perf sched: Display time in milliseconds, reorganize output
[linux-flexiantxendom0-3.2.10.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2
3 #include "util/util.h"
4 #include "util/cache.h"
5 #include "util/symbol.h"
6 #include "util/thread.h"
7 #include "util/header.h"
8
9 #include "util/parse-options.h"
10
11 #include "perf.h"
12 #include "util/debug.h"
13
14 #include "util/trace-event.h"
15 #include <sys/types.h>
16
17
18 #define MAX_CPUS 4096
19
20 static char                     const *input_name = "perf.data";
21 static int                      input;
22 static unsigned long            page_size;
23 static unsigned long            mmap_window = 32;
24
25 static unsigned long            total_comm = 0;
26
27 static struct rb_root           threads;
28 static struct thread            *last_match;
29
30 static struct perf_header       *header;
31 static u64                      sample_type;
32
33 static int                      replay_mode;
34 static int                      lat_mode;
35
36
37 /*
38  * Scheduler benchmarks
39  */
40 #include <sys/resource.h>
41 #include <sys/types.h>
42 #include <sys/stat.h>
43 #include <sys/time.h>
44 #include <sys/prctl.h>
45
46 #include <linux/unistd.h>
47
48 #include <semaphore.h>
49 #include <pthread.h>
50 #include <signal.h>
51 #include <values.h>
52 #include <string.h>
53 #include <unistd.h>
54 #include <stdlib.h>
55 #include <assert.h>
56 #include <fcntl.h>
57 #include <time.h>
58 #include <math.h>
59
60 #include <stdio.h>
61
62 #define PR_SET_NAME     15               /* Set process name */
63
64 #define BUG_ON(x)       assert(!(x))
65
66 #define DEBUG           0
67
68 typedef unsigned long long nsec_t;
69
70 static nsec_t run_measurement_overhead;
71 static nsec_t sleep_measurement_overhead;
72
73 static nsec_t get_nsecs(void)
74 {
75         struct timespec ts;
76
77         clock_gettime(CLOCK_MONOTONIC, &ts);
78
79         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
80 }
81
82 static void burn_nsecs(nsec_t nsecs)
83 {
84         nsec_t T0 = get_nsecs(), T1;
85
86         do {
87                 T1 = get_nsecs();
88         } while (T1 + run_measurement_overhead < T0 + nsecs);
89 }
90
91 static void sleep_nsecs(nsec_t nsecs)
92 {
93         struct timespec ts;
94
95         ts.tv_nsec = nsecs % 999999999;
96         ts.tv_sec = nsecs / 999999999;
97
98         nanosleep(&ts, NULL);
99 }
100
101 static void calibrate_run_measurement_overhead(void)
102 {
103         nsec_t T0, T1, delta, min_delta = 1000000000ULL;
104         int i;
105
106         for (i = 0; i < 10; i++) {
107                 T0 = get_nsecs();
108                 burn_nsecs(0);
109                 T1 = get_nsecs();
110                 delta = T1-T0;
111                 min_delta = min(min_delta, delta);
112         }
113         run_measurement_overhead = min_delta;
114
115         printf("run measurement overhead: %Ld nsecs\n", min_delta);
116 }
117
118 static void calibrate_sleep_measurement_overhead(void)
119 {
120         nsec_t T0, T1, delta, min_delta = 1000000000ULL;
121         int i;
122
123         for (i = 0; i < 10; i++) {
124                 T0 = get_nsecs();
125                 sleep_nsecs(10000);
126                 T1 = get_nsecs();
127                 delta = T1-T0;
128                 min_delta = min(min_delta, delta);
129         }
130         min_delta -= 10000;
131         sleep_measurement_overhead = min_delta;
132
133         printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
134 }
135
136 #define COMM_LEN        20
137 #define SYM_LEN         129
138
139 #define MAX_PID         65536
140
141 static unsigned long nr_tasks;
142
143 struct sched_event;
144
145 struct task_desc {
146         unsigned long           nr;
147         unsigned long           pid;
148         char                    comm[COMM_LEN];
149
150         unsigned long           nr_events;
151         unsigned long           curr_event;
152         struct sched_event      **events;
153
154         pthread_t               thread;
155         sem_t                   sleep_sem;
156
157         sem_t                   ready_for_work;
158         sem_t                   work_done_sem;
159
160         nsec_t                  cpu_usage;
161 };
162
163 enum sched_event_type {
164         SCHED_EVENT_RUN,
165         SCHED_EVENT_SLEEP,
166         SCHED_EVENT_WAKEUP,
167 };
168
169 struct sched_event {
170         enum sched_event_type   type;
171         nsec_t                  timestamp;
172         nsec_t                  duration;
173         unsigned long           nr;
174         int                     specific_wait;
175         sem_t                   *wait_sem;
176         struct task_desc        *wakee;
177 };
178
179 static struct task_desc         *pid_to_task[MAX_PID];
180
181 static struct task_desc         **tasks;
182
183 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
184 static nsec_t                   start_time;
185
186 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
187
188 static unsigned long            nr_run_events;
189 static unsigned long            nr_sleep_events;
190 static unsigned long            nr_wakeup_events;
191
192 static unsigned long            nr_sleep_corrections;
193 static unsigned long            nr_run_events_optimized;
194
195 static struct sched_event *
196 get_new_event(struct task_desc *task, nsec_t timestamp)
197 {
198         struct sched_event *event = calloc(1, sizeof(*event));
199         unsigned long idx = task->nr_events;
200         size_t size;
201
202         event->timestamp = timestamp;
203         event->nr = idx;
204
205         task->nr_events++;
206         size = sizeof(struct sched_event *) * task->nr_events;
207         task->events = realloc(task->events, size);
208         BUG_ON(!task->events);
209
210         task->events[idx] = event;
211
212         return event;
213 }
214
215 static struct sched_event *last_event(struct task_desc *task)
