &rdev->del_work);
2118 }
2119
2120 /*
2121  * prevent the device from being mounted, repartitioned or
2122  * otherwise reused by a RAID array (or any other kernel
2123  * subsystem), by bd_claiming the device.
2124  */
2125 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2126 {
2127         int err = 0;
2128         struct block_device *bdev;
2129         char b[BDEVNAME_SIZE];
2130
2131         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2132                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2133         if (IS_ERR(bdev)) {
2134                 printk(KERN_ERR "md: could not open %s.\n",
2135                         __bdevname(dev, b));
2136                 return PTR_ERR(bdev);
2137         }
2138         rdev->bdev = bdev;
2139         return err;
2140 }
2141
2142 static void unlock_rdev(struct md_rdev *rdev)
2143 {
2144         struct block_device *bdev = rdev->bdev;
2145         rdev->bdev = NULL;
2146         if (!bdev)
2147                 MD_BUG();
2148         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2149 }
2150
2151 void md_autodetect_dev(dev_t dev);
2152
2153 static void export_rdev(struct md_rdev * rdev)
2154 {
2155         char b[BDEVNAME_SIZE];
2156         printk(KERN_INFO "md: export_rdev(%s)\n",
2157                 bdevname(rdev->bdev,b));
2158         if (rdev->mddev)
2159                 MD_BUG();
2160         free_disk_sb(rdev);
2161 #ifndef MODULE
2162         if (test_bit(AutoDetected, &rdev->flags))
2163                 md_autodetect_dev(rdev->bdev->bd_dev);
2164 #endif
2165         unlock_rdev(rdev);
2166         kobject_put(&rdev->kobj);
2167 }
2168
2169 static void kick_rdev_from_array(struct md_rdev * rdev)
2170 {
2171         unbind_rdev_from_array(rdev);
2172         export_rdev(rdev);
2173 }
2174
2175 static void export_array(struct mddev *mddev)
2176 {
2177         struct md_rdev *rdev, *tmp;
2178
2179         rdev_for_each(rdev, tmp, mddev) {
2180                 if (!rdev->mddev) {
2181                         MD_BUG();
2182                         continue;
2183                 }
2184                 kick_rdev_from_array(rdev);
2185         }
2186         if (!list_empty(&mddev->disks))
2187                 MD_BUG();
2188         mddev->raid_disks = 0;
2189         mddev->major_version = 0;
2190 }
2191
2192 static void print_desc(mdp_disk_t *desc)
2193 {
2194         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2195                 desc->major,desc->minor,desc->raid_disk,desc->state);
2196 }
2197
2198 static void print_sb_90(mdp_super_t *sb)
2199 {
2200         int i;
2201
2202         printk(KERN_INFO 
2203                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2204                 sb->major_version, sb->minor_version, sb->patch_version,
2205                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2206                 sb->ctime);
2207         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2208                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2209                 sb->md_minor, sb->layout, sb->chunk_size);
2210         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2211                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2212                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2213                 sb->failed_disks, sb->spare_disks,
2214                 sb->sb_csum, (unsigned long)sb->events_lo);
2215
2216         printk(KERN_INFO);
2217         for (i = 0; i < MD_SB_DISKS; i++) {
2218                 mdp_disk_t *desc;
2219
2220                 desc = sb->disks + i;
2221                 if (desc->number || desc->major || desc->minor ||
2222                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2223                         printk("     D %2d: ", i);
2224                         print_desc(desc);
2225                 }
2226         }
2227         printk(KERN_INFO "md:     THIS: ");
2228         print_desc(&sb->this_disk);
2229 }
2230
2231 static void print_sb_1(struct mdp_superblock_1 *sb)
2232 {
2233         __u8 *uuid;
2234
2235         uuid = sb->set_uuid;
2236         printk(KERN_INFO
2237                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2238                "md:    Name: \"%s\" CT:%llu\n",
2239                 le32_to_cpu(sb->major_version),
2240                 le32_to_cpu(sb->feature_map),
2241                 uuid,
2242                 sb->set_name,
2243                 (unsigned long long)le64_to_cpu(sb->ctime)
2244                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2245
2246         uuid = sb->device_uuid;
2247         printk(KERN_INFO
2248                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2249                         " RO:%llu\n"
2250                "md:     Dev:%08x UUID: %pU\n"
2251                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2252                "md:         (MaxDev:%u) \n",
2253                 le32_to_cpu(sb->level),
2254                 (unsigned long long)le64_to_cpu(sb->size),
2255                 le32_to_cpu(sb->raid_disks),
2256                 le32_to_cpu(sb->layout),
2257                 le32_to_cpu(sb->chunksize),
2258                 (unsigned long long)le64_to_cpu(sb->data_offset),
2259                 (unsigned long long)le64_to_cpu(sb->data_size),
2260                 (unsigned long long)le64_to_cpu(sb->super_offset),
2261                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2262                 le32_to_cpu(sb->dev_number),
2263                 uuid,
2264                 sb->devflags,
2265                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2266                 (unsigned long long)le64_to_cpu(sb->events),
2267                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2268                 le32_to_cpu(sb->sb_csum),
2269                 le32_to_cpu(sb->max_dev)
2270                 );
2271 }
2272
2273 static void print_rdev(struct md_rdev *rdev, int major_version)
2274 {
2275         char b[BDEVNAME_SIZE];
2276         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2277                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2278                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2279                 rdev->desc_nr);
2280         if (rdev->sb_loaded) {
2281                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2282                 switch (major_version) {
2283                 case 0:
2284                         print_sb_90(page_address(rdev->sb_page));
2285                         break;
2286                 case 1:
2287                         print_sb_1(page_address(rdev->sb_page));
2288                         break;
2289                 }
2290         } else
2291                 printk(KERN_INFO "md: no rdev superblock!\n");
2292 }
2293
2294 static void md_print_devices(void)
2295 {
2296         struct list_head *tmp;
2297         struct md_rdev *rdev;
2298         struct mddev *mddev;
2299         char b[BDEVNAME_SIZE];
2300
2301         printk("\n");
2302         printk("md:     **********************************\n");
2303         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2304         printk("md:     **********************************\n");
2305         for_each_mddev(mddev, tmp) {
2306
2307                 if (mddev->bitmap)
2308                         bitmap_print_sb(mddev->bitmap);
2309                 else
2310                         printk("%s: ", mdname(mddev));
2311                 list_for_each_entry(rdev, &mddev->disks, same_set)
2312                         printk("<%s>", bdevname(rdev->bdev,b));
2313                 printk("\n");
2314
2315                 list_for_each_entry(rdev, &mddev->disks, same_set)
2316                         print_rdev(rdev, mddev->major_version);
2317         }
2318         printk("md:     **********************************\n");
2319         printk("\n");
2320 }
2321
2322
2323 static void sync_sbs(struct mddev * mddev, int nospares)
2324 {
2325         /* Update each superblock (in-memory image), but
2326          * if we are allowed to, skip spares which already
2327          * have the right event counter, or have one earlier
2328          * (which would mean they aren't being marked as dirty
2329          * with the rest of the array)
2330          */
2331         struct md_rdev *rdev;
2332         list_for_each_entry(rdev, &mddev->disks, same_set) {
2333                 if (rdev->sb_events == mddev->events ||
2334                     (nospares &&
2335                      rdev->raid_disk < 0 &&
2336                      rdev->sb_events+1 == mddev->events)) {
2337                         /* Don't update this superblock */
2338                         rdev->sb_loaded = 2;
2339                 } else {
2340                         sync_super(mddev, rdev);
2341                         rdev->sb_loaded = 1;
2342                 }
2343         }
2344 }
2345
2346 static void md_update_sb(struct mddev * mddev, int force_change)
2347 {
2348         struct md_rdev *rdev;
2349         int sync_req;
2350         int nospares = 0;
2351         int any_badblocks_changed = 0;
2352
2353 repeat:
2354         /* First make sure individual recovery_offsets are correct */
2355         list_for_each_entry(rdev, &mddev->disks, same_set) {
2356                 if (rdev->raid_disk >= 0 &&
2357                     mddev->delta_disks >= 0 &&
2358                     !test_bit(In_sync, &rdev->flags) &&
2359                     mddev->curr_resync_completed > rdev->recovery_offset)
2360                                 rdev->recovery_offset = mddev->curr_resync_completed;
2361
2362         }       
2363         if (!mddev->persistent) {
2364                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2365                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2366                 if (!mddev->external) {
2367                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2368                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2369                                 if (rdev->badblocks.changed) {
2370                                         md_ack_all_badblocks(&rdev->badblocks);
2371                                         md_error(mddev, rdev);
2372                                 }
2373                                 clear_bit(Blocked, &rdev->flags);
2374                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2375                                 wake_up(&rdev->blocked_wait);
2376                         }
2377                 }
2378                 wake_up(&mddev->sb_wait);
2379                 return;
2380         }
2381
2382         spin_lock_irq(&mddev->write_lock);
2383
2384         mddev->utime = get_seconds();
2385
2386         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2387                 force_change = 1;
2388         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2389                 /* just a clean<-> dirty transition, possibly leave spares alone,
2390                  * though if events isn't the right even/odd, we will have to do
2391                  * spares after all
2392                  */
2393                 nospares = 1;
2394         if (force_change)
2395                 nospares = 0;
2396         if (mddev->degraded)
2397                 /* If the array is degraded, then skipping spares is both
2398                  * dangerous and fairly pointless.
2399                  * Dangerous because a device that was removed from the array
2400                  * might have a event_count that still looks up-to-date,
2401                  * so it can be re-added without a resync.
2402                  * Pointless because if there are any spares to skip,
2403                  * then a recovery will happen and soon that array won't
2404                  * be degraded any more and the spare can go back to sleep then.
2405                  */
2406                 nospares = 0;
2407
2408         sync_req = mddev->in_sync;
2409
2410         /* If this is just a dirty<->clean transition, and the array is clean
2411          * and 'events' is odd, we can roll back to the previous clean state */
2412         if (nospares
2413             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2414             && mddev->can_decrease_events
2415             && mddev->events != 1) {
2416                 mddev->events--;
2417                 mddev->can_decrease_events = 0;
2418         } else {
2419                 /* otherwise we have to go forward and ... */
2420                 mddev->events ++;
2421                 mddev->can_decrease_events = nospares;
2422         }
2423
2424         if (!mddev->events) {
2425                 /*
2426                  * oops, this 64-bit counter should never wrap.
2427                  * Either we are in around ~1 trillion A.C., assuming
2428                  * 1 reboot per second, or we have a bug:
2429                  */
2430                 MD_BUG();
2431                 mddev->events --;
2432         }
2433
2434         list_for_each_entry(rdev, &mddev->disks, same_set) {
2435                 if (rdev->badblocks.changed)
2436                         any_badblocks_changed++;
2437                 if (test_bit(Faulty, &rdev->flags))
2438                         set_bit(FaultRecorded, &rdev->flags);
2439         }
2440
2441         sync_sbs(mddev, nospares);
2442         spin_unlock_irq(&mddev->write_lock);
2443
2444         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2445                  mdname(mddev), mddev->in_sync);
2446
2447         bitmap_update_sb(mddev->bitmap);
2448         list_for_each_entry(rdev, &mddev->disks, same_set) {
2449                 char b[BDEVNAME_SIZE];
2450
2451                 if (rdev->sb_loaded != 1)
2452                         continue; /* no noise on spare devices */
2453
2454                 if (!test_bit(Faulty, &rdev->flags) &&
2455                     rdev->saved_raid_disk == -1) {
2456                         md_super_write(mddev,rdev,
2457                                        rdev->sb_start, rdev->sb_size,
2458                                        rdev->sb_page);
2459                         pr_debug("md: (write) %s's sb offset: %llu\n",
2460                                  bdevname(rdev->bdev, b),
2461                                  (unsigned long long)rdev->sb_start);
2462                         rdev->sb_events = mddev->events;
2463                         if (rdev->badblocks.size) {
2464                                 md_super_write(mddev, rdev,
2465                                                rdev->badblocks.sector,
2466                                                rdev->badblocks.size << 9,
2467                                                rdev->bb_page);
2468                                 rdev->badblocks.size = 0;
2469                         }
2470
2471                 } else if (test_bit(Faulty, &rdev->flags))
2472                         pr_debug("md: %s (skipping faulty)\n",
2473                                  bdevname(rdev->bdev, b));
2474                 else
2475                         pr_debug("(skipping incremental s/r ");
2476
2477                 if (mddev->level == LEVEL_MULTIPATH)
2478                         /* only need to write one superblock... */
2479                         break;
2480         }
2481         md_super_wait(mddev);
2482         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2483
2484         spin_lock_irq(&mddev->write_lock);
2485         if (mddev->in_sync != sync_req ||
2486             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487                 /* have to write it out again */
2488                 spin_unlock_irq(&mddev->write_lock);
2489                 goto repeat;
2490         }
2491         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492         spin_unlock_irq(&mddev->write_lock);
2493         wake_up(&mddev->sb_wait);
2494         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2496
2497         list_for_each_entry(rdev, &mddev->disks, same_set) {
2498                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499                         clear_bit(Blocked, &rdev->flags);
2500
2501                 if (any_badblocks_changed)
2502                         md_ack_all_badblocks(&rdev->badblocks);
2503                 clear_bit(BlockedBadBlocks, &rdev->flags);
2504                 wake_up(&rdev->blocked_wait);
2505         }
2506 }
2507
2508 /* words written to sysfs files may, or may not, be \n terminated.
2509  * We want to accept with case. For this we use cmd_match.
2510  */
2511 static int cmd_match(const char *cmd, const char *str)
2512 {
2513         /* See if cmd, written into a sysfs file, matches
2514          * str.  They must either be the same, or cmd can
2515          * have a trailing newline
2516          */
2517         while (*cmd && *str && *cmd == *str) {
2518                 cmd++;
2519                 str++;
2520         }
2521         if (*cmd == '\n')
2522                 cmd++;
2523         if (*str || *cmd)
2524                 return 0;
2525         return 1;
2526 }
2527
2528 struct rdev_sysfs_entry {
2529         struct attribute attr;
2530         ssize_t (*show)(struct md_rdev *, char *);
2531         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2532 };
2533
2534 static ssize_t
2535 state_show(struct md_rdev *rdev, char *page)
2536 {
2537         char *sep = "";
2538         size_t len = 0;
2539
2540         if (test_bit(Faulty, &rdev->flags) ||
2541             rdev->badblocks.unacked_exist) {
2542                 len+= sprintf(page+len, "%sfaulty",sep);
2543                 sep = ",";
2544         }
2545         if (test_bit(In_sync, &rdev->flags)) {
2546                 len += sprintf(page+len, "%sin_sync",sep);
2547                 sep = ",";
2548         }
2549         if (test_bit(WriteMostly, &rdev->flags)) {
2550                 len += sprintf(page+len, "%swrite_mostly",sep);
2551                 sep = ",";
2552         }
2553         if (test_bit(Blocked, &rdev->flags) ||
2554             (rdev->badblocks.unacked_exist
2555              && !test_bit(Faulty, &rdev->flags))) {
2556                 len += sprintf(page+len, "%sblocked", sep);
2557                 sep = ",";
2558         }
2559         if (!test_bit(Faulty, &rdev->flags) &&
2560             !test_bit(In_sync, &rdev->flags)) {
2561                 len += sprintf(page+len, "%sspare", sep);
2562                 sep = ",";
2563         }
2564         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2565                 len += sprintf(page+len, "%swrite_error", sep);
2566                 sep = ",";
2567         }
2568         if (test_bit(WantReplacement, &rdev->flags)) {
2569                 len += sprintf(page+len, "%swant_replacement", sep);
2570                 sep = ",";
2571         }
2572         if (test_bit(Replacement, &rdev->flags)) {
2573                 len += sprintf(page+len, "%sreplacement", sep);
2574                 sep = ",";
2575         }
2576
2577         return len+sprintf(page+len, "\n");
2578 }
2579
2580 static ssize_t
2581 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2582 {
2583         /* can write
2584          *  faulty  - simulates an error
2585          *  remove  - disconnects the device
2586          *  writemostly - sets write_mostly
2587          *  -writemostly - clears write_mostly
2588          *  blocked - sets the Blocked flags
2589          *  -blocked - clears the Blocked and possibly simulates an error
2590          *  insync - sets Insync providing device isn't active
2591          *  write_error - sets WriteErrorSeen
2592          *  -write_error - clears WriteErrorSeen
2593          */
2594         int err = -EINVAL;
2595         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2596                 md_error(rdev->mddev, rdev);
2597                 if (test_bit(Faulty, &rdev->flags))
2598                         err = 0;
2599                 else
2600                         err = -EBUSY;
2601         } else if (cmd_match(buf, "remove")) {
2602                 if (rdev->raid_disk >= 0)
2603                         err = -EBUSY;
2604                 else {
2605                         struct mddev *mddev = rdev->mddev;
2606                         kick_rdev_from_array(rdev);
2607                         if (mddev->pers)
2608                                 md_update_sb(mddev, 1);
2609                         md_new_event(mddev);
2610                         err = 0;
2611                 }
2612         } else if (cmd_match(buf, "writemostly")) {
2613                 set_bit(WriteMostly, &rdev->flags);
2614                 err = 0;
2615         } else if (cmd_match(buf, "-writemostly")) {
2616                 clear_bit(WriteMostly, &rdev->flags);
2617                 err = 0;
2618         } else if (cmd_match(buf, "blocked")) {
2619                 set_bit(Blocked, &rdev->flags);
2620                 err = 0;
2621         } else if (cmd_match(buf, "-blocked")) {
2622                 if (!test_bit(Faulty, &rdev->flags) &&
2623                     rdev->badblocks.unacked_exist) {
2624                         /* metadata handler doesn't understand badblocks,
2625                          * so we need to fail the device
2626                          */
2627                         md_error(rdev->mddev, rdev);
2628                 }
2629                 clear_bit(Blocked, &rdev->flags);
2630                 clear_bit(BlockedBadBlocks, &rdev->flags);
2631                 wake_up(&rdev->blocked_wait);
2632                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2633                 md_wakeup_thread(rdev->mddev->thread);
2634
2635                 err = 0;
2636         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2637                 set_bit(In_sync, &rdev->flags);
2638                 err = 0;
2639         } else if (cmd_match(buf, "write_error")) {
2640                 set_bit(WriteErrorSeen, &rdev->flags);
2641                 err = 0;
2642         } else if (cmd_match(buf, "-write_error")) {
2643                 clear_bit(WriteErrorSeen, &rdev->flags);
2644                 err = 0;
2645         } else if (cmd_match(buf, "want_replacement")) {
2646                 /* Any non-spare device that is not a replacement can
2647                  * become want_replacement at any time, but we then need to
2648                  * check if recovery is needed.
2649                  */
2650                 if (rdev->raid_disk >= 0 &&
2651                     !test_bit(Replacement, &rdev->flags))
2652                         set_bit(WantReplacement, &rdev->flags);
2653                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654                 md_wakeup_thread(rdev->mddev->thread);
2655                 err = 0;
2656         } else if (cmd_match(buf, "-want_replacement")) {
2657                 /* Clearing 'want_replacement' is always allowed.
2658                  * Once replacements starts it is too late though.
2659                  */
2660                 err = 0;
2661                 clear_bit(WantReplacement, &rdev->flags);
2662         } else if (cmd_match(buf, "replacement")) {
2663                 /* Can only set a device as a replacement when array has not
2664                  * yet been started.  Once running, replacement is automatic
2665                  * from spares, or by assigning 'slot'.
2666                  */
2667                 if (rdev->mddev->pers)
2668                         err = -EBUSY;
2669                 else {
2670                         set_bit(Replacement, &rdev->flags);
2671                         err = 0;
2672                 }
2673         } else if (cmd_match(buf, "-replacement")) {
2674                 /* Similarly, can only clear Replacement before start */
2675                 if (rdev->mddev->pers)
2676                         err = -EBUSY;
2677                 else {
2678                         clear_bit(Replacement, &rdev->flags);
2679                         err = 0;
2680                 }
2681         }
2682         if (!err)
2683                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2684         return err ? err : len;
2685 }
2686 static struct rdev_sysfs_entry rdev_state =
2687 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2688
2689 static ssize_t
2690 errors_show(struct md_rdev *rdev, char *page)
2691 {
2692         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2693 }
2694
2695 static ssize_t
2696 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2697 {
2698         char *e;
2699         unsigned long n = simple_strtoul(buf, &e, 10);
2700         if (*buf && (*e == 0 || *e == '\n')) {
2701                 atomic_set(&rdev->corrected_errors, n);
2702                 return len;
2703         }
2704         return -EINVAL;
2705 }
2706 static struct rdev_sysfs_entry rdev_errors =
2707 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2708
2709 static ssize_t
2710 slot_show(struct md_rdev *rdev, char *page)
2711 {
2712         if (rdev->raid_disk < 0)
2713                 return sprintf(page, "none\n");
2714         else
2715                 return sprintf(page, "%d\n", rdev->raid_disk);
2716 }
2717
2718 static ssize_t
2719 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2720 {
2721         char *e;
2722         int err;
2723         int slot = simple_strtoul(buf, &e, 10);
2724         if (strncmp(buf, "none", 4)==0)
2725                 slot = -1;
2726         else if (e==buf || (*e && *e!= '\n'))
2727                 return -EINVAL;
2728         if (rdev->mddev->pers && slot == -1) {
2729                 /* Setting 'slot' on an active array requires also
2730                  * updating the 'rd%d' link, and communicating
2731                  * with the personality with ->hot_*_disk.
2732                  * For now we only support removing
2733                  * failed/spare devices.  This normally happens automatically,
2734                  * but not when the metadata is externally managed.
2735                  */
2736                 if (rdev->raid_disk == -1)
2737                         return -EEXIST;
2738                 /* personality does all needed checks */
2739                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2740                         return -EINVAL;
2741                 err = rdev->mddev->pers->
2742                         hot_remove_disk(rdev->mddev, rdev);
2743                 if (err)
2744                         return err;
2745                 sysfs_unlink_rdev(rdev->mddev, rdev);
2746                 rdev->raid_disk = -1;
2747                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2748                 md_wakeup_thread(rdev->mddev->thread);
2749         } else if (rdev->mddev->pers) {
2750                 /* Activating a spare .. or possibly reactivating
2751                  * if we ever get bitmaps working here.
2752                  */
2753
2754                 if (rdev->raid_disk != -1)
2755                         return -EBUSY;
2756
2757                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2758                         return -EBUSY;
2759
2760                 if (rdev->mddev->pers->hot_add_disk == NULL)
2761                         return -EINVAL;
2762
2763                 if (slot >= rdev->mddev->raid_disks &&
2764                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2765                         return -ENOSPC;
2766
2767                 rdev->raid_disk = slot;
2768                 if (test_bit(In_sync, &rdev->flags))
2769                         rdev->saved_raid_disk = slot;
2770                 else
2771                         rdev->saved_raid_disk = -1;
2772                 clear_bit(In_sync, &rdev->flags);
2773                 err = rdev->mddev->pers->
2774                         hot_add_disk(rdev->mddev, rdev);
2775                 if (err) {
2776                         rdev->raid_disk = -1;
2777                         return err;
2778                 } else
2779                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2780                 if (sysfs_link_rdev(rdev->mddev, rdev))
2781                         /* failure here is OK */;
2782                 /* don't wakeup anyone, leave that to userspace. */
2783         } else {
2784                 if (slot >= rdev->mddev->raid_disks &&
2785                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2786                         return -ENOSPC;
2787                 rdev->raid_disk = slot;
2788                 /* assume it is working */
2789                 clear_bit(Faulty, &rdev->flags);
2790                 clear_bit(WriteMostly, &rdev->flags);
2791                 set_bit(In_sync, &rdev->flags);
2792                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2793         }
2794         return len;
2795 }
2796
2797
2798 static struct rdev_sysfs_entry rdev_slot =
2799 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2800
2801 static ssize_t
2802 offset_show(struct md_rdev *rdev, char *page)
2803 {
2804         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2805 }
2806
2807 static ssize_t
2808 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2809 {
2810         char *e;
2811         unsigned long long offset = simple_strtoull(buf, &e, 10);
2812         if (e==buf || (*e && *e != '\n'))
2813                 return -EINVAL;
2814         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2815                 return -EBUSY;
2816         if (rdev->sectors && rdev->mddev->external)
2817                 /* Must set offset before size, so overlap checks
2818                  * can be sane */
2819                 return -EBUSY;
2820         rdev->data_offset = offset;
2821         return len;
2822 }
2823
2824 static struct rdev_sysfs_entry rdev_offset =
2825 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2826
2827 static ssize_t
2828 rdev_size_show(struct md_rdev *rdev, char *page)
2829 {
2830         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2831 }
2832
2833 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2834 {
2835         /* check if two start/length pairs overlap */
2836         if (s1+l1 <= s2)
2837                 return 0;
2838         if (s2+l2 <= s1)
2839                 return 0;
2840         return 1;
2841 }
2842
2843 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2844 {
2845         unsigned long long blocks;
2846         sector_t new;
2847
2848         if (strict_strtoull(buf, 10, &blocks) < 0)
2849                 return -EINVAL;
2850
2851         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2852                 return -EINVAL; /* sector conversion overflow */
2853
2854         new = blocks * 2;
2855         if (new != blocks * 2)
2856                 return -EINVAL; /* unsigned long long to sector_t overflow */
2857
2858         *sectors = new;
2859         return 0;
2860 }
2861
2862 static ssize_t
2863 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2864 {
2865         struct mddev *my_mddev = rdev->mddev;
2866         sector_t oldsectors = rdev->sectors;
2867         sector_t sectors;
2868
2869         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2870                 return -EINVAL;
2871         if (my_mddev->pers && rdev->raid_disk >= 0) {
2872                 if (my_mddev->persistent) {
2873                         sectors = super_types[my_mddev->major_version].
