vmscan: handle isolated pages with lru lock released
[linux-flexiantxendom0-3.2.10.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  *      down_write(&mm->mmap_sem);
66  * or
67  *      down_read(&mm->mmap_sem);
68  *      mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71         struct list_head link;
72         long from;
73         long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78         struct file_region *rg, *nrg, *trg;
79
80         /* Locate the region we are either in or before. */
81         list_for_each_entry(rg, head, link)
82                 if (f <= rg->to)
83                         break;
84
85         /* Round our left edge to the current segment if it encloses us. */
86         if (f > rg->from)
87                 f = rg->from;
88
89         /* Check for and consume any regions we now overlap with. */
90         nrg = rg;
91         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92                 if (&rg->link == head)
93                         break;
94                 if (rg->from > t)
95                         break;
96
97                 /* If this area reaches higher then extend our area to
98                  * include it completely.  If this is not the first area
99                  * which we intend to reuse, free it. */
100                 if (rg->to > t)
101                         t = rg->to;
102                 if (rg != nrg) {
103                         list_del(&rg->link);
104                         kfree(rg);
105                 }
106         }
107         nrg->from = f;
108         nrg->to = t;
109         return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114         struct file_region *rg, *nrg;
115         long chg = 0;
116
117         /* Locate the region we are before or in. */
118         list_for_each_entry(rg, head, link)
119                 if (f <= rg->to)
120                         break;
121
122         /* If we are below the current region then a new region is required.
123          * Subtle, allocate a new region at the position but make it zero
124          * size such that we can guarantee to record the reservation. */
125         if (&rg->link == head || t < rg->from) {
126                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127                 if (!nrg)
128                         return -ENOMEM;
129                 nrg->from = f;
130                 nrg->to   = f;
131                 INIT_LIST_HEAD(&nrg->link);
132                 list_add(&nrg->link, rg->link.prev);
133
134                 return t - f;
135         }
136
137         /* Round our left edge to the current segment if it encloses us. */
138         if (f > rg->from)
139                 f = rg->from;
140         chg = t - f;
141
142         /* Check for and consume any regions we now overlap with. */
143         list_for_each_entry(rg, rg->link.prev, link) {
144                 if (&rg->link == head)
145                         break;
146                 if (rg->from > t)
147                         return chg;
148
149                 /* We overlap with this area, if it extends further than
150                  * us then we must extend ourselves.  Account for its
151                  * existing reservation. */
152                 if (rg->to > t) {
153                         chg += rg->to - t;
154                         t = rg->to;
155                 }
156                 chg -= rg->to - rg->from;
157         }
158         return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163         struct file_region *rg, *trg;
164         long chg = 0;
165
166         /* Locate the region we are either in or before. */
167         list_for_each_entry(rg, head, link)
168                 if (end <= rg->to)
169                         break;
170         if (&rg->link == head)
171                 return 0;
172
173         /* If we are in the middle of a region then adjust it. */
174         if (end > rg->from) {
175                 chg = rg->to - end;
176                 rg->to = end;
177                 rg = list_entry(rg->link.next, typeof(*rg), link);
178         }
179
180         /* Drop any remaining regions. */
181         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182                 if (&rg->link == head)
183                         break;
184                 chg += rg->to - rg->from;
185                 list_del(&rg->link);
186                 kfree(rg);
187         }
188         return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg;
194         long chg = 0;
195
196         /* Locate each segment we overlap with, and count that overlap. */
197         list_for_each_entry(rg, head, link) {
198                 int seg_from;
199                 int seg_to;
200
201                 if (rg->to <= f)
202                         continue;
203                 if (rg->from >= t)
204                         break;
205
206                 seg_from = max(rg->from, f);
207                 seg_to = min(rg->to, t);
208
209                 chg += seg_to - seg_from;
210         }
211
212         return chg;
213 }
214
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220                         struct vm_area_struct *vma, unsigned long address)
221 {
222         return ((address - vma->vm_start) >> huge_page_shift(h)) +
223                         (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227                                      unsigned long address)
228 {
229         return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238         struct hstate *hstate;
239
240         if (!is_vm_hugetlb_page(vma))
241                 return PAGE_SIZE;
242
243         hstate = hstate_vma(vma);
244
245         return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258         return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292         return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296                                                         unsigned long value)
297 {
298         vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302         struct kref refs;
303         struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309         if (!resv_map)
310                 return NULL;
311
312         kref_init(&resv_map->refs);
313         INIT_LIST_HEAD(&resv_map->regions);
314
315         return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322         /* Clear out any active regions before we release the map. */
323         region_truncate(&resv_map->regions, 0);
324         kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329         VM_BUG_ON(!is_vm_hugetlb_page(vma));
330         if (!(vma->vm_flags & VM_MAYSHARE))
331                 return (struct resv_map *)(get_vma_private_data(vma) &
332                                                         ~HPAGE_RESV_MASK);
333         return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338         VM_BUG_ON(!is_vm_hugetlb_page(vma));
339         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341         set_vma_private_data(vma, (get_vma_private_data(vma) &
342                                 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347         VM_BUG_ON(!is_vm_hugetlb_page(vma));
348         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355         VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357         return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362                         struct vm_area_struct *vma)
363 {
364         if (vma->vm_flags & VM_NORESERVE)
365                 return;
366
367         if (vma->vm_flags & VM_MAYSHARE) {
368                 /* Shared mappings always use reserves */
369                 h->resv_huge_pages--;
370         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371                 /*
372                  * Only the process that called mmap() has reserves for
373                  * private mappings.
374                  */
375                 h->resv_huge_pages--;
376         }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382         VM_BUG_ON(!is_vm_hugetlb_page(vma));
383         if (!(vma->vm_flags & VM_MAYSHARE))
384                 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390         if (vma->vm_flags & VM_MAYSHARE)
391                 return 1;
392         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393                 return 1;
394         return 0;
395 }
396
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399         int i;
400         struct hstate *h = page_hstate(src);
401         struct page *dst_base = dst;
402         struct page *src_base = src;
403
404         for (i = 0; i < pages_per_huge_page(h); ) {
405                 cond_resched();
406                 copy_highpage(dst, src);
407
408                 i++;
409                 dst = mem_map_next(dst, dst_base, i);
410                 src = mem_map_next(src, src_base, i);
411         }
412 }
413
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416         int i;
417         struct hstate *h = page_hstate(src);
418
419         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420                 copy_gigantic_page(dst, src);
421                 return;
422         }
423
424         might_sleep();
425         for (i = 0; i < pages_per_huge_page(h); i++) {
426                 cond_resched();
427                 copy_highpage(dst + i, src + i);
428         }
429 }
430
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433         int nid = page_to_nid(page);
434         list_add(&page->lru, &h->hugepage_freelists[nid]);
435         h->free_huge_pages++;
436         h->free_huge_pages_node[nid]++;
437 }
438
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441         struct page *page;
442
443         if (list_empty(&h->hugepage_freelists[nid]))
444                 return NULL;
445         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446         list_del(&page->lru);
447         set_page_refcounted(page);
448         h->free_huge_pages--;
449         h->free_huge_pages_node[nid]--;
450         return page;
451 }
452
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454                                 struct vm_area_struct *vma,
455                                 unsigned long address, int avoid_reserve)
456 {
457         struct page *page = NULL;
458         struct mempolicy *mpol;
459         nodemask_t *nodemask;
460         struct zonelist *zonelist;
461         struct zone *zone;
462         struct zoneref *z;
463
464         get_mems_allowed();
465         zonelist = huge_zonelist(vma, address,
466                                         htlb_alloc_mask, &mpol, &nodemask);
467         /*
468          * A child process with MAP_PRIVATE mappings created by their parent
469          * have no page reserves. This check ensures that reservations are
470          * not "stolen". The child may still get SIGKILLed
471          */
472         if (!vma_has_reserves(vma) &&
473                         h->free_huge_pages - h->resv_huge_pages == 0)
474                 goto err;
475
476         /* If reserves cannot be used, ensure enough pages are in the pool */
477         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478                 goto err;
479
480         for_each_zone_zonelist_nodemask(zone, z, zonelist,
481                                                 MAX_NR_ZONES - 1, nodemask) {
482                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
484                         if (page) {
485                                 if (!avoid_reserve)
486                                         decrement_hugepage_resv_vma(h, vma);
487                                 break;
488                         }
489                 }
490         }
491 err:
492         mpol_cond_put(mpol);
493         put_mems_allowed();
494         return page;
495 }
496
497 static void update_and_free_page(struct hstate *h, struct page *page)
498 {
499         int i;
500
501         VM_BUG_ON(h->order >= MAX_ORDER);
502
503         h->nr_huge_pages--;
504         h->nr_huge_pages_node[page_to_nid(page)]--;
505         for (i = 0; i < pages_per_huge_page(h); i++) {
506                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
507                                 1 << PG_referenced | 1 << PG_dirty |
508                                 1 << PG_active | 1 << PG_reserved |
509                                 1 << PG_private | 1 << PG_writeback);
510         }
511         set_compound_page_dtor(page, NULL);
512         set_page_refcounted(page);
513         arch_release_hugepage(page);
514         __free_pages(page, huge_page_order(h));
515 }
516
517 struct hstate *size_to_hstate(unsigned long size)
518 {
519         struct hstate *h;
520
521         for_each_hstate(h) {
522                 if (huge_page_size(h) == size)
523                         return h;
524         }
525         return NULL;
526 }
527
528 static void free_huge_page(struct page *page)
529 {
530         /*
531          * Can't pass hstate in here because it is called from the
532          * compound page destructor.
