dmaengine: fix cyclic dma usage
[linux-flexiantxendom0-3.2.10.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
36
37 struct change_domains {
38         uint32_t invalidate_domains;
39         uint32_t flush_domains;
40         uint32_t flush_rings;
41         uint32_t flips;
42 };
43
44 /*
45  * Set the next domain for the specified object. This
46  * may not actually perform the necessary flushing/invaliding though,
47  * as that may want to be batched with other set_domain operations
48  *
49  * This is (we hope) the only really tricky part of gem. The goal
50  * is fairly simple -- track which caches hold bits of the object
51  * and make sure they remain coherent. A few concrete examples may
52  * help to explain how it works. For shorthand, we use the notation
53  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54  * a pair of read and write domain masks.
55  *
56  * Case 1: the batch buffer
57  *
58  *      1. Allocated
59  *      2. Written by CPU
60  *      3. Mapped to GTT
61  *      4. Read by GPU
62  *      5. Unmapped from GTT
63  *      6. Freed
64  *
65  *      Let's take these a step at a time
66  *
67  *      1. Allocated
68  *              Pages allocated from the kernel may still have
69  *              cache contents, so we set them to (CPU, CPU) always.
70  *      2. Written by CPU (using pwrite)
71  *              The pwrite function calls set_domain (CPU, CPU) and
72  *              this function does nothing (as nothing changes)
73  *      3. Mapped by GTT
74  *              This function asserts that the object is not
75  *              currently in any GPU-based read or write domains
76  *      4. Read by GPU
77  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
78  *              As write_domain is zero, this function adds in the
79  *              current read domains (CPU+COMMAND, 0).
80  *              flush_domains is set to CPU.
81  *              invalidate_domains is set to COMMAND
82  *              clflush is run to get data out of the CPU caches
83  *              then i915_dev_set_domain calls i915_gem_flush to
84  *              emit an MI_FLUSH and drm_agp_chipset_flush
85  *      5. Unmapped from GTT
86  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
87  *              flush_domains and invalidate_domains end up both zero
88  *              so no flushing/invalidating happens
89  *      6. Freed
90  *              yay, done
91  *
92  * Case 2: The shared render buffer
93  *
94  *      1. Allocated
95  *      2. Mapped to GTT
96  *      3. Read/written by GPU
97  *      4. set_domain to (CPU,CPU)
98  *      5. Read/written by CPU
99  *      6. Read/written by GPU
100  *
101  *      1. Allocated
102  *              Same as last example, (CPU, CPU)
103  *      2. Mapped to GTT
104  *              Nothing changes (assertions find that it is not in the GPU)
105  *      3. Read/written by GPU
106  *              execbuffer calls set_domain (RENDER, RENDER)
107  *              flush_domains gets CPU
108  *              invalidate_domains gets GPU
109  *              clflush (obj)
110  *              MI_FLUSH and drm_agp_chipset_flush
111  *      4. set_domain (CPU, CPU)
112  *              flush_domains gets GPU
113  *              invalidate_domains gets CPU
114  *              wait_rendering (obj) to make sure all drawing is complete.
115  *              This will include an MI_FLUSH to get the data from GPU
116  *              to memory
117  *              clflush (obj) to invalidate the CPU cache
118  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119  *      5. Read/written by CPU
120  *              cache lines are loaded and dirtied
121  *      6. Read written by GPU
122  *              Same as last GPU access
123  *
124  * Case 3: The constant buffer
125  *
126  *      1. Allocated
127  *      2. Written by CPU
128  *      3. Read by GPU
129  *      4. Updated (written) by CPU again
130  *      5. Read by GPU
131  *
132  *      1. Allocated
133  *              (CPU, CPU)
134  *      2. Written by CPU
135  *              (CPU, CPU)
136  *      3. Read by GPU
137  *              (CPU+RENDER, 0)
138  *              flush_domains = CPU
139  *              invalidate_domains = RENDER
140  *              clflush (obj)
141  *              MI_FLUSH
142  *              drm_agp_chipset_flush
143  *      4. Updated (written) by CPU again
144  *              (CPU, CPU)
145  *              flush_domains = 0 (no previous write domain)
146  *              invalidate_domains = 0 (no new read domains)
147  *      5. Read by GPU
148  *              (CPU+RENDER, 0)
149  *              flush_domains = CPU
150  *              invalidate_domains = RENDER
151  *              clflush (obj)
152  *              MI_FLUSH
153  *              drm_agp_chipset_flush
154  */
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157                                   struct intel_ring_buffer *ring,
158                                   struct change_domains *cd)
159 {
160         uint32_t invalidate_domains = 0, flush_domains = 0;
161
162         /*
163          * If the object isn't moving to a new write domain,
164          * let the object stay in multiple read domains
165          */
166         if (obj->base.pending_write_domain == 0)
167                 obj->base.pending_read_domains |= obj->base.read_domains;
168
169         /*
170          * Flush the current write domain if
171          * the new read domains don't match. Invalidate
172          * any read domains which differ from the old
173          * write domain
174          */
175         if (obj->base.write_domain &&
176             (((obj->base.write_domain != obj->base.pending_read_domains ||
177                obj->ring != ring)) ||
178              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179                 flush_domains |= obj->base.write_domain;
180                 invalidate_domains |=
181                         obj->base.pending_read_domains & ~obj->base.write_domain;
182         }
183         /*
184          * Invalidate any read caches which may have
185          * stale data. That is, any new read domains.