2874                                 rdev_size_change(rdev, sectors);
2875                         if (!sectors)
2876                                 return -EBUSY;
2877                 } else if (!sectors)
2878                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2879                                 rdev->data_offset;
2880         }
2881         if (sectors < my_mddev->dev_sectors)
2882                 return -EINVAL; /* component must fit device */
2883
2884         rdev->sectors = sectors;
2885         if (sectors > oldsectors && my_mddev->external) {
2886                 /* need to check that all other rdevs with the same ->bdev
2887                  * do not overlap.  We need to unlock the mddev to avoid
2888                  * a deadlock.  We have already changed rdev->sectors, and if
2889                  * we have to change it back, we will have the lock again.
2890                  */
2891                 struct mddev *mddev;
2892                 int overlap = 0;
2893                 struct list_head *tmp;
2894
2895                 mddev_unlock(my_mddev);
2896                 for_each_mddev(mddev, tmp) {
2897                         struct md_rdev *rdev2;
2898
2899                         mddev_lock(mddev);
2900                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2901                                 if (rdev->bdev == rdev2->bdev &&
2902                                     rdev != rdev2 &&
2903                                     overlaps(rdev->data_offset, rdev->sectors,
2904                                              rdev2->data_offset,
2905                                              rdev2->sectors)) {
2906                                         overlap = 1;
2907                                         break;
2908                                 }
2909                         mddev_unlock(mddev);
2910                         if (overlap) {
2911                                 mddev_put(mddev);
2912                                 break;
2913                         }
2914                 }
2915                 mddev_lock(my_mddev);
2916                 if (overlap) {
2917                         /* Someone else could have slipped in a size
2918                          * change here, but doing so is just silly.
2919                          * We put oldsectors back because we *know* it is
2920                          * safe, and trust userspace not to race with
2921                          * itself
2922                          */
2923                         rdev->sectors = oldsectors;
2924                         return -EBUSY;
2925                 }
2926         }
2927         return len;
2928 }
2929
2930 static struct rdev_sysfs_entry rdev_size =
2931 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2932
2933
2934 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2935 {
2936         unsigned long long recovery_start = rdev->recovery_offset;
2937
2938         if (test_bit(In_sync, &rdev->flags) ||
2939             recovery_start == MaxSector)
2940                 return sprintf(page, "none\n");
2941
2942         return sprintf(page, "%llu\n", recovery_start);
2943 }
2944
2945 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2946 {
2947         unsigned long long recovery_start;
2948
2949         if (cmd_match(buf, "none"))
2950                 recovery_start = MaxSector;
2951         else if (strict_strtoull(buf, 10, &recovery_start))
2952                 return -EINVAL;
2953
2954         if (rdev->mddev->pers &&
2955             rdev->raid_disk >= 0)
2956                 return -EBUSY;
2957
2958         rdev->recovery_offset = recovery_start;
2959         if (recovery_start == MaxSector)
2960                 set_bit(In_sync, &rdev->flags);
2961         else
2962                 clear_bit(In_sync, &rdev->flags);
2963         return len;
2964 }
2965
2966 static struct rdev_sysfs_entry rdev_recovery_start =
2967 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2968
2969
2970 static ssize_t
2971 badblocks_show(struct badblocks *bb, char *page, int unack);
2972 static ssize_t
2973 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2974
2975 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2976 {
2977         return badblocks_show(&rdev->badblocks, page, 0);
2978 }
2979 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2980 {
2981         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2982         /* Maybe that ack was all we needed */
2983         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2984                 wake_up(&rdev->blocked_wait);
2985         return rv;
2986 }
2987 static struct rdev_sysfs_entry rdev_bad_blocks =
2988 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2989
2990
2991 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2992 {
2993         return badblocks_show(&rdev->badblocks, page, 1);
2994 }
2995 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2996 {
2997         return badblocks_store(&rdev->badblocks, page, len, 1);
2998 }
2999 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3000 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3001
3002 static struct attribute *rdev_default_attrs[] = {
3003         &rdev_state.attr,
3004         &rdev_errors.attr,
3005         &rdev_slot.attr,
3006         &rdev_offset.attr,
3007         &rdev_size.attr,
3008         &rdev_recovery_start.attr,
3009         &rdev_bad_blocks.attr,
3010         &rdev_unack_bad_blocks.attr,
3011         NULL,
3012 };
3013 static ssize_t
3014 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3015 {
3016         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3017         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3018         struct mddev *mddev = rdev->mddev;
3019         ssize_t rv;
3020
3021         if (!entry->show)
3022                 return -EIO;
3023
3024         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3025         if (!rv) {
3026                 if (rdev->mddev == NULL)
3027                         rv = -EBUSY;
3028                 else
3029                         rv = entry->show(rdev, page);
3030                 mddev_unlock(mddev);
3031         }
3032         return rv;
3033 }
3034
3035 static ssize_t
3036 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3037               const char *page, size_t length)
3038 {
3039         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3040         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3041         ssize_t rv;
3042         struct mddev *mddev = rdev->mddev;
3043
3044         if (!entry->store)
3045                 return -EIO;
3046         if (!capable(CAP_SYS_ADMIN))
3047                 return -EACCES;
3048         rv = mddev ? mddev_lock(mddev): -EBUSY;
3049         if (!rv) {
3050                 if (rdev->mddev == NULL)
3051                         rv = -EBUSY;
3052                 else
3053                         rv = entry->store(rdev, page, length);
3054                 mddev_unlock(mddev);
3055         }
3056         return rv;
3057 }
3058
3059 static void rdev_free(struct kobject *ko)
3060 {
3061         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3062         kfree(rdev);
3063 }
3064 static const struct sysfs_ops rdev_sysfs_ops = {
3065         .show           = rdev_attr_show,
3066         .store          = rdev_attr_store,
3067 };
3068 static struct kobj_type rdev_ktype = {
3069         .release        = rdev_free,
3070         .sysfs_ops      = &rdev_sysfs_ops,
3071         .default_attrs  = rdev_default_attrs,
3072 };
3073
3074 int md_rdev_init(struct md_rdev *rdev)
3075 {
3076         rdev->desc_nr = -1;
3077         rdev->saved_raid_disk = -1;
3078         rdev->raid_disk = -1;
3079         rdev->flags = 0;
3080         rdev->data_offset = 0;
3081         rdev->sb_events = 0;
3082         rdev->last_read_error.tv_sec  = 0;
3083         rdev->last_read_error.tv_nsec = 0;
3084         rdev->sb_loaded = 0;
3085         rdev->bb_page = NULL;
3086         atomic_set(&rdev->nr_pending, 0);
3087         atomic_set(&rdev->read_errors, 0);
3088         atomic_set(&rdev->corrected_errors, 0);
3089
3090         INIT_LIST_HEAD(&rdev->same_set);
3091         init_waitqueue_head(&rdev->blocked_wait);
3092
3093         /* Add space to store bad block list.
3094          * This reserves the space even on arrays where it cannot
3095          * be used - I wonder if that matters
3096          */
3097         rdev->badblocks.count = 0;
3098         rdev->badblocks.shift = 0;
3099         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3100         seqlock_init(&rdev->badblocks.lock);
3101         if (rdev->badblocks.page == NULL)
3102                 return -ENOMEM;
3103
3104         return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(md_rdev_init);
3107 /*
3108  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3109  *
3110  * mark the device faulty if:
3111  *
3112  *   - the device is nonexistent (zero size)
3113  *   - the device has no valid superblock
3114  *
3115  * a faulty rdev _never_ has rdev->sb set.
3116  */
3117 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3118 {
3119         char b[BDEVNAME_SIZE];
3120         int err;
3121         struct md_rdev *rdev;
3122         sector_t size;
3123
3124         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3125         if (!rdev) {
3126                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3127                 return ERR_PTR(-ENOMEM);
3128         }
3129
3130         err = md_rdev_init(rdev);
3131         if (err)
3132                 goto abort_free;
3133         err = alloc_disk_sb(rdev);
3134         if (err)
3135                 goto abort_free;
3136
3137         err = lock_rdev(rdev, newdev, super_format == -2);
3138         if (err)
3139                 goto abort_free;
3140
3141         kobject_init(&rdev->kobj, &rdev_ktype);
3142
3143         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3144         if (!size) {
3145                 printk(KERN_WARNING 
3146                         "md: %s has zero or unknown size, marking faulty!\n",
3147                         bdevname(rdev->bdev,b));
3148                 err = -EINVAL;
3149                 goto abort_free;
3150         }
3151
3152         if (super_format >= 0) {
3153                 err = super_types[super_format].
3154                         load_super(rdev, NULL, super_minor);
3155                 if (err == -EINVAL) {
3156                         printk(KERN_WARNING
3157                                 "md: %s does not have a valid v%d.%d "
3158                                "superblock, not importing!\n",
3159                                 bdevname(rdev->bdev,b),
3160                                super_format, super_minor);
3161                         goto abort_free;
3162                 }
3163                 if (err < 0) {
3164                         printk(KERN_WARNING 
3165                                 "md: could not read %s's sb, not importing!\n",
3166                                 bdevname(rdev->bdev,b));
3167                         goto abort_free;
3168                 }
3169         }
3170         if (super_format == -1)
3171                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3172                 rdev->badblocks.shift = -1;
3173
3174         return rdev;
3175
3176 abort_free:
3177         if (rdev->bdev)
3178                 unlock_rdev(rdev);
3179         free_disk_sb(rdev);
3180         kfree(rdev->badblocks.page);
3181         kfree(rdev);
3182         return ERR_PTR(err);
3183 }
3184
3185 /*
3186  * Check a full RAID array for plausibility
3187  */
3188
3189
3190 static void analyze_sbs(struct mddev * mddev)
3191 {
3192         int i;
3193         struct md_rdev *rdev, *freshest, *tmp;
3194         char b[BDEVNAME_SIZE];
3195
3196         freshest = NULL;
3197         rdev_for_each(rdev, tmp, mddev)
3198                 switch (super_types[mddev->major_version].
3199                         load_super(rdev, freshest, mddev->minor_version)) {
3200                 case 1:
3201                         freshest = rdev;
3202                         break;
3203                 case 0:
3204                         break;
3205                 default:
3206                         printk( KERN_ERR \
3207                                 "md: fatal superblock inconsistency in %s"
3208                                 " -- removing from array\n", 
3209                                 bdevname(rdev->bdev,b));
3210                         kick_rdev_from_array(rdev);
3211                 }
3212
3213
3214         super_types[mddev->major_version].
3215                 validate_super(mddev, freshest);
3216
3217         i = 0;
3218         rdev_for_each(rdev, tmp, mddev) {
3219                 if (mddev->max_disks &&
3220                     (rdev->desc_nr >= mddev->max_disks ||
3221                      i > mddev->max_disks)) {
3222                         printk(KERN_WARNING
3223                                "md: %s: %s: only %d devices permitted\n",
3224                                mdname(mddev), bdevname(rdev->bdev, b),
3225                                mddev->max_disks);
3226                         kick_rdev_from_array(rdev);
3227                         continue;
3228                 }
3229                 if (rdev != freshest)
3230                         if (super_types[mddev->major_version].
3231                             validate_super(mddev, rdev)) {
3232                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3233                                         " from array!\n",
3234                                         bdevname(rdev->bdev,b));
3235                                 kick_rdev_from_array(rdev);
3236                                 continue;
3237                         }
3238                 if (mddev->level == LEVEL_MULTIPATH) {
3239                         rdev->desc_nr = i++;
3240                         rdev->raid_disk = rdev->desc_nr;
3241                         set_bit(In_sync, &rdev->flags);
3242                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3243                         rdev->raid_disk = -1;
3244                         clear_bit(In_sync, &rdev->flags);
3245                 }
3246         }
3247 }
3248
3249 /* Read a fixed-point number.
3250  * Numbers in sysfs attributes should be in "standard" units where
3251  * possible, so time should be in seconds.
3252  * However we internally use a a much smaller unit such as 
3253  * milliseconds or jiffies.
3254  * This function takes a decimal number with a possible fractional
3255  * component, and produces an integer which is the result of
3256  * multiplying that number by 10^'scale'.
3257  * all without any floating-point arithmetic.
3258  */
3259 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3260 {
3261         unsigned long result = 0;
3262         long decimals = -1;
3263         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3264                 if (*cp == '.')
3265                         decimals = 0;
3266                 else if (decimals < scale) {
3267                         unsigned int value;
3268                         value = *cp - '0';
3269                         result = result * 10 + value;
3270                         if (decimals >= 0)
3271                                 decimals++;
3272                 }
3273                 cp++;
3274         }
3275         if (*cp == '\n')
3276                 cp++;
3277         if (*cp)
3278                 return -EINVAL;
3279         if (decimals < 0)
3280                 decimals = 0;
3281         while (decimals < scale) {
3282                 result *= 10;
3283                 decimals ++;
3284         }
3285         *res = result;
3286         return 0;
3287 }
3288
3289
3290 static void md_safemode_timeout(unsigned long data);
3291
3292 static ssize_t
3293 safe_delay_show(struct mddev *mddev, char *page)
3294 {
3295         int msec = (mddev->safemode_delay*1000)/HZ;
3296         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3297 }
3298 static ssize_t
3299 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3300 {
3301         unsigned long msec;
3302
3303         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3304                 return -EINVAL;
3305         if (msec == 0)
3306                 mddev->safemode_delay = 0;
3307         else {
3308                 unsigned long old_delay = mddev->safemode_delay;
3309                 mddev->safemode_delay = (msec*HZ)/1000;
3310                 if (mddev->safemode_delay == 0)
3311                         mddev->safemode_delay = 1;
3312                 if (mddev->safemode_delay < old_delay)
3313                         md_safemode_timeout((unsigned long)mddev);
3314         }
3315         return len;
3316 }
3317 static struct md_sysfs_entry md_safe_delay =
3318 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3319
3320 static ssize_t
3321 level_show(struct mddev *mddev, char *page)
3322 {
3323         struct md_personality *p = mddev->pers;
3324         if (p)
3325                 return sprintf(page, "%s\n", p->name);
3326         else if (mddev->clevel[0])
3327                 return sprintf(page, "%s\n", mddev->clevel);
3328         else if (mddev->level != LEVEL_NONE)
3329                 return sprintf(page, "%d\n", mddev->level);
3330         else
3331                 return 0;
3332 }
3333
3334 static ssize_t
3335 level_store(struct mddev *mddev, const char *buf, size_t len)
3336 {
3337         char clevel[16];
3338         ssize_t rv = len;
3339         struct md_personality *pers;
3340         long level;
3341         void *priv;
3342         struct md_rdev *rdev;
3343
3344         if (mddev->pers == NULL) {
3345                 if (len == 0)
3346                         return 0;
3347                 if (len >= sizeof(mddev->clevel))
3348                         return -ENOSPC;
3349                 strncpy(mddev->clevel, buf, len);
3350                 if (mddev->clevel[len-1] == '\n')
3351                         len--;
3352                 mddev->clevel[len] = 0;
3353                 mddev->level = LEVEL_NONE;
3354                 return rv;
3355         }
3356
3357         /* request to change the personality.  Need to ensure:
3358          *  - array is not engaged in resync/recovery/reshape
3359          *  - old personality can be suspended
3360          *  - new personality will access other array.
3361          */
3362
3363         if (mddev->sync_thread ||
3364             mddev->reshape_position != MaxSector ||
3365             mddev->sysfs_active)
3366                 return -EBUSY;
3367
3368         if (!mddev->pers->quiesce) {
3369                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3370                        mdname(mddev), mddev->pers->name);
3371                 return -EINVAL;
3372         }
3373
3374         /* Now find the new personality */
3375         if (len == 0 || len >= sizeof(clevel))
3376                 return -EINVAL;
3377         strncpy(clevel, buf, len);
3378         if (clevel[len-1] == '\n')
3379                 len--;
3380         clevel[len] = 0;
3381         if (strict_strtol(clevel, 10, &level))
3382                 level = LEVEL_NONE;
3383
3384         if (request_module("md-%s", clevel) != 0)
3385                 request_module("md-level-%s", clevel);
3386         spin_lock(&pers_lock);
3387         pers = find_pers(level, clevel);
3388         if (!pers || !try_module_get(pers->owner)) {
3389                 spin_unlock(&pers_lock);
3390                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3391                 return -EINVAL;
3392         }
3393         spin_unlock(&pers_lock);
3394
3395         if (pers == mddev->pers) {
3396                 /* Nothing to do! */
3397                 module_put(pers->owner);
3398                 return rv;
3399         }
3400         if (!pers->takeover) {
3401                 module_put(pers->owner);
3402                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3403                        mdname(mddev), clevel);
3404                 return -EINVAL;
3405         }
3406
3407         list_for_each_entry(rdev, &mddev->disks, same_set)
3408                 rdev->new_raid_disk = rdev->raid_disk;
3409
3410         /* ->takeover must set new_* and/or delta_disks
3411          * if it succeeds, and may set them when it fails.
3412          */
3413         priv = pers->takeover(mddev);
3414         if (IS_ERR(priv)) {
3415                 mddev->new_level = mddev->level;
3416                 mddev->new_layout = mddev->layout;
3417                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3418                 mddev->raid_disks -= mddev->delta_disks;
3419                 mddev->delta_disks = 0;
3420                 module_put(pers->owner);
3421                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3422                        mdname(mddev), clevel);
3423                 return PTR_ERR(priv);
3424         }
3425
3426         /* Looks like we have a winner */
3427         mddev_suspend(mddev);
3428         mddev->pers->stop(mddev);
3429         
3430         if (mddev->pers->sync_request == NULL &&
3431             pers->sync_request != NULL) {
3432                 /* need to add the md_redundancy_group */
3433                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3434                         printk(KERN_WARNING
3435                                "md: cannot register extra attributes for %s\n",
3436                                mdname(mddev));
3437                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3438         }               
3439         if (mddev->pers->sync_request != NULL &&
3440             pers->sync_request == NULL) {
3441                 /* need to remove the md_redundancy_group */
3442                 if (mddev->to_remove == NULL)
3443                         mddev->to_remove = &md_redundancy_group;
3444         }
3445
3446         if (mddev->pers->sync_request == NULL &&
3447             mddev->external) {
3448                 /* We are converting from a no-redundancy array
3449                  * to a redundancy array and metadata is managed
3450                  * externally so we need to be sure that writes
3451                  * won't block due to a need to transition
3452                  *      clean->dirty
3453                  * until external management is started.
3454                  */
3455                 mddev->in_sync = 0;
3456                 mddev->safemode_delay = 0;
3457                 mddev->safemode = 0;
3458         }
3459
3460         list_for_each_entry(rdev, &mddev->disks, same_set) {
3461                 if (rdev->raid_disk < 0)
3462                         continue;
3463                 if (rdev->new_raid_disk >= mddev->raid_disks)
3464                         rdev->new_raid_disk = -1;
3465                 if (rdev->new_raid_disk == rdev->raid_disk)
3466                         continue;
3467                 sysfs_unlink_rdev(mddev, rdev);
3468         }
3469         list_for_each_entry(rdev, &mddev->disks, same_set) {
3470                 if (rdev->raid_disk < 0)
3471                         continue;
3472                 if (rdev->new_raid_disk == rdev->raid_disk)
3473                         continue;
3474                 rdev->raid_disk = rdev->new_raid_disk;
3475                 if (rdev->raid_disk < 0)
3476                         clear_bit(In_sync, &rdev->flags);
3477                 else {
3478                         if (sysfs_link_rdev(mddev, rdev))
3479                                 printk(KERN_WARNING "md: cannot register rd%d"
3480                                        " for %s after level change\n",
3481                                        rdev->raid_disk, mdname(mddev));
3482                 }
3483         }
3484
3485         module_put(mddev->pers->owner);
3486         mddev->pers = pers;
3487         mddev->private = priv;
3488         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3489         mddev->level = mddev->new_level;
3490         mddev->layout = mddev->new_layout;
3491         mddev->chunk_sectors = mddev->new_chunk_sectors;
3492         mddev->delta_disks = 0;
3493         mddev->degraded = 0;
3494         if (mddev->pers->sync_request == NULL) {
3495                 /* this is now an array without redundancy, so
3496                  * it must always be in_sync
3497                  */
3498                 mddev->in_sync = 1;
3499                 del_timer_sync(&mddev->safemode_timer);
3500         }
3501         pers->run(mddev);
3502         mddev_resume(mddev);
3503         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3504         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3505         md_wakeup_thread(mddev->thread);
3506         sysfs_notify(&mddev->kobj, NULL, "level");
3507         md_new_event(mddev);
3508         return rv;
3509 }
3510
3511 static struct md_sysfs_entry md_level =
3512 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3513
3514
3515 static ssize_t
3516 layout_show(struct mddev *mddev, char *page)
3517 {
3518         /* just a number, not meaningful for all levels */
3519         if (mddev->reshape_position != MaxSector &&
3520             mddev->layout != mddev->new_layout)
3521                 return sprintf(page, "%d (%d)\n",
3522                                mddev->new_layout, mddev->layout);
3523         return sprintf(page, "%d\n", mddev->layout);
3524 }
3525
3526 static ssize_t
3527 layout_store(struct mddev *mddev, const char *buf, size_t len)
3528 {
3529         char *e;
3530         unsigned long n = simple_strtoul(buf, &e, 10);
3531
3532         if (!*buf || (*e && *e != '\n'))
3533                 return -EINVAL;
3534
3535         if (mddev->pers) {
3536                 int err;
3537                 if (mddev->pers->check_reshape == NULL)
3538                         return -EBUSY;
3539                 mddev->new_layout = n;
3540                 err = mddev->pers->check_reshape(mddev);
3541                 if (err) {
3542                         mddev->new_layout = mddev->layout;
3543                         return err;
3544                 }
3545         } else {
3546                 mddev->new_layout = n;
3547                 if (mddev->reshape_position == MaxSector)
3548                         mddev->layout = n;
3549         }
3550         return len;
3551 }
3552 static struct md_sysfs_entry md_layout =
3553 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3554
3555
3556 static ssize_t
3557 raid_disks_show(struct mddev *mddev, char *page)
3558 {
3559         if (mddev->raid_disks == 0)
3560                 return 0;
3561         if (mddev->reshape_position != MaxSector &&
3562             mddev->delta_disks != 0)
3563                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3564                                mddev->raid_disks - mddev->delta_disks);
3565         return sprintf(page, "%d\n", mddev->raid_disks);
3566 }
3567
3568 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3569
3570 static ssize_t
3571 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3572 {
3573         char *e;
3574         int rv = 0;
3575         unsigned long n = simple_strtoul(buf, &e, 10);
3576
3577         if (!*buf || (*e && *e != '\n'))
3578                 return -EINVAL;
3579
3580         if (mddev->pers)
3581                 rv = update_raid_disks(mddev, n);
3582         else if (mddev->reshape_position != MaxSector) {
3583                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3584                 mddev->delta_disks = n - olddisks;
3585                 mddev->raid_disks = n;
3586         } else
3587                 mddev->raid_disks = n;
3588         return rv ? rv : len;
3589 }
3590 static struct md_sysfs_entry md_raid_disks =
3591 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3592
3593 static ssize_t
3594 chunk_size_show(struct mddev *mddev, char *page)
3595 {
3596         if (mddev->reshape_position != MaxSector &&
3597             mddev->chunk_sectors != mddev->new_chunk_sectors)
3598                 return sprintf(page, "%d (%d)\n",
3599                                mddev->new_chunk_sectors << 9,
3600                                mddev->chunk_sectors << 9);
3601         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3602 }
3603
3604 static ssize_t
3605 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3606 {
3607         char *e;
3608         unsigned long n = simple_strtoul(buf, &e, 10);
3609
3610         if (!*buf || (*e && *e != '\n'))
3611                 return -EINVAL;
3612
3613         if (mddev->pers) {
3614                 int err;
3615                 if (mddev->pers->check_reshape == NULL)
3616                         return -EBUSY;
3617                 mddev->new_chunk_sectors = n >> 9;
3618                 err = mddev->pers->check_reshape(mddev);
3619                 if (err) {
3620                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3621                         return err;
3622                 }
3623         } else {
3624                 mddev->new_chunk_sectors = n >> 9;
3625                 if (mddev->reshape_position == MaxSector)
3626                         mddev->chunk_sectors = n >> 9;
3627         }
3628         return len;
3629 }
3630 static struct md_sysfs_entry md_chunk_size =
3631 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3632
3633 static ssize_t
3634 resync_start_show(struct mddev *mddev, char *page)
3635 {
3636         if (mddev->recovery_cp == MaxSector)
3637                 return sprintf(page, "none\n");
3638         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3639 }
3640
3641 static ssize_t
3642 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3643 {
3644         char *e;
3645         unsigned long long n = simple_strtoull(buf, &e, 10);
3646
3647         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3648                 return -EBUSY;
3649         if (cmd_match(buf, "none"))
3650                 n = MaxSector;
3651         else if (!*buf || (*e && *e != '\n'))
3652                 return -EINVAL;
3653
3654         mddev->recovery_cp = n;
3655         return len;
3656 }
3657 static struct md_sysfs_entry md_resync_start =
3658 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3659
3660 /*
3661  * The array state can be:
3662  *
3663  * clear
3664  *     No devices, no size, no level
3665  *     Equivalent to STOP_ARRAY ioctl
3666  * inactive
3667  *     May have some settings, but array is not active
3668  *        all IO results in error
3669  *     When written, doesn't tear down array, but just stops it
3670  * suspended (not supported yet)
3671  *     All IO requests will block. The array can be reconfigured.