533          */
534         struct hstate *h = page_hstate(page);
535         int nid = page_to_nid(page);
536         struct address_space *mapping;
537
538         mapping = (struct address_space *) page_private(page);
539         set_page_private(page, 0);
540         page->mapping = NULL;
541         BUG_ON(page_count(page));
542         BUG_ON(page_mapcount(page));
543         INIT_LIST_HEAD(&page->lru);
544
545         spin_lock(&hugetlb_lock);
546         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
547                 update_and_free_page(h, page);
548                 h->surplus_huge_pages--;
549                 h->surplus_huge_pages_node[nid]--;
550         } else {
551                 enqueue_huge_page(h, page);
552         }
553         spin_unlock(&hugetlb_lock);
554         if (mapping)
555                 hugetlb_put_quota(mapping, 1);
556 }
557
558 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 {
560         set_compound_page_dtor(page, free_huge_page);
561         spin_lock(&hugetlb_lock);
562         h->nr_huge_pages++;
563         h->nr_huge_pages_node[nid]++;
564         spin_unlock(&hugetlb_lock);
565         put_page(page); /* free it into the hugepage allocator */
566 }
567
568 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569 {
570         int i;
571         int nr_pages = 1 << order;
572         struct page *p = page + 1;
573
574         /* we rely on prep_new_huge_page to set the destructor */
575         set_compound_order(page, order);
576         __SetPageHead(page);
577         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
578                 __SetPageTail(p);
579                 set_page_count(p, 0);
580                 p->first_page = page;
581         }
582 }
583
584 int PageHuge(struct page *page)
585 {
586         compound_page_dtor *dtor;
587
588         if (!PageCompound(page))
589                 return 0;
590
591         page = compound_head(page);
592         dtor = get_compound_page_dtor(page);
593
594         return dtor == free_huge_page;
595 }
596 EXPORT_SYMBOL_GPL(PageHuge);
597
598 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
599 {
600         struct page *page;
601
602         if (h->order >= MAX_ORDER)
603                 return NULL;
604
605         page = alloc_pages_exact_node(nid,
606                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
607                                                 __GFP_REPEAT|__GFP_NOWARN,
608                 huge_page_order(h));
609         if (page) {
610                 if (arch_prepare_hugepage(page)) {
611                         __free_pages(page, huge_page_order(h));
612                         return NULL;
613                 }
614                 prep_new_huge_page(h, page, nid);
615         }
616
617         return page;
618 }
619
620 /*
621  * common helper functions for hstate_next_node_to_{alloc|free}.
622  * We may have allocated or freed a huge page based on a different
623  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
624  * be outside of *nodes_allowed.  Ensure that we use an allowed
625  * node for alloc or free.
626  */
627 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
628 {
629         nid = next_node(nid, *nodes_allowed);
630         if (nid == MAX_NUMNODES)
631                 nid = first_node(*nodes_allowed);
632         VM_BUG_ON(nid >= MAX_NUMNODES);
633
634         return nid;
635 }
636
637 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
638 {
639         if (!node_isset(nid, *nodes_allowed))
640                 nid = next_node_allowed(nid, nodes_allowed);
641         return nid;
642 }
643
644 /*
645  * returns the previously saved node ["this node"] from which to
646  * allocate a persistent huge page for the pool and advance the
647  * next node from which to allocate, handling wrap at end of node
648  * mask.
649  */
650 static int hstate_next_node_to_alloc(struct hstate *h,
651                                         nodemask_t *nodes_allowed)
652 {
653         int nid;
654
655         VM_BUG_ON(!nodes_allowed);
656
657         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
658         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
659
660         return nid;
661 }
662
663 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
664 {
665         struct page *page;
666         int start_nid;
667         int next_nid;
668         int ret = 0;
669
670         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
671         next_nid = start_nid;
672
673         do {
674                 page = alloc_fresh_huge_page_node(h, next_nid);
675                 if (page) {
676                         ret = 1;
677                         break;
678                 }
679                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
680         } while (next_nid != start_nid);
681
682         if (ret)
683                 count_vm_event(HTLB_BUDDY_PGALLOC);
684         else
685                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686
687         return ret;
688 }
689
690 /*
691  * helper for free_pool_huge_page() - return the previously saved
692  * node ["this node"] from which to free a huge page.  Advance the
693  * next node id whether or not we find a free huge page to free so
694  * that the next attempt to free addresses the next node.
695  */
696 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
697 {
698         int nid;
699
700         VM_BUG_ON(!nodes_allowed);
701
702         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
703         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
704
705         return nid;
706 }
707
708 /*
709  * Free huge page from pool from next node to free.
710  * Attempt to keep persistent huge pages more or less
711  * balanced over allowed nodes.
712  * Called with hugetlb_lock locked.
713  */
714 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
715                                                          bool acct_surplus)
716 {
717         int start_nid;
718         int next_nid;
719         int ret = 0;
720
721         start_nid = hstate_next_node_to_free(h, nodes_allowed);
722         next_nid = start_nid;
723
724         do {
725                 /*
726                  * If we're returning unused surplus pages, only examine
727                  * nodes with surplus pages.
728                  */
729                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
730                     !list_empty(&h->hugepage_freelists[next_nid])) {
731                         struct page *page =
732                                 list_entry(h->hugepage_freelists[next_nid].next,
733                                           struct page, lru);
734                         list_del(&page->lru);
735                         h->free_huge_pages--;
736                         h->free_huge_pages_node[next_nid]--;
737                         if (acct_surplus) {
738                                 h->surplus_huge_pages--;
739                                 h->surplus_huge_pages_node[next_nid]--;
740                         }
741                         update_and_free_page(h, page);
742                         ret = 1;
743                         break;
744                 }
745                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
746         } while (next_nid != start_nid);
747
748         return ret;
749 }
750
751 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
752 {
753         struct page *page;
754         unsigned int r_nid;
755
756         if (h->order >= MAX_ORDER)
757                 return NULL;
758
759         /*
760          * Assume we will successfully allocate the surplus page to
761          * prevent racing processes from causing the surplus to exceed
762          * overcommit
763          *
764          * This however introduces a different race, where a process B
765          * tries to grow the static hugepage pool while alloc_pages() is
766          * called by process A. B will only examine the per-node
767          * counters in determining if surplus huge pages can be
768          * converted to normal huge pages in adjust_pool_surplus(). A
769          * won't be able to increment the per-node counter, until the
770          * lock is dropped by B, but B doesn't drop hugetlb_lock until
771          * no more huge pages can be converted from surplus to normal
772          * state (and doesn't try to convert again). Thus, we have a
773          * case where a surplus huge page exists, the pool is grown, and
774          * the surplus huge page still exists after, even though it
775          * should just have been converted to a normal huge page. This
776          * does not leak memory, though, as the hugepage will be freed
777          * once it is out of use. It also does not allow the counters to
778          * go out of whack in adjust_pool_surplus() as we don't modify
779          * the node values until we've gotten the hugepage and only the
780          * per-node value is checked there.
781          */
782         spin_lock(&hugetlb_lock);
783         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
784                 spin_unlock(&hugetlb_lock);
785                 return NULL;
786         } else {
787                 h->nr_huge_pages++;
788                 h->surplus_huge_pages++;
789         }
790         spin_unlock(&hugetlb_lock);
791
792         if (nid == NUMA_NO_NODE)
793                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
794                                    __GFP_REPEAT|__GFP_NOWARN,
795                                    huge_page_order(h));
796         else
797                 page = alloc_pages_exact_node(nid,
798                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
799                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
800
801         if (page && arch_prepare_hugepage(page)) {
802                 __free_pages(page, huge_page_order(h));
803                 page = NULL;
804         }
805
806         spin_lock(&hugetlb_lock);
807         if (page) {
808                 r_nid = page_to_nid(page);
809                 set_compound_page_dtor(page, free_huge_page);
810                 /*
811                  * We incremented the global counters already
812                  */
813                 h->nr_huge_pages_node[r_nid]++;
814                 h->surplus_huge_pages_node[r_nid]++;
815                 __count_vm_event(HTLB_BUDDY_PGALLOC);
816         } else {
817                 h->nr_huge_pages--;
818                 h->surplus_huge_pages--;
819                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
820         }
821         spin_unlock(&hugetlb_lock);
822
823         return page;
824 }
825
826 /*
827  * This allocation function is useful in the context where vma is irrelevant.
828  * E.g. soft-offlining uses this function because it only cares physical
829  * address of error page.
830  */
831 struct page *alloc_huge_page_node(struct hstate *h, int nid)
832 {
833         struct page *page;
834
835         spin_lock(&hugetlb_lock);
836         page = dequeue_huge_page_node(h, nid);
837         spin_unlock(&hugetlb_lock);
838
839         if (!page)
840                 page = alloc_buddy_huge_page(h, nid);
841
842         return page;
843 }
844
845 /*
846  * Increase the hugetlb pool such that it can accommodate a reservation
847  * of size 'delta'.
848  */
849 static int gather_surplus_pages(struct hstate *h, int delta)
850 {
851         struct list_head surplus_list;
852         struct page *page, *tmp;
853         int ret, i;
854         int needed, allocated;
855         bool alloc_ok = true;
856
857         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
858         if (needed <= 0) {
859                 h->resv_huge_pages += delta;
860                 return 0;
861         }
862
863         allocated = 0;
864         INIT_LIST_HEAD(&surplus_list);
865
866         ret = -ENOMEM;
867 retry:
868         spin_unlock(&hugetlb_lock);
869         for (i = 0; i < needed; i++) {
870                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
871                 if (!page) {
872                         alloc_ok = false;
873                         break;
874                 }
875                 list_add(&page->lru, &surplus_list);
876         }
877         allocated += i;
878
879         /*
880          * After retaking hugetlb_lock, we need to recalculate 'needed'
881          * because either resv_huge_pages or free_huge_pages may have changed.
882          */
883         spin_lock(&hugetlb_lock);
884         needed = (h->resv_huge_pages + delta) -
885                         (h->free_huge_pages + allocated);
886         if (needed > 0) {
887                 if (alloc_ok)
888                         goto retry;
889                 /*
890                  * We were not able to allocate enough pages to
891                  * satisfy the entire reservation so we free what
892                  * we've allocated so far.
893                  */
894                 goto free;
895         }
896         /*
897          * The surplus_list now contains _at_least_ the number of extra pages
898          * needed to accommodate the reservation.  Add the appropriate number
899          * of pages to the hugetlb pool and free the extras back to the buddy
900          * allocator.  Commit the entire reservation here to prevent another
901          * process from stealing the pages as they are added to the pool but
902          * before they are reserved.
903          */
904         needed += allocated;
905         h->resv_huge_pages += delta;
906         ret = 0;
907
908         /* Free the needed pages to the hugetlb pool */
909         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
910                 if ((--needed) < 0)
911                         break;
912                 list_del(&page->lru);
913                 /*
914                  * This page is now managed by the hugetlb allocator and has
915                  * no users -- drop the buddy allocator's reference.
916                  */
917                 put_page_testzero(page);
918                 VM_BUG_ON(page_count(page));
919                 enqueue_huge_page(h, page);
920         }
921 free:
922         spin_unlock(&hugetlb_lock);
923
924         /* Free unnecessary surplus pages to the buddy allocator */
925         if (!list_empty(&surplus_list)) {
926                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
927                         list_del(&page->lru);
928                         put_page(page);
929                 }
930         }
931         spin_lock(&hugetlb_lock);
932
933         return ret;
934 }
935
936 /*
937  * When releasing a hugetlb pool reservation, any surplus pages that were
938  * allocated to satisfy the reservation must be explicitly freed if they were
939  * never used.
940  * Called with hugetlb_lock held.