216 {
217         if (!task->nr_events)
218                 return NULL;
219
220         return task->events[task->nr_events - 1];
221 }
222
223 static void
224 add_sched_event_run(struct task_desc *task, nsec_t timestamp, u64 duration)
225 {
226         struct sched_event *event, *curr_event = last_event(task);
227
228         /*
229          * optimize an existing RUN event by merging this one
230          * to it:
231          */
232         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
233                 nr_run_events_optimized++;
234                 curr_event->duration += duration;
235                 return;
236         }
237
238         event = get_new_event(task, timestamp);
239
240         event->type = SCHED_EVENT_RUN;
241         event->duration = duration;
242
243         nr_run_events++;
244 }
245
246 static unsigned long targetless_wakeups;
247 static unsigned long multitarget_wakeups;
248
249 static void
250 add_sched_event_wakeup(struct task_desc *task, nsec_t timestamp,
251                        struct task_desc *wakee)
252 {
253         struct sched_event *event, *wakee_event;
254
255         event = get_new_event(task, timestamp);
256         event->type = SCHED_EVENT_WAKEUP;
257         event->wakee = wakee;
258
259         wakee_event = last_event(wakee);
260         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
261                 targetless_wakeups++;
262                 return;
263         }
264         if (wakee_event->wait_sem) {
265                 multitarget_wakeups++;
266                 return;
267         }
268
269         wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
270         sem_init(wakee_event->wait_sem, 0, 0);
271         wakee_event->specific_wait = 1;
272         event->wait_sem = wakee_event->wait_sem;
273
274         nr_wakeup_events++;
275 }
276
277 static void
278 add_sched_event_sleep(struct task_desc *task, nsec_t timestamp,
279                       u64 task_state __used)
280 {
281         struct sched_event *event = get_new_event(task, timestamp);
282
283         event->type = SCHED_EVENT_SLEEP;
284
285         nr_sleep_events++;
286 }
287
288 static struct task_desc *register_pid(unsigned long pid, const char *comm)
289 {
290         struct task_desc *task;
291
292         BUG_ON(pid >= MAX_PID);
293
294         task = pid_to_task[pid];
295
296         if (task)
297                 return task;
298
299         task = calloc(1, sizeof(*task));
300         task->pid = pid;
301         task->nr = nr_tasks;
302         strcpy(task->comm, comm);
303         /*
304          * every task starts in sleeping state - this gets ignored
305          * if there's no wakeup pointing to this sleep state:
306          */
307         add_sched_event_sleep(task, 0, 0);
308
309         pid_to_task[pid] = task;
310         nr_tasks++;
311         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
312         BUG_ON(!tasks);
313         tasks[task->nr] = task;
314
315         if (verbose)
316                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
317
318         return task;
319 }
320
321
322 static void print_task_traces(void)
323 {
324         struct task_desc *task;
325         unsigned long i;
326
327         for (i = 0; i < nr_tasks; i++) {
328                 task = tasks[i];
329                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
330                         task->nr, task->comm, task->pid, task->nr_events);
331         }
332 }
333
334 static void add_cross_task_wakeups(void)
335 {
336         struct task_desc *task1, *task2;
337         unsigned long i, j;
338
339         for (i = 0; i < nr_tasks; i++) {
340                 task1 = tasks[i];
341                 j = i + 1;
342                 if (j == nr_tasks)
343                         j = 0;
344                 task2 = tasks[j];
345                 add_sched_event_wakeup(task1, 0, task2);
346         }
347 }
348
349 static void
350 process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
351 {
352         int ret = 0;
353         nsec_t now;
354         long long delta;
355
356         now = get_nsecs();
357         delta = start_time + event->timestamp - now;
358
359         switch (event->type) {
360                 case SCHED_EVENT_RUN:
361                         burn_nsecs(event->duration);
362                         break;
363                 case SCHED_EVENT_SLEEP:
364                         if (event->wait_sem)
365                                 ret = sem_wait(event->wait_sem);
366                         BUG_ON(ret);
367                         break;
368                 case SCHED_EVENT_WAKEUP:
369                         if (event->wait_sem)
370                                 ret = sem_post(event->wait_sem);
371                         BUG_ON(ret);
372                         break;
373                 default:
374                         BUG_ON(1);
375         }
376 }
377
378 static nsec_t get_cpu_usage_nsec_parent(void)
379 {
380         struct rusage ru;
381         nsec_t sum;
382         int err;
383
384         err = getrusage(RUSAGE_SELF, &ru);
385         BUG_ON(err);
386
387         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
388         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
389
390         return sum;
391 }
392
393 static nsec_t get_cpu_usage_nsec_self(void)
394 {
395         char filename [] = "/proc/1234567890/sched";
396         unsigned long msecs, nsecs;
397         char *line = NULL;
398         nsec_t total = 0;
399         size_t len = 0;
400         ssize_t chars;
401         FILE *file;
402         int ret;
403
404         sprintf(filename, "/proc/%d/sched", getpid());
405         file = fopen(filename, "r");
406         BUG_ON(!file);
407
408         while ((chars = getline(&line, &len, file)) != -1) {
409                 ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
410                         &msecs, &nsecs);