3672  *     Writing this, if accepted, will block until array is quiescent
3673  * readonly
3674  *     no resync can happen.  no superblocks get written.
3675  *     write requests fail
3676  * read-auto
3677  *     like readonly, but behaves like 'clean' on a write request.
3678  *
3679  * clean - no pending writes, but otherwise active.
3680  *     When written to inactive array, starts without resync
3681  *     If a write request arrives then
3682  *       if metadata is known, mark 'dirty' and switch to 'active'.
3683  *       if not known, block and switch to write-pending
3684  *     If written to an active array that has pending writes, then fails.
3685  * active
3686  *     fully active: IO and resync can be happening.
3687  *     When written to inactive array, starts with resync
3688  *
3689  * write-pending
3690  *     clean, but writes are blocked waiting for 'active' to be written.
3691  *
3692  * active-idle
3693  *     like active, but no writes have been seen for a while (100msec).
3694  *
3695  */
3696 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3697                    write_pending, active_idle, bad_word};
3698 static char *array_states[] = {
3699         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3700         "write-pending", "active-idle", NULL };
3701
3702 static int match_word(const char *word, char **list)
3703 {
3704         int n;
3705         for (n=0; list[n]; n++)
3706                 if (cmd_match(word, list[n]))
3707                         break;
3708         return n;
3709 }
3710
3711 static ssize_t
3712 array_state_show(struct mddev *mddev, char *page)
3713 {
3714         enum array_state st = inactive;
3715
3716         if (mddev->pers)
3717                 switch(mddev->ro) {
3718                 case 1:
3719                         st = readonly;
3720                         break;
3721                 case 2:
3722                         st = read_auto;
3723                         break;
3724                 case 0:
3725                         if (mddev->in_sync)
3726                                 st = clean;
3727                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3728                                 st = write_pending;
3729                         else if (mddev->safemode)
3730                                 st = active_idle;
3731                         else
3732                                 st = active;
3733                 }
3734         else {
3735                 if (list_empty(&mddev->disks) &&
3736                     mddev->raid_disks == 0 &&
3737                     mddev->dev_sectors == 0)
3738                         st = clear;
3739                 else
3740                         st = inactive;
3741         }
3742         return sprintf(page, "%s\n", array_states[st]);
3743 }
3744
3745 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3746 static int md_set_readonly(struct mddev * mddev, int is_open);
3747 static int do_md_run(struct mddev * mddev);
3748 static int restart_array(struct mddev *mddev);
3749
3750 static ssize_t
3751 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3752 {
3753         int err = -EINVAL;
3754         enum array_state st = match_word(buf, array_states);
3755         switch(st) {
3756         case bad_word:
3757                 break;
3758         case clear:
3759                 /* stopping an active array */
3760                 if (atomic_read(&mddev->openers) > 0)
3761                         return -EBUSY;
3762                 err = do_md_stop(mddev, 0, 0);
3763                 break;
3764         case inactive:
3765                 /* stopping an active array */
3766                 if (mddev->pers) {
3767                         if (atomic_read(&mddev->openers) > 0)
3768                                 return -EBUSY;
3769                         err = do_md_stop(mddev, 2, 0);
3770                 } else
3771                         err = 0; /* already inactive */
3772                 break;
3773         case suspended:
3774                 break; /* not supported yet */
3775         case readonly:
3776                 if (mddev->pers)
3777                         err = md_set_readonly(mddev, 0);
3778                 else {
3779                         mddev->ro = 1;
3780                         set_disk_ro(mddev->gendisk, 1);
3781                         err = do_md_run(mddev);
3782                 }
3783                 break;
3784         case read_auto:
3785                 if (mddev->pers) {
3786                         if (mddev->ro == 0)
3787                                 err = md_set_readonly(mddev, 0);
3788                         else if (mddev->ro == 1)
3789                                 err = restart_array(mddev);
3790                         if (err == 0) {
3791                                 mddev->ro = 2;
3792                                 set_disk_ro(mddev->gendisk, 0);
3793                         }
3794                 } else {
3795                         mddev->ro = 2;
3796                         err = do_md_run(mddev);
3797                 }
3798                 break;
3799         case clean:
3800                 if (mddev->pers) {
3801                         restart_array(mddev);
3802                         spin_lock_irq(&mddev->write_lock);
3803                         if (atomic_read(&mddev->writes_pending) == 0) {
3804                                 if (mddev->in_sync == 0) {
3805                                         mddev->in_sync = 1;
3806                                         if (mddev->safemode == 1)
3807                                                 mddev->safemode = 0;
3808                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3809                                 }
3810                                 err = 0;
3811                         } else
3812                                 err = -EBUSY;
3813                         spin_unlock_irq(&mddev->write_lock);
3814                 } else
3815                         err = -EINVAL;
3816                 break;
3817         case active:
3818                 if (mddev->pers) {
3819                         restart_array(mddev);
3820                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821                         wake_up(&mddev->sb_wait);
3822                         err = 0;
3823                 } else {
3824                         mddev->ro = 0;
3825                         set_disk_ro(mddev->gendisk, 0);
3826                         err = do_md_run(mddev);
3827                 }
3828                 break;
3829         case write_pending:
3830         case active_idle:
3831                 /* these cannot be set */
3832                 break;
3833         }
3834         if (err)
3835                 return err;
3836         else {
3837                 if (mddev->hold_active == UNTIL_IOCTL)
3838                         mddev->hold_active = 0;
3839                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3840                 return len;
3841         }
3842 }
3843 static struct md_sysfs_entry md_array_state =
3844 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3845
3846 static ssize_t
3847 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3848         return sprintf(page, "%d\n",
3849                        atomic_read(&mddev->max_corr_read_errors));
3850 }
3851
3852 static ssize_t
3853 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3854 {
3855         char *e;
3856         unsigned long n = simple_strtoul(buf, &e, 10);
3857
3858         if (*buf && (*e == 0 || *e == '\n')) {
3859                 atomic_set(&mddev->max_corr_read_errors, n);
3860                 return len;
3861         }
3862         return -EINVAL;
3863 }
3864
3865 static struct md_sysfs_entry max_corr_read_errors =
3866 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3867         max_corrected_read_errors_store);
3868
3869 static ssize_t
3870 null_show(struct mddev *mddev, char *page)
3871 {
3872         return -EINVAL;
3873 }
3874
3875 static ssize_t
3876 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3877 {
3878         /* buf must be %d:%d\n? giving major and minor numbers */
3879         /* The new device is added to the array.
3880          * If the array has a persistent superblock, we read the
3881          * superblock to initialise info and check validity.
3882          * Otherwise, only checking done is that in bind_rdev_to_array,
3883          * which mainly checks size.
3884          */
3885         char *e;
3886         int major = simple_strtoul(buf, &e, 10);
3887         int minor;
3888         dev_t dev;
3889         struct md_rdev *rdev;
3890         int err;
3891
3892         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3893                 return -EINVAL;
3894         minor = simple_strtoul(e+1, &e, 10);
3895         if (*e && *e != '\n')
3896                 return -EINVAL;
3897         dev = MKDEV(major, minor);
3898         if (major != MAJOR(dev) ||
3899             minor != MINOR(dev))
3900                 return -EOVERFLOW;
3901
3902
3903         if (mddev->persistent) {
3904                 rdev = md_import_device(dev, mddev->major_version,
3905                                         mddev->minor_version);
3906                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3907                         struct md_rdev *rdev0
3908                                 = list_entry(mddev->disks.next,
3909                                              struct md_rdev, same_set);
3910                         err = super_types[mddev->major_version]
3911                                 .load_super(rdev, rdev0, mddev->minor_version);
3912                         if (err < 0)
3913                                 goto out;
3914                 }
3915         } else if (mddev->external)
3916                 rdev = md_import_device(dev, -2, -1);
3917         else
3918                 rdev = md_import_device(dev, -1, -1);
3919
3920         if (IS_ERR(rdev))
3921                 return PTR_ERR(rdev);
3922         err = bind_rdev_to_array(rdev, mddev);
3923  out:
3924         if (err)
3925                 export_rdev(rdev);
3926         return err ? err : len;
3927 }
3928
3929 static struct md_sysfs_entry md_new_device =
3930 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3931
3932 static ssize_t
3933 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3934 {
3935         char *end;
3936         unsigned long chunk, end_chunk;
3937
3938         if (!mddev->bitmap)
3939                 goto out;
3940         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3941         while (*buf) {
3942                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3943                 if (buf == end) break;
3944                 if (*end == '-') { /* range */
3945                         buf = end + 1;
3946                         end_chunk = simple_strtoul(buf, &end, 0);
3947                         if (buf == end) break;
3948                 }
3949                 if (*end && !isspace(*end)) break;
3950                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3951                 buf = skip_spaces(end);
3952         }
3953         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3954 out:
3955         return len;
3956 }
3957
3958 static struct md_sysfs_entry md_bitmap =
3959 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3960
3961 static ssize_t
3962 size_show(struct mddev *mddev, char *page)
3963 {
3964         return sprintf(page, "%llu\n",
3965                 (unsigned long long)mddev->dev_sectors / 2);
3966 }
3967
3968 static int update_size(struct mddev *mddev, sector_t num_sectors);
3969
3970 static ssize_t
3971 size_store(struct mddev *mddev, const char *buf, size_t len)
3972 {
3973         /* If array is inactive, we can reduce the component size, but
3974          * not increase it (except from 0).
3975          * If array is active, we can try an on-line resize
3976          */
3977         sector_t sectors;
3978         int err = strict_blocks_to_sectors(buf, &sectors);
3979
3980         if (err < 0)
3981                 return err;
3982         if (mddev->pers) {
3983                 err = update_size(mddev, sectors);
3984                 md_update_sb(mddev, 1);
3985         } else {
3986                 if (mddev->dev_sectors == 0 ||
3987                     mddev->dev_sectors > sectors)
3988                         mddev->dev_sectors = sectors;
3989                 else
3990                         err = -ENOSPC;
3991         }
3992         return err ? err : len;
3993 }
3994
3995 static struct md_sysfs_entry md_size =
3996 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3997
3998
3999 /* Metdata version.
4000  * This is one of
4001  *   'none' for arrays with no metadata (good luck...)
4002  *   'external' for arrays with externally managed metadata,
4003  * or N.M for internally known formats
4004  */
4005 static ssize_t
4006 metadata_show(struct mddev *mddev, char *page)
4007 {
4008         if (mddev->persistent)
4009                 return sprintf(page, "%d.%d\n",
4010                                mddev->major_version, mddev->minor_version);
4011         else if (mddev->external)
4012                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4013         else
4014                 return sprintf(page, "none\n");
4015 }
4016
4017 static ssize_t
4018 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4019 {
4020         int major, minor;
4021         char *e;
4022         /* Changing the details of 'external' metadata is
4023          * always permitted.  Otherwise there must be
4024          * no devices attached to the array.
4025          */
4026         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4027                 ;
4028         else if (!list_empty(&mddev->disks))
4029                 return -EBUSY;
4030
4031         if (cmd_match(buf, "none")) {
4032                 mddev->persistent = 0;
4033                 mddev->external = 0;
4034                 mddev->major_version = 0;
4035                 mddev->minor_version = 90;
4036                 return len;
4037         }
4038         if (strncmp(buf, "external:", 9) == 0) {
4039                 size_t namelen = len-9;
4040                 if (namelen >= sizeof(mddev->metadata_type))
4041                         namelen = sizeof(mddev->metadata_type)-1;
4042                 strncpy(mddev->metadata_type, buf+9, namelen);
4043                 mddev->metadata_type[namelen] = 0;
4044                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4045                         mddev->metadata_type[--namelen] = 0;
4046                 mddev->persistent = 0;
4047                 mddev->external = 1;
4048                 mddev->major_version = 0;
4049                 mddev->minor_version = 90;
4050                 return len;
4051         }
4052         major = simple_strtoul(buf, &e, 10);
4053         if (e==buf || *e != '.')
4054                 return -EINVAL;
4055         buf = e+1;
4056         minor = simple_strtoul(buf, &e, 10);
4057         if (e==buf || (*e && *e != '\n') )
4058                 return -EINVAL;
4059         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4060                 return -ENOENT;
4061         mddev->major_version = major;
4062         mddev->minor_version = minor;
4063         mddev->persistent = 1;
4064         mddev->external = 0;
4065         return len;
4066 }
4067
4068 static struct md_sysfs_entry md_metadata =
4069 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4070
4071 static ssize_t
4072 action_show(struct mddev *mddev, char *page)
4073 {
4074         char *type = "idle";
4075         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4076                 type = "frozen";
4077         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4078             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4079                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4080                         type = "reshape";
4081                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4082                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4083                                 type = "resync";
4084                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4085                                 type = "check";
4086                         else
4087                                 type = "repair";
4088                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4089                         type = "recover";
4090         }
4091         return sprintf(page, "%s\n", type);
4092 }
4093
4094 static void reap_sync_thread(struct mddev *mddev);
4095
4096 static ssize_t
4097 action_store(struct mddev *mddev, const char *page, size_t len)
4098 {
4099         if (!mddev->pers || !mddev->pers->sync_request)
4100                 return -EINVAL;
4101
4102         if (cmd_match(page, "frozen"))
4103                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4104         else
4105                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4106
4107         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4108                 if (mddev->sync_thread) {
4109                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4110                         reap_sync_thread(mddev);
4111                 }
4112         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4113                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4114                 return -EBUSY;
4115         else if (cmd_match(page, "resync"))
4116                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4117         else if (cmd_match(page, "recover")) {
4118                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4119                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4120         } else if (cmd_match(page, "reshape")) {
4121                 int err;
4122                 if (mddev->pers->start_reshape == NULL)
4123                         return -EINVAL;
4124                 err = mddev->pers->start_reshape(mddev);
4125                 if (err)
4126                         return err;
4127                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4128         } else {
4129                 if (cmd_match(page, "check"))
4130                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4131                 else if (!cmd_match(page, "repair"))
4132                         return -EINVAL;
4133                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4134                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4135         }
4136         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4137         md_wakeup_thread(mddev->thread);
4138         sysfs_notify_dirent_safe(mddev->sysfs_action);
4139         return len;
4140 }
4141
4142 static ssize_t
4143 mismatch_cnt_show(struct mddev *mddev, char *page)
4144 {
4145         return sprintf(page, "%llu\n",
4146                        (unsigned long long) mddev->resync_mismatches);
4147 }
4148
4149 static struct md_sysfs_entry md_scan_mode =
4150 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4151
4152
4153 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4154
4155 static ssize_t
4156 sync_min_show(struct mddev *mddev, char *page)
4157 {
4158         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4159                        mddev->sync_speed_min ? "local": "system");
4160 }
4161
4162 static ssize_t
4163 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4164 {
4165         int min;
4166         char *e;
4167         if (strncmp(buf, "system", 6)==0) {
4168                 mddev->sync_speed_min = 0;
4169                 return len;
4170         }
4171         min = simple_strtoul(buf, &e, 10);
4172         if (buf == e || (*e && *e != '\n') || min <= 0)
4173                 return -EINVAL;
4174         mddev->sync_speed_min = min;
4175         return len;
4176 }
4177
4178 static struct md_sysfs_entry md_sync_min =
4179 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4180
4181 static ssize_t
4182 sync_max_show(struct mddev *mddev, char *page)
4183 {
4184         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4185                        mddev->sync_speed_max ? "local": "system");
4186 }
4187
4188 static ssize_t
4189 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4190 {
4191         int max;
4192         char *e;
4193         if (strncmp(buf, "system", 6)==0) {
4194                 mddev->sync_speed_max = 0;
4195                 return len;
4196         }
4197         max = simple_strtoul(buf, &e, 10);
4198         if (buf == e || (*e && *e != '\n') || max <= 0)
4199                 return -EINVAL;
4200         mddev->sync_speed_max = max;
4201         return len;
4202 }
4203
4204 static struct md_sysfs_entry md_sync_max =
4205 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4206
4207 static ssize_t
4208 degraded_show(struct mddev *mddev, char *page)
4209 {
4210         return sprintf(page, "%d\n", mddev->degraded);
4211 }
4212 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4213
4214 static ssize_t
4215 sync_force_parallel_show(struct mddev *mddev, char *page)
4216 {
4217         return sprintf(page, "%d\n", mddev->parallel_resync);
4218 }
4219
4220 static ssize_t
4221 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4222 {
4223         long n;
4224
4225         if (strict_strtol(buf, 10, &n))
4226                 return -EINVAL;
4227
4228         if (n != 0 && n != 1)
4229                 return -EINVAL;
4230
4231         mddev->parallel_resync = n;
4232
4233         if (mddev->sync_thread)
4234                 wake_up(&resync_wait);
4235
4236         return len;
4237 }
4238
4239 /* force parallel resync, even with shared block devices */
4240 static struct md_sysfs_entry md_sync_force_parallel =
4241 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4242        sync_force_parallel_show, sync_force_parallel_store);
4243
4244 static ssize_t
4245 sync_speed_show(struct mddev *mddev, char *page)
4246 {
4247         unsigned long resync, dt, db;
4248         if (mddev->curr_resync == 0)
4249                 return sprintf(page, "none\n");
4250         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4251         dt = (jiffies - mddev->resync_mark) / HZ;
4252         if (!dt) dt++;
4253         db = resync - mddev->resync_mark_cnt;
4254         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4255 }
4256
4257 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4258
4259 static ssize_t
4260 sync_completed_show(struct mddev *mddev, char *page)
4261 {
4262         unsigned long long max_sectors, resync;
4263
4264         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4265                 return sprintf(page, "none\n");
4266
4267         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4268                 max_sectors = mddev->resync_max_sectors;
4269         else
4270                 max_sectors = mddev->dev_sectors;
4271
4272         resync = mddev->curr_resync_completed;
4273         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4274 }
4275
4276 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4277
4278 static ssize_t
4279 min_sync_show(struct mddev *mddev, char *page)
4280 {
4281         return sprintf(page, "%llu\n",
4282                        (unsigned long long)mddev->resync_min);
4283 }
4284 static ssize_t
4285 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4286 {
4287         unsigned long long min;
4288         if (strict_strtoull(buf, 10, &min))
4289                 return -EINVAL;
4290         if (min > mddev->resync_max)
4291                 return -EINVAL;
4292         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4293                 return -EBUSY;
4294
4295         /* Must be a multiple of chunk_size */
4296         if (mddev->chunk_sectors) {
4297                 sector_t temp = min;
4298                 if (sector_div(temp, mddev->chunk_sectors))
4299                         return -EINVAL;
4300         }
4301         mddev->resync_min = min;
4302
4303         return len;
4304 }
4305
4306 static struct md_sysfs_entry md_min_sync =
4307 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4308
4309 static ssize_t
4310 max_sync_show(struct mddev *mddev, char *page)
4311 {
4312         if (mddev->resync_max == MaxSector)
4313                 return sprintf(page, "max\n");
4314         else
4315                 return sprintf(page, "%llu\n",
4316                                (unsigned long long)mddev->resync_max);
4317 }
4318 static ssize_t
4319 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4320 {
4321         if (strncmp(buf, "max", 3) == 0)
4322                 mddev->resync_max = MaxSector;
4323         else {
4324                 unsigned long long max;
4325                 if (strict_strtoull(buf, 10, &max))
4326                         return -EINVAL;
4327                 if (max < mddev->resync_min)
4328                         return -EINVAL;
4329                 if (max < mddev->resync_max &&
4330                     mddev->ro == 0 &&
4331                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4332                         return -EBUSY;
4333
4334                 /* Must be a multiple of chunk_size */
4335                 if (mddev->chunk_sectors) {
4336                         sector_t temp = max;
4337                         if (sector_div(temp, mddev->chunk_sectors))
4338                                 return -EINVAL;
4339                 }
4340                 mddev->resync_max = max;
4341         }
4342         wake_up(&mddev->recovery_wait);
4343         return len;
4344 }
4345
4346 static struct md_sysfs_entry md_max_sync =
4347 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4348
4349 static ssize_t
4350 suspend_lo_show(struct mddev *mddev, char *page)
4351 {
4352         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4353 }
4354
4355 static ssize_t
4356 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358         char *e;
4359         unsigned long long new = simple_strtoull(buf, &e, 10);
4360         unsigned long long old = mddev->suspend_lo;
4361
4362         if (mddev->pers == NULL || 
4363             mddev->pers->quiesce == NULL)
4364                 return -EINVAL;
4365         if (buf == e || (*e && *e != '\n'))
4366                 return -EINVAL;
4367
4368         mddev->suspend_lo = new;
4369         if (new >= old)
4370                 /* Shrinking suspended region */
4371                 mddev->pers->quiesce(mddev, 2);
4372         else {
4373                 /* Expanding suspended region - need to wait */
4374                 mddev->pers->quiesce(mddev, 1);
4375                 mddev->pers->quiesce(mddev, 0);
4376         }
4377         return len;
4378 }
4379 static struct md_sysfs_entry md_suspend_lo =
4380 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4381
4382
4383 static ssize_t
4384 suspend_hi_show(struct mddev *mddev, char *page)
4385 {
4386         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4387 }
4388
4389 static ssize_t
4390 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4391 {
4392         char *e;
4393         unsigned long long new = simple_strtoull(buf, &e, 10);
4394         unsigned long long old = mddev->suspend_hi;
4395
4396         if (mddev->pers == NULL ||
4397             mddev->pers->quiesce == NULL)
4398                 return -EINVAL;
4399         if (buf == e || (*e && *e != '\n'))
4400                 return -EINVAL;
4401
4402         mddev->suspend_hi = new;
4403         if (new <= old)
4404                 /* Shrinking suspended region */
4405                 mddev->pers->quiesce(mddev, 2);
4406         else {
4407                 /* Expanding suspended region - need to wait */
4408                 mddev->pers->quiesce(mddev, 1);
4409                 mddev->pers->quiesce(mddev, 0);
4410         }
4411         return len;
4412 }
4413 static struct md_sysfs_entry md_suspend_hi =
4414 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4415
4416 static ssize_t
4417 reshape_position_show(struct mddev *mddev, char *page)
4418 {
4419         if (mddev->reshape_position != MaxSector)
4420                 return sprintf(page, "%llu\n",
4421                                (unsigned long long)mddev->reshape_position);
4422         strcpy(page, "none\n");
4423         return 5;
4424 }
4425
4426 static ssize_t
4427 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4428 {
4429         char *e;
4430         unsigned long long new = simple_strtoull(buf, &e, 10);
4431         if (mddev->pers)
4432                 return -EBUSY;
4433         if (buf == e || (*e && *e != '\n'))
4434                 return -EINVAL;
4435         mddev->reshape_position = new;
4436         mddev->delta_disks = 0;
4437         mddev->new_level = mddev->level;
4438         mddev->new_layout = mddev->layout;
4439         mddev->new_chunk_sectors = mddev->chunk_sectors;
4440         return len;
4441 }
4442
4443 static struct md_sysfs_entry md_reshape_position =
4444 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4445        reshape_position_store);
4446
4447 static ssize_t
4448 array_size_show(struct mddev *mddev, char *page)
4449 {
4450         if (mddev->external_size)
4451                 return sprintf(page, "%llu\n",
4452                                (unsigned long long)mddev->array_sectors/2);
4453         else
4454                 return sprintf(page, "default\n");
4455 }
4456
4457 static ssize_t
4458 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460         sector_t sectors;
4461
4462         if (strncmp(buf, "default", 7) == 0) {
4463                 if (mddev->pers)
4464                         sectors = mddev->pers->size(mddev, 0, 0);
4465                 else
4466                         sectors = mddev->array_sectors;
4467
4468                 mddev->external_size = 0;
4469         } else {
4470                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4471                         return -EINVAL;
4472                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4473                         return -E2BIG;
4474
4475                 mddev->external_size = 1;
4476         }
4477
4478         mddev->array_sectors = sectors;
4479         if (mddev->pers) {
4480                 set_capacity(mddev->gendisk, mddev->array_sectors);
4481                 revalidate_disk(mddev->gendisk);
4482         }
4483         return len;
4484 }
4485
4486 static struct md_sysfs_entry md_array_size =
4487 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4488        array_size_store);
4489
4490 static struct attribute *md_default_attrs[] = {
4491         &md_level.attr,
4492         &md_layout.attr,
4493         &md_raid_disks.attr,
4494         &md_chunk_size.attr,
4495         &md_size.attr,
4496         &md_resync_start.attr,
4497         &md_metadata.attr,
4498         &md_new_device.attr,
4499         &md_safe_delay.attr,
4500         &md_array_state.attr,
4501         &md_reshape_position.attr,
4502         &md_array_size.attr,
4503         &max_corr_read_errors.attr,
4504         NULL,
4505 };
4506
4507 static struct attribute *md_redundancy_attrs[] = {
4508         &md_scan_mode.attr,
4509         &md_mismatches.attr,
4510         &md_sync_min.attr,
4511         &md_sync_max.attr,
4512         &md_sync_speed.attr,
4513         &md_sync_force_parallel.attr,
4514         &md_sync_completed.attr,
4515         &md_min_sync.attr,
4516         &md_max_sync.attr,
4517         &md_suspend_lo.attr,
4518         &md_suspend_hi.attr,
4519         &md_bitmap.attr,
4520         &md_degraded.attr,
4521         NULL,
4522 };
4523 static struct attribute_group md_redundancy_group = {
4524         .name = NULL,
4525         .attrs = md_redundancy_attrs,
4526 };
4527
4528
4529 static ssize_t
4530 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4531 {
4532         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4533         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4534         ssize_t rv;
4535
4536         if (!entry->show)
4537                 return -EIO;
4538         spin_lock(&all_mddevs_lock);
4539         if (list_empty(&mddev->all_mddevs)) {
4540                 spin_unlock(&all_mddevs_lock);
4541                 return -EBUSY;
4542         }
4543         mddev_get(mddev);
4544         spin_unlock(&all_mddevs_lock);
4545
4546         rv = mddev_lock(mddev);
4547         if (!rv) {
4548                 rv = entry->show(mddev, page);
4549                 mddev_unlock(mddev);
4550         }
4551         mddev_put(mddev);
4552         return rv;
4553 }
4554
4555 static ssize_t
4556 md_attr_store(struct kobject *kobj, struct attribute *attr,
4557               const char *page, size_t length)
4558 {
4559         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4560         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4561         ssize_t rv;
4562
4563         if (!entry->store)
4564                 return -EIO;
4565         if (!capable(CAP_SYS_ADMIN))
4566                 return -EACCES;
4567         spin_lock(&all_mddevs_lock);
4568         if (list_empty(&mddev->all_mddevs)) {
4569                 spin_unlock(&all_mddevs_lock);
4570                 return -EBUSY;
4571         }
4572         mddev_get(mddev);
4573         spin_unlock(&all_mddevs_lock);
4574         rv = mddev_lock(mddev);
4575         if (!rv) {
4576                 rv = entry->store(mddev, page, length);
4577                 mddev_unlock(mddev);
4578         }
4579         mddev_put(mddev);
4580         return rv;
4581 }
4582
4583 static void md_free(struct kobject *ko)
4584 {
4585         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4586
4587         if (mddev->sysfs_state)
4588                 sysfs_put(mddev->sysfs_state);
4589
4590         if (mddev->gendisk) {
4591                 del_gendisk(mddev->gendisk);
4592                 put_disk(mddev->gendisk);
4593         }
4594         if (mddev->queue)
4595                 blk_cleanup_queue(mddev->queue);
4596
4597         kfree(mddev);
4598 }
4599
4600 static const struct sysfs_ops md_sysfs_ops = {
4601         .show   = md_attr_show,
4602         .store  = md_attr_store,
4603 };
4604 static struct kobj_type md_ktype = {
4605         .release        = md_free,
4606         .sysfs_ops      = &md_sysfs_ops,
4607         .default_attrs  = md_default_attrs,
4608 };
4609
4610 int mdp_major = 0;
4611
4612 static void mddev_delayed_delete(struct work_struct *ws)
4613 {
4614         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4615
4616         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4617         kobject_del(&mddev->kobj);
4618         kobject_put(&mddev->kobj);
4619 }
4620
4621 static int md_alloc(dev_t dev, char *name)
4622 {
4623         static DEFINE_MUTEX(disks_mutex);
4624         struct mddev *mddev = mddev_find(dev);
4625         struct gendisk *disk;
4626         int partitioned;
4627         int shift;
4628         int unit;
4629         int error;
4630
4631         if (!mddev)
4632                 return -ENODEV;
4633
4634         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4635         shift = partitioned ? MdpMinorShift : 0;
4636         unit = MINOR(mddev->unit) >> shift;
4637
4638         /* wait for any previous instance of this device to be
4639          * completely removed (mddev_delayed_delete).