941  */
942 static void return_unused_surplus_pages(struct hstate *h,
943                                         unsigned long unused_resv_pages)
944 {
945         unsigned long nr_pages;
946
947         /* Uncommit the reservation */
948         h->resv_huge_pages -= unused_resv_pages;
949
950         /* Cannot return gigantic pages currently */
951         if (h->order >= MAX_ORDER)
952                 return;
953
954         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
955
956         /*
957          * We want to release as many surplus pages as possible, spread
958          * evenly across all nodes with memory. Iterate across these nodes
959          * until we can no longer free unreserved surplus pages. This occurs
960          * when the nodes with surplus pages have no free pages.
961          * free_pool_huge_page() will balance the the freed pages across the
962          * on-line nodes with memory and will handle the hstate accounting.
963          */
964         while (nr_pages--) {
965                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
966                         break;
967         }
968 }
969
970 /*
971  * Determine if the huge page at addr within the vma has an associated
972  * reservation.  Where it does not we will need to logically increase
973  * reservation and actually increase quota before an allocation can occur.
974  * Where any new reservation would be required the reservation change is
975  * prepared, but not committed.  Once the page has been quota'd allocated
976  * an instantiated the change should be committed via vma_commit_reservation.
977  * No action is required on failure.
978  */
979 static long vma_needs_reservation(struct hstate *h,
980                         struct vm_area_struct *vma, unsigned long addr)
981 {
982         struct address_space *mapping = vma->vm_file->f_mapping;
983         struct inode *inode = mapping->host;
984
985         if (vma->vm_flags & VM_MAYSHARE) {
986                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
987                 return region_chg(&inode->i_mapping->private_list,
988                                                         idx, idx + 1);
989
990         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
991                 return 1;
992
993         } else  {
994                 long err;
995                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
996                 struct resv_map *reservations = vma_resv_map(vma);
997
998                 err = region_chg(&reservations->regions, idx, idx + 1);
999                 if (err < 0)
1000                         return err;
1001                 return 0;
1002         }
1003 }
1004 static void vma_commit_reservation(struct hstate *h,
1005                         struct vm_area_struct *vma, unsigned long addr)
1006 {
1007         struct address_space *mapping = vma->vm_file->f_mapping;
1008         struct inode *inode = mapping->host;
1009
1010         if (vma->vm_flags & VM_MAYSHARE) {
1011                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1013
1014         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1015                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016                 struct resv_map *reservations = vma_resv_map(vma);
1017
1018                 /* Mark this page used in the map. */
1019                 region_add(&reservations->regions, idx, idx + 1);
1020         }
1021 }
1022
1023 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1024                                     unsigned long addr, int avoid_reserve)
1025 {
1026         struct hstate *h = hstate_vma(vma);
1027         struct page *page;
1028         struct address_space *mapping = vma->vm_file->f_mapping;
1029         struct inode *inode = mapping->host;
1030         long chg;
1031
1032         /*
1033          * Processes that did not create the mapping will have no reserves and
1034          * will not have accounted against quota. Check that the quota can be
1035          * made before satisfying the allocation
1036          * MAP_NORESERVE mappings may also need pages and quota allocated
1037          * if no reserve mapping overlaps.
1038          */
1039         chg = vma_needs_reservation(h, vma, addr);
1040         if (chg < 0)
1041                 return ERR_PTR(-VM_FAULT_OOM);
1042         if (chg)
1043                 if (hugetlb_get_quota(inode->i_mapping, chg))
1044                         return ERR_PTR(-VM_FAULT_SIGBUS);
1045
1046         spin_lock(&hugetlb_lock);
1047         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1048         spin_unlock(&hugetlb_lock);
1049
1050         if (!page) {
1051                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1052                 if (!page) {
1053                         hugetlb_put_quota(inode->i_mapping, chg);
1054                         return ERR_PTR(-VM_FAULT_SIGBUS);
1055                 }
1056         }
1057
1058         set_page_private(page, (unsigned long) mapping);
1059
1060         vma_commit_reservation(h, vma, addr);
1061
1062         return page;
1063 }
1064
1065 int __weak alloc_bootmem_huge_page(struct hstate *h)
1066 {
1067         struct huge_bootmem_page *m;
1068         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1069
1070         while (nr_nodes) {
1071                 void *addr;
1072
1073                 addr = __alloc_bootmem_node_nopanic(
1074                                 NODE_DATA(hstate_next_node_to_alloc(h,
1075                                                 &node_states[N_HIGH_MEMORY])),
1076                                 huge_page_size(h), huge_page_size(h), 0);
1077
1078                 if (addr) {
1079                         /*
1080                          * Use the beginning of the huge page to store the
1081                          * huge_bootmem_page struct (until gather_bootmem
1082                          * puts them into the mem_map).
1083                          */
1084                         m = addr;
1085                         goto found;
1086                 }
1087                 nr_nodes--;
1088         }
1089         return 0;
1090
1091 found:
1092         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1093         /* Put them into a private list first because mem_map is not up yet */
1094         list_add(&m->list, &huge_boot_pages);
1095         m->hstate = h;
1096         return 1;
1097 }
1098
1099 static void prep_compound_huge_page(struct page *page, int order)
1100 {
1101         if (unlikely(order > (MAX_ORDER - 1)))
1102                 prep_compound_gigantic_page(page, order);
1103         else
1104                 prep_compound_page(page, order);
1105 }
1106
1107 /* Put bootmem huge pages into the standard lists after mem_map is up */
1108 static void __init gather_bootmem_prealloc(void)
1109 {
1110         struct huge_bootmem_page *m;
1111
1112         list_for_each_entry(m, &huge_boot_pages, list) {
1113                 struct hstate *h = m->hstate;
1114                 struct page *page;
1115
1116 #ifdef CONFIG_HIGHMEM
1117                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1118                 free_bootmem_late((unsigned long)m,
1119                                   sizeof(struct huge_bootmem_page));
1120 #else
1121                 page = virt_to_page(m);
1122 #endif
1123                 __ClearPageReserved(page);
1124                 WARN_ON(page_count(page) != 1);
1125                 prep_compound_huge_page(page, h->order);
1126                 prep_new_huge_page(h, page, page_to_nid(page));
1127                 /*
1128                  * If we had gigantic hugepages allocated at boot time, we need
1129                  * to restore the 'stolen' pages to totalram_pages in order to
1130                  * fix confusing memory reports from free(1) and another
1131                  * side-effects, like CommitLimit going negative.
1132                  */
1133                 if (h->order > (MAX_ORDER - 1))
1134                         totalram_pages += 1 << h->order;
1135         }
1136 }
1137
1138 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1139 {
1140         unsigned long i;
1141
1142         for (i = 0; i < h->max_huge_pages; ++i) {
1143                 if (h->order >= MAX_ORDER) {
1144                         if (!alloc_bootmem_huge_page(h))
1145                                 break;
1146                 } else if (!alloc_fresh_huge_page(h,
1147                                          &node_states[N_HIGH_MEMORY]))
1148                         break;
1149         }
1150         h->max_huge_pages = i;
1151 }
1152
1153 static void __init hugetlb_init_hstates(void)
1154 {
1155         struct hstate *h;
1156
1157         for_each_hstate(h) {
1158                 /* oversize hugepages were init'ed in early boot */
1159                 if (h->order < MAX_ORDER)
1160                         hugetlb_hstate_alloc_pages(h);
1161         }
1162 }
1163
1164 static char * __init memfmt(char *buf, unsigned long n)
1165 {
1166         if (n >= (1UL << 30))
1167                 sprintf(buf, "%lu GB", n >> 30);
1168         else if (n >= (1UL << 20))
1169                 sprintf(buf, "%lu MB", n >> 20);
1170         else
1171                 sprintf(buf, "%lu KB", n >> 10);
1172         return buf;
1173 }
1174
1175 static void __init report_hugepages(void)
1176 {
1177         struct hstate *h;
1178
1179         for_each_hstate(h) {
1180                 char buf[32];
1181                 printk(KERN_INFO "HugeTLB registered %s page size, "
1182                                  "pre-allocated %ld pages\n",
1183                         memfmt(buf, huge_page_size(h)),
1184                         h->free_huge_pages);
1185         }
1186 }
1187
1188 #ifdef CONFIG_HIGHMEM
1189 static void try_to_free_low(struct hstate *h, unsigned long count,
1190                                                 nodemask_t *nodes_allowed)
1191 {
1192         int i;
1193
1194         if (h->order >= MAX_ORDER)
1195                 return;
1196
1197         for_each_node_mask(i, *nodes_allowed) {
1198                 struct page *page, *next;
1199                 struct list_head *freel = &h->hugepage_freelists[i];
1200                 list_for_each_entry_safe(page, next, freel, lru) {
1201                         if (count >= h->nr_huge_pages)
1202                                 return;
1203                         if (PageHighMem(page))
1204                                 continue;
1205                         list_del(&page->lru);
1206                         update_and_free_page(h, page);
1207                         h->free_huge_pages--;
1208                         h->free_huge_pages_node[page_to_nid(page)]--;
1209                 }
1210         }
1211 }
1212 #else
1213 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1214                                                 nodemask_t *nodes_allowed)
1215 {
1216 }
1217 #endif
1218
1219 /*
1220  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1221  * balanced by operating on them in a round-robin fashion.
1222  * Returns 1 if an adjustment was made.
1223  */
1224 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1225                                 int delta)
1226 {
1227         int start_nid, next_nid;
1228         int ret = 0;
1229
1230         VM_BUG_ON(delta != -1 && delta != 1);
1231
1232         if (delta < 0)
1233                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1234         else
1235                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1236         next_nid = start_nid;
1237
1238         do {
1239                 int nid = next_nid;
1240                 if (delta < 0)  {
1241                         /*
1242                          * To shrink on this node, there must be a surplus page
1243                          */
1244                         if (!h->surplus_huge_pages_node[nid]) {
1245                                 next_nid = hstate_next_node_to_alloc(h,
1246                                                                 nodes_allowed);
1247                                 continue;
1248                         }
1249                 }
1250                 if (delta > 0) {
1251                         /*
1252                          * Surplus cannot exceed the total number of pages
1253                          */
1254                         if (h->surplus_huge_pages_node[nid] >=
1255                                                 h->nr_huge_pages_node[nid]) {
1256                                 next_nid = hstate_next_node_to_free(h,
1257                                                                 nodes_allowed);
1258                                 continue;
1259                         }
1260                 }
1261
1262                 h->surplus_huge_pages += delta;
1263                 h->surplus_huge_pages_node[nid] += delta;
1264                 ret = 1;
1265                 break;
1266         } while (next_nid != start_nid);
1267
1268         return ret;
1269 }
1270
1271 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1272 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1273                                                 nodemask_t *nodes_allowed)
1274 {
1275         unsigned long min_count, ret;
1276
1277         if (h->order >= MAX_ORDER)
1278                 return h->max_huge_pages;
1279
1280         /*
1281          * Increase the pool size
1282          * First take pages out of surplus state.  Then make up the
1283          * remaining difference by allocating fresh huge pages.