411                 if (ret == 2) {
412                         total = msecs*1e6 + nsecs;
413                         break;
414                 }
415         }
416         if (line)
417                 free(line);
418         fclose(file);
419
420         return total;
421 }
422
423 static void *thread_func(void *ctx)
424 {
425         struct task_desc *this_task = ctx;
426         nsec_t cpu_usage_0, cpu_usage_1;
427         unsigned long i, ret;
428         char comm2[22];
429
430         sprintf(comm2, ":%s", this_task->comm);
431         prctl(PR_SET_NAME, comm2);
432
433 again:
434         ret = sem_post(&this_task->ready_for_work);
435         BUG_ON(ret);
436         ret = pthread_mutex_lock(&start_work_mutex);
437         BUG_ON(ret);
438         ret = pthread_mutex_unlock(&start_work_mutex);
439         BUG_ON(ret);
440
441         cpu_usage_0 = get_cpu_usage_nsec_self();
442
443         for (i = 0; i < this_task->nr_events; i++) {
444                 this_task->curr_event = i;
445                 process_sched_event(this_task, this_task->events[i]);
446         }
447
448         cpu_usage_1 = get_cpu_usage_nsec_self();
449         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
450
451         ret = sem_post(&this_task->work_done_sem);
452         BUG_ON(ret);
453
454         ret = pthread_mutex_lock(&work_done_wait_mutex);
455         BUG_ON(ret);
456         ret = pthread_mutex_unlock(&work_done_wait_mutex);
457         BUG_ON(ret);
458
459         goto again;
460 }
461
462 static void create_tasks(void)
463 {
464         struct task_desc *task;
465         pthread_attr_t attr;
466         unsigned long i;
467         int err;
468
469         err = pthread_attr_init(&attr);
470         BUG_ON(err);
471         err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
472         BUG_ON(err);
473         err = pthread_mutex_lock(&start_work_mutex);
474         BUG_ON(err);
475         err = pthread_mutex_lock(&work_done_wait_mutex);
476         BUG_ON(err);
477         for (i = 0; i < nr_tasks; i++) {
478                 task = tasks[i];
479                 sem_init(&task->sleep_sem, 0, 0);
480                 sem_init(&task->ready_for_work, 0, 0);
481                 sem_init(&task->work_done_sem, 0, 0);
482                 task->curr_event = 0;
483                 err = pthread_create(&task->thread, &attr, thread_func, task);
484                 BUG_ON(err);
485         }
486 }
487
488 static nsec_t cpu_usage;
489 static nsec_t runavg_cpu_usage;
490 static nsec_t parent_cpu_usage;
491 static nsec_t runavg_parent_cpu_usage;
492
493 static void wait_for_tasks(void)
494 {
495         nsec_t cpu_usage_0, cpu_usage_1;
496         struct task_desc *task;
497         unsigned long i, ret;
498
499         start_time = get_nsecs();
500         cpu_usage = 0;
501         pthread_mutex_unlock(&work_done_wait_mutex);
502
503         for (i = 0; i < nr_tasks; i++) {
504                 task = tasks[i];
505                 ret = sem_wait(&task->ready_for_work);
506                 BUG_ON(ret);
507                 sem_init(&task->ready_for_work, 0, 0);
508         }
509         ret = pthread_mutex_lock(&work_done_wait_mutex);
510         BUG_ON(ret);
511
512         cpu_usage_0 = get_cpu_usage_nsec_parent();
513
514         pthread_mutex_unlock(&start_work_mutex);
515
516         for (i = 0; i < nr_tasks; i++) {
517                 task = tasks[i];
518                 ret = sem_wait(&task->work_done_sem);
519                 BUG_ON(ret);
520                 sem_init(&task->work_done_sem, 0, 0);
521                 cpu_usage += task->cpu_usage;
522                 task->cpu_usage = 0;
523         }
524
525         cpu_usage_1 = get_cpu_usage_nsec_parent();
526         if (!runavg_cpu_usage)
527                 runavg_cpu_usage = cpu_usage;
528         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
529
530         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
531         if (!runavg_parent_cpu_usage)
532                 runavg_parent_cpu_usage = parent_cpu_usage;
533         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
534                                    parent_cpu_usage)/10;
535
536         ret = pthread_mutex_lock(&start_work_mutex);
537         BUG_ON(ret);
538
539         for (i = 0; i < nr_tasks; i++) {
540                 task = tasks[i];
541                 sem_init(&task->sleep_sem, 0, 0);
542                 task->curr_event = 0;
543         }
544 }
545
546 static int read_events(void);
547
548 static unsigned long nr_runs;
549 static nsec_t sum_runtime;
550 static nsec_t sum_fluct;
551 static nsec_t run_avg;
552
553 static void run_one_test(void)
554 {
555         nsec_t T0, T1, delta, avg_delta, fluct, std_dev;
556
557         T0 = get_nsecs();
558         wait_for_tasks();
559         T1 = get_nsecs();
560
561         delta = T1 - T0;
562         sum_runtime += delta;
563         nr_runs++;
564
565         avg_delta = sum_runtime / nr_runs;
566         if (delta < avg_delta)
567                 fluct = avg_delta - delta;
568         else
569                 fluct = delta - avg_delta;
570         sum_fluct += fluct;
571         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
572         if (!run_avg)
573                 run_avg = delta;
574         run_avg = (run_avg*9 + delta)/10;
575
576         printf("#%-3ld: %0.3f, ",
577                 nr_runs, (double)delta/1000000.0);
578
579 #if 0
580         printf("%0.2f +- %0.2f, ",
581                 (double)avg_delta/1e6, (double)std_dev/1e6);
582 #endif
583         printf("ravg: %0.2f, ",
584                 (double)run_avg/1e6);
585
586         printf("cpu: %0.2f / %0.2f",
587                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
588
589 #if 0
590         /*
591          * rusage statistics done by the parent, these are less
592          * accurate than the sum_exec_runtime based statistics:
593          */