4640          */
4641         flush_workqueue(md_misc_wq);
4642
4643         mutex_lock(&disks_mutex);
4644         error = -EEXIST;
4645         if (mddev->gendisk)
4646                 goto abort;
4647
4648         if (name) {
4649                 /* Need to ensure that 'name' is not a duplicate.
4650                  */
4651                 struct mddev *mddev2;
4652                 spin_lock(&all_mddevs_lock);
4653
4654                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4655                         if (mddev2->gendisk &&
4656                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4657                                 spin_unlock(&all_mddevs_lock);
4658                                 goto abort;
4659                         }
4660                 spin_unlock(&all_mddevs_lock);
4661         }
4662
4663         error = -ENOMEM;
4664         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4665         if (!mddev->queue)
4666                 goto abort;
4667         mddev->queue->queuedata = mddev;
4668
4669         blk_queue_make_request(mddev->queue, md_make_request);
4670
4671         disk = alloc_disk(1 << shift);
4672         if (!disk) {
4673                 blk_cleanup_queue(mddev->queue);
4674                 mddev->queue = NULL;
4675                 goto abort;
4676         }
4677         disk->major = MAJOR(mddev->unit);
4678         disk->first_minor = unit << shift;
4679         if (name)
4680                 strcpy(disk->disk_name, name);
4681         else if (partitioned)
4682                 sprintf(disk->disk_name, "md_d%d", unit);
4683         else
4684                 sprintf(disk->disk_name, "md%d", unit);
4685         disk->fops = &md_fops;
4686         disk->private_data = mddev;
4687         disk->queue = mddev->queue;
4688         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4689         /* Allow extended partitions.  This makes the
4690          * 'mdp' device redundant, but we can't really
4691          * remove it now.
4692          */
4693         disk->flags |= GENHD_FL_EXT_DEVT;
4694         mddev->gendisk = disk;
4695         /* As soon as we call add_disk(), another thread could get
4696          * through to md_open, so make sure it doesn't get too far
4697          */
4698         mutex_lock(&mddev->open_mutex);
4699         add_disk(disk);
4700
4701         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4702                                      &disk_to_dev(disk)->kobj, "%s", "md");
4703         if (error) {
4704                 /* This isn't possible, but as kobject_init_and_add is marked
4705                  * __must_check, we must do something with the result
4706                  */
4707                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4708                        disk->disk_name);
4709                 error = 0;
4710         }
4711         if (mddev->kobj.sd &&
4712             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4713                 printk(KERN_DEBUG "pointless warning\n");
4714         mutex_unlock(&mddev->open_mutex);
4715  abort:
4716         mutex_unlock(&disks_mutex);
4717         if (!error && mddev->kobj.sd) {
4718                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4719                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4720         }
4721         mddev_put(mddev);
4722         return error;
4723 }
4724
4725 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4726 {
4727         md_alloc(dev, NULL);
4728         return NULL;
4729 }
4730
4731 static int add_named_array(const char *val, struct kernel_param *kp)
4732 {
4733         /* val must be "md_*" where * is not all digits.
4734          * We allocate an array with a large free minor number, and
4735          * set the name to val.  val must not already be an active name.
4736          */
4737         int len = strlen(val);
4738         char buf[DISK_NAME_LEN];
4739
4740         while (len && val[len-1] == '\n')
4741                 len--;
4742         if (len >= DISK_NAME_LEN)
4743                 return -E2BIG;
4744         strlcpy(buf, val, len+1);
4745         if (strncmp(buf, "md_", 3) != 0)
4746                 return -EINVAL;
4747         return md_alloc(0, buf);
4748 }
4749
4750 static void md_safemode_timeout(unsigned long data)
4751 {
4752         struct mddev *mddev = (struct mddev *) data;
4753
4754         if (!atomic_read(&mddev->writes_pending)) {
4755                 mddev->safemode = 1;
4756                 if (mddev->external)
4757                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4758         }
4759         md_wakeup_thread(mddev->thread);
4760 }
4761
4762 static int start_dirty_degraded;
4763
4764 int md_run(struct mddev *mddev)
4765 {
4766         int err;
4767         struct md_rdev *rdev;
4768         struct md_personality *pers;
4769
4770         if (list_empty(&mddev->disks))
4771                 /* cannot run an array with no devices.. */
4772                 return -EINVAL;
4773
4774         if (mddev->pers)
4775                 return -EBUSY;
4776         /* Cannot run until previous stop completes properly */
4777         if (mddev->sysfs_active)
4778                 return -EBUSY;
4779
4780         /*
4781          * Analyze all RAID superblock(s)
4782          */
4783         if (!mddev->raid_disks) {
4784                 if (!mddev->persistent)
4785                         return -EINVAL;
4786                 analyze_sbs(mddev);
4787         }
4788
4789         if (mddev->level != LEVEL_NONE)
4790                 request_module("md-level-%d", mddev->level);
4791         else if (mddev->clevel[0])
4792                 request_module("md-%s", mddev->clevel);
4793
4794         /*
4795          * Drop all container device buffers, from now on
4796          * the only valid external interface is through the md
4797          * device.
4798          */
4799         list_for_each_entry(rdev, &mddev->disks, same_set) {
4800                 if (test_bit(Faulty, &rdev->flags))
4801                         continue;
4802                 sync_blockdev(rdev->bdev);
4803                 invalidate_bdev(rdev->bdev);
4804
4805                 /* perform some consistency tests on the device.
4806                  * We don't want the data to overlap the metadata,
4807                  * Internal Bitmap issues have been handled elsewhere.
4808                  */
4809                 if (rdev->meta_bdev) {
4810                         /* Nothing to check */;
4811                 } else if (rdev->data_offset < rdev->sb_start) {
4812                         if (mddev->dev_sectors &&
4813                             rdev->data_offset + mddev->dev_sectors
4814                             > rdev->sb_start) {
4815                                 printk("md: %s: data overlaps metadata\n",
4816                                        mdname(mddev));
4817                                 return -EINVAL;
4818                         }
4819                 } else {
4820                         if (rdev->sb_start + rdev->sb_size/512
4821                             > rdev->data_offset) {
4822                                 printk("md: %s: metadata overlaps data\n",
4823                                        mdname(mddev));
4824                                 return -EINVAL;
4825                         }
4826                 }
4827                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4828         }
4829
4830         if (mddev->bio_set == NULL)
4831                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4832                                                sizeof(struct mddev *));
4833
4834         spin_lock(&pers_lock);
4835         pers = find_pers(mddev->level, mddev->clevel);
4836         if (!pers || !try_module_get(pers->owner)) {
4837                 spin_unlock(&pers_lock);
4838                 if (mddev->level != LEVEL_NONE)
4839                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4840                                mddev->level);
4841                 else
4842                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4843                                mddev->clevel);
4844                 return -EINVAL;
4845         }
4846         mddev->pers = pers;
4847         spin_unlock(&pers_lock);
4848         if (mddev->level != pers->level) {
4849                 mddev->level = pers->level;
4850                 mddev->new_level = pers->level;
4851         }
4852         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4853
4854         if (mddev->reshape_position != MaxSector &&
4855             pers->start_reshape == NULL) {
4856                 /* This personality cannot handle reshaping... */
4857                 mddev->pers = NULL;
4858                 module_put(pers->owner);
4859                 return -EINVAL;
4860         }
4861
4862         if (pers->sync_request) {
4863                 /* Warn if this is a potentially silly
4864                  * configuration.
4865                  */
4866                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4867                 struct md_rdev *rdev2;
4868                 int warned = 0;
4869
4870                 list_for_each_entry(rdev, &mddev->disks, same_set)
4871                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4872                                 if (rdev < rdev2 &&
4873                                     rdev->bdev->bd_contains ==
4874                                     rdev2->bdev->bd_contains) {
4875                                         printk(KERN_WARNING
4876                                                "%s: WARNING: %s appears to be"
4877                                                " on the same physical disk as"
4878                                                " %s.\n",
4879                                                mdname(mddev),
4880                                                bdevname(rdev->bdev,b),
4881                                                bdevname(rdev2->bdev,b2));
4882                                         warned = 1;
4883                                 }
4884                         }
4885
4886                 if (warned)
4887                         printk(KERN_WARNING
4888                                "True protection against single-disk"
4889                                " failure might be compromised.\n");
4890         }
4891
4892         mddev->recovery = 0;
4893         /* may be over-ridden by personality */
4894         mddev->resync_max_sectors = mddev->dev_sectors;
4895
4896         mddev->ok_start_degraded = start_dirty_degraded;
4897
4898         if (start_readonly && mddev->ro == 0)
4899                 mddev->ro = 2; /* read-only, but switch on first write */
4900
4901         err = mddev->pers->run(mddev);
4902         if (err)
4903                 printk(KERN_ERR "md: pers->run() failed ...\n");
4904         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4905                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4906                           " but 'external_size' not in effect?\n", __func__);
4907                 printk(KERN_ERR
4908                        "md: invalid array_size %llu > default size %llu\n",
4909                        (unsigned long long)mddev->array_sectors / 2,
4910                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4911                 err = -EINVAL;
4912                 mddev->pers->stop(mddev);
4913         }
4914         if (err == 0 && mddev->pers->sync_request) {
4915                 err = bitmap_create(mddev);
4916                 if (err) {
4917                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4918                                mdname(mddev), err);
4919                         mddev->pers->stop(mddev);
4920                 }
4921         }
4922         if (err) {
4923                 module_put(mddev->pers->owner);
4924                 mddev->pers = NULL;
4925                 bitmap_destroy(mddev);
4926                 return err;
4927         }
4928         if (mddev->pers->sync_request) {
4929                 if (mddev->kobj.sd &&
4930                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4931                         printk(KERN_WARNING
4932                                "md: cannot register extra attributes for %s\n",
4933                                mdname(mddev));
4934                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4935         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4936                 mddev->ro = 0;
4937
4938         atomic_set(&mddev->writes_pending,0);
4939         atomic_set(&mddev->max_corr_read_errors,
4940                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4941         mddev->safemode = 0;
4942         mddev->safemode_timer.function = md_safemode_timeout;
4943         mddev->safemode_timer.data = (unsigned long) mddev;
4944         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4945         mddev->in_sync = 1;
4946         smp_wmb();
4947         mddev->ready = 1;
4948         list_for_each_entry(rdev, &mddev->disks, same_set)
4949                 if (rdev->raid_disk >= 0)
4950                         if (sysfs_link_rdev(mddev, rdev))
4951                                 /* failure here is OK */;
4952         
4953         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4954         
4955         if (mddev->flags)
4956                 md_update_sb(mddev, 0);
4957
4958         md_new_event(mddev);
4959         sysfs_notify_dirent_safe(mddev->sysfs_state);
4960         sysfs_notify_dirent_safe(mddev->sysfs_action);
4961         sysfs_notify(&mddev->kobj, NULL, "degraded");
4962         return 0;
4963 }
4964 EXPORT_SYMBOL_GPL(md_run);
4965
4966 static int do_md_run(struct mddev *mddev)
4967 {
4968         int err;
4969
4970         err = md_run(mddev);
4971         if (err)
4972                 goto out;
4973         err = bitmap_load(mddev);
4974         if (err) {
4975                 bitmap_destroy(mddev);
4976                 goto out;
4977         }
4978
4979         md_wakeup_thread(mddev->thread);
4980         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4981
4982         set_capacity(mddev->gendisk, mddev->array_sectors);
4983         revalidate_disk(mddev->gendisk);
4984         mddev->changed = 1;
4985         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4986 out:
4987         return err;
4988 }
4989
4990 static int restart_array(struct mddev *mddev)
4991 {
4992         struct gendisk *disk = mddev->gendisk;
4993
4994         /* Complain if it has no devices */
4995         if (list_empty(&mddev->disks))
4996                 return -ENXIO;
4997         if (!mddev->pers)
4998                 return -EINVAL;
4999         if (!mddev->ro)
5000                 return -EBUSY;
5001         mddev->safemode = 0;
5002         mddev->ro = 0;
5003         set_disk_ro(disk, 0);
5004         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5005                 mdname(mddev));
5006         /* Kick recovery or resync if necessary */
5007         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5008         md_wakeup_thread(mddev->thread);
5009         md_wakeup_thread(mddev->sync_thread);
5010         sysfs_notify_dirent_safe(mddev->sysfs_state);
5011         return 0;
5012 }
5013
5014 /* similar to deny_write_access, but accounts for our holding a reference
5015  * to the file ourselves */
5016 static int deny_bitmap_write_access(struct file * file)
5017 {
5018         struct inode *inode = file->f_mapping->host;
5019
5020         spin_lock(&inode->i_lock);
5021         if (atomic_read(&inode->i_writecount) > 1) {
5022                 spin_unlock(&inode->i_lock);
5023                 return -ETXTBSY;
5024         }
5025         atomic_set(&inode->i_writecount, -1);
5026         spin_unlock(&inode->i_lock);
5027
5028         return 0;
5029 }
5030
5031 void restore_bitmap_write_access(struct file *file)
5032 {
5033         struct inode *inode = file->f_mapping->host;
5034
5035         spin_lock(&inode->i_lock);
5036         atomic_set(&inode->i_writecount, 1);
5037         spin_unlock(&inode->i_lock);
5038 }
5039
5040 static void md_clean(struct mddev *mddev)
5041 {
5042         mddev->array_sectors = 0;
5043         mddev->external_size = 0;
5044         mddev->dev_sectors = 0;
5045         mddev->raid_disks = 0;
5046         mddev->recovery_cp = 0;
5047         mddev->resync_min = 0;
5048         mddev->resync_max = MaxSector;
5049         mddev->reshape_position = MaxSector;
5050         mddev->external = 0;
5051         mddev->persistent = 0;
5052         mddev->level = LEVEL_NONE;
5053         mddev->clevel[0] = 0;
5054         mddev->flags = 0;
5055         mddev->ro = 0;
5056         mddev->metadata_type[0] = 0;
5057         mddev->chunk_sectors = 0;
5058         mddev->ctime = mddev->utime = 0;
5059         mddev->layout = 0;
5060         mddev->max_disks = 0;
5061         mddev->events = 0;
5062         mddev->can_decrease_events = 0;
5063         mddev->delta_disks = 0;
5064         mddev->new_level = LEVEL_NONE;
5065         mddev->new_layout = 0;
5066         mddev->new_chunk_sectors = 0;
5067         mddev->curr_resync = 0;
5068         mddev->resync_mismatches = 0;
5069         mddev->suspend_lo = mddev->suspend_hi = 0;
5070         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5071         mddev->recovery = 0;
5072         mddev->in_sync = 0;
5073         mddev->changed = 0;
5074         mddev->degraded = 0;
5075         mddev->safemode = 0;
5076         mddev->bitmap_info.offset = 0;
5077         mddev->bitmap_info.default_offset = 0;
5078         mddev->bitmap_info.chunksize = 0;
5079         mddev->bitmap_info.daemon_sleep = 0;
5080         mddev->bitmap_info.max_write_behind = 0;
5081 }
5082
5083 static void __md_stop_writes(struct mddev *mddev)
5084 {
5085         if (mddev->sync_thread) {
5086                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5087                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5088                 reap_sync_thread(mddev);
5089         }
5090
5091         del_timer_sync(&mddev->safemode_timer);
5092
5093         bitmap_flush(mddev);
5094         md_super_wait(mddev);
5095
5096         if (!mddev->in_sync || mddev->flags) {
5097                 /* mark array as shutdown cleanly */
5098                 mddev->in_sync = 1;
5099                 md_update_sb(mddev, 1);
5100         }
5101 }
5102
5103 void md_stop_writes(struct mddev *mddev)
5104 {
5105         mddev_lock(mddev);
5106         __md_stop_writes(mddev);
5107         mddev_unlock(mddev);
5108 }
5109 EXPORT_SYMBOL_GPL(md_stop_writes);
5110
5111 void md_stop(struct mddev *mddev)
5112 {
5113         mddev->ready = 0;
5114         mddev->pers->stop(mddev);
5115         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5116                 mddev->to_remove = &md_redundancy_group;
5117         module_put(mddev->pers->owner);
5118         mddev->pers = NULL;
5119         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5120 }
5121 EXPORT_SYMBOL_GPL(md_stop);
5122
5123 static int md_set_readonly(struct mddev *mddev, int is_open)
5124 {
5125         int err = 0;
5126         mutex_lock(&mddev->open_mutex);
5127         if (atomic_read(&mddev->openers) > is_open) {
5128                 printk("md: %s still in use.\n",mdname(mddev));
5129                 err = -EBUSY;
5130                 goto out;
5131         }
5132         if (mddev->pers) {
5133                 __md_stop_writes(mddev);
5134
5135                 err  = -ENXIO;
5136                 if (mddev->ro==1)
5137                         goto out;
5138                 mddev->ro = 1;
5139                 set_disk_ro(mddev->gendisk, 1);
5140                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5141                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5142                 err = 0;        
5143         }
5144 out:
5145         mutex_unlock(&mddev->open_mutex);
5146         return err;
5147 }
5148
5149 /* mode:
5150  *   0 - completely stop and dis-assemble array
5151  *   2 - stop but do not disassemble array
5152  */
5153 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5154 {
5155         struct gendisk *disk = mddev->gendisk;
5156         struct md_rdev *rdev;
5157
5158         mutex_lock(&mddev->open_mutex);
5159         if (atomic_read(&mddev->openers) > is_open ||
5160             mddev->sysfs_active) {
5161                 printk("md: %s still in use.\n",mdname(mddev));
5162                 mutex_unlock(&mddev->open_mutex);
5163                 return -EBUSY;
5164         }
5165
5166         if (mddev->pers) {
5167                 if (mddev->ro)
5168                         set_disk_ro(disk, 0);
5169
5170                 __md_stop_writes(mddev);
5171                 md_stop(mddev);
5172                 mddev->queue->merge_bvec_fn = NULL;
5173                 mddev->queue->backing_dev_info.congested_fn = NULL;
5174
5175                 /* tell userspace to handle 'inactive' */
5176                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5177
5178                 list_for_each_entry(rdev, &mddev->disks, same_set)
5179                         if (rdev->raid_disk >= 0)
5180                                 sysfs_unlink_rdev(mddev, rdev);
5181
5182                 set_capacity(disk, 0);
5183                 mutex_unlock(&mddev->open_mutex);
5184                 mddev->changed = 1;
5185                 revalidate_disk(disk);
5186
5187                 if (mddev->ro)
5188                         mddev->ro = 0;
5189         } else
5190                 mutex_unlock(&mddev->open_mutex);
5191         /*
5192          * Free resources if final stop
5193          */
5194         if (mode == 0) {
5195                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5196
5197                 bitmap_destroy(mddev);
5198                 if (mddev->bitmap_info.file) {
5199                         restore_bitmap_write_access(mddev->bitmap_info.file);
5200                         fput(mddev->bitmap_info.file);
5201                         mddev->bitmap_info.file = NULL;
5202                 }
5203                 mddev->bitmap_info.offset = 0;
5204
5205                 export_array(mddev);
5206
5207                 md_clean(mddev);
5208                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5209                 if (mddev->hold_active == UNTIL_STOP)
5210                         mddev->hold_active = 0;
5211         }
5212         blk_integrity_unregister(disk);
5213         md_new_event(mddev);
5214         sysfs_notify_dirent_safe(mddev->sysfs_state);
5215         return 0;
5216 }
5217
5218 #ifndef MODULE
5219 static void autorun_array(struct mddev *mddev)
5220 {
5221         struct md_rdev *rdev;
5222         int err;
5223
5224         if (list_empty(&mddev->disks))
5225                 return;
5226
5227         printk(KERN_INFO "md: running: ");
5228
5229         list_for_each_entry(rdev, &mddev->disks, same_set) {
5230                 char b[BDEVNAME_SIZE];
5231                 printk("<%s>", bdevname(rdev->bdev,b));
5232         }
5233         printk("\n");
5234
5235         err = do_md_run(mddev);
5236         if (err) {
5237                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5238                 do_md_stop(mddev, 0, 0);
5239         }
5240 }
5241
5242 /*
5243  * lets try to run arrays based on all disks that have arrived
5244  * until now. (those are in pending_raid_disks)
5245  *
5246  * the method: pick the first pending disk, collect all disks with
5247  * the same UUID, remove all from the pending list and put them into
5248  * the 'same_array' list. Then order this list based on superblock
5249  * update time (freshest comes first), kick out 'old' disks and
5250  * compare superblocks. If everything's fine then run it.