1284          *
1285          * We might race with alloc_buddy_huge_page() here and be unable
1286          * to convert a surplus huge page to a normal huge page. That is
1287          * not critical, though, it just means the overall size of the
1288          * pool might be one hugepage larger than it needs to be, but
1289          * within all the constraints specified by the sysctls.
1290          */
1291         spin_lock(&hugetlb_lock);
1292         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1293                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1294                         break;
1295         }
1296
1297         while (count > persistent_huge_pages(h)) {
1298                 /*
1299                  * If this allocation races such that we no longer need the
1300                  * page, free_huge_page will handle it by freeing the page
1301                  * and reducing the surplus.
1302                  */
1303                 spin_unlock(&hugetlb_lock);
1304                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1305                 spin_lock(&hugetlb_lock);
1306                 if (!ret)
1307                         goto out;
1308
1309                 /* Bail for signals. Probably ctrl-c from user */
1310                 if (signal_pending(current))
1311                         goto out;
1312         }
1313
1314         /*
1315          * Decrease the pool size
1316          * First return free pages to the buddy allocator (being careful
1317          * to keep enough around to satisfy reservations).  Then place
1318          * pages into surplus state as needed so the pool will shrink
1319          * to the desired size as pages become free.
1320          *
1321          * By placing pages into the surplus state independent of the
1322          * overcommit value, we are allowing the surplus pool size to
1323          * exceed overcommit. There are few sane options here. Since
1324          * alloc_buddy_huge_page() is checking the global counter,
1325          * though, we'll note that we're not allowed to exceed surplus
1326          * and won't grow the pool anywhere else. Not until one of the
1327          * sysctls are changed, or the surplus pages go out of use.
1328          */
1329         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1330         min_count = max(count, min_count);
1331         try_to_free_low(h, min_count, nodes_allowed);
1332         while (min_count < persistent_huge_pages(h)) {
1333                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1334                         break;
1335         }
1336         while (count < persistent_huge_pages(h)) {
1337                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1338                         break;
1339         }
1340 out:
1341         ret = persistent_huge_pages(h);
1342         spin_unlock(&hugetlb_lock);
1343         return ret;
1344 }
1345
1346 #define HSTATE_ATTR_RO(_name) \
1347         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1348
1349 #define HSTATE_ATTR(_name) \
1350         static struct kobj_attribute _name##_attr = \
1351                 __ATTR(_name, 0644, _name##_show, _name##_store)
1352
1353 static struct kobject *hugepages_kobj;
1354 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1355
1356 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1357
1358 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1359 {
1360         int i;
1361
1362         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1363                 if (hstate_kobjs[i] == kobj) {
1364                         if (nidp)
1365                                 *nidp = NUMA_NO_NODE;
1366                         return &hstates[i];
1367                 }
1368
1369         return kobj_to_node_hstate(kobj, nidp);
1370 }
1371
1372 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1373                                         struct kobj_attribute *attr, char *buf)
1374 {
1375         struct hstate *h;
1376         unsigned long nr_huge_pages;
1377         int nid;
1378
1379         h = kobj_to_hstate(kobj, &nid);
1380         if (nid == NUMA_NO_NODE)
1381                 nr_huge_pages = h->nr_huge_pages;
1382         else
1383                 nr_huge_pages = h->nr_huge_pages_node[nid];
1384
1385         return sprintf(buf, "%lu\n", nr_huge_pages);
1386 }
1387
1388 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1389                         struct kobject *kobj, struct kobj_attribute *attr,
1390                         const char *buf, size_t len)
1391 {
1392         int err;
1393         int nid;
1394         unsigned long count;
1395         struct hstate *h;
1396         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1397
1398         err = strict_strtoul(buf, 10, &count);
1399         if (err)
1400                 goto out;
1401
1402         h = kobj_to_hstate(kobj, &nid);
1403         if (h->order >= MAX_ORDER) {
1404                 err = -EINVAL;
1405                 goto out;
1406         }
1407
1408         if (nid == NUMA_NO_NODE) {
1409                 /*
1410                  * global hstate attribute
1411                  */
1412                 if (!(obey_mempolicy &&
1413                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1414                         NODEMASK_FREE(nodes_allowed);
1415                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1416                 }
1417         } else if (nodes_allowed) {
1418                 /*
1419                  * per node hstate attribute: adjust count to global,
1420                  * but restrict alloc/free to the specified node.
1421                  */
1422                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1423                 init_nodemask_of_node(nodes_allowed, nid);
1424         } else
1425                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1426
1427         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1428
1429         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1430                 NODEMASK_FREE(nodes_allowed);
1431
1432         return len;
1433 out:
1434         NODEMASK_FREE(nodes_allowed);
1435         return err;
1436 }
1437
1438 static ssize_t nr_hugepages_show(struct kobject *kobj,
1439                                        struct kobj_attribute *attr, char *buf)
1440 {
1441         return nr_hugepages_show_common(kobj, attr, buf);
1442 }
1443
1444 static ssize_t nr_hugepages_store(struct kobject *kobj,
1445                struct kobj_attribute *attr, const char *buf, size_t len)
1446 {
1447         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1448 }
1449 HSTATE_ATTR(nr_hugepages);
1450
1451 #ifdef CONFIG_NUMA
1452
1453 /*
1454  * hstate attribute for optionally mempolicy-based constraint on persistent
1455  * huge page alloc/free.
1456  */
1457 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1458                                        struct kobj_attribute *attr, char *buf)
1459 {
1460         return nr_hugepages_show_common(kobj, attr, buf);
1461 }
1462
1463 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1464                struct kobj_attribute *attr, const char *buf, size_t len)
1465 {
1466         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1467 }
1468 HSTATE_ATTR(nr_hugepages_mempolicy);
1469 #endif
1470
1471
1472 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1473                                         struct kobj_attribute *attr, char *buf)
1474 {
1475         struct hstate *h = kobj_to_hstate(kobj, NULL);
1476         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1477 }
1478
1479 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1480                 struct kobj_attribute *attr, const char *buf, size_t count)
1481 {
1482         int err;
1483         unsigned long input;
1484         struct hstate *h = kobj_to_hstate(kobj, NULL);
1485
1486         if (h->order >= MAX_ORDER)
1487                 return -EINVAL;
1488
1489         err = strict_strtoul(buf, 10, &input);
1490         if (err)
1491                 return err;
1492
1493         spin_lock(&hugetlb_lock);
1494         h->nr_overcommit_huge_pages = input;
1495         spin_unlock(&hugetlb_lock);
1496
1497         return count;
1498 }
1499 HSTATE_ATTR(nr_overcommit_hugepages);
1500
1501 static ssize_t free_hugepages_show(struct kobject *kobj,
1502                                         struct kobj_attribute *attr, char *buf)
1503 {
1504         struct hstate *h;
1505         unsigned long free_huge_pages;
1506         int nid;
1507
1508         h = kobj_to_hstate(kobj, &nid);
1509         if (nid == NUMA_NO_NODE)
1510                 free_huge_pages = h->free_huge_pages;
1511         else
1512                 free_huge_pages = h->free_huge_pages_node[nid];
1513
1514         return sprintf(buf, "%lu\n", free_huge_pages);
1515 }
1516 HSTATE_ATTR_RO(free_hugepages);
1517
1518 static ssize_t resv_hugepages_show(struct kobject *kobj,
1519                                         struct kobj_attribute *attr, char *buf)
1520 {
1521         struct hstate *h = kobj_to_hstate(kobj, NULL);
1522         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1523 }
1524 HSTATE_ATTR_RO(resv_hugepages);
1525
1526 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1527                                         struct kobj_attribute *attr, char *buf)
1528 {
1529         struct hstate *h;
1530         unsigned long surplus_huge_pages;
1531         int nid;
1532
1533         h = kobj_to_hstate(kobj, &nid);
1534         if (nid == NUMA_NO_NODE)
1535                 surplus_huge_pages = h->surplus_huge_pages;
1536         else
1537                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1538
1539         return sprintf(buf, "%lu\n", surplus_huge_pages);
1540 }
1541 HSTATE_ATTR_RO(surplus_hugepages);
1542
1543 static struct attribute *hstate_attrs[] = {
1544         &nr_hugepages_attr.attr,
1545         &nr_overcommit_hugepages_attr.attr,
1546         &free_hugepages_attr.attr,
1547         &resv_hugepages_attr.attr,
1548         &surplus_hugepages_attr.attr,
1549 #ifdef CONFIG_NUMA
1550         &nr_hugepages_mempolicy_attr.attr,
1551 #endif
1552         NULL,
1553 };
1554
1555 static struct attribute_group hstate_attr_group = {
1556         .attrs = hstate_attrs,
1557 };
1558
1559 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1560                                     struct kobject **hstate_kobjs,
1561                                     struct attribute_group *hstate_attr_group)
1562 {
1563         int retval;
1564         int hi = h - hstates;
1565
1566         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1567         if (!hstate_kobjs[hi])
1568                 return -ENOMEM;
1569
1570         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1571         if (retval)
1572                 kobject_put(hstate_kobjs[hi]);
1573
1574         return retval;
1575 }
1576
1577 static void __init hugetlb_sysfs_init(void)
1578 {
1579         struct hstate *h;
1580         int err;
1581
1582         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1583         if (!hugepages_kobj)
1584                 return;
1585
1586         for_each_hstate(h) {
1587                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1588                                          hstate_kobjs, &hstate_attr_group);
1589                 if (err)
1590                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1591                                                                 h->name);
1592         }
1593 }
1594
1595 #ifdef CONFIG_NUMA
1596
1597 /*
1598  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1599  * with node devices in node_devices[] using a parallel array.  The array
1600  * index of a node device or _hstate == node id.
1601  * This is here to avoid any static dependency of the node device driver, in
1602  * the base kernel, on the hugetlb module.
1603  */
1604 struct node_hstate {
1605         struct kobject          *hugepages_kobj;
1606         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1607 };
1608 struct node_hstate node_hstates[MAX_NUMNODES];
1609
1610 /*
1611  * A subset of global hstate attributes for node devices
1612  */
1613 static struct attribute *per_node_hstate_attrs[] = {
1614         &nr_hugepages_attr.attr,
1615         &free_hugepages_attr.attr,
1616         &surplus_hugepages_attr.attr,
1617         NULL,
1618 };
1619
1620 static struct attribute_group per_node_hstate_attr_group = {
1621         .attrs = per_node_hstate_attrs,
1622 };
1623
1624 /*
1625  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1626  * Returns node id via non-NULL nidp.