186          */
187         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189                 i915_gem_clflush_object(obj);
190
191         if (obj->base.pending_write_domain)
192                 cd->flips |= atomic_read(&obj->pending_flip);
193
194         /* The actual obj->write_domain will be updated with
195          * pending_write_domain after we emit the accumulated flush for all
196          * of our domain changes in execbuffers (which clears objects'
197          * write_domains).  So if we have a current write domain that we
198          * aren't changing, set pending_write_domain to that.
199          */
200         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201                 obj->base.pending_write_domain = obj->base.write_domain;
202
203         cd->invalidate_domains |= invalidate_domains;
204         cd->flush_domains |= flush_domains;
205         if (flush_domains & I915_GEM_GPU_DOMAINS)
206                 cd->flush_rings |= intel_ring_flag(obj->ring);
207         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208                 cd->flush_rings |= intel_ring_flag(ring);
209 }
210
211 struct eb_objects {
212         int and;
213         struct hlist_head buckets[0];
214 };
215
216 static struct eb_objects *
217 eb_create(int size)
218 {
219         struct eb_objects *eb;
220         int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221         while (count > size)
222                 count >>= 1;
223         eb = kzalloc(count*sizeof(struct hlist_head) +
224                      sizeof(struct eb_objects),
225                      GFP_KERNEL);
226         if (eb == NULL)
227                 return eb;
228
229         eb->and = count - 1;
230         return eb;
231 }
232
233 static void
234 eb_reset(struct eb_objects *eb)
235 {
236         memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237 }
238
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 {
242         hlist_add_head(&obj->exec_node,
243                        &eb->buckets[obj->exec_handle & eb->and]);
244 }
245
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 {
249         struct hlist_head *head;
250         struct hlist_node *node;
251         struct drm_i915_gem_object *obj;
252
253         head = &eb->buckets[handle & eb->and];
254         hlist_for_each(node, head) {
255                 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256                 if (obj->exec_handle == handle)
257                         return obj;
258         }
259
260         return NULL;
261 }
262
263 static void
264 eb_destroy(struct eb_objects *eb)
265 {
266         kfree(eb);
267 }
268
269 static int
270 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271                                    struct eb_objects *eb,
272                                    struct drm_i915_gem_relocation_entry *reloc)
273 {
274         struct drm_device *dev = obj->base.dev;
275         struct drm_gem_object *target_obj;
276         uint32_t target_offset;
277         int ret = -EINVAL;
278
279         /* we've already hold a reference to all valid objects */
280         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
281         if (unlikely(target_obj == NULL))
282                 return -ENOENT;
283
284         target_offset = to_intel_bo(target_obj)->gtt_offset;
285
286         /* The target buffer should have appeared before us in the
287          * exec_object list, so it should have a GTT space bound by now.
288          */
289         if (unlikely(target_offset == 0)) {
290                 DRM_DEBUG("No GTT space found for object %d\n",
291                           reloc->target_handle);
292                 return ret;
293         }
294
295         /* Validate that the target is in a valid r/w GPU domain */
296         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
297                 DRM_DEBUG("reloc with multiple write domains: "
298                           "obj %p target %d offset %d "
299                           "read %08x write %08x",
300                           obj, reloc->target_handle,
301                           (int) reloc->offset,
302                           reloc->read_domains,
303                           reloc->write_domain);
304                 return ret;
305         }
306         if (unlikely((reloc->write_domain | reloc->read_domains)
307                      & ~I915_GEM_GPU_DOMAINS)) {
308                 DRM_DEBUG("reloc with read/write non-GPU domains: "
309                           "obj %p target %d offset %d "
310                           "read %08x write %08x",
311                           obj, reloc->target_handle,
312                           (int) reloc->offset,
313                           reloc->read_domains,
314                           reloc->write_domain);
315                 return ret;
316         }
317         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
318                      reloc->write_domain != target_obj->pending_write_domain)) {
319                 DRM_DEBUG("Write domain conflict: "
320                           "obj %p target %d offset %d "
321                           "new %08x old %08x\n",
322                           obj, reloc->target_handle,
323                           (int) reloc->offset,
324                           reloc->write_domain,
325                           target_obj->pending_write_domain);
326                 return ret;
327         }
328
329         target_obj->pending_read_domains |= reloc->read_domains;
330         target_obj->pending_write_domain |= reloc->write_domain;
331
332         /* If the relocation already has the right value in it, no
333          * more work needs to be done.