5251  *
5252  * If "unit" is allocated, then bump its reference count
5253  */
5254 static void autorun_devices(int part)
5255 {
5256         struct md_rdev *rdev0, *rdev, *tmp;
5257         struct mddev *mddev;
5258         char b[BDEVNAME_SIZE];
5259
5260         printk(KERN_INFO "md: autorun ...\n");
5261         while (!list_empty(&pending_raid_disks)) {
5262                 int unit;
5263                 dev_t dev;
5264                 LIST_HEAD(candidates);
5265                 rdev0 = list_entry(pending_raid_disks.next,
5266                                          struct md_rdev, same_set);
5267
5268                 printk(KERN_INFO "md: considering %s ...\n",
5269                         bdevname(rdev0->bdev,b));
5270                 INIT_LIST_HEAD(&candidates);
5271                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5272                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5273                                 printk(KERN_INFO "md:  adding %s ...\n",
5274                                         bdevname(rdev->bdev,b));
5275                                 list_move(&rdev->same_set, &candidates);
5276                         }
5277                 /*
5278                  * now we have a set of devices, with all of them having
5279                  * mostly sane superblocks. It's time to allocate the
5280                  * mddev.
5281                  */
5282                 if (part) {
5283                         dev = MKDEV(mdp_major,
5284                                     rdev0->preferred_minor << MdpMinorShift);
5285                         unit = MINOR(dev) >> MdpMinorShift;
5286                 } else {
5287                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5288                         unit = MINOR(dev);
5289                 }
5290                 if (rdev0->preferred_minor != unit) {
5291                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5292                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5293                         break;
5294                 }
5295
5296                 md_probe(dev, NULL, NULL);
5297                 mddev = mddev_find(dev);
5298                 if (!mddev || !mddev->gendisk) {
5299                         if (mddev)
5300                                 mddev_put(mddev);
5301                         printk(KERN_ERR
5302                                 "md: cannot allocate memory for md drive.\n");
5303                         break;
5304                 }
5305                 if (mddev_lock(mddev)) 
5306                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5307                                mdname(mddev));
5308                 else if (mddev->raid_disks || mddev->major_version
5309                          || !list_empty(&mddev->disks)) {
5310                         printk(KERN_WARNING 
5311                                 "md: %s already running, cannot run %s\n",
5312                                 mdname(mddev), bdevname(rdev0->bdev,b));
5313                         mddev_unlock(mddev);
5314                 } else {
5315                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5316                         mddev->persistent = 1;
5317                         rdev_for_each_list(rdev, tmp, &candidates) {
5318                                 list_del_init(&rdev->same_set);
5319                                 if (bind_rdev_to_array(rdev, mddev))
5320                                         export_rdev(rdev);
5321                         }
5322                         autorun_array(mddev);
5323                         mddev_unlock(mddev);
5324                 }
5325                 /* on success, candidates will be empty, on error
5326                  * it won't...
5327                  */
5328                 rdev_for_each_list(rdev, tmp, &candidates) {
5329                         list_del_init(&rdev->same_set);
5330                         export_rdev(rdev);
5331                 }
5332                 mddev_put(mddev);
5333         }
5334         printk(KERN_INFO "md: ... autorun DONE.\n");
5335 }
5336 #endif /* !MODULE */
5337
5338 static int get_version(void __user * arg)
5339 {
5340         mdu_version_t ver;
5341
5342         ver.major = MD_MAJOR_VERSION;
5343         ver.minor = MD_MINOR_VERSION;
5344         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5345
5346         if (copy_to_user(arg, &ver, sizeof(ver)))
5347                 return -EFAULT;
5348
5349         return 0;
5350 }
5351
5352 static int get_array_info(struct mddev * mddev, void __user * arg)
5353 {
5354         mdu_array_info_t info;
5355         int nr,working,insync,failed,spare;
5356         struct md_rdev *rdev;
5357
5358         nr=working=insync=failed=spare=0;
5359         list_for_each_entry(rdev, &mddev->disks, same_set) {
5360                 nr++;
5361                 if (test_bit(Faulty, &rdev->flags))
5362                         failed++;
5363                 else {
5364                         working++;
5365                         if (test_bit(In_sync, &rdev->flags))
5366                                 insync++;       
5367                         else
5368                                 spare++;
5369                 }
5370         }
5371
5372         info.major_version = mddev->major_version;
5373         info.minor_version = mddev->minor_version;
5374         info.patch_version = MD_PATCHLEVEL_VERSION;
5375         info.ctime         = mddev->ctime;
5376         info.level         = mddev->level;
5377         info.size          = mddev->dev_sectors / 2;
5378         if (info.size != mddev->dev_sectors / 2) /* overflow */
5379                 info.size = -1;
5380         info.nr_disks      = nr;
5381         info.raid_disks    = mddev->raid_disks;
5382         info.md_minor      = mddev->md_minor;
5383         info.not_persistent= !mddev->persistent;
5384
5385         info.utime         = mddev->utime;
5386         info.state         = 0;
5387         if (mddev->in_sync)
5388                 info.state = (1<<MD_SB_CLEAN);
5389         if (mddev->bitmap && mddev->bitmap_info.offset)
5390                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5391         info.active_disks  = insync;
5392         info.working_disks = working;
5393         info.failed_disks  = failed;
5394         info.spare_disks   = spare;
5395
5396         info.layout        = mddev->layout;
5397         info.chunk_size    = mddev->chunk_sectors << 9;
5398
5399         if (copy_to_user(arg, &info, sizeof(info)))
5400                 return -EFAULT;
5401
5402         return 0;
5403 }
5404
5405 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5406 {
5407         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5408         char *ptr, *buf = NULL;
5409         int err = -ENOMEM;
5410
5411         if (md_allow_write(mddev))
5412                 file = kmalloc(sizeof(*file), GFP_NOIO);
5413         else
5414                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5415
5416         if (!file)
5417                 goto out;
5418
5419         /* bitmap disabled, zero the first byte and copy out */
5420         if (!mddev->bitmap || !mddev->bitmap->file) {
5421                 file->pathname[0] = '\0';
5422                 goto copy_out;
5423         }
5424
5425         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5426         if (!buf)
5427                 goto out;
5428
5429         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5430         if (IS_ERR(ptr))
5431                 goto out;
5432
5433         strcpy(file->pathname, ptr);
5434
5435 copy_out:
5436         err = 0;
5437         if (copy_to_user(arg, file, sizeof(*file)))
5438                 err = -EFAULT;
5439 out:
5440         kfree(buf);
5441         kfree(file);
5442         return err;
5443 }
5444
5445 static int get_disk_info(struct mddev * mddev, void __user * arg)
5446 {
5447         mdu_disk_info_t info;
5448         struct md_rdev *rdev;
5449
5450         if (copy_from_user(&info, arg, sizeof(info)))
5451                 return -EFAULT;
5452
5453         rdev = find_rdev_nr(mddev, info.number);
5454         if (rdev) {
5455                 info.major = MAJOR(rdev->bdev->bd_dev);
5456                 info.minor = MINOR(rdev->bdev->bd_dev);
5457                 info.raid_disk = rdev->raid_disk;
5458                 info.state = 0;
5459                 if (test_bit(Faulty, &rdev->flags))
5460                         info.state |= (1<<MD_DISK_FAULTY);
5461                 else if (test_bit(In_sync, &rdev->flags)) {
5462                         info.state |= (1<<MD_DISK_ACTIVE);
5463                         info.state |= (1<<MD_DISK_SYNC);
5464                 }
5465                 if (test_bit(WriteMostly, &rdev->flags))
5466                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5467         } else {
5468                 info.major = info.minor = 0;
5469                 info.raid_disk = -1;
5470                 info.state = (1<<MD_DISK_REMOVED);
5471         }
5472
5473         if (copy_to_user(arg, &info, sizeof(info)))
5474                 return -EFAULT;
5475
5476         return 0;
5477 }
5478
5479 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5480 {
5481         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5482         struct md_rdev *rdev;
5483         dev_t dev = MKDEV(info->major,info->minor);
5484
5485         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5486                 return -EOVERFLOW;
5487
5488         if (!mddev->raid_disks) {
5489                 int err;
5490                 /* expecting a device which has a superblock */
5491                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5492                 if (IS_ERR(rdev)) {
5493                         printk(KERN_WARNING 
5494                                 "md: md_import_device returned %ld\n",
5495                                 PTR_ERR(rdev));
5496                         return PTR_ERR(rdev);
5497                 }
5498                 if (!list_empty(&mddev->disks)) {
5499                         struct md_rdev *rdev0
5500                                 = list_entry(mddev->disks.next,
5501                                              struct md_rdev, same_set);
5502                         err = super_types[mddev->major_version]
5503                                 .load_super(rdev, rdev0, mddev->minor_version);
5504                         if (err < 0) {
5505                                 printk(KERN_WARNING 
5506                                         "md: %s has different UUID to %s\n",
5507                                         bdevname(rdev->bdev,b), 
5508                                         bdevname(rdev0->bdev,b2));
5509                                 export_rdev(rdev);
5510                                 return -EINVAL;
5511                         }
5512                 }
5513                 err = bind_rdev_to_array(rdev, mddev);
5514                 if (err)
5515                         export_rdev(rdev);
5516                 return err;
5517         }
5518
5519         /*
5520          * add_new_disk can be used once the array is assembled
5521          * to add "hot spares".  They must already have a superblock
5522          * written
5523          */
5524         if (mddev->pers) {
5525                 int err;
5526                 if (!mddev->pers->hot_add_disk) {
5527                         printk(KERN_WARNING 
5528                                 "%s: personality does not support diskops!\n",
5529                                mdname(mddev));
5530                         return -EINVAL;
5531                 }
5532                 if (mddev->persistent)
5533                         rdev = md_import_device(dev, mddev->major_version,
5534                                                 mddev->minor_version);
5535                 else
5536                         rdev = md_import_device(dev, -1, -1);
5537                 if (IS_ERR(rdev)) {
5538                         printk(KERN_WARNING 
5539                                 "md: md_import_device returned %ld\n",
5540                                 PTR_ERR(rdev));
5541                         return PTR_ERR(rdev);
5542                 }
5543                 /* set saved_raid_disk if appropriate */
5544                 if (!mddev->persistent) {
5545                         if (info->state & (1<<MD_DISK_SYNC)  &&
5546                             info->raid_disk < mddev->raid_disks) {
5547                                 rdev->raid_disk = info->raid_disk;
5548                                 set_bit(In_sync, &rdev->flags);
5549                         } else
5550                                 rdev->raid_disk = -1;
5551                 } else
5552                         super_types[mddev->major_version].
5553                                 validate_super(mddev, rdev);
5554                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5555                     (!test_bit(In_sync, &rdev->flags) ||
5556                      rdev->raid_disk != info->raid_disk)) {
5557                         /* This was a hot-add request, but events doesn't
5558                          * match, so reject it.
5559                          */
5560                         export_rdev(rdev);
5561                         return -EINVAL;
5562                 }
5563
5564                 if (test_bit(In_sync, &rdev->flags))
5565                         rdev->saved_raid_disk = rdev->raid_disk;
5566                 else
5567                         rdev->saved_raid_disk = -1;
5568
5569                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5570                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5571                         set_bit(WriteMostly, &rdev->flags);
5572                 else
5573                         clear_bit(WriteMostly, &rdev->flags);
5574
5575                 rdev->raid_disk = -1;
5576                 err = bind_rdev_to_array(rdev, mddev);
5577                 if (!err && !mddev->pers->hot_remove_disk) {
5578                         /* If there is hot_add_disk but no hot_remove_disk
5579                          * then added disks for geometry changes,
5580                          * and should be added immediately.
5581                          */
5582                         super_types[mddev->major_version].
5583                                 validate_super(mddev, rdev);
5584                         err = mddev->pers->hot_add_disk(mddev, rdev);
5585                         if (err)
5586                                 unbind_rdev_from_array(rdev);
5587                 }
5588                 if (err)
5589                         export_rdev(rdev);
5590                 else
5591                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5592
5593                 md_update_sb(mddev, 1);
5594                 if (mddev->degraded)
5595                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5596                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5597                 if (!err)
5598                         md_new_event(mddev);
5599                 md_wakeup_thread(mddev->thread);
5600                 return err;
5601         }
5602
5603         /* otherwise, add_new_disk is only allowed
5604          * for major_version==0 superblocks
5605          */
5606         if (mddev->major_version != 0) {
5607                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5608                        mdname(mddev));
5609                 return -EINVAL;
5610         }
5611
5612         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5613                 int err;
5614                 rdev = md_import_device(dev, -1, 0);
5615                 if (IS_ERR(rdev)) {
5616                         printk(KERN_WARNING 
5617                                 "md: error, md_import_device() returned %ld\n",
5618                                 PTR_ERR(rdev));
5619                         return PTR_ERR(rdev);
5620                 }
5621                 rdev->desc_nr = info->number;
5622                 if (info->raid_disk < mddev->raid_disks)
5623                         rdev->raid_disk = info->raid_disk;
5624                 else
5625                         rdev->raid_disk = -1;
5626
5627                 if (rdev->raid_disk < mddev->raid_disks)
5628                         if (info->state & (1<<MD_DISK_SYNC))
5629                                 set_bit(In_sync, &rdev->flags);
5630
5631                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5632                         set_bit(WriteMostly, &rdev->flags);
5633
5634                 if (!mddev->persistent) {
5635                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5636                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5637                 } else
5638                         rdev->sb_start = calc_dev_sboffset(rdev);
5639                 rdev->sectors = rdev->sb_start;
5640
5641                 err = bind_rdev_to_array(rdev, mddev);
5642                 if (err) {
5643                         export_rdev(rdev);
5644                         return err;
5645                 }
5646         }
5647
5648         return 0;
5649 }
5650
5651 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5652 {
5653         char b[BDEVNAME_SIZE];
5654         struct md_rdev *rdev;
5655
5656         rdev = find_rdev(mddev, dev);
5657         if (!rdev)
5658                 return -ENXIO;
5659
5660         if (rdev->raid_disk >= 0)
5661                 goto busy;
5662
5663         kick_rdev_from_array(rdev);
5664         md_update_sb(mddev, 1);
5665         md_new_event(mddev);
5666
5667         return 0;
5668 busy:
5669         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5670                 bdevname(rdev->bdev,b), mdname(mddev));
5671         return -EBUSY;
5672 }
5673
5674 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5675 {
5676         char b[BDEVNAME_SIZE];
5677         int err;
5678         struct md_rdev *rdev;
5679
5680         if (!mddev->pers)
5681                 return -ENODEV;
5682
5683         if (mddev->major_version != 0) {
5684                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5685                         " version-0 superblocks.\n",
5686                         mdname(mddev));
5687                 return -EINVAL;
5688         }
5689         if (!mddev->pers->hot_add_disk) {
5690                 printk(KERN_WARNING 
5691                         "%s: personality does not support diskops!\n",
5692                         mdname(mddev));
5693                 return -EINVAL;
5694         }
5695
5696         rdev = md_import_device(dev, -1, 0);
5697         if (IS_ERR(rdev)) {
5698                 printk(KERN_WARNING 
5699                         "md: error, md_import_device() returned %ld\n",
5700                         PTR_ERR(rdev));
5701                 return -EINVAL;
5702         }
5703
5704         if (mddev->persistent)
5705                 rdev->sb_start = calc_dev_sboffset(rdev);
5706         else
5707                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5708
5709         rdev->sectors = rdev->sb_start;
5710
5711         if (test_bit(Faulty, &rdev->flags)) {
5712                 printk(KERN_WARNING 
5713                         "md: can not hot-add faulty %s disk to %s!\n",
5714                         bdevname(rdev->bdev,b), mdname(mddev));
5715                 err = -EINVAL;
5716                 goto abort_export;
5717         }
5718         clear_bit(In_sync, &rdev->flags);
5719         rdev->desc_nr = -1;
5720         rdev->saved_raid_disk = -1;
5721         err = bind_rdev_to_array(rdev, mddev);
5722         if (err)
5723                 goto abort_export;
5724
5725         /*
5726          * The rest should better be atomic, we can have disk failures
5727          * noticed in interrupt contexts ...
5728          */
5729
5730         rdev->raid_disk = -1;
5731
5732         md_update_sb(mddev, 1);
5733
5734         /*
5735          * Kick recovery, maybe this spare has to be added to the
5736          * array immediately.
5737          */
5738         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5739         md_wakeup_thread(mddev->thread);
5740         md_new_event(mddev);
5741         return 0;
5742
5743 abort_export:
5744         export_rdev(rdev);
5745         return err;
5746 }
5747
5748 static int set_bitmap_file(struct mddev *mddev, int fd)
5749 {
5750         int err;
5751
5752         if (mddev->pers) {
5753                 if (!mddev->pers->quiesce)
5754                         return -EBUSY;
5755                 if (mddev->recovery || mddev->sync_thread)
5756                         return -EBUSY;
5757                 /* we should be able to change the bitmap.. */
5758         }
5759
5760
5761         if (fd >= 0) {
5762                 if (mddev->bitmap)
5763                         return -EEXIST; /* cannot add when bitmap is present */
5764                 mddev->bitmap_info.file = fget(fd);
5765
5766                 if (mddev->bitmap_info.file == NULL) {
5767                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5768                                mdname(mddev));
5769                         return -EBADF;
5770                 }
5771
5772                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5773                 if (err) {
5774                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5775                                mdname(mddev));
5776                         fput(mddev->bitmap_info.file);
5777                         mddev->bitmap_info.file = NULL;
5778                         return err;
5779                 }
5780                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5781         } else if (mddev->bitmap == NULL)
5782                 return -ENOENT; /* cannot remove what isn't there */
5783         err = 0;
5784         if (mddev->pers) {
5785                 mddev->pers->quiesce(mddev, 1);
5786                 if (fd >= 0) {
5787                         err = bitmap_create(mddev);
5788                         if (!err)
5789                                 err = bitmap_load(mddev);
5790                 }
5791                 if (fd < 0 || err) {
5792                         bitmap_destroy(mddev);
5793                         fd = -1; /* make sure to put the file */
5794                 }
5795                 mddev->pers->quiesce(mddev, 0);
5796         }
5797         if (fd < 0) {
5798                 if (mddev->bitmap_info.file) {
5799                         restore_bitmap_write_access(mddev->bitmap_info.file);
5800                         fput(mddev->bitmap_info.file);
5801                 }
5802                 mddev->bitmap_info.file = NULL;
5803         }
5804
5805         return err;
5806 }
5807
5808 /*
5809  * set_array_info is used two different ways
5810  * The original usage is when creating a new array.
5811  * In this usage, raid_disks is > 0 and it together with
5812  *  level, size, not_persistent,layout,chunksize determine the
5813  *  shape of the array.
5814  *  This will always create an array with a type-0.90.0 superblock.
5815  * The newer usage is when assembling an array.
5816  *  In this case raid_disks will be 0, and the major_version field is
5817  *  use to determine which style super-blocks are to be found on the devices.
5818  *  The minor and patch _version numbers are also kept incase the
5819  *  super_block handler wishes to interpret them.
5820  */
5821 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5822 {
5823
5824         if (info->raid_disks == 0) {
5825                 /* just setting version number for superblock loading */
5826                 if (info->major_version < 0 ||
5827                     info->major_version >= ARRAY_SIZE(super_types) ||
5828                     super_types[info->major_version].name == NULL) {
5829                         /* maybe try to auto-load a module? */
5830                         printk(KERN_INFO 
5831                                 "md: superblock version %d not known\n",
5832                                 info->major_version);
5833                         return -EINVAL;
5834                 }
5835                 mddev->major_version = info->major_version;
5836                 mddev->minor_version = info->minor_version;
5837                 mddev->patch_version = info->patch_version;
5838                 mddev->persistent = !info->not_persistent;
5839                 /* ensure mddev_put doesn't delete this now that there
5840                  * is some minimal configuration.
5841                  */
5842                 mddev->ctime         = get_seconds();
5843                 return 0;
5844         }
5845         mddev->major_version = MD_MAJOR_VERSION;
5846         mddev->minor_version = MD_MINOR_VERSION;
5847         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5848         mddev->ctime         = get_seconds();
5849
5850         mddev->level         = info->level;
5851         mddev->clevel[0]     = 0;
5852         mddev->dev_sectors   = 2 * (sector_t)info->size;
5853         mddev->raid_disks    = info->raid_disks;
5854         /* don't set md_minor, it is determined by which /dev/md* was
5855          * openned
5856          */
5857         if (info->state & (1<<MD_SB_CLEAN))
5858                 mddev->recovery_cp = MaxSector;
5859         else
5860                 mddev->recovery_cp = 0;
5861         mddev->persistent    = ! info->not_persistent;
5862         mddev->external      = 0;
5863
5864         mddev->layout        = info->layout;
5865         mddev->chunk_sectors = info->chunk_size >> 9;
5866
5867         mddev->max_disks     = MD_SB_DISKS;
5868
5869         if (mddev->persistent)
5870                 mddev->flags         = 0;
5871         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5872
5873         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5874         mddev->bitmap_info.offset = 0;
5875
5876         mddev->reshape_position = MaxSector;
5877
5878         /*
5879          * Generate a 128 bit UUID
5880          */
5881         get_random_bytes(mddev->uuid, 16);
5882
5883         mddev->new_level = mddev->level;
5884         mddev->new_chunk_sectors = mddev->chunk_sectors;
5885         mddev->new_layout = mddev->layout;
5886         mddev->delta_disks = 0;
5887
5888         return 0;
5889 }
5890
5891 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5892 {
5893         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5894
5895         if (mddev->external_size)
5896                 return;
5897
5898         mddev->array_sectors = array_sectors;
5899 }
5900 EXPORT_SYMBOL(md_set_array_sectors);
5901
5902 static int update_size(struct mddev *mddev, sector_t num_sectors)
5903 {
5904         struct md_rdev *rdev;
5905         int rv;
5906         int fit = (num_sectors == 0);
5907
5908         if (mddev->pers->resize == NULL)
5909                 return -EINVAL;
5910         /* The "num_sectors" is the number of sectors of each device that
5911          * is used.  This can only make sense for arrays with redundancy.
5912          * linear and raid0 always use whatever space is available. We can only
5913          * consider changing this number if no resync or reconstruction is
5914          * happening, and if the new size is acceptable. It must fit before the
5915          * sb_start or, if that is <data_offset, it must fit before the size
5916          * of each device.  If num_sectors is zero, we find the largest size
5917          * that fits.
5918          */
5919         if (mddev->sync_thread)
5920                 return -EBUSY;
5921         if (mddev->bitmap)
5922                 /* Sorry, cannot grow a bitmap yet, just remove it,
5923                  * grow, and re-add.
5924                  */
5925                 return -EBUSY;
5926         list_for_each_entry(rdev, &mddev->disks, same_set) {
5927                 sector_t avail = rdev->sectors;
5928
5929                 if (fit && (num_sectors == 0 || num_sectors > avail))
5930                         num_sectors = avail;
5931                 if (avail < num_sectors)
5932                         return -ENOSPC;
5933         }
5934         rv = mddev->pers->resize(mddev, num_sectors);
5935         if (!rv)
5936                 revalidate_disk(mddev->gendisk);
5937         return rv;
5938 }
5939
5940 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5941 {
5942         int rv;
5943         /* change the number of raid disks */
5944         if (mddev->pers->check_reshape == NULL)
5945                 return -EINVAL;
5946         if (raid_disks <= 0 ||
5947             (mddev->max_disks && raid_disks >= mddev->max_disks))
5948                 return -EINVAL;
5949         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5950                 return -EBUSY;
5951         mddev->delta_disks = raid_disks - mddev->raid_disks;
5952
5953         rv = mddev->pers->check_reshape(mddev);
5954         if (rv < 0)
5955                 mddev->delta_disks = 0;
5956         return rv;
5957 }
5958
5959
5960 /*
5961  * update_array_info is used to change the configuration of an
5962  * on-line array.
5963  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5964  * fields in the info are checked against the array.
5965  * Any differences that cannot be handled will cause an error.
5966  * Normally, only one change can be managed at a time.