1627  */
1628 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1629 {
1630         int nid;
1631
1632         for (nid = 0; nid < nr_node_ids; nid++) {
1633                 struct node_hstate *nhs = &node_hstates[nid];
1634                 int i;
1635                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1636                         if (nhs->hstate_kobjs[i] == kobj) {
1637                                 if (nidp)
1638                                         *nidp = nid;
1639                                 return &hstates[i];
1640                         }
1641         }
1642
1643         BUG();
1644         return NULL;
1645 }
1646
1647 /*
1648  * Unregister hstate attributes from a single node device.
1649  * No-op if no hstate attributes attached.
1650  */
1651 void hugetlb_unregister_node(struct node *node)
1652 {
1653         struct hstate *h;
1654         struct node_hstate *nhs = &node_hstates[node->dev.id];
1655
1656         if (!nhs->hugepages_kobj)
1657                 return;         /* no hstate attributes */
1658
1659         for_each_hstate(h)
1660                 if (nhs->hstate_kobjs[h - hstates]) {
1661                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1662                         nhs->hstate_kobjs[h - hstates] = NULL;
1663                 }
1664
1665         kobject_put(nhs->hugepages_kobj);
1666         nhs->hugepages_kobj = NULL;
1667 }
1668
1669 /*
1670  * hugetlb module exit:  unregister hstate attributes from node devices
1671  * that have them.
1672  */
1673 static void hugetlb_unregister_all_nodes(void)
1674 {
1675         int nid;
1676
1677         /*
1678          * disable node device registrations.
1679          */
1680         register_hugetlbfs_with_node(NULL, NULL);
1681
1682         /*
1683          * remove hstate attributes from any nodes that have them.
1684          */
1685         for (nid = 0; nid < nr_node_ids; nid++)
1686                 hugetlb_unregister_node(&node_devices[nid]);
1687 }
1688
1689 /*
1690  * Register hstate attributes for a single node device.
1691  * No-op if attributes already registered.
1692  */
1693 void hugetlb_register_node(struct node *node)
1694 {
1695         struct hstate *h;
1696         struct node_hstate *nhs = &node_hstates[node->dev.id];
1697         int err;
1698
1699         if (nhs->hugepages_kobj)
1700                 return;         /* already allocated */
1701
1702         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1703                                                         &node->dev.kobj);
1704         if (!nhs->hugepages_kobj)
1705                 return;
1706
1707         for_each_hstate(h) {
1708                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1709                                                 nhs->hstate_kobjs,
1710                                                 &per_node_hstate_attr_group);
1711                 if (err) {
1712                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1713                                         " for node %d\n",
1714                                                 h->name, node->dev.id);
1715                         hugetlb_unregister_node(node);
1716                         break;
1717                 }
1718         }
1719 }
1720
1721 /*
1722  * hugetlb init time:  register hstate attributes for all registered node
1723  * devices of nodes that have memory.  All on-line nodes should have
1724  * registered their associated device by this time.
1725  */
1726 static void hugetlb_register_all_nodes(void)
1727 {
1728         int nid;
1729
1730         for_each_node_state(nid, N_HIGH_MEMORY) {
1731                 struct node *node = &node_devices[nid];
1732                 if (node->dev.id == nid)
1733                         hugetlb_register_node(node);
1734         }
1735
1736         /*
1737          * Let the node device driver know we're here so it can
1738          * [un]register hstate attributes on node hotplug.
1739          */
1740         register_hugetlbfs_with_node(hugetlb_register_node,
1741                                      hugetlb_unregister_node);
1742 }
1743 #else   /* !CONFIG_NUMA */
1744
1745 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1746 {
1747         BUG();
1748         if (nidp)
1749                 *nidp = -1;
1750         return NULL;
1751 }
1752
1753 static void hugetlb_unregister_all_nodes(void) { }
1754
1755 static void hugetlb_register_all_nodes(void) { }
1756
1757 #endif
1758
1759 static void __exit hugetlb_exit(void)
1760 {
1761         struct hstate *h;
1762
1763         hugetlb_unregister_all_nodes();
1764
1765         for_each_hstate(h) {
1766                 kobject_put(hstate_kobjs[h - hstates]);
1767         }
1768
1769         kobject_put(hugepages_kobj);
1770 }
1771 module_exit(hugetlb_exit);
1772
1773 static int __init hugetlb_init(void)
1774 {
1775         /* Some platform decide whether they support huge pages at boot
1776          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1777          * there is no such support
1778          */
1779         if (HPAGE_SHIFT == 0)
1780                 return 0;
1781
1782         if (!size_to_hstate(default_hstate_size)) {
1783                 default_hstate_size = HPAGE_SIZE;
1784                 if (!size_to_hstate(default_hstate_size))
1785                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1786         }
1787         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1788         if (default_hstate_max_huge_pages)
1789                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1790
1791         hugetlb_init_hstates();
1792
1793         gather_bootmem_prealloc();
1794
1795         report_hugepages();
1796
1797         hugetlb_sysfs_init();
1798
1799         hugetlb_register_all_nodes();
1800
1801         return 0;
1802 }
1803 module_init(hugetlb_init);
1804
1805 /* Should be called on processing a hugepagesz=... option */
1806 void __init hugetlb_add_hstate(unsigned order)
1807 {
1808         struct hstate *h;
1809         unsigned long i;
1810
1811         if (size_to_hstate(PAGE_SIZE << order)) {
1812                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1813                 return;
1814         }
1815         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1816         BUG_ON(order == 0);
1817         h = &hstates[max_hstate++];
1818         h->order = order;
1819         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1820         h->nr_huge_pages = 0;
1821         h->free_huge_pages = 0;
1822         for (i = 0; i < MAX_NUMNODES; ++i)
1823                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1824         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1825         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1826         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1827                                         huge_page_size(h)/1024);
1828
1829         parsed_hstate = h;
1830 }
1831
1832 static int __init hugetlb_nrpages_setup(char *s)
1833 {
1834         unsigned long *mhp;
1835         static unsigned long *last_mhp;
1836
1837         /*
1838          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1839          * so this hugepages= parameter goes to the "default hstate".
1840          */
1841         if (!max_hstate)
1842                 mhp = &default_hstate_max_huge_pages;
1843         else
1844                 mhp = &parsed_hstate->max_huge_pages;
1845
1846         if (mhp == last_mhp) {
1847                 printk(KERN_WARNING "hugepages= specified twice without "
1848                         "interleaving hugepagesz=, ignoring\n");
1849                 return 1;
1850         }
1851
1852         if (sscanf(s, "%lu", mhp) <= 0)
1853                 *mhp = 0;
1854
1855         /*
1856          * Global state is always initialized later in hugetlb_init.
1857          * But we need to allocate >= MAX_ORDER hstates here early to still
1858          * use the bootmem allocator.
1859          */
1860         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1861                 hugetlb_hstate_alloc_pages(parsed_hstate);
1862
1863         last_mhp = mhp;
1864
1865         return 1;
1866 }
1867 __setup("hugepages=", hugetlb_nrpages_setup);
1868
1869 static int __init hugetlb_default_setup(char *s)
1870 {
1871         default_hstate_size = memparse(s, &s);
1872         return 1;
1873 }
1874 __setup("default_hugepagesz=", hugetlb_default_setup);
1875
1876 static unsigned int cpuset_mems_nr(unsigned int *array)
1877 {
1878         int node;
1879         unsigned int nr = 0;
1880
1881         for_each_node_mask(node, cpuset_current_mems_allowed)
1882                 nr += array[node];
1883
1884         return nr;
1885 }
1886
1887 #ifdef CONFIG_SYSCTL
1888 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1889                          struct ctl_table *table, int write,
1890                          void __user *buffer, size_t *length, loff_t *ppos)
1891 {
1892         struct hstate *h = &default_hstate;
1893         unsigned long tmp;
1894         int ret;
1895
1896         tmp = h->max_huge_pages;
1897
1898         if (write && h->order >= MAX_ORDER)
1899                 return -EINVAL;
1900
1901         table->data = &tmp;
1902         table->maxlen = sizeof(unsigned long);
1903         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1904         if (ret)
1905                 goto out;
1906
1907         if (write) {
1908                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1909                                                 GFP_KERNEL | __GFP_NORETRY);
1910                 if (!(obey_mempolicy &&
1911                                init_nodemask_of_mempolicy(nodes_allowed))) {
1912                         NODEMASK_FREE(nodes_allowed);
1913                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1914                 }
1915                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1916
1917                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1918                         NODEMASK_FREE(nodes_allowed);
1919         }
1920 out:
1921         return ret;
1922 }
1923
1924 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1925                           void __user *buffer, size_t *length, loff_t *ppos)
1926 {
1927
1928         return hugetlb_sysctl_handler_common(false, table, write,
1929                                                         buffer, length, ppos);
1930 }
1931
1932 #ifdef CONFIG_NUMA
1933 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1934                           void __user *buffer, size_t *length, loff_t *ppos)
1935 {
1936         return hugetlb_sysctl_handler_common(true, table, write,
1937                                                         buffer, length, ppos);
1938 }
1939 #endif /* CONFIG_NUMA */
1940
1941 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1942                         void __user *buffer,
1943                         size_t *length, loff_t *ppos)
1944 {
1945         proc_dointvec(table, write, buffer, length, ppos);
1946         if (hugepages_treat_as_movable)
1947                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1948         else
1949                 htlb_alloc_mask = GFP_HIGHUSER;
1950         return 0;
1951 }
1952
1953 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1954                         void __user *buffer,
1955                         size_t *length, loff_t *ppos)
1956 {
1957         struct hstate *h = &default_hstate;
1958         unsigned long tmp;
1959         int ret;
1960
1961         tmp = h->nr_overcommit_huge_pages;
1962
1963         if (write && h->order >= MAX_ORDER)
1964                 return -EINVAL;
1965
1966         table->data = &tmp;
1967         table->maxlen = sizeof(unsigned long);
1968         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1969         if (ret)
1970                 goto out;
1971
1972         if (write) {
1973                 spin_lock(&hugetlb_lock);
1974                 h->nr_overcommit_huge_pages = tmp;
1975                 spin_unlock(&hugetlb_lock);
1976         }
1977 out:
1978         return ret;
1979 }
1980
1981 #endif /* CONFIG_SYSCTL */
1982
1983 void hugetlb_report_meminfo(struct seq_file *m)
1984 {
1985         struct hstate *h = &default_hstate;
1986         seq_printf(m,
1987                         "HugePages_Total:   %5lu\n"
1988                         "HugePages_Free:    %5lu\n"
1989                         "HugePages_Rsvd:    %5lu\n"
1990                         "HugePages_Surp:    %5lu\n"
1991                         "Hugepagesize:   %8lu kB\n",
1992                         h->nr_huge_pages,
1993                         h->free_huge_pages,
1994                         h->resv_huge_pages,
1995                         h->surplus_huge_pages,
1996                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1997 }
1998
1999 int hugetlb_report_node_meminfo(int nid, char *buf)
2000 {
2001         struct hstate *h = &default_hstate;
2002         return sprintf(buf,
2003                 "Node %d HugePages_Total: %5u\n"
2004                 "Node %d HugePages_Free:  %5u\n"
2005                 "Node %d HugePages_Surp:  %5u\n",
2006                 nid, h->nr_huge_pages_node[nid],
2007                 nid, h->free_huge_pages_node[nid],
2008                 nid, h->surplus_huge_pages_node[nid]);
2009 }
2010
2011 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2012 unsigned long hugetlb_total_pages(void)
2013 {
2014         struct hstate *h = &default_hstate;
2015         return h->nr_huge_pages * pages_per_huge_page(h);
2016 }
2017
2018 static int hugetlb_acct_memory(struct hstate *h, long delta)
2019 {
2020         int ret = -ENOMEM;
2021
2022         spin_lock(&hugetlb_lock);
2023         /*
2024          * When cpuset is configured, it breaks the strict hugetlb page
2025          * reservation as the accounting is done on a global variable. Such
2026          * reservation is completely rubbish in the presence of cpuset because
2027          * the reservation is not checked against page availability for the
2028          * current cpuset. Application can still potentially OOM'ed by kernel
2029          * with lack of free htlb page in cpuset that the task is in.