594         printf(" [%0.2f / %0.2f]",
595                 (double)parent_cpu_usage/1e6,
596                 (double)runavg_parent_cpu_usage/1e6);
597 #endif
598
599         printf("\n");
600
601         if (nr_sleep_corrections)
602                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
603         nr_sleep_corrections = 0;
604 }
605
606 static void test_calibrations(void)
607 {
608         nsec_t T0, T1;
609
610         T0 = get_nsecs();
611         burn_nsecs(1e6);
612         T1 = get_nsecs();
613
614         printf("the run test took %Ld nsecs\n", T1-T0);
615
616         T0 = get_nsecs();
617         sleep_nsecs(1e6);
618         T1 = get_nsecs();
619
620         printf("the sleep test took %Ld nsecs\n", T1-T0);
621 }
622
623 static void __cmd_replay(void)
624 {
625         long nr_iterations = 10, i;
626
627         calibrate_run_measurement_overhead();
628         calibrate_sleep_measurement_overhead();
629
630         test_calibrations();
631
632         read_events();
633
634         printf("nr_run_events:        %ld\n", nr_run_events);
635         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
636         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
637
638         if (targetless_wakeups)
639                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
640         if (multitarget_wakeups)
641                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
642         if (nr_run_events_optimized)
643                 printf("run events optimized: %ld\n",
644                         nr_run_events_optimized);
645
646         print_task_traces();
647         add_cross_task_wakeups();
648
649         create_tasks();
650         printf("------------------------------------------------------------\n");
651         for (i = 0; i < nr_iterations; i++)
652                 run_one_test();
653 }
654
655 static int
656 process_comm_event(event_t *event, unsigned long offset, unsigned long head)
657 {
658         struct thread *thread;
659
660         thread = threads__findnew(event->comm.pid, &threads, &last_match);
661
662         dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
663                 (void *)(offset + head),
664                 (void *)(long)(event->header.size),
665                 event->comm.comm, event->comm.pid);
666
667         if (thread == NULL ||
668             thread__set_comm(thread, event->comm.comm)) {
669                 dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
670                 return -1;
671         }
672         total_comm++;
673
674         return 0;
675 }
676
677
678 struct raw_event_sample {
679         u32 size;
680         char data[0];
681 };
682
683 #define FILL_FIELD(ptr, field, event, data)     \
684         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
685
686 #define FILL_ARRAY(ptr, array, event, data)                     \
687 do {                                                            \
688         void *__array = raw_field_ptr(event, #array, data);     \
689         memcpy(ptr.array, __array, sizeof(ptr.array));  \
690 } while(0)
691
692 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
693 do {                                                            \
694         FILL_FIELD(ptr, common_type, event, data);              \
695         FILL_FIELD(ptr, common_flags, event, data);             \
696         FILL_FIELD(ptr, common_preempt_count, event, data);     \
697         FILL_FIELD(ptr, common_pid, event, data);               \
698         FILL_FIELD(ptr, common_tgid, event, data);              \
699 } while (0)
700
701
702
703 struct trace_switch_event {
704         u32 size;
705
706         u16 common_type;
707         u8 common_flags;
708         u8 common_preempt_count;
709         u32 common_pid;
710         u32 common_tgid;
711
712         char prev_comm[16];
713         u32 prev_pid;
714         u32 prev_prio;
715         u64 prev_state;
716         char next_comm[16];
717         u32 next_pid;
718         u32 next_prio;
719 };
720
721
722 struct trace_wakeup_event {
723         u32 size;
724
725         u16 common_type;
726         u8 common_flags;
727         u8 common_preempt_count;
728         u32 common_pid;
729         u32 common_tgid;
730
731         char comm[16];
732         u32 pid;
733
734         u32 prio;
735         u32 success;
736         u32 cpu;
737 };
738
739 struct trace_fork_event {
740         u32 size;
741
742         u16 common_type;
743         u8 common_flags;
744         u8 common_preempt_count;
745         u32 common_pid;
746         u32 common_tgid;
747
748         char parent_comm[16];
749         u32 parent_pid;
750         char child_comm[16];
751         u32 child_pid;
752 };
753
754 struct trace_sched_handler {
755         void (*switch_event)(struct trace_switch_event *,
756                              struct event *,
757                              int cpu,
758                              u64 timestamp,
759                              struct thread *thread);
760
761         void (*wakeup_event)(struct trace_wakeup_event *,
762                              struct event *,
763                              int cpu,
764                              u64 timestamp,
765                              struct thread *thread);
766
767         void (*fork_event)(struct trace_fork_event *,
768                            struct event *,
769                            int cpu,
770                            u64 timestamp,
771                            struct thread *thread);
772 };
773
774
775 static void
776 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
777                     struct event *event,
778                     int cpu __used,
779                     u64 timestamp __used,
780                     struct thread *thread __used)
781 {
782         struct task_desc *waker, *wakee;
783
784         if (verbose) {
785                 printf("sched_wakeup event %p\n", event);
786