5967  */
5968 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5969 {
5970         int rv = 0;
5971         int cnt = 0;
5972         int state = 0;
5973
5974         /* calculate expected state,ignoring low bits */
5975         if (mddev->bitmap && mddev->bitmap_info.offset)
5976                 state |= (1 << MD_SB_BITMAP_PRESENT);
5977
5978         if (mddev->major_version != info->major_version ||
5979             mddev->minor_version != info->minor_version ||
5980 /*          mddev->patch_version != info->patch_version || */
5981             mddev->ctime         != info->ctime         ||
5982             mddev->level         != info->level         ||
5983 /*          mddev->layout        != info->layout        || */
5984             !mddev->persistent   != info->not_persistent||
5985             mddev->chunk_sectors != info->chunk_size >> 9 ||
5986             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5987             ((state^info->state) & 0xfffffe00)
5988                 )
5989                 return -EINVAL;
5990         /* Check there is only one change */
5991         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5992                 cnt++;
5993         if (mddev->raid_disks != info->raid_disks)
5994                 cnt++;
5995         if (mddev->layout != info->layout)
5996                 cnt++;
5997         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5998                 cnt++;
5999         if (cnt == 0)
6000                 return 0;
6001         if (cnt > 1)
6002                 return -EINVAL;
6003
6004         if (mddev->layout != info->layout) {
6005                 /* Change layout
6006                  * we don't need to do anything at the md level, the
6007                  * personality will take care of it all.
6008                  */
6009                 if (mddev->pers->check_reshape == NULL)
6010                         return -EINVAL;
6011                 else {
6012                         mddev->new_layout = info->layout;
6013                         rv = mddev->pers->check_reshape(mddev);
6014                         if (rv)
6015                                 mddev->new_layout = mddev->layout;
6016                         return rv;
6017                 }
6018         }
6019         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6020                 rv = update_size(mddev, (sector_t)info->size * 2);
6021
6022         if (mddev->raid_disks    != info->raid_disks)
6023                 rv = update_raid_disks(mddev, info->raid_disks);
6024
6025         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6026                 if (mddev->pers->quiesce == NULL)
6027                         return -EINVAL;
6028                 if (mddev->recovery || mddev->sync_thread)
6029                         return -EBUSY;
6030                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6031                         /* add the bitmap */
6032                         if (mddev->bitmap)
6033                                 return -EEXIST;
6034                         if (mddev->bitmap_info.default_offset == 0)
6035                                 return -EINVAL;
6036                         mddev->bitmap_info.offset =
6037                                 mddev->bitmap_info.default_offset;
6038                         mddev->pers->quiesce(mddev, 1);
6039                         rv = bitmap_create(mddev);
6040                         if (!rv)
6041                                 rv = bitmap_load(mddev);
6042                         if (rv)
6043                                 bitmap_destroy(mddev);
6044                         mddev->pers->quiesce(mddev, 0);
6045                 } else {
6046                         /* remove the bitmap */
6047                         if (!mddev->bitmap)
6048                                 return -ENOENT;
6049                         if (mddev->bitmap->file)
6050                                 return -EINVAL;
6051                         mddev->pers->quiesce(mddev, 1);
6052                         bitmap_destroy(mddev);
6053                         mddev->pers->quiesce(mddev, 0);
6054                         mddev->bitmap_info.offset = 0;
6055                 }
6056         }
6057         md_update_sb(mddev, 1);
6058         return rv;
6059 }
6060
6061 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6062 {
6063         struct md_rdev *rdev;
6064
6065         if (mddev->pers == NULL)
6066                 return -ENODEV;
6067
6068         rdev = find_rdev(mddev, dev);
6069         if (!rdev)
6070                 return -ENODEV;
6071
6072         md_error(mddev, rdev);
6073         if (!test_bit(Faulty, &rdev->flags))
6074                 return -EBUSY;
6075         return 0;
6076 }
6077
6078 /*
6079  * We have a problem here : there is no easy way to give a CHS
6080  * virtual geometry. We currently pretend that we have a 2 heads
6081  * 4 sectors (with a BIG number of cylinders...). This drives
6082  * dosfs just mad... ;-)
6083  */
6084 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6085 {
6086         struct mddev *mddev = bdev->bd_disk->private_data;
6087
6088         geo->heads = 2;
6089         geo->sectors = 4;
6090         geo->cylinders = mddev->array_sectors / 8;
6091         return 0;
6092 }
6093
6094 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6095                         unsigned int cmd, unsigned long arg)
6096 {
6097         int err = 0;
6098         void __user *argp = (void __user *)arg;
6099         struct mddev *mddev = NULL;
6100         int ro;
6101
6102         switch (cmd) {
6103         case RAID_VERSION:
6104         case GET_ARRAY_INFO:
6105         case GET_DISK_INFO:
6106                 break;
6107         default:
6108                 if (!capable(CAP_SYS_ADMIN))
6109                         return -EACCES;
6110         }
6111
6112         /*
6113          * Commands dealing with the RAID driver but not any
6114          * particular array:
6115          */
6116         switch (cmd)
6117         {
6118                 case RAID_VERSION:
6119                         err = get_version(argp);
6120                         goto done;
6121
6122                 case PRINT_RAID_DEBUG:
6123                         err = 0;
6124                         md_print_devices();
6125                         goto done;
6126
6127 #ifndef MODULE
6128                 case RAID_AUTORUN:
6129                         err = 0;
6130                         autostart_arrays(arg);
6131                         goto done;
6132 #endif
6133                 default:;
6134         }
6135
6136         /*
6137          * Commands creating/starting a new array:
6138          */
6139
6140         mddev = bdev->bd_disk->private_data;
6141
6142         if (!mddev) {
6143                 BUG();
6144                 goto abort;
6145         }
6146
6147         err = mddev_lock(mddev);
6148         if (err) {
6149                 printk(KERN_INFO 
6150                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6151                         err, cmd);
6152                 goto abort;
6153         }
6154
6155         switch (cmd)
6156         {
6157                 case SET_ARRAY_INFO:
6158                         {
6159                                 mdu_array_info_t info;
6160                                 if (!arg)
6161                                         memset(&info, 0, sizeof(info));
6162                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6163                                         err = -EFAULT;
6164                                         goto abort_unlock;
6165                                 }
6166                                 if (mddev->pers) {
6167                                         err = update_array_info(mddev, &info);
6168                                         if (err) {
6169                                                 printk(KERN_WARNING "md: couldn't update"
6170                                                        " array info. %d\n", err);
6171                                                 goto abort_unlock;
6172                                         }
6173                                         goto done_unlock;
6174                                 }
6175                                 if (!list_empty(&mddev->disks)) {
6176                                         printk(KERN_WARNING
6177                                                "md: array %s already has disks!\n",
6178                                                mdname(mddev));
6179                                         err = -EBUSY;
6180                                         goto abort_unlock;
6181                                 }
6182                                 if (mddev->raid_disks) {
6183                                         printk(KERN_WARNING
6184                                                "md: array %s already initialised!\n",
6185                                                mdname(mddev));
6186                                         err = -EBUSY;
6187                                         goto abort_unlock;
6188                                 }
6189                                 err = set_array_info(mddev, &info);
6190                                 if (err) {
6191                                         printk(KERN_WARNING "md: couldn't set"
6192                                                " array info. %d\n", err);
6193                                         goto abort_unlock;
6194                                 }
6195                         }
6196                         goto done_unlock;
6197
6198                 default:;
6199         }
6200
6201         /*
6202          * Commands querying/configuring an existing array:
6203          */
6204         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6205          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6206         if ((!mddev->raid_disks && !mddev->external)
6207             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6208             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6209             && cmd != GET_BITMAP_FILE) {
6210                 err = -ENODEV;
6211                 goto abort_unlock;
6212         }
6213
6214         /*
6215          * Commands even a read-only array can execute:
6216          */
6217         switch (cmd)
6218         {
6219                 case GET_ARRAY_INFO:
6220                         err = get_array_info(mddev, argp);
6221                         goto done_unlock;
6222
6223                 case GET_BITMAP_FILE:
6224                         err = get_bitmap_file(mddev, argp);
6225                         goto done_unlock;
6226
6227                 case GET_DISK_INFO:
6228                         err = get_disk_info(mddev, argp);
6229                         goto done_unlock;
6230
6231                 case RESTART_ARRAY_RW:
6232                         err = restart_array(mddev);
6233                         goto done_unlock;
6234
6235                 case STOP_ARRAY:
6236                         err = do_md_stop(mddev, 0, 1);
6237                         goto done_unlock;
6238
6239                 case STOP_ARRAY_RO:
6240                         err = md_set_readonly(mddev, 1);
6241                         goto done_unlock;
6242
6243                 case BLKROSET:
6244                         if (get_user(ro, (int __user *)(arg))) {
6245                                 err = -EFAULT;
6246                                 goto done_unlock;
6247                         }
6248                         err = -EINVAL;
6249
6250                         /* if the bdev is going readonly the value of mddev->ro
6251                          * does not matter, no writes are coming
6252                          */
6253                         if (ro)
6254                                 goto done_unlock;
6255
6256                         /* are we are already prepared for writes? */
6257                         if (mddev->ro != 1)
6258                                 goto done_unlock;
6259
6260                         /* transitioning to readauto need only happen for
6261                          * arrays that call md_write_start
6262                          */
6263                         if (mddev->pers) {
6264                                 err = restart_array(mddev);
6265                                 if (err == 0) {
6266                                         mddev->ro = 2;
6267                                         set_disk_ro(mddev->gendisk, 0);
6268                                 }
6269                         }
6270                         goto done_unlock;
6271         }
6272
6273         /*
6274          * The remaining ioctls are changing the state of the
6275          * superblock, so we do not allow them on read-only arrays.
6276          * However non-MD ioctls (e.g. get-size) will still come through
6277          * here and hit the 'default' below, so only disallow
6278          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6279          */
6280         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6281                 if (mddev->ro == 2) {
6282                         mddev->ro = 0;
6283                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6284                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6285                         md_wakeup_thread(mddev->thread);
6286                 } else {
6287                         err = -EROFS;
6288                         goto abort_unlock;
6289                 }
6290         }
6291
6292         switch (cmd)
6293         {
6294                 case ADD_NEW_DISK:
6295                 {
6296                         mdu_disk_info_t info;
6297                         if (copy_from_user(&info, argp, sizeof(info)))
6298                                 err = -EFAULT;
6299                         else
6300                                 err = add_new_disk(mddev, &info);
6301                         goto done_unlock;
6302                 }
6303
6304                 case HOT_REMOVE_DISK:
6305                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6306                         goto done_unlock;
6307
6308                 case HOT_ADD_DISK:
6309                         err = hot_add_disk(mddev, new_decode_dev(arg));
6310                         goto done_unlock;
6311
6312                 case SET_DISK_FAULTY:
6313                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6314                         goto done_unlock;
6315
6316                 case RUN_ARRAY:
6317                         err = do_md_run(mddev);
6318                         goto done_unlock;
6319
6320                 case SET_BITMAP_FILE:
6321                         err = set_bitmap_file(mddev, (int)arg);
6322                         goto done_unlock;
6323
6324                 default:
6325                         err = -EINVAL;
6326                         goto abort_unlock;
6327         }
6328
6329 done_unlock:
6330 abort_unlock:
6331         if (mddev->hold_active == UNTIL_IOCTL &&
6332             err != -EINVAL)
6333                 mddev->hold_active = 0;
6334         mddev_unlock(mddev);
6335
6336         return err;
6337 done:
6338         if (err)
6339                 MD_BUG();
6340 abort:
6341         return err;
6342 }
6343 #ifdef CONFIG_COMPAT
6344 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6345                     unsigned int cmd, unsigned long arg)
6346 {
6347         switch (cmd) {
6348         case HOT_REMOVE_DISK:
6349         case HOT_ADD_DISK:
6350         case SET_DISK_FAULTY:
6351         case SET_BITMAP_FILE:
6352                 /* These take in integer arg, do not convert */
6353                 break;
6354         default:
6355                 arg = (unsigned long)compat_ptr(arg);
6356                 break;
6357         }
6358
6359         return md_ioctl(bdev, mode, cmd, arg);
6360 }
6361 #endif /* CONFIG_COMPAT */
6362
6363 static int md_open(struct block_device *bdev, fmode_t mode)
6364 {
6365         /*
6366          * Succeed if we can lock the mddev, which confirms that
6367          * it isn't being stopped right now.
6368          */
6369         struct mddev *mddev = mddev_find(bdev->bd_dev);
6370         int err;
6371
6372         if (mddev->gendisk != bdev->bd_disk) {
6373                 /* we are racing with mddev_put which is discarding this
6374                  * bd_disk.
6375                  */
6376                 mddev_put(mddev);
6377                 /* Wait until bdev->bd_disk is definitely gone */
6378                 flush_workqueue(md_misc_wq);
6379                 /* Then retry the open from the top */
6380                 return -ERESTARTSYS;
6381         }
6382         BUG_ON(mddev != bdev->bd_disk->private_data);
6383
6384         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6385                 goto out;
6386
6387         err = 0;
6388         atomic_inc(&mddev->openers);
6389         mutex_unlock(&mddev->open_mutex);
6390
6391         check_disk_change(bdev);
6392  out:
6393         return err;
6394 }
6395
6396 static int md_release(struct gendisk *disk, fmode_t mode)
6397 {
6398         struct mddev *mddev = disk->private_data;
6399
6400         BUG_ON(!mddev);
6401         atomic_dec(&mddev->openers);
6402         mddev_put(mddev);
6403
6404         return 0;
6405 }
6406
6407 static int md_media_changed(struct gendisk *disk)
6408 {
6409         struct mddev *mddev = disk->private_data;
6410
6411         return mddev->changed;
6412 }
6413
6414 static int md_revalidate(struct gendisk *disk)
6415 {
6416         struct mddev *mddev = disk->private_data;
6417
6418         mddev->changed = 0;
6419         return 0;
6420 }
6421 static const struct block_device_operations md_fops =
6422 {
6423         .owner          = THIS_MODULE,
6424         .open           = md_open,
6425         .release        = md_release,
6426         .ioctl          = md_ioctl,
6427 #ifdef CONFIG_COMPAT
6428         .compat_ioctl   = md_compat_ioctl,
6429 #endif
6430         .getgeo         = md_getgeo,
6431         .media_changed  = md_media_changed,
6432         .revalidate_disk= md_revalidate,
6433 };
6434
6435 static int md_thread(void * arg)
6436 {
6437         struct md_thread *thread = arg;
6438
6439         /*
6440          * md_thread is a 'system-thread', it's priority should be very
6441          * high. We avoid resource deadlocks individually in each
6442          * raid personality. (RAID5 does preallocation) We also use RR and
6443          * the very same RT priority as kswapd, thus we will never get
6444          * into a priority inversion deadlock.
6445          *
6446          * we definitely have to have equal or higher priority than
6447          * bdflush, otherwise bdflush will deadlock if there are too
6448          * many dirty RAID5 blocks.
6449          */
6450
6451         allow_signal(SIGKILL);
6452         while (!kthread_should_stop()) {
6453
6454                 /* We need to wait INTERRUPTIBLE so that
6455                  * we don't add to the load-average.
6456                  * That means we need to be sure no signals are
6457                  * pending
6458                  */
6459                 if (signal_pending(current))
6460                         flush_signals(current);
6461
6462                 wait_event_interruptible_timeout
6463                         (thread->wqueue,
6464                          test_bit(THREAD_WAKEUP, &thread->flags)
6465                          || kthread_should_stop(),
6466                          thread->timeout);
6467
6468                 clear_bit(THREAD_WAKEUP, &thread->flags);
6469                 if (!kthread_should_stop())
6470                         thread->run(thread->mddev);
6471         }
6472
6473         return 0;
6474 }
6475
6476 void md_wakeup_thread(struct md_thread *thread)
6477 {
6478         if (thread) {
6479                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6480                 set_bit(THREAD_WAKEUP, &thread->flags);
6481                 wake_up(&thread->wqueue);
6482         }
6483 }
6484
6485 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6486                                  const char *name)
6487 {
6488         struct md_thread *thread;
6489
6490         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6491         if (!thread)
6492                 return NULL;
6493
6494         init_waitqueue_head(&thread->wqueue);
6495
6496         thread->run = run;
6497         thread->mddev = mddev;
6498         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6499         thread->tsk = kthread_run(md_thread, thread,
6500                                   "%s_%s",
6501                                   mdname(thread->mddev),
6502                                   name ?: mddev->pers->name);
6503         if (IS_ERR(thread->tsk)) {
6504                 kfree(thread);
6505                 return NULL;
6506         }
6507         return thread;
6508 }
6509
6510 void md_unregister_thread(struct md_thread **threadp)
6511 {
6512         struct md_thread *thread = *threadp;
6513         if (!thread)
6514                 return;
6515         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6516         /* Locking ensures that mddev_unlock does not wake_up a
6517          * non-existent thread
6518          */
6519         spin_lock(&pers_lock);
6520         *threadp = NULL;
6521         spin_unlock(&pers_lock);
6522
6523         kthread_stop(thread->tsk);
6524         kfree(thread);
6525 }
6526
6527 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6528 {
6529         if (!mddev) {
6530                 MD_BUG();
6531                 return;
6532         }
6533
6534         if (!rdev || test_bit(Faulty, &rdev->flags))
6535                 return;
6536
6537         if (!mddev->pers || !mddev->pers->error_handler)
6538                 return;
6539         mddev->pers->error_handler(mddev,rdev);
6540         if (mddev->degraded)
6541                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6542         sysfs_notify_dirent_safe(rdev->sysfs_state);
6543         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6544         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6545         md_wakeup_thread(mddev->thread);
6546         if (mddev->event_work.func)
6547                 queue_work(md_misc_wq, &mddev->event_work);
6548         md_new_event_inintr(mddev);
6549 }
6550
6551 /* seq_file implementation /proc/mdstat */
6552
6553 static void status_unused(struct seq_file *seq)
6554 {
6555         int i = 0;
6556         struct md_rdev *rdev;
6557
6558         seq_printf(seq, "unused devices: ");
6559
6560         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6561                 char b[BDEVNAME_SIZE];
6562                 i++;
6563                 seq_printf(seq, "%s ",
6564                               bdevname(rdev->bdev,b));
6565         }
6566         if (!i)
6567                 seq_printf(seq, "<none>");
6568
6569         seq_printf(seq, "\n");
6570 }
6571
6572
6573 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6574 {
6575         sector_t max_sectors, resync, res;
6576         unsigned long dt, db;
6577         sector_t rt;
6578         int scale;
6579         unsigned int per_milli;
6580
6581         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6582
6583         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6584                 max_sectors = mddev->resync_max_sectors;
6585         else
6586                 max_sectors = mddev->dev_sectors;
6587
6588         /*
6589          * Should not happen.
6590          */
6591         if (!max_sectors) {
6592                 MD_BUG();
6593                 return;
6594         }
6595         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6596          * in a sector_t, and (max_sectors>>scale) will fit in a
6597          * u32, as those are the requirements for sector_div.
6598          * Thus 'scale' must be at least 10
6599          */
6600         scale = 10;
6601         if (sizeof(sector_t) > sizeof(unsigned long)) {
6602                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6603                         scale++;
6604         }
6605         res = (resync>>scale)*1000;
6606         sector_div(res, (u32)((max_sectors>>scale)+1));
6607
6608         per_milli = res;
6609         {
6610                 int i, x = per_milli/50, y = 20-x;
6611                 seq_printf(seq, "[");
6612                 for (i = 0; i < x; i++)
6613                         seq_printf(seq, "=");
6614                 seq_printf(seq, ">");
6615                 for (i = 0; i < y; i++)
6616                         seq_printf(seq, ".");
6617                 seq_printf(seq, "] ");
6618         }
6619         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6620                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6621                     "reshape" :
6622                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6623                      "check" :
6624                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6625                       "resync" : "recovery"))),
6626                    per_milli/10, per_milli % 10,
6627                    (unsigned long long) resync/2,
6628                    (unsigned long long) max_sectors/2);
6629
6630         /*
6631          * dt: time from mark until now
6632          * db: blocks written from mark until now
6633          * rt: remaining time
6634          *
6635          * rt is a sector_t, so could be 32bit or 64bit.
6636          * So we divide before multiply in case it is 32bit and close
6637          * to the limit.
6638          * We scale the divisor (db) by 32 to avoid losing precision
6639          * near the end of resync when the number of remaining sectors
6640          * is close to 'db'.
6641          * We then divide rt by 32 after multiplying by db to compensate.
6642          * The '+1' avoids division by zero if db is very small.
6643          */
6644         dt = ((jiffies - mddev->resync_mark) / HZ);
6645         if (!dt) dt++;
6646         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6647                 - mddev->resync_mark_cnt;
6648
6649         rt = max_sectors - resync;    /* number of remaining sectors */
6650         sector_div(rt, db/32+1);
6651         rt *= dt;
6652         rt >>= 5;
6653
6654         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6655                    ((unsigned long)rt % 60)/6);
6656
6657         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6658 }
6659
6660 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6661 {
6662         struct list_head *tmp;
6663         loff_t l = *pos;
6664         struct mddev *mddev;
6665
6666         if (l >= 0x10000)
6667                 return NULL;
6668         if (!l--)
6669                 /* header */
6670                 return (void*)1;
6671
6672         spin_lock(&all_mddevs_lock);
6673         list_for_each(tmp,&all_mddevs)
6674                 if (!l--) {
6675                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6676                         mddev_get(mddev);
6677                         spin_unlock(&all_mddevs_lock);
6678                         return mddev;
6679                 }
6680         spin_unlock(&all_mddevs_lock);
6681         if (!l--)
6682                 return (void*)2;/* tail */
6683         return NULL;
6684 }
6685
6686 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6687 {
6688         struct list_head *tmp;
6689         struct mddev *next_mddev, *mddev = v;
6690         
6691         ++*pos;
6692         if (v == (void*)2)
6693                 return NULL;
6694
6695         spin_lock(&all_mddevs_lock);
6696         if (v == (void*)1)
6697                 tmp = all_mddevs.next;
6698         else
6699                 tmp = mddev->all_mddevs.next;
6700         if (tmp != &all_mddevs)
6701                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6702         else {
6703                 next_mddev = (void*)2;
6704                 *pos = 0x10000;
6705         }               
6706         spin_unlock(&all_mddevs_lock);
6707
6708         if (v != (void*)1)
6709                 mddev_put(mddev);
6710         return next_mddev;
6711
6712 }
6713
6714 static void md_seq_stop(struct seq_file *seq, void *v)
6715 {
6716         struct mddev *mddev = v;
6717
6718         if (mddev && v != (void*)1 && v != (void*)2)
6719                 mddev_put(mddev);
6720 }
6721
6722 static int md_seq_show(struct seq_file *seq, void *v)
6723 {
6724         struct mddev *mddev = v;
6725         sector_t sectors;
6726         struct md_rdev *rdev;
6727         struct bitmap *bitmap;
6728
6729         if (v == (void*)1) {
6730                 struct md_personality *pers;
6731                 seq_printf(seq, "Personalities : ");
6732                 spin_lock(&pers_lock);
6733                 list_for_each_entry(pers, &pers_list, list)
6734                         seq_printf(seq, "[%s] ", pers->name);
6735
6736                 spin_unlock(&pers_lock);
6737                 seq_printf(seq, "\n");
6738                 seq->poll_event = atomic_read(&md_event_count);
6739                 return 0;
6740         }
6741         if (v == (void*)2) {
6742                 status_unused(seq);
6743                 return 0;
6744         }
6745
6746         if (mddev_lock(mddev) < 0)
6747                 return -EINTR;
6748
6749         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6750                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6751                                                 mddev->pers ? "" : "in");
6752                 if (mddev->pers) {
6753                         if (mddev->ro==1)
6754                                 seq_printf(seq, " (read-only)");
6755                         if (mddev->ro==2)
6756                                 seq_printf(seq, " (auto-read-only)");
6757                         seq_printf(seq, " %s", mddev->pers->name);
6758                 }
6759
6760                 sectors = 0;
6761                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6762                         char b[BDEVNAME_SIZE];
6763                         seq_printf(seq, " %s[%d]",
6764                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6765                         if (test_bit(WriteMostly, &rdev->flags))
6766                                 seq_printf(seq, "(W)");
6767                         if (test_bit(Faulty, &rdev->flags)) {
6768                                 seq_printf(seq, "(F)");
6769                                 continue;
6770                         }
6771                         if (rdev->raid_disk < 0)
6772                                 seq_printf(seq, "(S)"); /* spare */
6773                         if (test_bit(Replacement, &rdev->flags))
6774                                 seq_printf(seq, "(R)");
6775                         sectors += rdev->sectors;
6776                 }
6777
6778                 if (!list_empty(&mddev->disks)) {
6779                         if (mddev->pers)
6780                                 seq_printf(seq, "\n      %llu blocks",
6781                                            (unsigned long long)
6782                                            mddev->array_sectors / 2);
6783                         else
6784                                 seq_printf(seq, "\n      %llu blocks",
6785                                            (unsigned long long)sectors / 2);
6786                 }
6787                 if (mddev->persistent) {
6788                         if (mddev->major_version != 0 ||
6789                             mddev->minor_version != 90) {
6790                                 seq_printf(seq," super %d.%d",
6791                                            mddev->major_version,
6792                                            mddev->minor_version);
6793                         }
6794                 } else if (mddev->external)
6795                         seq_printf(seq, " super external:%s",
6796                                    mddev->metadata_type);
6797                 else
6798                         seq_printf(seq, " super non-persistent");
6799
6800                 if (mddev->pers) {
6801                         mddev->pers->status(seq, mddev);
6802                         seq_printf(seq, "\n      ");
6803                         if (mddev->pers->sync_request) {
6804                                 if (mddev->curr_resync > 2) {
6805                                         status_resync(seq, mddev);
6806                                         seq_printf(seq, "\n      ");
6807                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6808                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6809                                 else if (mddev->recovery_cp < MaxSector)
6810                                         seq_printf(seq, "\tresync=PENDING\n      ");
6811                         }
6812                 } else
6813                         seq_printf(seq, "\n       ");
6814
6815                 if ((bitmap = mddev->bitmap)) {
6816                         unsigned long chunk_kb;
6817                         unsigned long flags;
6818                         spin_lock_irqsave(&bitmap->lock, flags);
6819                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6820                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6821                                 "%lu%s chunk",
6822                                 bitmap->pages - bitmap->missing_pages,
6823                                 bitmap->pages,
6824                                 (bitmap->pages - bitmap->missing_pages)
6825                                         << (PAGE_SHIFT - 10),
6826                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6827                                 chunk_kb ? "KB" : "B");
6828                         if (bitmap->file) {
6829                                 seq_printf(seq, ", file: ");
6830                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6831                         }
6832
6833                         seq_printf(seq, "\n");
6834                         spin_unlock_irqrestore(&bitmap->lock, flags);
6835                 }
6836
6837                 seq_printf(seq, "\n");
6838         }
6839         mddev_unlock(mddev);
6840         
6841         return 0;
6842 }
6843
6844 static const struct seq_operations md_seq_ops = {
6845         .start  = md_seq_start,
6846         .next   = md_seq_next,
6847         .stop   = md_seq_stop,
6848         .show   = md_seq_show,
6849 };
6850
6851 static int md_seq_open(struct inode *inode, struct file *file)
6852 {
6853         struct seq_file *seq;
6854         int error;
6855
6856         error = seq_open(file, &md_seq_ops);
6857         if (error)
6858                 return error;
6859
6860         seq = file->private_data;
6861         seq->poll_event = atomic_read(&md_event_count);
6862         return error;
6863 }
6864
6865 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6866 {
6867         struct seq_file *seq = filp->private_data;
6868         int mask;
6869
6870         poll_wait(filp, &md_event_waiters, wait);
6871
6872         /* always allow read */
6873         mask = POLLIN | POLLRDNORM;
6874
6875         if (seq->poll_event != atomic_read(&md_event_count))
6876                 mask |= POLLERR | POLLPRI;
6877         return mask;
6878 }
6879
6880 static const struct file_operations md_seq_fops = {
6881         .owner          = THIS_MODULE,
6882         .open           = md_seq_open,
6883         .read           = seq_read,
6884         .llseek         = seq_lseek,
6885         .release        = seq_release_private,
6886         .poll           = mdstat_poll,
6887 };
6888
6889 int register_md_personality(struct md_personality *p)
6890 {
6891         spin_lock(&pers_lock);
6892         list_add_tail(&p->list, &pers_list);
6893         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6894         spin_unlock(&pers_lock);
6895         return 0;
6896 }
6897
6898 int unregister_md_personality(struct md_personality *p)
6899 {
6900         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6901         spin_lock(&pers_lock);
6902         list_del_init(&p->list);
6903         spin_unlock(&pers_lock);
6904         return 0;
6905 }
6906
6907 static int is_mddev_idle(struct mddev *mddev, int init)
6908 {
6909         struct md_rdev * rdev;
6910         int idle;
6911         int curr_events;
6912
6913         idle = 1;
6914         rcu_read_lock();
6915         rdev_for_each_rcu(rdev, mddev) {
6916                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6917                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6918                               (int)part_stat_read(&disk->part0, sectors[1]) -
6919                               atomic_read(&disk->sync_io);
6920                 /* sync IO will cause sync_io to increase before the disk_stats
6921                  * as sync_io is counted when a request starts, and
6922                  * disk_stats is counted when it completes.