2030          * Attempt to enforce strict accounting with cpuset is almost
2031          * impossible (or too ugly) because cpuset is too fluid that
2032          * task or memory node can be dynamically moved between cpusets.
2033          *
2034          * The change of semantics for shared hugetlb mapping with cpuset is
2035          * undesirable. However, in order to preserve some of the semantics,
2036          * we fall back to check against current free page availability as
2037          * a best attempt and hopefully to minimize the impact of changing
2038          * semantics that cpuset has.
2039          */
2040         if (delta > 0) {
2041                 if (gather_surplus_pages(h, delta) < 0)
2042                         goto out;
2043
2044                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2045                         return_unused_surplus_pages(h, delta);
2046                         goto out;
2047                 }
2048         }
2049
2050         ret = 0;
2051         if (delta < 0)
2052                 return_unused_surplus_pages(h, (unsigned long) -delta);
2053
2054 out:
2055         spin_unlock(&hugetlb_lock);
2056         return ret;
2057 }
2058
2059 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2060 {
2061         struct resv_map *reservations = vma_resv_map(vma);
2062
2063         /*
2064          * This new VMA should share its siblings reservation map if present.
2065          * The VMA will only ever have a valid reservation map pointer where
2066          * it is being copied for another still existing VMA.  As that VMA
2067          * has a reference to the reservation map it cannot disappear until
2068          * after this open call completes.  It is therefore safe to take a
2069          * new reference here without additional locking.
2070          */
2071         if (reservations)
2072                 kref_get(&reservations->refs);
2073 }
2074
2075 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2076 {
2077         struct hstate *h = hstate_vma(vma);
2078         struct resv_map *reservations = vma_resv_map(vma);
2079         unsigned long reserve;
2080         unsigned long start;
2081         unsigned long end;
2082
2083         if (reservations) {
2084                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2085                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2086
2087                 reserve = (end - start) -
2088                         region_count(&reservations->regions, start, end);
2089
2090                 kref_put(&reservations->refs, resv_map_release);
2091
2092                 if (reserve) {
2093                         hugetlb_acct_memory(h, -reserve);
2094                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2095                 }
2096         }
2097 }
2098
2099 /*
2100  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2101  * handle_mm_fault() to try to instantiate regular-sized pages in the
2102  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2103  * this far.
2104  */
2105 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2106 {
2107         BUG();
2108         return 0;
2109 }
2110
2111 const struct vm_operations_struct hugetlb_vm_ops = {
2112         .fault = hugetlb_vm_op_fault,
2113         .open = hugetlb_vm_op_open,
2114         .close = hugetlb_vm_op_close,
2115 };
2116
2117 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2118                                 int writable)
2119 {
2120         pte_t entry;
2121
2122         if (writable) {
2123                 entry =
2124                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2125         } else {
2126                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2127         }
2128         entry = pte_mkyoung(entry);
2129         entry = pte_mkhuge(entry);
2130
2131         return entry;
2132 }
2133
2134 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2135                                    unsigned long address, pte_t *ptep)
2136 {
2137         pte_t entry;
2138
2139         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2140         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2141                 update_mmu_cache(vma, address, ptep);
2142 }
2143
2144
2145 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2146                             struct vm_area_struct *vma)
2147 {
2148         pte_t *src_pte, *dst_pte, entry;
2149         struct page *ptepage;
2150         unsigned long addr;
2151         int cow;
2152         struct hstate *h = hstate_vma(vma);
2153         unsigned long sz = huge_page_size(h);
2154
2155         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2156
2157         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2158                 src_pte = huge_pte_offset(src, addr);
2159                 if (!src_pte)
2160                         continue;
2161                 dst_pte = huge_pte_alloc(dst, addr, sz);
2162                 if (!dst_pte)
2163                         goto nomem;
2164
2165                 /* If the pagetables are shared don't copy or take references */
2166                 if (dst_pte == src_pte)
2167                         continue;
2168
2169                 spin_lock(&dst->page_table_lock);
2170                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2171                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2172                         if (cow)
2173                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2174                         entry = huge_ptep_get(src_pte);
2175                         ptepage = pte_page(entry);
2176                         get_page(ptepage);
2177                         page_dup_rmap(ptepage);
2178                         set_huge_pte_at(dst, addr, dst_pte, entry);
2179                 }
2180                 spin_unlock(&src->page_table_lock);
2181                 spin_unlock(&dst->page_table_lock);
2182         }
2183         return 0;
2184
2185 nomem:
2186         return -ENOMEM;
2187 }
2188
2189 static int is_hugetlb_entry_migration(pte_t pte)
2190 {
2191         swp_entry_t swp;
2192
2193         if (huge_pte_none(pte) || pte_present(pte))
2194                 return 0;
2195         swp = pte_to_swp_entry(pte);
2196         if (non_swap_entry(swp) && is_migration_entry(swp))
2197                 return 1;
2198         else
2199                 return 0;
2200 }
2201
2202 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2203 {
2204         swp_entry_t swp;
2205
2206         if (huge_pte_none(pte) || pte_present(pte))
2207                 return 0;
2208         swp = pte_to_swp_entry(pte);
2209         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2210                 return 1;
2211         else
2212                 return 0;
2213 }
2214
2215 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2216                             unsigned long end, struct page *ref_page)
2217 {
2218         struct mm_struct *mm = vma->vm_mm;
2219         unsigned long address;
2220         pte_t *ptep;
2221         pte_t pte;
2222         struct page *page;
2223         struct page *tmp;
2224         struct hstate *h = hstate_vma(vma);
2225         unsigned long sz = huge_page_size(h);
2226
2227         /*
2228          * A page gathering list, protected by per file i_mmap_mutex. The
2229          * lock is used to avoid list corruption from multiple unmapping
2230          * of the same page since we are using page->lru.
2231          */
2232         LIST_HEAD(page_list);
2233
2234         WARN_ON(!is_vm_hugetlb_page(vma));
2235         BUG_ON(start & ~huge_page_mask(h));
2236         BUG_ON(end & ~huge_page_mask(h));
2237
2238         mmu_notifier_invalidate_range_start(mm, start, end);
2239         spin_lock(&mm->page_table_lock);
2240         for (address = start; address < end; address += sz) {
2241                 ptep = huge_pte_offset(mm, address);
2242                 if (!ptep)
2243                         continue;
2244
2245                 if (huge_pmd_unshare(mm, &address, ptep))
2246                         continue;
2247
2248                 /*
2249                  * If a reference page is supplied, it is because a specific
2250                  * page is being unmapped, not a range. Ensure the page we
2251                  * are about to unmap is the actual page of interest.
2252                  */
2253                 if (ref_page) {
2254                         pte = huge_ptep_get(ptep);
2255                         if (huge_pte_none(pte))
2256                                 continue;
2257                         page = pte_page(pte);
2258                         if (page != ref_page)
2259                                 continue;
2260
2261                         /*
2262                          * Mark the VMA as having unmapped its page so that
2263                          * future faults in this VMA will fail rather than
2264                          * looking like data was lost
2265                          */
2266                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2267                 }
2268
2269                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2270                 if (huge_pte_none(pte))
2271                         continue;
2272
2273                 /*
2274                  * HWPoisoned hugepage is already unmapped and dropped reference
2275                  */
2276                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2277                         continue;
2278
2279                 page = pte_page(pte);
2280                 if (pte_dirty(pte))
2281                         set_page_dirty(page);
2282                 list_add(&page->lru, &page_list);
2283         }
2284         flush_tlb_range(vma, start, end);
2285         spin_unlock(&mm->page_table_lock);
2286         mmu_notifier_invalidate_range_end(mm, start, end);
2287         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2288                 page_remove_rmap(page);
2289                 list_del(&page->lru);
2290                 put_page(page);
2291         }
2292 }
2293
2294 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2295                           unsigned long end, struct page *ref_page)
2296 {
2297         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2298         __unmap_hugepage_range(vma, start, end, ref_page);
2299         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2300 }
2301
2302 /*
2303  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2304  * mappping it owns the reserve page for. The intention is to unmap the page
2305  * from other VMAs and let the children be SIGKILLed if they are faulting the
2306  * same region.
2307  */
2308 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2309                                 struct page *page, unsigned long address)
2310 {
2311         struct hstate *h = hstate_vma(vma);
2312         struct vm_area_struct *iter_vma;
2313         struct address_space *mapping;
2314         struct prio_tree_iter iter;
2315         pgoff_t pgoff;
2316
2317         /*
2318          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2319          * from page cache lookup which is in HPAGE_SIZE units.
2320          */
2321         address = address & huge_page_mask(h);
2322         pgoff = vma_hugecache_offset(h, vma, address);
2323         mapping = (struct address_space *)page_private(page);
2324
2325         /*
2326          * Take the mapping lock for the duration of the table walk. As
2327          * this mapping should be shared between all the VMAs,
2328          * __unmap_hugepage_range() is called as the lock is already held
2329          */
2330         mutex_lock(&mapping->i_mmap_mutex);
2331         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2332                 /* Do not unmap the current VMA */
2333                 if (iter_vma == vma)
2334                         continue;
2335
2336                 /*
2337                  * Unmap the page from other VMAs without their own reserves.