787                 printf(" ... pid %d woke up %s/%d\n",
788                         wakeup_event->common_pid,
789                         wakeup_event->comm,
790                         wakeup_event->pid);
791         }
792
793         waker = register_pid(wakeup_event->common_pid, "<unknown>");
794         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
795
796         add_sched_event_wakeup(waker, timestamp, wakee);
797 }
798
799 static unsigned long cpu_last_switched[MAX_CPUS];
800
801 static void
802 replay_switch_event(struct trace_switch_event *switch_event,
803                     struct event *event,
804                     int cpu,
805                     u64 timestamp,
806                     struct thread *thread __used)
807 {
808         struct task_desc *prev, *next;
809         u64 timestamp0;
810         s64 delta;
811
812         if (verbose)
813                 printf("sched_switch event %p\n", event);
814
815         if (cpu >= MAX_CPUS || cpu < 0)
816                 return;
817
818         timestamp0 = cpu_last_switched[cpu];
819         if (timestamp0)
820                 delta = timestamp - timestamp0;
821         else
822                 delta = 0;
823
824         if (delta < 0)
825                 die("hm, delta: %Ld < 0 ?\n", delta);
826
827         if (verbose) {
828                 printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
829                         switch_event->prev_comm, switch_event->prev_pid,
830                         switch_event->next_comm, switch_event->next_pid,
831                         delta);
832         }
833
834         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
835         next = register_pid(switch_event->next_pid, switch_event->next_comm);
836
837         cpu_last_switched[cpu] = timestamp;
838
839         add_sched_event_run(prev, timestamp, delta);
840         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
841 }
842
843
844 static void
845 replay_fork_event(struct trace_fork_event *fork_event,
846                   struct event *event,
847                   int cpu __used,
848                   u64 timestamp __used,
849                   struct thread *thread __used)
850 {
851         if (verbose) {
852                 printf("sched_fork event %p\n", event);
853                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
854                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
855         }
856         register_pid(fork_event->parent_pid, fork_event->parent_comm);
857         register_pid(fork_event->child_pid, fork_event->child_comm);
858 }
859
860 static struct trace_sched_handler replay_ops  = {
861         .wakeup_event = replay_wakeup_event,
862         .switch_event = replay_switch_event,
863         .fork_event = replay_fork_event,
864 };
865
866 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
867
868 enum thread_state {
869         THREAD_SLEEPING,
870         THREAD_WAKED_UP,
871         THREAD_SCHED_IN,
872         THREAD_IGNORE
873 };
874
875 struct lat_snapshot {
876         struct list_head        list;
877         enum thread_state       state;
878         u64                     wake_up_time;
879         u64                     sched_in_time;
880 };
881
882 struct thread_latency {
883         struct list_head        snapshot_list;
884         struct thread           *thread;
885         struct rb_node          node;
886 };
887
888 static struct rb_root lat_snapshot_root;
889
890 static struct thread_latency *
891 thread_latency_search(struct rb_root *root, struct thread *thread)
892 {
893         struct rb_node *node = root->rb_node;
894
895         while (node) {
896                 struct thread_latency *lat;
897
898                 lat = container_of(node, struct thread_latency, node);
899                 if (thread->pid < lat->thread->pid)
900                         node = node->rb_left;
901                 else if (thread->pid > lat->thread->pid)
902                         node = node->rb_right;
903                 else {
904                         return lat;
905                 }
906         }
907         return NULL;
908 }
909
910 static void
911 __thread_latency_insert(struct rb_root *root, struct thread_latency *data)
912 {
913         struct rb_node **new = &(root->rb_node), *parent = NULL;
914
915         while (*new) {
916                 struct thread_latency *this;
917
918                 this = container_of(*new, struct thread_latency, node);
919                 parent = *new;
920                 if (data->thread->pid < this->thread->pid)
921                         new = &((*new)->rb_left);
922                 else if (data->thread->pid > this->thread->pid)
923                         new = &((*new)->rb_right);
924                 else
925                         die("Double thread insertion\n");
926         }
927
928         rb_link_node(&data->node, parent, new);
929         rb_insert_color(&data->node, root);
930 }
931
932 static void thread_latency_insert(struct thread *thread)
933 {
934         struct thread_latency *lat;
935         lat = calloc(sizeof(*lat), 1);
936         if (!lat)
937                 die("No memory");
938
939         lat->thread = thread;
940         INIT_LIST_HEAD(&lat->snapshot_list);
941         __thread_latency_insert(&lat_snapshot_root, lat);
942 }
943
944 static void
945 latency_fork_event(struct trace_fork_event *fork_event __used,
946                    struct event *event __used,
947                    int cpu __used,
948                    u64 timestamp __used,
949                    struct thread *thread __used)
950 {
951         /* should insert the newcomer */
952 }
953
954 static char sched_out_state(struct trace_switch_event *switch_event)
955 {
956         const char *str = TASK_STATE_TO_CHAR_STR;
957
958         return str[switch_event->prev_state];
959 }
960
961 static void
962 lat_sched_out(struct thread_latency *lat,