6923                  * So resync activity will cause curr_events to be smaller than
6924                  * when there was no such activity.
6925                  * non-sync IO will cause disk_stat to increase without
6926                  * increasing sync_io so curr_events will (eventually)
6927                  * be larger than it was before.  Once it becomes
6928                  * substantially larger, the test below will cause
6929                  * the array to appear non-idle, and resync will slow
6930                  * down.
6931                  * If there is a lot of outstanding resync activity when
6932                  * we set last_event to curr_events, then all that activity
6933                  * completing might cause the array to appear non-idle
6934                  * and resync will be slowed down even though there might
6935                  * not have been non-resync activity.  This will only
6936                  * happen once though.  'last_events' will soon reflect
6937                  * the state where there is little or no outstanding
6938                  * resync requests, and further resync activity will
6939                  * always make curr_events less than last_events.
6940                  *
6941                  */
6942                 if (init || curr_events - rdev->last_events > 64) {
6943                         rdev->last_events = curr_events;
6944                         idle = 0;
6945                 }
6946         }
6947         rcu_read_unlock();
6948         return idle;
6949 }
6950
6951 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6952 {
6953         /* another "blocks" (512byte) blocks have been synced */
6954         atomic_sub(blocks, &mddev->recovery_active);
6955         wake_up(&mddev->recovery_wait);
6956         if (!ok) {
6957                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6958                 md_wakeup_thread(mddev->thread);
6959                 // stop recovery, signal do_sync ....
6960         }
6961 }
6962
6963
6964 /* md_write_start(mddev, bi)
6965  * If we need to update some array metadata (e.g. 'active' flag
6966  * in superblock) before writing, schedule a superblock update
6967  * and wait for it to complete.
6968  */
6969 void md_write_start(struct mddev *mddev, struct bio *bi)
6970 {
6971         int did_change = 0;
6972         if (bio_data_dir(bi) != WRITE)
6973                 return;
6974
6975         BUG_ON(mddev->ro == 1);
6976         if (mddev->ro == 2) {
6977                 /* need to switch to read/write */
6978                 mddev->ro = 0;
6979                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6980                 md_wakeup_thread(mddev->thread);
6981                 md_wakeup_thread(mddev->sync_thread);
6982                 did_change = 1;
6983         }
6984         atomic_inc(&mddev->writes_pending);
6985         if (mddev->safemode == 1)
6986                 mddev->safemode = 0;
6987         if (mddev->in_sync) {
6988                 spin_lock_irq(&mddev->write_lock);
6989                 if (mddev->in_sync) {
6990                         mddev->in_sync = 0;
6991                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6992                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6993                         md_wakeup_thread(mddev->thread);
6994                         did_change = 1;
6995                 }
6996                 spin_unlock_irq(&mddev->write_lock);
6997         }
6998         if (did_change)
6999                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7000         wait_event(mddev->sb_wait,
7001                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7002 }
7003
7004 void md_write_end(struct mddev *mddev)
7005 {
7006         if (atomic_dec_and_test(&mddev->writes_pending)) {
7007                 if (mddev->safemode == 2)
7008                         md_wakeup_thread(mddev->thread);
7009                 else if (mddev->safemode_delay)
7010                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7011         }
7012 }
7013
7014 /* md_allow_write(mddev)
7015  * Calling this ensures that the array is marked 'active' so that writes
7016  * may proceed without blocking.  It is important to call this before
7017  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7018  * Must be called with mddev_lock held.
7019  *
7020  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7021  * is dropped, so return -EAGAIN after notifying userspace.
7022  */
7023 int md_allow_write(struct mddev *mddev)
7024 {
7025         if (!mddev->pers)
7026                 return 0;
7027         if (mddev->ro)
7028                 return 0;
7029         if (!mddev->pers->sync_request)
7030                 return 0;
7031
7032         spin_lock_irq(&mddev->write_lock);
7033         if (mddev->in_sync) {
7034                 mddev->in_sync = 0;
7035                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7036                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7037                 if (mddev->safemode_delay &&
7038                     mddev->safemode == 0)
7039                         mddev->safemode = 1;
7040                 spin_unlock_irq(&mddev->write_lock);
7041                 md_update_sb(mddev, 0);
7042                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7043         } else
7044                 spin_unlock_irq(&mddev->write_lock);
7045
7046         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7047                 return -EAGAIN;
7048         else
7049                 return 0;
7050 }
7051 EXPORT_SYMBOL_GPL(md_allow_write);
7052
7053 #define SYNC_MARKS      10
7054 #define SYNC_MARK_STEP  (3*HZ)
7055 void md_do_sync(struct mddev *mddev)
7056 {
7057         struct mddev *mddev2;
7058         unsigned int currspeed = 0,
7059                  window;
7060         sector_t max_sectors,j, io_sectors;
7061         unsigned long mark[SYNC_MARKS];
7062         sector_t mark_cnt[SYNC_MARKS];
7063         int last_mark,m;
7064         struct list_head *tmp;
7065         sector_t last_check;
7066         int skipped = 0;
7067         struct md_rdev *rdev;
7068         char *desc;
7069
7070         /* just incase thread restarts... */
7071         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7072                 return;
7073         if (mddev->ro) /* never try to sync a read-only array */
7074                 return;
7075
7076         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7077                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7078                         desc = "data-check";
7079                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7080                         desc = "requested-resync";
7081                 else
7082                         desc = "resync";
7083         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7084                 desc = "reshape";
7085         else
7086                 desc = "recovery";
7087
7088         /* we overload curr_resync somewhat here.
7089          * 0 == not engaged in resync at all
7090          * 2 == checking that there is no conflict with another sync
7091          * 1 == like 2, but have yielded to allow conflicting resync to
7092          *              commense
7093          * other == active in resync - this many blocks
7094          *
7095          * Before starting a resync we must have set curr_resync to
7096          * 2, and then checked that every "conflicting" array has curr_resync
7097          * less than ours.  When we find one that is the same or higher
7098          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7099          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7100          * This will mean we have to start checking from the beginning again.
7101          *
7102          */
7103
7104         do {
7105                 mddev->curr_resync = 2;
7106
7107         try_again:
7108                 if (kthread_should_stop())
7109                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7110
7111                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7112                         goto skip;
7113                 for_each_mddev(mddev2, tmp) {
7114                         if (mddev2 == mddev)
7115                                 continue;
7116                         if (!mddev->parallel_resync
7117                         &&  mddev2->curr_resync
7118                         &&  match_mddev_units(mddev, mddev2)) {
7119                                 DEFINE_WAIT(wq);
7120                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7121                                         /* arbitrarily yield */
7122                                         mddev->curr_resync = 1;
7123                                         wake_up(&resync_wait);
7124                                 }
7125                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7126                                         /* no need to wait here, we can wait the next
7127                                          * time 'round when curr_resync == 2
7128                                          */
7129                                         continue;
7130                                 /* We need to wait 'interruptible' so as not to
7131                                  * contribute to the load average, and not to
7132                                  * be caught by 'softlockup'
7133                                  */
7134                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7135                                 if (!kthread_should_stop() &&
7136                                     mddev2->curr_resync >= mddev->curr_resync) {
7137                                         printk(KERN_INFO "md: delaying %s of %s"
7138                                                " until %s has finished (they"
7139                                                " share one or more physical units)\n",
7140                                                desc, mdname(mddev), mdname(mddev2));
7141                                         mddev_put(mddev2);
7142                                         if (signal_pending(current))
7143                                                 flush_signals(current);
7144                                         schedule();
7145                                         finish_wait(&resync_wait, &wq);
7146                                         goto try_again;
7147                                 }
7148                                 finish_wait(&resync_wait, &wq);
7149                         }
7150                 }
7151         } while (mddev->curr_resync < 2);
7152
7153         j = 0;
7154         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7155                 /* resync follows the size requested by the personality,
7156                  * which defaults to physical size, but can be virtual size
7157                  */
7158                 max_sectors = mddev->resync_max_sectors;
7159                 mddev->resync_mismatches = 0;
7160                 /* we don't use the checkpoint if there's a bitmap */
7161                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7162                         j = mddev->resync_min;
7163                 else if (!mddev->bitmap)
7164                         j = mddev->recovery_cp;
7165
7166         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7167                 max_sectors = mddev->dev_sectors;
7168         else {
7169                 /* recovery follows the physical size of devices */
7170                 max_sectors = mddev->dev_sectors;
7171                 j = MaxSector;
7172                 rcu_read_lock();
7173                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7174                         if (rdev->raid_disk >= 0 &&
7175                             !test_bit(Faulty, &rdev->flags) &&
7176                             !test_bit(In_sync, &rdev->flags) &&
7177                             rdev->recovery_offset < j)
7178                                 j = rdev->recovery_offset;
7179                 rcu_read_unlock();
7180         }
7181
7182         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7183         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7184                 " %d KB/sec/disk.\n", speed_min(mddev));
7185         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7186                "(but not more than %d KB/sec) for %s.\n",
7187                speed_max(mddev), desc);
7188
7189         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7190
7191         io_sectors = 0;
7192         for (m = 0; m < SYNC_MARKS; m++) {
7193                 mark[m] = jiffies;
7194                 mark_cnt[m] = io_sectors;
7195         }
7196         last_mark = 0;
7197         mddev->resync_mark = mark[last_mark];
7198         mddev->resync_mark_cnt = mark_cnt[last_mark];
7199
7200         /*
7201          * Tune reconstruction:
7202          */
7203         window = 32*(PAGE_SIZE/512);
7204         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7205                 window/2, (unsigned long long)max_sectors/2);
7206
7207         atomic_set(&mddev->recovery_active, 0);
7208         last_check = 0;
7209
7210         if (j>2) {
7211                 printk(KERN_INFO 
7212                        "md: resuming %s of %s from checkpoint.\n",
7213                        desc, mdname(mddev));
7214                 mddev->curr_resync = j;
7215         }
7216         mddev->curr_resync_completed = j;
7217
7218         while (j < max_sectors) {
7219                 sector_t sectors;
7220
7221                 skipped = 0;
7222
7223                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7224                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7225                       (mddev->curr_resync - mddev->curr_resync_completed)
7226                       > (max_sectors >> 4)) ||
7227                      (j - mddev->curr_resync_completed)*2
7228                      >= mddev->resync_max - mddev->curr_resync_completed
7229                             )) {
7230                         /* time to update curr_resync_completed */
7231                         wait_event(mddev->recovery_wait,
7232                                    atomic_read(&mddev->recovery_active) == 0);
7233                         mddev->curr_resync_completed = j;
7234                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7235                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7236                 }
7237
7238                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7239                         /* As this condition is controlled by user-space,
7240                          * we can block indefinitely, so use '_interruptible'
7241                          * to avoid triggering warnings.
7242                          */
7243                         flush_signals(current); /* just in case */
7244                         wait_event_interruptible(mddev->recovery_wait,
7245                                                  mddev->resync_max > j
7246                                                  || kthread_should_stop());
7247                 }
7248
7249                 if (kthread_should_stop())
7250                         goto interrupted;
7251
7252                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7253                                                   currspeed < speed_min(mddev));
7254                 if (sectors == 0) {
7255                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7256                         goto out;
7257                 }
7258
7259                 if (!skipped) { /* actual IO requested */
7260                         io_sectors += sectors;
7261                         atomic_add(sectors, &mddev->recovery_active);
7262                 }
7263
7264                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7265                         break;
7266
7267                 j += sectors;
7268                 if (j>1) mddev->curr_resync = j;
7269                 mddev->curr_mark_cnt = io_sectors;
7270                 if (last_check == 0)
7271                         /* this is the earliest that rebuild will be
7272                          * visible in /proc/mdstat
7273                          */
7274                         md_new_event(mddev);
7275
7276                 if (last_check + window > io_sectors || j == max_sectors)
7277                         continue;
7278
7279                 last_check = io_sectors;
7280         repeat:
7281                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7282                         /* step marks */
7283                         int next = (last_mark+1) % SYNC_MARKS;
7284
7285                         mddev->resync_mark = mark[next];
7286                         mddev->resync_mark_cnt = mark_cnt[next];
7287                         mark[next] = jiffies;
7288                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7289                         last_mark = next;
7290                 }
7291
7292
7293                 if (kthread_should_stop())
7294                         goto interrupted;
7295
7296
7297                 /*
7298                  * this loop exits only if either when we are slower than
7299                  * the 'hard' speed limit, or the system was IO-idle for
7300                  * a jiffy.
7301                  * the system might be non-idle CPU-wise, but we only care
7302                  * about not overloading the IO subsystem. (things like an
7303                  * e2fsck being done on the RAID array should execute fast)
7304                  */
7305                 cond_resched();
7306
7307                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7308                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7309
7310                 if (currspeed > speed_min(mddev)) {
7311                         if ((currspeed > speed_max(mddev)) ||
7312                                         !is_mddev_idle(mddev, 0)) {
7313                                 msleep(500);
7314                                 goto repeat;
7315                         }
7316                 }
7317         }
7318         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7319         /*
7320          * this also signals 'finished resyncing' to md_stop
7321          */
7322  out:
7323         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7324
7325         /* tell personality that we are finished */
7326         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7327
7328         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7329             mddev->curr_resync > 2) {
7330                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7331                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7332                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7333                                         printk(KERN_INFO
7334                                                "md: checkpointing %s of %s.\n",
7335                                                desc, mdname(mddev));
7336                                         mddev->recovery_cp =
7337                                                 mddev->curr_resync_completed;
7338                                 }
7339                         } else
7340                                 mddev->recovery_cp = MaxSector;
7341                 } else {
7342                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7343                                 mddev->curr_resync = MaxSector;
7344                         rcu_read_lock();
7345                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7346                                 if (rdev->raid_disk >= 0 &&
7347                                     mddev->delta_disks >= 0 &&
7348                                     !test_bit(Faulty, &rdev->flags) &&
7349                                     !test_bit(In_sync, &rdev->flags) &&
7350                                     rdev->recovery_offset < mddev->curr_resync)
7351                                         rdev->recovery_offset = mddev->curr_resync;
7352                         rcu_read_unlock();
7353                 }
7354         }
7355  skip:
7356         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7357
7358         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7359                 /* We completed so min/max setting can be forgotten if used. */
7360                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7361                         mddev->resync_min = 0;
7362                 mddev->resync_max = MaxSector;
7363         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7364                 mddev->resync_min = mddev->curr_resync_completed;
7365         mddev->curr_resync = 0;
7366         wake_up(&resync_wait);
7367         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7368         md_wakeup_thread(mddev->thread);
7369         return;
7370
7371  interrupted:
7372         /*
7373          * got a signal, exit.
7374          */
7375         printk(KERN_INFO
7376                "md: md_do_sync() got signal ... exiting\n");
7377         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7378         goto out;
7379
7380 }
7381 EXPORT_SYMBOL_GPL(md_do_sync);
7382
7383 static int remove_and_add_spares(struct mddev *mddev)
7384 {
7385         struct md_rdev *rdev;
7386         int spares = 0;
7387         int removed = 0;
7388
7389         mddev->curr_resync_completed = 0;
7390
7391         list_for_each_entry(rdev, &mddev->disks, same_set)
7392                 if (rdev->raid_disk >= 0 &&
7393                     !test_bit(Blocked, &rdev->flags) &&
7394                     (test_bit(Faulty, &rdev->flags) ||
7395                      ! test_bit(In_sync, &rdev->flags)) &&
7396                     atomic_read(&rdev->nr_pending)==0) {
7397                         if (mddev->pers->hot_remove_disk(
7398                                     mddev, rdev) == 0) {
7399                                 sysfs_unlink_rdev(mddev, rdev);
7400                                 rdev->raid_disk = -1;
7401                                 removed++;
7402                         }
7403                 }
7404         if (removed)
7405                 sysfs_notify(&mddev->kobj, NULL,
7406                              "degraded");
7407
7408
7409         list_for_each_entry(rdev, &mddev->disks, same_set) {
7410                 if (rdev->raid_disk >= 0 &&
7411                     !test_bit(In_sync, &rdev->flags) &&
7412                     !test_bit(Faulty, &rdev->flags))
7413                         spares++;
7414                 if (rdev->raid_disk < 0
7415                     && !test_bit(Faulty, &rdev->flags)) {
7416                         rdev->recovery_offset = 0;
7417                         if (mddev->pers->
7418                             hot_add_disk(mddev, rdev) == 0) {
7419                                 if (sysfs_link_rdev(mddev, rdev))
7420                                         /* failure here is OK */;
7421                                 spares++;
7422                                 md_new_event(mddev);
7423                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7424                         }
7425                 }
7426         }
7427         return spares;
7428 }
7429
7430 static void reap_sync_thread(struct mddev *mddev)
7431 {
7432         struct md_rdev *rdev;
7433
7434         /* resync has finished, collect result */
7435         md_unregister_thread(&mddev->sync_thread);
7436         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7437             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7438                 /* success...*/
7439                 /* activate any spares */
7440                 if (mddev->pers->spare_active(mddev))
7441                         sysfs_notify(&mddev->kobj, NULL,
7442                                      "degraded");
7443         }
7444         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7445             mddev->pers->finish_reshape)
7446                 mddev->pers->finish_reshape(mddev);
7447
7448         /* If array is no-longer degraded, then any saved_raid_disk
7449          * information must be scrapped.  Also if any device is now
7450          * In_sync we must scrape the saved_raid_disk for that device
7451          * do the superblock for an incrementally recovered device
7452          * written out.
7453          */
7454         list_for_each_entry(rdev, &mddev->disks, same_set)
7455                 if (!mddev->degraded ||
7456                     test_bit(In_sync, &rdev->flags))
7457                         rdev->saved_raid_disk = -1;
7458
7459         md_update_sb(mddev, 1);
7460         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7461         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7462         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7463         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7464         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7465         /* flag recovery needed just to double check */
7466         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7467         sysfs_notify_dirent_safe(mddev->sysfs_action);
7468         md_new_event(mddev);
7469         if (mddev->event_work.func)
7470                 queue_work(md_misc_wq, &mddev->event_work);
7471 }
7472
7473 /*
7474  * This routine is regularly called by all per-raid-array threads to
7475  * deal with generic issues like resync and super-block update.
7476  * Raid personalities that don't have a thread (linear/raid0) do not
7477  * need this as they never do any recovery or update the superblock.
7478  *
7479  * It does not do any resync itself, but rather "forks" off other threads
7480  * to do that as needed.
7481  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7482  * "->recovery" and create a thread at ->sync_thread.
7483  * When the thread finishes it sets MD_RECOVERY_DONE
7484  * and wakeups up this thread which will reap the thread and finish up.
7485  * This thread also removes any faulty devices (with nr_pending == 0).
7486  *
7487  * The overall approach is:
7488  *  1/ if the superblock needs updating, update it.
7489  *  2/ If a recovery thread is running, don't do anything else.
7490  *  3/ If recovery has finished, clean up, possibly marking spares active.
7491  *  4/ If there are any faulty devices, remove them.
7492  *  5/ If array is degraded, try to add spares devices
7493  *  6/ If array has spares or is not in-sync, start a resync thread.
7494  */
7495 void md_check_recovery(struct mddev *mddev)
7496 {
7497         if (mddev->suspended)
7498                 return;
7499
7500         if (mddev->bitmap)
7501                 bitmap_daemon_work(mddev);
7502
7503         if (signal_pending(current)) {
7504                 if (mddev->pers->sync_request && !mddev->external) {
7505                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7506                                mdname(mddev));
7507                         mddev->safemode = 2;
7508                 }
7509                 flush_signals(current);
7510         }
7511
7512         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7513                 return;
7514         if ( ! (
7515                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7516                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7517                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7518                 (mddev->external == 0 && mddev->safemode == 1) ||
7519                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7520                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7521                 ))
7522                 return;
7523
7524         if (mddev_trylock(mddev)) {
7525                 int spares = 0;
7526
7527                 if (mddev->ro) {
7528                         /* Only thing we do on a ro array is remove
7529                          * failed devices.
7530                          */
7531                         struct md_rdev *rdev;
7532                         list_for_each_entry(rdev, &mddev->disks, same_set)
7533                                 if (rdev->raid_disk >= 0 &&
7534                                     !test_bit(Blocked, &rdev->flags) &&
7535                                     test_bit(Faulty, &rdev->flags) &&
7536                                     atomic_read(&rdev->nr_pending)==0) {
7537                                         if (mddev->pers->hot_remove_disk(
7538                                                     mddev, rdev) == 0) {
7539                                                 sysfs_unlink_rdev(mddev, rdev);
7540                                                 rdev->raid_disk = -1;
7541                                         }
7542                                 }
7543                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7544                         goto unlock;
7545                 }
7546
7547                 if (!mddev->external) {
7548                         int did_change = 0;
7549                         spin_lock_irq(&mddev->write_lock);
7550                         if (mddev->safemode &&
7551                             !atomic_read(&mddev->writes_pending) &&
7552                             !mddev->in_sync &&
7553                             mddev->recovery_cp == MaxSector) {
7554                                 mddev->in_sync = 1;
7555                                 did_change = 1;
7556                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7557                         }
7558                         if (mddev->safemode == 1)
7559                                 mddev->safemode = 0;
7560                         spin_unlock_irq(&mddev->write_lock);
7561                         if (did_change)
7562                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7563                 }
7564
7565                 if (mddev->flags)
7566                         md_update_sb(mddev, 0);
7567
7568                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7569                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7570                         /* resync/recovery still happening */
7571                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7572                         goto unlock;
7573                 }
7574                 if (mddev->sync_thread) {
7575                         reap_sync_thread(mddev);
7576                         goto unlock;
7577                 }
7578                 /* Set RUNNING before clearing NEEDED to avoid
7579                  * any transients in the value of "sync_action".