2338                  * They get marked to be SIGKILLed if they fault in these
2339                  * areas. This is because a future no-page fault on this VMA
2340                  * could insert a zeroed page instead of the data existing
2341                  * from the time of fork. This would look like data corruption
2342                  */
2343                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2344                         __unmap_hugepage_range(iter_vma,
2345                                 address, address + huge_page_size(h),
2346                                 page);
2347         }
2348         mutex_unlock(&mapping->i_mmap_mutex);
2349
2350         return 1;
2351 }
2352
2353 /*
2354  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2355  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2356  * cannot race with other handlers or page migration.
2357  * Keep the pte_same checks anyway to make transition from the mutex easier.
2358  */
2359 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2360                         unsigned long address, pte_t *ptep, pte_t pte,
2361                         struct page *pagecache_page)
2362 {
2363         struct hstate *h = hstate_vma(vma);
2364         struct page *old_page, *new_page;
2365         int avoidcopy;
2366         int outside_reserve = 0;
2367
2368         old_page = pte_page(pte);
2369
2370 retry_avoidcopy:
2371         /* If no-one else is actually using this page, avoid the copy
2372          * and just make the page writable */
2373         avoidcopy = (page_mapcount(old_page) == 1);
2374         if (avoidcopy) {
2375                 if (PageAnon(old_page))
2376                         page_move_anon_rmap(old_page, vma, address);
2377                 set_huge_ptep_writable(vma, address, ptep);
2378                 return 0;
2379         }
2380
2381         /*
2382          * If the process that created a MAP_PRIVATE mapping is about to
2383          * perform a COW due to a shared page count, attempt to satisfy
2384          * the allocation without using the existing reserves. The pagecache
2385          * page is used to determine if the reserve at this address was
2386          * consumed or not. If reserves were used, a partial faulted mapping
2387          * at the time of fork() could consume its reserves on COW instead
2388          * of the full address range.
2389          */
2390         if (!(vma->vm_flags & VM_MAYSHARE) &&
2391                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2392                         old_page != pagecache_page)
2393                 outside_reserve = 1;
2394
2395         page_cache_get(old_page);
2396
2397         /* Drop page_table_lock as buddy allocator may be called */
2398         spin_unlock(&mm->page_table_lock);
2399         new_page = alloc_huge_page(vma, address, outside_reserve);
2400
2401         if (IS_ERR(new_page)) {
2402                 page_cache_release(old_page);
2403
2404                 /*
2405                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2406                  * it is due to references held by a child and an insufficient
2407                  * huge page pool. To guarantee the original mappers
2408                  * reliability, unmap the page from child processes. The child
2409                  * may get SIGKILLed if it later faults.
2410                  */
2411                 if (outside_reserve) {
2412                         BUG_ON(huge_pte_none(pte));
2413                         if (unmap_ref_private(mm, vma, old_page, address)) {
2414                                 BUG_ON(page_count(old_page) != 1);
2415                                 BUG_ON(huge_pte_none(pte));
2416                                 spin_lock(&mm->page_table_lock);
2417                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2418                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2419                                         goto retry_avoidcopy;
2420                                 /*
2421                                  * race occurs while re-acquiring page_table_lock, and
2422                                  * our job is done.
2423                                  */
2424                                 return 0;
2425                         }
2426                         WARN_ON_ONCE(1);
2427                 }
2428
2429                 /* Caller expects lock to be held */
2430                 spin_lock(&mm->page_table_lock);
2431                 return -PTR_ERR(new_page);
2432         }
2433
2434         /*
2435          * When the original hugepage is shared one, it does not have
2436          * anon_vma prepared.
2437          */
2438         if (unlikely(anon_vma_prepare(vma))) {
2439                 page_cache_release(new_page);
2440                 page_cache_release(old_page);
2441                 /* Caller expects lock to be held */
2442                 spin_lock(&mm->page_table_lock);
2443                 return VM_FAULT_OOM;
2444         }
2445
2446         copy_user_huge_page(new_page, old_page, address, vma,
2447                             pages_per_huge_page(h));
2448         __SetPageUptodate(new_page);
2449
2450         /*
2451          * Retake the page_table_lock to check for racing updates
2452          * before the page tables are altered
2453          */
2454         spin_lock(&mm->page_table_lock);
2455         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2456         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2457                 /* Break COW */
2458                 mmu_notifier_invalidate_range_start(mm,
2459                         address & huge_page_mask(h),
2460                         (address & huge_page_mask(h)) + huge_page_size(h));
2461                 huge_ptep_clear_flush(vma, address, ptep);
2462                 set_huge_pte_at(mm, address, ptep,
2463                                 make_huge_pte(vma, new_page, 1));
2464                 page_remove_rmap(old_page);
2465                 hugepage_add_new_anon_rmap(new_page, vma, address);
2466                 /* Make the old page be freed below */
2467                 new_page = old_page;
2468                 mmu_notifier_invalidate_range_end(mm,
2469                         address & huge_page_mask(h),
2470                         (address & huge_page_mask(h)) + huge_page_size(h));
2471         }
2472         page_cache_release(new_page);
2473         page_cache_release(old_page);
2474         return 0;
2475 }
2476
2477 /* Return the pagecache page at a given address within a VMA */
2478 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2479                         struct vm_area_struct *vma, unsigned long address)
2480 {
2481         struct address_space *mapping;
2482         pgoff_t idx;
2483
2484         mapping = vma->vm_file->f_mapping;
2485         idx = vma_hugecache_offset(h, vma, address);
2486
2487         return find_lock_page(mapping, idx);
2488 }
2489
2490 /*
2491  * Return whether there is a pagecache page to back given address within VMA.
2492  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2493  */
2494 static bool hugetlbfs_pagecache_present(struct hstate *h,
2495                         struct vm_area_struct *vma, unsigned long address)
2496 {
2497         struct address_space *mapping;
2498         pgoff_t idx;
2499         struct page *page;
2500
2501         mapping = vma->vm_file->f_mapping;
2502         idx = vma_hugecache_offset(h, vma, address);
2503
2504         page = find_get_page(mapping, idx);
2505         if (page)
2506                 put_page(page);
2507         return page != NULL;
2508 }
2509
2510 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2511                         unsigned long address, pte_t *ptep, unsigned int flags)
2512 {
2513         struct hstate *h = hstate_vma(vma);
2514         int ret = VM_FAULT_SIGBUS;
2515         int anon_rmap = 0;
2516         pgoff_t idx;
2517         unsigned long size;
2518         struct page *page;
2519         struct address_space *mapping;
2520         pte_t new_pte;
2521
2522         /*
2523          * Currently, we are forced to kill the process in the event the
2524          * original mapper has unmapped pages from the child due to a failed
2525          * COW. Warn that such a situation has occurred as it may not be obvious
2526          */
2527         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2528                 printk(KERN_WARNING
2529                         "PID %d killed due to inadequate hugepage pool\n",
2530                         current->pid);
2531                 return ret;
2532         }
2533
2534         mapping = vma->vm_file->f_mapping;
2535         idx = vma_hugecache_offset(h, vma, address);
2536
2537         /*
2538          * Use page lock to guard against racing truncation
2539          * before we get page_table_lock.
2540          */
2541 retry:
2542         page = find_lock_page(mapping, idx);
2543         if (!page) {
2544                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2545                 if (idx >= size)
2546                         goto out;
2547                 page = alloc_huge_page(vma, address, 0);
2548                 if (IS_ERR(page)) {
2549                         ret = -PTR_ERR(page);
2550                         goto out;
2551                 }
2552                 clear_huge_page(page, address, pages_per_huge_page(h));
2553                 __SetPageUptodate(page);
2554
2555                 if (vma->vm_flags & VM_MAYSHARE) {
2556                         int err;
2557                         struct inode *inode = mapping->host;
2558
2559                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2560                         if (err) {
2561                                 put_page(page);
2562                                 if (err == -EEXIST)
2563                                         goto retry;
2564                                 goto out;
2565                         }
2566
2567                         spin_lock(&inode->i_lock);
2568                         inode->i_blocks += blocks_per_huge_page(h);
2569                         spin_unlock(&inode->i_lock);
2570                 } else {
2571                         lock_page(page);
2572                         if (unlikely(anon_vma_prepare(vma))) {
2573                                 ret = VM_FAULT_OOM;
2574                                 goto backout_unlocked;
2575                         }
2576                         anon_rmap = 1;
2577                 }
2578         } else {
2579                 /*
2580                  * If memory error occurs between mmap() and fault, some process
2581                  * don't have hwpoisoned swap entry for errored virtual address.
2582                  * So we need to block hugepage fault by PG_hwpoison bit check.
2583                  */
2584                 if (unlikely(PageHWPoison(page))) {
2585                         ret = VM_FAULT_HWPOISON |
2586                               VM_FAULT_SET_HINDEX(h - hstates);
2587                         goto backout_unlocked;
2588                 }
2589         }
2590
2591         /*
2592          * If we are going to COW a private mapping later, we examine the
2593          * pending reservations for this page now. This will ensure that
2594          * any allocations necessary to record that reservation occur outside
2595          * the spinlock.
2596          */
2597         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2598                 if (vma_needs_reservation(h, vma, address) < 0) {
2599                         ret = VM_FAULT_OOM;
2600                         goto backout_unlocked;
2601                 }
2602
2603         spin_lock(&mm->page_table_lock);
2604         size = i_size_read(mapping->host) >> huge_page_shift(h);
2605         if (idx >= size)
2606                 goto backout;
2607
2608         ret = 0;
2609         if (!huge_pte_none(huge_ptep_get(ptep)))
2610                 goto backout;
2611
2612         if (anon_rmap)
2613                 hugepage_add_new_anon_rmap(page, vma, address);
2614         else
2615                 page_dup_rmap(page);
2616         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2617                                 && (vma->vm_flags & VM_SHARED)));
2618         set_huge_pte_at(mm, address, ptep, new_pte);
2619
2620         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2621                 /* Optimization, do the COW without a second fault */
2622                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2623         }
2624
2625         spin_unlock(&mm->page_table_lock);
2626         unlock_page(page);
2627 out:
2628         return ret;
2629
2630 backout:
2631         spin_unlock(&mm->page_table_lock);
2632 backout_unlocked:
2633         unlock_page(page);
2634         put_page(page);
2635         goto out;
2636 }
2637
2638 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2639                         unsigned long address, unsigned int flags)
2640 {
2641         pte_t *ptep;
2642         pte_t entry;
2643         int ret;
2644         struct page *page = NULL;
2645         struct page *pagecache_page = NULL;
2646         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2647         struct hstate *h = hstate_vma(vma);
2648
2649         address &= huge_page_mask(h);
2650
2651         ptep = huge_pte_offset(mm, address);
2652         if (ptep) {
2653                 entry = huge_ptep_get(ptep);
2654                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2655                         migration_entry_wait(mm, (pmd_t *)ptep, address);
2656                         return 0;
2657                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2658                         return VM_FAULT_HWPOISON_LARGE |
2659                                VM_FAULT_SET_HINDEX(h - hstates);
2660         }
2661
2662         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2663         if (!ptep)
2664                 return VM_FAULT_OOM;
2665
2666         /*
2667          * Serialize hugepage allocation and instantiation, so that we don't
2668          * get spurious allocation failures if two CPUs race to instantiate
2669          * the same page in the page cache.