963              struct trace_switch_event *switch_event)
964 {
965         struct lat_snapshot *snapshot;
966
967         if (sched_out_state(switch_event) == 'R')
968                 return;
969
970         snapshot = calloc(sizeof(*snapshot), 1);
971         if (!snapshot)
972                 die("Non memory");
973
974         list_add_tail(&snapshot->list, &lat->snapshot_list);
975 }
976
977 static void
978 lat_sched_in(struct thread_latency *lat, u64 timestamp)
979 {
980         struct lat_snapshot *snapshot;
981
982         if (list_empty(&lat->snapshot_list))
983                 return;
984
985         snapshot = list_entry(lat->snapshot_list.prev, struct lat_snapshot,
986                               list);
987
988         if (snapshot->state != THREAD_WAKED_UP)
989                 return;
990
991         if (timestamp < snapshot->wake_up_time) {
992                 snapshot->state = THREAD_IGNORE;
993                 return;
994         }
995
996         snapshot->state = THREAD_SCHED_IN;
997         snapshot->sched_in_time = timestamp;
998 }
999
1000
1001 static void
1002 latency_switch_event(struct trace_switch_event *switch_event,
1003                      struct event *event __used,
1004                      int cpu __used,
1005                      u64 timestamp,
1006                      struct thread *thread __used)
1007 {
1008         struct thread_latency *out_lat, *in_lat;
1009         struct thread *sched_out, *sched_in;
1010
1011         sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
1012         sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
1013
1014         in_lat = thread_latency_search(&lat_snapshot_root, sched_in);
1015         if (!in_lat) {
1016                 thread_latency_insert(sched_in);
1017                 in_lat = thread_latency_search(&lat_snapshot_root, sched_in);
1018                 if (!in_lat)
1019                         die("Internal latency tree error");
1020         }
1021
1022         out_lat = thread_latency_search(&lat_snapshot_root, sched_out);
1023         if (!out_lat) {
1024                 thread_latency_insert(sched_out);
1025                 out_lat = thread_latency_search(&lat_snapshot_root, sched_out);
1026                 if (!out_lat)
1027                         die("Internal latency tree error");
1028         }
1029
1030         lat_sched_in(in_lat, timestamp);
1031         lat_sched_out(out_lat, switch_event);
1032 }
1033
1034 static void
1035 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1036                      struct event *event __used,
1037                      int cpu __used,
1038                      u64 timestamp,
1039                      struct thread *thread __used)
1040 {
1041         struct thread_latency *lat;
1042         struct lat_snapshot *snapshot;
1043         struct thread *wakee;
1044
1045         /* Note for later, it may be interesting to observe the failing cases */
1046         if (!wakeup_event->success)
1047                 return;
1048
1049         wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
1050         lat = thread_latency_search(&lat_snapshot_root, wakee);
1051         if (!lat) {
1052                 thread_latency_insert(wakee);
1053                 return;
1054         }
1055
1056         if (list_empty(&lat->snapshot_list))
1057                 return;
1058
1059         snapshot = list_entry(lat->snapshot_list.prev, struct lat_snapshot,
1060                               list);
1061
1062         if (snapshot->state != THREAD_SLEEPING)
1063                 return;
1064
1065         snapshot->state = THREAD_WAKED_UP;
1066         snapshot->wake_up_time = timestamp;
1067 }
1068
1069 static struct trace_sched_handler lat_ops  = {
1070         .wakeup_event = latency_wakeup_event,
1071         .switch_event = latency_switch_event,
1072         .fork_event = latency_fork_event,
1073 };
1074
1075 static void output_lat_thread(struct thread_latency *lat)
1076 {
1077         struct lat_snapshot *shot;
1078         int count = 0;
1079         int i;
1080         int ret;
1081         u64 max = 0, avg;
1082         u64 total = 0, delta;
1083
1084         list_for_each_entry(shot, &lat->snapshot_list, list) {
1085                 if (shot->state != THREAD_SCHED_IN)
1086                         continue;
1087
1088                 count++;
1089
1090                 delta = shot->sched_in_time - shot->wake_up_time;
1091                 if (delta > max)
1092                         max = delta;
1093                 total += delta;
1094         }
1095
1096         if (!count)
1097                 return;
1098
1099         ret = printf(" %s ", lat->thread->comm);
1100
1101         for (i = 0; i < 19 - ret; i++)
1102                 printf(" ");
1103
1104         avg = total / count;
1105
1106         printf("|%9.3f ms |%9d | avg:%9.3f ms | max:%9.3f ms |\n",
1107                 0.0, count, (double)avg/1e9, (double)max/1e9);
1108 }
1109
1110 static void __cmd_lat(void)
1111 {
1112         struct rb_node *next;
1113
1114         setup_pager();
1115         read_events();
1116
1117         printf("-----------------------------------------------------------------------------------\n");
1118         printf(" Task              |  runtime ms | switches | average delay ms | maximum delay ms |\n");
1119         printf("-----------------------------------------------------------------------------------\n");
1120
1121         next = rb_first(&lat_snapshot_root);
1122
1123         while (next) {
1124                 struct thread_latency *lat;
1125
1126                 lat = rb_entry(next, struct thread_latency, node);
1127                 output_lat_thread(lat);
1128                 next = rb_next(next);
1129         }
1130
1131         printf("-----------------------------------------------------------------------------------\n");
1132 }
1133
1134 static struct trace_sched_handler *trace_handler;
1135
1136 static void