7580                  */
7581                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7582                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7583                 /* Clear some bits that don't mean anything, but
7584                  * might be left set
7585                  */
7586                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7587                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7588
7589                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7590                         goto unlock;
7591                 /* no recovery is running.
7592                  * remove any failed drives, then
7593                  * add spares if possible.
7594                  * Spare are also removed and re-added, to allow
7595                  * the personality to fail the re-add.
7596                  */
7597
7598                 if (mddev->reshape_position != MaxSector) {
7599                         if (mddev->pers->check_reshape == NULL ||
7600                             mddev->pers->check_reshape(mddev) != 0)
7601                                 /* Cannot proceed */
7602                                 goto unlock;
7603                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7604                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7605                 } else if ((spares = remove_and_add_spares(mddev))) {
7606                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7607                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7608                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7609                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7610                 } else if (mddev->recovery_cp < MaxSector) {
7611                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7612                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7613                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7614                         /* nothing to be done ... */
7615                         goto unlock;
7616
7617                 if (mddev->pers->sync_request) {
7618                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7619                                 /* We are adding a device or devices to an array
7620                                  * which has the bitmap stored on all devices.
7621                                  * So make sure all bitmap pages get written
7622                                  */
7623                                 bitmap_write_all(mddev->bitmap);
7624                         }
7625                         mddev->sync_thread = md_register_thread(md_do_sync,
7626                                                                 mddev,
7627                                                                 "resync");
7628                         if (!mddev->sync_thread) {
7629                                 printk(KERN_ERR "%s: could not start resync"
7630                                         " thread...\n", 
7631                                         mdname(mddev));
7632                                 /* leave the spares where they are, it shouldn't hurt */
7633                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7634                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7635                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7636                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7637                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7638                         } else
7639                                 md_wakeup_thread(mddev->sync_thread);
7640                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7641                         md_new_event(mddev);
7642                 }
7643         unlock:
7644                 if (!mddev->sync_thread) {
7645                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7646                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7647                                                &mddev->recovery))
7648                                 if (mddev->sysfs_action)
7649                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7650                 }
7651                 mddev_unlock(mddev);
7652         }
7653 }
7654
7655 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7656 {
7657         sysfs_notify_dirent_safe(rdev->sysfs_state);
7658         wait_event_timeout(rdev->blocked_wait,
7659                            !test_bit(Blocked, &rdev->flags) &&
7660                            !test_bit(BlockedBadBlocks, &rdev->flags),
7661                            msecs_to_jiffies(5000));
7662         rdev_dec_pending(rdev, mddev);
7663 }
7664 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7665
7666
7667 /* Bad block management.
7668  * We can record which blocks on each device are 'bad' and so just
7669  * fail those blocks, or that stripe, rather than the whole device.
7670  * Entries in the bad-block table are 64bits wide.  This comprises:
7671  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7672  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7673  *  A 'shift' can be set so that larger blocks are tracked and
7674  *  consequently larger devices can be covered.
7675  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7676  *
7677  * Locking of the bad-block table uses a seqlock so md_is_badblock
7678  * might need to retry if it is very unlucky.
7679  * We will sometimes want to check for bad blocks in a bi_end_io function,
7680  * so we use the write_seqlock_irq variant.
7681  *
7682  * When looking for a bad block we specify a range and want to
7683  * know if any block in the range is bad.  So we binary-search
7684  * to the last range that starts at-or-before the given endpoint,
7685  * (or "before the sector after the target range")
7686  * then see if it ends after the given start.
7687  * We return
7688  *  0 if there are no known bad blocks in the range
7689  *  1 if there are known bad block which are all acknowledged
7690  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7691  * plus the start/length of the first bad section we overlap.
7692  */
7693 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7694                    sector_t *first_bad, int *bad_sectors)
7695 {
7696         int hi;
7697         int lo = 0;
7698         u64 *p = bb->page;
7699         int rv = 0;
7700         sector_t target = s + sectors;
7701         unsigned seq;
7702
7703         if (bb->shift > 0) {
7704                 /* round the start down, and the end up */
7705                 s >>= bb->shift;
7706                 target += (1<<bb->shift) - 1;
7707                 target >>= bb->shift;
7708                 sectors = target - s;
7709         }
7710         /* 'target' is now the first block after the bad range */
7711
7712 retry:
7713         seq = read_seqbegin(&bb->lock);
7714
7715         hi = bb->count;
7716
7717         /* Binary search between lo and hi for 'target'
7718          * i.e. for the last range that starts before 'target'
7719          */
7720         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7721          * are known not to be the last range before target.
7722          * VARIANT: hi-lo is the number of possible
7723          * ranges, and decreases until it reaches 1
7724          */
7725         while (hi - lo > 1) {
7726                 int mid = (lo + hi) / 2;
7727                 sector_t a = BB_OFFSET(p[mid]);
7728                 if (a < target)
7729                         /* This could still be the one, earlier ranges
7730                          * could not. */
7731                         lo = mid;
7732                 else
7733                         /* This and later ranges are definitely out. */
7734                         hi = mid;
7735         }
7736         /* 'lo' might be the last that started before target, but 'hi' isn't */
7737         if (hi > lo) {
7738                 /* need to check all range that end after 's' to see if
7739                  * any are unacknowledged.
7740                  */
7741                 while (lo >= 0 &&
7742                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7743                         if (BB_OFFSET(p[lo]) < target) {
7744                                 /* starts before the end, and finishes after
7745                                  * the start, so they must overlap
7746                                  */
7747                                 if (rv != -1 && BB_ACK(p[lo]))
7748                                         rv = 1;
7749                                 else
7750                                         rv = -1;
7751                                 *first_bad = BB_OFFSET(p[lo]);
7752                                 *bad_sectors = BB_LEN(p[lo]);
7753                         }
7754                         lo--;
7755                 }
7756         }
7757
7758         if (read_seqretry(&bb->lock, seq))
7759                 goto retry;
7760
7761         return rv;
7762 }
7763 EXPORT_SYMBOL_GPL(md_is_badblock);
7764
7765 /*
7766  * Add a range of bad blocks to the table.
7767  * This might extend the table, or might contract it
7768  * if two adjacent ranges can be merged.
7769  * We binary-search to find the 'insertion' point, then
7770  * decide how best to handle it.
7771  */
7772 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7773                             int acknowledged)
7774 {
7775         u64 *p;
7776         int lo, hi;
7777         int rv = 1;
7778
7779         if (bb->shift < 0)
7780                 /* badblocks are disabled */
7781                 return 0;
7782
7783         if (bb->shift) {
7784                 /* round the start down, and the end up */
7785                 sector_t next = s + sectors;
7786                 s >>= bb->shift;
7787                 next += (1<<bb->shift) - 1;
7788                 next >>= bb->shift;
7789                 sectors = next - s;
7790         }
7791
7792         write_seqlock_irq(&bb->lock);
7793
7794         p = bb->page;
7795         lo = 0;
7796         hi = bb->count;
7797         /* Find the last range that starts at-or-before 's' */
7798         while (hi - lo > 1) {
7799                 int mid = (lo + hi) / 2;
7800                 sector_t a = BB_OFFSET(p[mid]);
7801                 if (a <= s)
7802                         lo = mid;
7803                 else
7804                         hi = mid;
7805         }
7806         if (hi > lo && BB_OFFSET(p[lo]) > s)
7807                 hi = lo;
7808
7809         if (hi > lo) {
7810                 /* we found a range that might merge with the start
7811                  * of our new range
7812                  */
7813                 sector_t a = BB_OFFSET(p[lo]);
7814                 sector_t e = a + BB_LEN(p[lo]);
7815                 int ack = BB_ACK(p[lo]);
7816                 if (e >= s) {
7817                         /* Yes, we can merge with a previous range */
7818                         if (s == a && s + sectors >= e)
7819                                 /* new range covers old */
7820                                 ack = acknowledged;
7821                         else
7822                                 ack = ack && acknowledged;
7823
7824                         if (e < s + sectors)
7825                                 e = s + sectors;
7826                         if (e - a <= BB_MAX_LEN) {
7827                                 p[lo] = BB_MAKE(a, e-a, ack);
7828                                 s = e;
7829                         } else {
7830                                 /* does not all fit in one range,
7831                                  * make p[lo] maximal
7832                                  */
7833                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7834                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7835                                 s = a + BB_MAX_LEN;
7836                         }
7837                         sectors = e - s;
7838                 }
7839         }
7840         if (sectors && hi < bb->count) {
7841                 /* 'hi' points to the first range that starts after 's'.
7842                  * Maybe we can merge with the start of that range */
7843                 sector_t a = BB_OFFSET(p[hi]);
7844                 sector_t e = a + BB_LEN(p[hi]);
7845                 int ack = BB_ACK(p[hi]);
7846                 if (a <= s + sectors) {
7847                         /* merging is possible */
7848                         if (e <= s + sectors) {
7849                                 /* full overlap */
7850                                 e = s + sectors;
7851                                 ack = acknowledged;
7852                         } else
7853                                 ack = ack && acknowledged;
7854
7855                         a = s;
7856                         if (e - a <= BB_MAX_LEN) {
7857                                 p[hi] = BB_MAKE(a, e-a, ack);
7858                                 s = e;
7859                         } else {
7860                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7861                                 s = a + BB_MAX_LEN;
7862                         }
7863                         sectors = e - s;
7864                         lo = hi;
7865                         hi++;
7866                 }
7867         }
7868         if (sectors == 0 && hi < bb->count) {
7869                 /* we might be able to combine lo and hi */
7870                 /* Note: 's' is at the end of 'lo' */
7871                 sector_t a = BB_OFFSET(p[hi]);
7872                 int lolen = BB_LEN(p[lo]);
7873                 int hilen = BB_LEN(p[hi]);
7874                 int newlen = lolen + hilen - (s - a);
7875                 if (s >= a && newlen < BB_MAX_LEN) {
7876                         /* yes, we can combine them */
7877                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7878                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7879                         memmove(p + hi, p + hi + 1,
7880                                 (bb->count - hi - 1) * 8);
7881                         bb->count--;
7882                 }
7883         }
7884         while (sectors) {
7885                 /* didn't merge (it all).
7886                  * Need to add a range just before 'hi' */
7887                 if (bb->count >= MD_MAX_BADBLOCKS) {
7888                         /* No room for more */
7889                         rv = 0;
7890                         break;
7891                 } else {
7892                         int this_sectors = sectors;
7893                         memmove(p + hi + 1, p + hi,
7894                                 (bb->count - hi) * 8);
7895                         bb->count++;
7896
7897                         if (this_sectors > BB_MAX_LEN)
7898                                 this_sectors = BB_MAX_LEN;
7899                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7900                         sectors -= this_sectors;
7901                         s += this_sectors;
7902                 }
7903         }
7904
7905         bb->changed = 1;
7906         if (!acknowledged)
7907                 bb->unacked_exist = 1;
7908         write_sequnlock_irq(&bb->lock);
7909
7910         return rv;
7911 }
7912
7913 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7914                        int acknowledged)
7915 {
7916         int rv = md_set_badblocks(&rdev->badblocks,
7917                                   s + rdev->data_offset, sectors, acknowledged);
7918         if (rv) {
7919                 /* Make sure they get written out promptly */
7920                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7921                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7922                 md_wakeup_thread(rdev->mddev->thread);
7923         }
7924         return rv;
7925 }
7926 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7927
7928 /*
7929  * Remove a range of bad blocks from the table.
7930  * This may involve extending the table if we spilt a region,
7931  * but it must not fail.  So if the table becomes full, we just
7932  * drop the remove request.
7933  */
7934 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7935 {
7936         u64 *p;
7937         int lo, hi;
7938         sector_t target = s + sectors;
7939         int rv = 0;
7940
7941         if (bb->shift > 0) {
7942                 /* When clearing we round the start up and the end down.
7943                  * This should not matter as the shift should align with
7944                  * the block size and no rounding should ever be needed.
7945                  * However it is better the think a block is bad when it
7946                  * isn't than to think a block is not bad when it is.
7947                  */
7948                 s += (1<<bb->shift) - 1;
7949                 s >>= bb->shift;
7950                 target >>= bb->shift;
7951                 sectors = target - s;
7952         }
7953
7954         write_seqlock_irq(&bb->lock);
7955
7956         p = bb->page;
7957         lo = 0;
7958         hi = bb->count;
7959         /* Find the last range that starts before 'target' */
7960         while (hi - lo > 1) {
7961                 int mid = (lo + hi) / 2;
7962                 sector_t a = BB_OFFSET(p[mid]);
7963                 if (a < target)
7964                         lo = mid;
7965                 else
7966                         hi = mid;
7967         }
7968         if (hi > lo) {
7969                 /* p[lo] is the last range that could overlap the
7970                  * current range.  Earlier ranges could also overlap,
7971                  * but only this one can overlap the end of the range.
7972                  */
7973                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7974                         /* Partial overlap, leave the tail of this range */
7975                         int ack = BB_ACK(p[lo]);
7976                         sector_t a = BB_OFFSET(p[lo]);
7977                         sector_t end = a + BB_LEN(p[lo]);
7978
7979                         if (a < s) {
7980                                 /* we need to split this range */
7981                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7982                                         rv = 0;
7983                                         goto out;
7984                                 }
7985                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7986                                 bb->count++;
7987                                 p[lo] = BB_MAKE(a, s-a, ack);
7988                                 lo++;
7989                         }
7990                         p[lo] = BB_MAKE(target, end - target, ack);
7991                         /* there is no longer an overlap */
7992                         hi = lo;
7993                         lo--;
7994                 }
7995                 while (lo >= 0 &&
7996                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7997                         /* This range does overlap */
7998                         if (BB_OFFSET(p[lo]) < s) {
7999                                 /* Keep the early parts of this range. */
8000                                 int ack = BB_ACK(p[lo]);
8001                                 sector_t start = BB_OFFSET(p[lo]);
8002                                 p[lo] = BB_MAKE(start, s - start, ack);
8003                                 /* now low doesn't overlap, so.. */
8004                                 break;
8005                         }
8006                         lo--;
8007                 }
8008                 /* 'lo' is strictly before, 'hi' is strictly after,
8009                  * anything between needs to be discarded
8010                  */
8011                 if (hi - lo > 1) {
8012                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8013                         bb->count -= (hi - lo - 1);
8014                 }
8015         }
8016
8017         bb->changed = 1;
8018 out:
8019         write_sequnlock_irq(&bb->lock);
8020         return rv;
8021 }
8022
8023 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8024 {
8025         return md_clear_badblocks(&rdev->badblocks,
8026                                   s + rdev->data_offset,
8027                                   sectors);
8028 }
8029 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8030
8031 /*
8032  * Acknowledge all bad blocks in a list.
8033  * This only succeeds if ->changed is clear.  It is used by
8034  * in-kernel metadata updates
8035  */
8036 void md_ack_all_badblocks(struct badblocks *bb)
8037 {
8038         if (bb->page == NULL || bb->changed)
8039                 /* no point even trying */
8040                 return;
8041         write_seqlock_irq(&bb->lock);
8042
8043         if (bb->changed == 0) {
8044                 u64 *p = bb->page;
8045                 int i;
8046                 for (i = 0; i < bb->count ; i++) {
8047                         if (!BB_ACK(p[i])) {
8048                                 sector_t start = BB_OFFSET(p[i]);
8049                                 int len = BB_LEN(p[i]);
8050                                 p[i] = BB_MAKE(start, len, 1);
8051                         }
8052                 }
8053                 bb->unacked_exist = 0;
8054         }
8055         write_sequnlock_irq(&bb->lock);
8056 }
8057 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8058
8059 /* sysfs access to bad-blocks list.
8060  * We present two files.
8061  * 'bad-blocks' lists sector numbers and lengths of ranges that
8062  *    are recorded as bad.  The list is truncated to fit within
8063  *    the one-page limit of sysfs.
8064  *    Writing "sector length" to this file adds an acknowledged
8065  *    bad block list.
8066  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8067  *    been acknowledged.  Writing to this file adds bad blocks
8068  *    without acknowledging them.  This is largely for testing.
8069  */
8070
8071 static ssize_t
8072 badblocks_show(struct badblocks *bb, char *page, int unack)
8073 {
8074         size_t len;
8075         int i;
8076         u64 *p = bb->page;
8077         unsigned seq;
8078
8079         if (bb->shift < 0)
8080                 return 0;
8081
8082 retry:
8083         seq = read_seqbegin(&bb->lock);
8084
8085         len = 0;
8086         i = 0;
8087
8088         while (len < PAGE_SIZE && i < bb->count) {
8089                 sector_t s = BB_OFFSET(p[i]);
8090                 unsigned int length = BB_LEN(p[i]);
8091                 int ack = BB_ACK(p[i]);
8092                 i++;
8093
8094                 if (unack && ack)
8095                         continue;
8096
8097                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8098                                 (unsigned long long)s << bb->shift,
8099                                 length << bb->shift);
8100         }
8101         if (unack && len == 0)
8102                 bb->unacked_exist = 0;
8103
8104         if (read_seqretry(&bb->lock, seq))
8105                 goto retry;
8106
8107         return len;
8108 }
8109
8110 #define DO_DEBUG 1
8111
8112 static ssize_t
8113 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8114 {
8115         unsigned long long sector;
8116         int length;
8117         char newline;
8118 #ifdef DO_DEBUG
8119         /* Allow clearing via sysfs *only* for testing/debugging.
8120          * Normally only a successful write may clear a badblock
8121          */
8122         int clear = 0;
8123         if (page[0] == '-') {
8124                 clear = 1;
8125                 page++;
8126         }
8127 #endif /* DO_DEBUG */
8128
8129         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8130         case 3:
8131                 if (newline != '\n')
8132                         return -EINVAL;
8133         case 2:
8134                 if (length <= 0)
8135                         return -EINVAL;
8136                 break;
8137         default:
8138                 return -EINVAL;
8139         }
8140
8141 #ifdef DO_DEBUG
8142         if (clear) {
8143                 md_clear_badblocks(bb, sector, length);
8144                 return len;
8145         }
8146 #endif /* DO_DEBUG */
8147         if (md_set_badblocks(bb, sector, length, !unack))
8148                 return len;
8149         else
8150                 return -ENOSPC;
8151 }
8152
8153 static int md_notify_reboot(struct notifier_block *this,
8154                             unsigned long code, void *x)
8155 {
8156         struct list_head *tmp;
8157         struct mddev *mddev;
8158         int need_delay = 0;
8159
8160         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8161
8162                 printk(KERN_INFO "md: stopping all md devices.\n");
8163
8164                 for_each_mddev(mddev, tmp) {
8165                         if (mddev_trylock(mddev)) {
8166                                 /* Force a switch to readonly even array
8167                                  * appears to still be in use.  Hence
8168                                  * the '100'.
8169                                  */
8170                                 md_set_readonly(mddev, 100);
8171                                 mddev_unlock(mddev);
8172                         }
8173                         need_delay = 1;
8174                 }
8175                 /*
8176                  * certain more exotic SCSI devices are known to be
8177                  * volatile wrt too early system reboots. While the
8178                  * right place to handle this issue is the given
8179                  * driver, we do want to have a safe RAID driver ...
8180                  */
8181                 if (need_delay)
8182                         mdelay(1000*1);
8183         }
8184         return NOTIFY_DONE;
8185 }
8186
8187 static struct notifier_block md_notifier = {
8188         .notifier_call  = md_notify_reboot,
8189         .next           = NULL,
8190         .priority       = INT_MAX, /* before any real devices */
8191 };
8192
8193 static void md_geninit(void)
8194 {
8195         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8196
8197         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8198 }
8199
8200 static int __init md_init(void)
8201 {
8202         int ret = -ENOMEM;
8203
8204         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8205         if (!md_wq)
8206                 goto err_wq;
8207
8208         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8209         if (!md_misc_wq)
8210                 goto err_misc_wq;
8211
8212         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8213                 goto err_md;
8214
8215         if ((ret = register_blkdev(0, "mdp")) < 0)
8216                 goto err_mdp;
8217         mdp_major = ret;
8218
8219         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8220                             md_probe, NULL, NULL);
8221         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8222                             md_probe, NULL, NULL);
8223
8224         register_reboot_notifier(&md_notifier);
8225         raid_table_header = register_sysctl_table(raid_root_table);
8226
8227         md_geninit();
8228         return 0;
8229
8230 err_mdp:
8231         unregister_blkdev(MD_MAJOR, "md");
8232 err_md:
8233         destroy_workqueue(md_misc_wq);
8234 err_misc_wq:
8235         destroy_workqueue(md_wq);
8236 err_wq:
8237         return ret;
8238 }
8239
8240 #ifndef MODULE
8241
8242 /*
8243  * Searches all registered partitions for autorun RAID arrays
8244  * at boot time.
8245  */
8246
8247 static LIST_HEAD(all_detected_devices);
8248 struct detected_devices_node {
8249         struct list_head list;
8250         dev_t dev;
8251 };
8252
8253 void md_autodetect_dev(dev_t dev)
8254 {
8255         struct detected_devices_node *node_detected_dev;
8256
8257         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8258         if (node_detected_dev) {
8259                 node_detected_dev->dev = dev;
8260                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8261         } else {
8262                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8263                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8264         }
8265 }
8266
8267
8268 static void autostart_arrays(int part)
8269 {
8270         struct md_rdev *rdev;
8271         struct detected_devices_node *node_detected_dev;
8272         dev_t dev;
8273         int i_scanned, i_passed;
8274
8275         i_scanned = 0;
8276         i_passed = 0;
8277
8278         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8279
8280         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8281                 i_scanned++;
8282                 node_detected_dev = list_entry(all_detected_devices.next,
8283                                         struct detected_devices_node, list);
8284                 list_del(&node_detected_dev->list);
8285                 dev = node_detected_dev->dev;
8286                 kfree(node_detected_dev);
8287                 rdev = md_import_device(dev,0, 90);
8288                 if (IS_ERR(rdev))
8289                         continue;
8290
8291                 if (test_bit(Faulty, &rdev->flags)) {
8292                         MD_BUG();
8293                         continue;
8294                 }
8295                 set_bit(AutoDetected, &rdev->flags);
8296                 list_add(&rdev->same_set, &pending_raid_disks);
8297                 i_passed++;
8298         }
8299
8300         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8301                                                 i_scanned, i_passed);
8302
8303         autorun_devices(part);
8304 }
8305
8306 #endif /* !MODULE */
8307
8308 static __exit void md_exit(void)
8309 {
8310         struct mddev *mddev;
8311         struct list_head *tmp;
8312
8313         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8314         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8315
8316         unregister_blkdev(MD_MAJOR,"md");
8317         unregister_blkdev(mdp_major, "mdp");
8318         unregister_reboot_notifier(&md_notifier);
8319         unregister_sysctl_table(raid_table_header);
8320         remove_proc_entry("mdstat", NULL);
8321         for_each_mddev(mddev, tmp) {
8322                 export_array(mddev);
8323                 mddev->hold_active = 0;
8324         }
8325         destroy_workqueue(md_misc_wq);
8326         destroy_workqueue(md_wq);
8327 }
8328
8329 subsys_initcall(md_init);
8330 module_exit(md_exit)
8331
8332 static int get_ro(char *buffer, struct kernel_param *kp)
8333 {
8334         return sprintf(buffer, "%d", start_readonly);
8335 }
8336 static int set_ro(const char *val, struct kernel_param *kp)
8337 {
8338         char *e;
8339         int num = simple_strtoul(val, &e, 10);
8340         if (*val && (*e == '\0' || *e == '\n')) {
8341                 start_readonly = num;
8342                 return 0;
8343         }
8344         return -EINVAL;
8345 }
8346
8347 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8348 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8349
8350 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8351
8352 EXPORT_SYMBOL(register_md_personality);
8353 EXPORT_SYMBOL(unregister_md_personality);
8354 EXPORT_SYMBOL(md_error);
8355 EXPORT_SYMBOL(md_done_sync);
8356 EXPORT_SYMBOL(md_write_start);
8357 EXPORT_SYMBOL(md_write_end);
8358 EXPORT_SYMBOL(md_register_thread);
8359 EXPORT_SYMBOL(md_unregister_thread);
8360 EXPORT_SYMBOL(md_wakeup_thread);
8361 EXPORT_SYMBOL(md_check_recovery);
8362 MODULE_LICENSE("GPL");
8363 MODULE_DESCRIPTION("MD RAID framework");
8364 MODULE_ALIAS("md");
8365 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);