2670          */
2671         mutex_lock(&hugetlb_instantiation_mutex);
2672         entry = huge_ptep_get(ptep);
2673         if (huge_pte_none(entry)) {
2674                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2675                 goto out_mutex;
2676         }
2677
2678         ret = 0;
2679
2680         /*
2681          * If we are going to COW the mapping later, we examine the pending
2682          * reservations for this page now. This will ensure that any
2683          * allocations necessary to record that reservation occur outside the
2684          * spinlock. For private mappings, we also lookup the pagecache
2685          * page now as it is used to determine if a reservation has been
2686          * consumed.
2687          */
2688         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2689                 if (vma_needs_reservation(h, vma, address) < 0) {
2690                         ret = VM_FAULT_OOM;
2691                         goto out_mutex;
2692                 }
2693
2694                 if (!(vma->vm_flags & VM_MAYSHARE))
2695                         pagecache_page = hugetlbfs_pagecache_page(h,
2696                                                                 vma, address);
2697         }
2698
2699         /*
2700          * hugetlb_cow() requires page locks of pte_page(entry) and
2701          * pagecache_page, so here we need take the former one
2702          * when page != pagecache_page or !pagecache_page.
2703          * Note that locking order is always pagecache_page -> page,
2704          * so no worry about deadlock.
2705          */
2706         page = pte_page(entry);
2707         if (page != pagecache_page)
2708                 lock_page(page);
2709
2710         spin_lock(&mm->page_table_lock);
2711         /* Check for a racing update before calling hugetlb_cow */
2712         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2713                 goto out_page_table_lock;
2714
2715
2716         if (flags & FAULT_FLAG_WRITE) {
2717                 if (!pte_write(entry)) {
2718                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2719                                                         pagecache_page);
2720                         goto out_page_table_lock;
2721                 }
2722                 entry = pte_mkdirty(entry);
2723         }
2724         entry = pte_mkyoung(entry);
2725         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2726                                                 flags & FAULT_FLAG_WRITE))
2727                 update_mmu_cache(vma, address, ptep);
2728
2729 out_page_table_lock:
2730         spin_unlock(&mm->page_table_lock);
2731
2732         if (pagecache_page) {
2733                 unlock_page(pagecache_page);
2734                 put_page(pagecache_page);
2735         }
2736         if (page != pagecache_page)
2737                 unlock_page(page);
2738
2739 out_mutex:
2740         mutex_unlock(&hugetlb_instantiation_mutex);
2741
2742         return ret;
2743 }
2744
2745 /* Can be overriden by architectures */
2746 __attribute__((weak)) struct page *
2747 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2748                pud_t *pud, int write)
2749 {
2750         BUG();
2751         return NULL;
2752 }
2753
2754 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2755                         struct page **pages, struct vm_area_struct **vmas,
2756                         unsigned long *position, int *length, int i,
2757                         unsigned int flags)
2758 {
2759         unsigned long pfn_offset;
2760         unsigned long vaddr = *position;
2761         int remainder = *length;
2762         struct hstate *h = hstate_vma(vma);
2763
2764         spin_lock(&mm->page_table_lock);
2765         while (vaddr < vma->vm_end && remainder) {
2766                 pte_t *pte;
2767                 int absent;
2768                 struct page *page;
2769
2770                 /*
2771                  * Some archs (sparc64, sh*) have multiple pte_ts to
2772                  * each hugepage.  We have to make sure we get the
2773                  * first, for the page indexing below to work.
2774                  */
2775                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2776                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2777
2778                 /*
2779                  * When coredumping, it suits get_dump_page if we just return
2780                  * an error where there's an empty slot with no huge pagecache
2781                  * to back it.  This way, we avoid allocating a hugepage, and
2782                  * the sparse dumpfile avoids allocating disk blocks, but its
2783                  * huge holes still show up with zeroes where they need to be.
2784                  */
2785                 if (absent && (flags & FOLL_DUMP) &&
2786                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2787                         remainder = 0;
2788                         break;
2789                 }
2790
2791                 if (absent ||
2792                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2793                         int ret;
2794
2795                         spin_unlock(&mm->page_table_lock);
2796                         ret = hugetlb_fault(mm, vma, vaddr,
2797                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2798                         spin_lock(&mm->page_table_lock);
2799                         if (!(ret & VM_FAULT_ERROR))
2800                                 continue;
2801
2802                         remainder = 0;
2803                         break;
2804                 }
2805
2806                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2807                 page = pte_page(huge_ptep_get(pte));
2808 same_page:
2809                 if (pages) {
2810                         pages[i] = mem_map_offset(page, pfn_offset);
2811                         get_page(pages[i]);
2812                 }
2813
2814                 if (vmas)
2815                         vmas[i] = vma;
2816
2817                 vaddr += PAGE_SIZE;
2818                 ++pfn_offset;
2819                 --remainder;
2820                 ++i;
2821                 if (vaddr < vma->vm_end && remainder &&
2822                                 pfn_offset < pages_per_huge_page(h)) {
2823                         /*
2824                          * We use pfn_offset to avoid touching the pageframes
2825                          * of this compound page.
2826                          */
2827                         goto same_page;
2828                 }
2829         }
2830         spin_unlock(&mm->page_table_lock);
2831         *length = remainder;
2832         *position = vaddr;
2833
2834         return i ? i : -EFAULT;
2835 }
2836
2837 void hugetlb_change_protection(struct vm_area_struct *vma,
2838                 unsigned long address, unsigned long end, pgprot_t newprot)
2839 {
2840         struct mm_struct *mm = vma->vm_mm;
2841         unsigned long start = address;
2842         pte_t *ptep;
2843         pte_t pte;
2844         struct hstate *h = hstate_vma(vma);
2845
2846         BUG_ON(address >= end);
2847         flush_cache_range(vma, address, end);
2848
2849         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2850         spin_lock(&mm->page_table_lock);
2851         for (; address < end; address += huge_page_size(h)) {
2852                 ptep = huge_pte_offset(mm, address);
2853                 if (!ptep)
2854                         continue;
2855                 if (huge_pmd_unshare(mm, &address, ptep))
2856                         continue;
2857                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2858                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2859                         pte = pte_mkhuge(pte_modify(pte, newprot));
2860                         set_huge_pte_at(mm, address, ptep, pte);
2861                 }
2862         }
2863         spin_unlock(&mm->page_table_lock);
2864         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2865
2866         flush_tlb_range(vma, start, end);
2867 }
2868
2869 int hugetlb_reserve_pages(struct inode *inode,
2870                                         long from, long to,
2871                                         struct vm_area_struct *vma,
2872                                         vm_flags_t vm_flags)
2873 {
2874         long ret, chg;
2875         struct hstate *h = hstate_inode(inode);
2876
2877         /*
2878          * Only apply hugepage reservation if asked. At fault time, an
2879          * attempt will be made for VM_NORESERVE to allocate a page
2880          * and filesystem quota without using reserves
2881          */
2882         if (vm_flags & VM_NORESERVE)
2883                 return 0;
2884
2885         /*
2886          * Shared mappings base their reservation on the number of pages that
2887          * are already allocated on behalf of the file. Private mappings need
2888          * to reserve the full area even if read-only as mprotect() may be
2889          * called to make the mapping read-write. Assume !vma is a shm mapping
2890          */
2891         if (!vma || vma->vm_flags & VM_MAYSHARE)
2892                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2893         else {
2894                 struct resv_map *resv_map = resv_map_alloc();
2895                 if (!resv_map)
2896                         return -ENOMEM;
2897
2898                 chg = to - from;
2899
2900                 set_vma_resv_map(vma, resv_map);
2901                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2902         }
2903
2904         if (chg < 0)
2905                 return chg;
2906
2907         /* There must be enough filesystem quota for the mapping */
2908         if (hugetlb_get_quota(inode->i_mapping, chg))
2909                 return -ENOSPC;
2910
2911         /*
2912          * Check enough hugepages are available for the reservation.
2913          * Hand back the quota if there are not
2914          */
2915         ret = hugetlb_acct_memory(h, chg);
2916         if (ret < 0) {
2917                 hugetlb_put_quota(inode->i_mapping, chg);
2918                 return ret;
2919         }
2920
2921         /*
2922          * Account for the reservations made. Shared mappings record regions
2923          * that have reservations as they are shared by multiple VMAs.
2924          * When the last VMA disappears, the region map says how much
2925          * the reservation was and the page cache tells how much of
2926          * the reservation was consumed. Private mappings are per-VMA and
2927          * only the consumed reservations are tracked. When the VMA
2928          * disappears, the original reservation is the VMA size and the
2929          * consumed reservations are stored in the map. Hence, nothing
2930          * else has to be done for private mappings here
2931          */
2932         if (!vma || vma->vm_flags & VM_MAYSHARE)
2933                 region_add(&inode->i_mapping->private_list, from, to);
2934         return 0;
2935 }
2936
2937 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2938 {
2939         struct hstate *h = hstate_inode(inode);
2940         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2941
2942         spin_lock(&inode->i_lock);
2943         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2944         spin_unlock(&inode->i_lock);
2945
2946         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2947         hugetlb_acct_memory(h, -(chg - freed));
2948 }
2949
2950 #ifdef CONFIG_MEMORY_FAILURE
2951
2952 /* Should be called in hugetlb_lock */
2953 static int is_hugepage_on_freelist(struct page *hpage)
2954 {
2955         struct page *page;
2956         struct page *tmp;
2957         struct hstate *h = page_hstate(hpage);
2958         int nid = page_to_nid(hpage);
2959
2960         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2961                 if (page == hpage)
2962                         return 1;
2963         return 0;
2964 }
2965
2966 /*
2967  * This function is called from memory failure code.
2968  * Assume the caller holds page lock of the head page.
2969  */
2970 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2971 {
2972         struct hstate *h = page_hstate(hpage);
2973         int nid = page_to_nid(hpage);
2974         int ret = -EBUSY;
2975
2976         spin_lock(&hugetlb_lock);
2977         if (is_hugepage_on_freelist(hpage)) {
2978                 list_del(&hpage->lru);
2979                 set_page_refcounted(hpage);
2980                 h->free_huge_pages--;
2981                 h->free_huge_pages_node[nid]--;
2982                 ret = 0;
2983         }
2984         spin_unlock(&hugetlb_lock);
2985         return ret;
2986 }
2987 #endif