1137 process_sched_wakeup_event(struct raw_event_sample *raw,
1138                            struct event *event,
1139                            int cpu __used,
1140                            u64 timestamp __used,
1141                            struct thread *thread __used)
1142 {
1143         struct trace_wakeup_event wakeup_event;
1144
1145         FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
1146
1147         FILL_ARRAY(wakeup_event, comm, event, raw->data);
1148         FILL_FIELD(wakeup_event, pid, event, raw->data);
1149         FILL_FIELD(wakeup_event, prio, event, raw->data);
1150         FILL_FIELD(wakeup_event, success, event, raw->data);
1151         FILL_FIELD(wakeup_event, cpu, event, raw->data);
1152
1153         trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
1154 }
1155
1156 static void
1157 process_sched_switch_event(struct raw_event_sample *raw,
1158                            struct event *event,
1159                            int cpu __used,
1160                            u64 timestamp __used,
1161                            struct thread *thread __used)
1162 {
1163         struct trace_switch_event switch_event;
1164
1165         FILL_COMMON_FIELDS(switch_event, event, raw->data);
1166
1167         FILL_ARRAY(switch_event, prev_comm, event, raw->data);
1168         FILL_FIELD(switch_event, prev_pid, event, raw->data);
1169         FILL_FIELD(switch_event, prev_prio, event, raw->data);
1170         FILL_FIELD(switch_event, prev_state, event, raw->data);
1171         FILL_ARRAY(switch_event, next_comm, event, raw->data);
1172         FILL_FIELD(switch_event, next_pid, event, raw->data);
1173         FILL_FIELD(switch_event, next_prio, event, raw->data);
1174
1175         trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
1176 }
1177
1178 static void
1179 process_sched_fork_event(struct raw_event_sample *raw,
1180                          struct event *event,
1181                          int cpu __used,
1182                          u64 timestamp __used,
1183                          struct thread *thread __used)
1184 {
1185         struct trace_fork_event fork_event;
1186
1187         FILL_COMMON_FIELDS(fork_event, event, raw->data);
1188
1189         FILL_ARRAY(fork_event, parent_comm, event, raw->data);
1190         FILL_FIELD(fork_event, parent_pid, event, raw->data);
1191         FILL_ARRAY(fork_event, child_comm, event, raw->data);
1192         FILL_FIELD(fork_event, child_pid, event, raw->data);
1193
1194         trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
1195 }
1196
1197 static void
1198 process_sched_exit_event(struct event *event,
1199                          int cpu __used,
1200                          u64 timestamp __used,
1201                          struct thread *thread __used)
1202 {
1203         if (verbose)
1204                 printf("sched_exit event %p\n", event);
1205 }
1206
1207 static void
1208 process_raw_event(event_t *raw_event __used, void *more_data,
1209                   int cpu, u64 timestamp, struct thread *thread)
1210 {
1211         struct raw_event_sample *raw = more_data;
1212         struct event *event;
1213         int type;
1214
1215         type = trace_parse_common_type(raw->data);
1216         event = trace_find_event(type);
1217
1218         if (!strcmp(event->name, "sched_switch"))
1219                 process_sched_switch_event(raw, event, cpu, timestamp, thread);
1220         if (!strcmp(event->name, "sched_wakeup"))
1221                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1222         if (!strcmp(event->name, "sched_wakeup_new"))
1223                 process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
1224         if (!strcmp(event->name, "sched_process_fork"))
1225                 process_sched_fork_event(raw, event, cpu, timestamp, thread);
1226         if (!strcmp(event->name, "sched_process_exit"))
1227                 process_sched_exit_event(event, cpu, timestamp, thread);
1228 }
1229
1230 static int
1231 process_sample_event(event_t *event, unsigned long offset, unsigned long head)
1232 {
1233         char level;
1234         int show = 0;
1235         struct dso *dso = NULL;
1236         struct thread *thread;
1237         u64 ip = event->ip.ip;
1238         u64 timestamp = -1;
1239         u32 cpu = -1;
1240         u64 period = 1;
1241         void *more_data = event->ip.__more_data;
1242         int cpumode;
1243
1244         thread = threads__findnew(event->ip.pid, &threads, &last_match);
1245
1246         if (sample_type & PERF_SAMPLE_TIME) {
1247                 timestamp = *(u64 *)more_data;
1248                 more_data += sizeof(u64);
1249         }
1250
1251         if (sample_type & PERF_SAMPLE_CPU) {
1252                 cpu = *(u32 *)more_data;
1253                 more_data += sizeof(u32);
1254                 more_data += sizeof(u32); /* reserved */
1255         }
1256
1257         if (sample_type & PERF_SAMPLE_PERIOD) {
1258                 period = *(u64 *)more_data;
1259                 more_data += sizeof(u64);
1260         }
1261
1262         dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
1263                 (void *)(offset + head),
1264                 (void *)(long)(event->header.size),
1265                 event->header.misc,
1266                 event->ip.pid, event->ip.tid,
1267                 (void *)(long)ip,
1268                 (long long)period);
1269
1270         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1271
1272         if (thread == NULL) {
1273                 eprintf("problem processing %d event, skipping it.\n",
1274                         event->header.type);
1275                 return -1;
1276         }
1277
1278         cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
1279
1280         if (cpumode == PERF_EVENT_MISC_KERNEL) {
1281                 show = SHOW_KERNEL;
1282                 level = 'k';
1283
1284                 dso = kernel_dso;
1285
1286                 dump_printf(" ...... dso: %s\n", dso->name);
1287
1288         } else if (cpumode == PERF_EVENT_MISC_USER) {
1289
1290                 show = SHOW_USER;
1291                 level = '.';
1292
1293         } else {
1294                 show = SHOW_HV;
1295                 level = 'H';
1296
1297                 dso = hypervisor_dso;
1298
1299                 dump_printf(" ...... dso: [hypervisor]\n");
1300         }
1301
1302         if (sample_type & PERF_SAMPLE_RAW)
1303                 process_raw_event(event, more_data, cpu, timestamp, thread);
1304
1305         return 0;
1306 }
1307
1308 static int
1309 process_event(event_t *event, unsigned long offset, unsigned long head)
1310 {
1311         trace_event(event);
1312
1313         switch (event->header.type) {
1314         case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
1315                 return 0;
1316
1317         case PERF_EVENT_COMM:
1318                 return process_comm_event(event, offset, head);
1319
1320         case PERF_EVENT_EXIT ... PERF_EVENT_READ:
1321                 return 0;
1322
1323         case PERF_EVENT_SAMPLE:
1324                 return process_sample_event(event, offset, head);
1325
1326         case PERF_EVENT_MAX:
1327         default:
1328                 return -1;
1329         }
1330
1331         return 0;
1332 }
1333
1334 static int read_events(void)
1335 {
1336         int ret, rc = EXIT_FAILURE;
1337         unsigned long offset = 0;
1338         unsigned long head = 0;
1339         struct stat perf_stat;
1340         event_t *event;
1341         uint32_t size;
1342         char *buf;
1343
1344         trace_report();
1345         register_idle_thread(&threads, &last_match);
1346
1347         input = open(input_name, O_RDONLY);
1348         if (input < 0) {
1349                 perror("failed to open file");
1350                 exit(-1);
1351         }
1352
1353         ret = fstat(input, &perf_stat);
1354         if (ret < 0) {
1355                 perror("failed to stat file");
1356                 exit(-1);
1357         }
1358
1359         if (!perf_stat.st_size) {
1360                 fprintf(stderr, "zero-sized file, nothing to do!\n");
1361                 exit(0);
1362         }
1363         header = perf_header__read(input);
1364         head = header->data_offset;
1365         sample_type = perf_header__sample_type(header);
1366
1367         if (!(sample_type & PERF_SAMPLE_RAW))
1368                 die("No trace sample to read. Did you call perf record "
1369                     "without -R?");
1370
1371         if (load_kernel() < 0) {
1372                 perror("failed to load kernel symbols");
1373                 return EXIT_FAILURE;
1374         }
1375
1376 remap:
1377         buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1378                            MAP_SHARED, input, offset);
1379         if (buf == MAP_FAILED) {
1380                 perror("failed to mmap file");
1381                 exit(-1);
1382         }
1383
1384 more:
1385         event = (event_t *)(buf + head);
1386
1387         size = event->header.size;
1388         if (!size)
1389                 size = 8;
1390
1391         if (head + event->header.size >= page_size * mmap_window) {
1392                 unsigned long shift = page_size * (head / page_size);
1393                 int res;
1394
1395                 res = munmap(buf, page_size * mmap_window);
1396                 assert(res == 0);
1397
1398                 offset += shift;
1399                 head -= shift;
1400                 goto remap;
1401         }
1402
1403         size = event->header.size;
1404
1405
1406         if (!size || process_event(event, offset, head) < 0) {
1407
1408                 /*
1409                  * assume we lost track of the stream, check alignment, and
1410                  * increment a single u64 in the hope to catch on again 'soon'.
1411                  */
1412
1413                 if (unlikely(head & 7))
1414                         head &= ~7ULL;
1415
1416                 size = 8;
1417         }
1418
1419         head += size;
1420
1421         if (offset + head < (unsigned long)perf_stat.st_size)
1422                 goto more;
1423
1424         rc = EXIT_SUCCESS;
1425         close(input);
1426
1427         return rc;
1428 }
1429
1430 static const char * const sched_usage[] = {
1431         "perf sched [<options>] <command>",
1432         NULL
1433 };
1434
1435 static const struct option options[] = {
1436         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1437                     "dump raw trace in ASCII"),
1438         OPT_BOOLEAN('r', "replay", &replay_mode,
1439                     "replay sched behaviour from traces"),
1440         OPT_BOOLEAN('l', "latency", &lat_mode,
1441                     "measure various latencies"),
1442         OPT_BOOLEAN('v', "verbose", &verbose,
1443                     "be more verbose (show symbol address, etc)"),
1444         OPT_END()
1445 };
1446
1447 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1448 {
1449         symbol__init();
1450         page_size = getpagesize();
1451
1452         argc = parse_options(argc, argv, options, sched_usage, 0);
1453         if (argc) {
1454                 /*
1455                  * Special case: if there's an argument left then assume tha
1456                  * it's a symbol filter:
1457                  */
1458                 if (argc > 1)
1459                         usage_with_options(sched_usage, options);
1460         }
1461
1462         if (replay_mode)
1463                 trace_handler = &replay_ops;
1464         else if (lat_mode)
1465                 trace_handler = &lat_ops;
1466         else
1467                 usage_with_options(sched_usage, options);
1468
1469         if (replay_mode)
1470                 __cmd_replay();
1471         else if (lat_mode)
1472                 __cmd_lat();
1473
1474         return 0;
1475 }