334          */
335         if (target_offset == reloc->presumed_offset)
336                 return 0;
337
338         /* Check that the relocation address is valid... */
339         if (unlikely(reloc->offset > obj->base.size - 4)) {
340                 DRM_DEBUG("Relocation beyond object bounds: "
341                           "obj %p target %d offset %d size %d.\n",
342                           obj, reloc->target_handle,
343                           (int) reloc->offset,
344                           (int) obj->base.size);
345                 return ret;
346         }
347         if (unlikely(reloc->offset & 3)) {
348                 DRM_DEBUG("Relocation not 4-byte aligned: "
349                           "obj %p target %d offset %d.\n",
350                           obj, reloc->target_handle,
351                           (int) reloc->offset);
352                 return ret;
353         }
354
355         reloc->delta += target_offset;
356         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
357                 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
358                 char *vaddr;
359
360                 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
361                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
362                 kunmap_atomic(vaddr);
363         } else {
364                 struct drm_i915_private *dev_priv = dev->dev_private;
365                 uint32_t __iomem *reloc_entry;
366                 void __iomem *reloc_page;
367
368                 /* We can't wait for rendering with pagefaults disabled */
369                 if (obj->active && in_atomic())
370                         return -EFAULT;
371
372                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
373                 if (ret)
374                         return ret;
375
376                 /* Map the page containing the relocation we're going to perform.  */
377                 reloc->offset += obj->gtt_offset;
378                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
379                                                       reloc->offset & PAGE_MASK);
380                 reloc_entry = (uint32_t __iomem *)
381                         (reloc_page + (reloc->offset & ~PAGE_MASK));
382                 iowrite32(reloc->delta, reloc_entry);
383                 io_mapping_unmap_atomic(reloc_page);
384         }
385
386         /* and update the user's relocation entry */
387         reloc->presumed_offset = target_offset;
388
389         return 0;
390 }
391
392 static int
393 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
394                                     struct eb_objects *eb)
395 {
396         struct drm_i915_gem_relocation_entry __user *user_relocs;
397         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
398         int i, ret;
399
400         user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
401         for (i = 0; i < entry->relocation_count; i++) {
402                 struct drm_i915_gem_relocation_entry reloc;
403
404                 if (__copy_from_user_inatomic(&reloc,
405                                               user_relocs+i,
406                                               sizeof(reloc)))
407                         return -EFAULT;
408
409                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
410                 if (ret)
411                         return ret;
412
413                 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
414                                             &reloc.presumed_offset,
415                                             sizeof(reloc.presumed_offset)))
416                         return -EFAULT;
417         }
418
419         return 0;
420 }
421
422 static int
423 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
424                                          struct eb_objects *eb,
425                                          struct drm_i915_gem_relocation_entry *relocs)
426 {
427         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
428         int i, ret;
429
430         for (i = 0; i < entry->relocation_count; i++) {
431                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
432                 if (ret)
433                         return ret;
434         }
435
436         return 0;
437 }
438
439 static int
440 i915_gem_execbuffer_relocate(struct drm_device *dev,
441                              struct eb_objects *eb,
442                              struct list_head *objects)
443 {
444         struct drm_i915_gem_object *obj;
445         int ret = 0;
446
447         /* This is the fast path and we cannot handle a pagefault whilst
448          * holding the struct mutex lest the user pass in the relocations
449          * contained within a mmaped bo. For in such a case we, the page
450          * fault handler would call i915_gem_fault() and we would try to
451          * acquire the struct mutex again. Obviously this is bad and so
452          * lockdep complains vehemently.
453          */
454         pagefault_disable();
455         list_for_each_entry(obj, objects, exec_list) {
456                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
457                 if (ret)
458                         break;
459         }
460         pagefault_enable();
461
462         return ret;
463 }
464
465 #define  __EXEC_OBJECT_HAS_FENCE (1<<31)
466
467 static int
468 pin_and_fence_object(struct drm_i915_gem_object *obj,
469                      struct intel_ring_buffer *ring)
470 {
471         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
472         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
473         bool need_fence, need_mappable;
474         int ret;
475
476         need_fence =
477                 has_fenced_gpu_access &&
478                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
479                 obj->tiling_mode != I915_TILING_NONE;
480         need_mappable =
481                 entry->relocation_count ? true : need_fence;
482
483         ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
484         if (ret)
485                 return ret;
486
487         if (has_fenced_gpu_access) {
488                 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
489                         if (obj->tiling_mode) {
490                                 ret = i915_gem_object_get_fence(obj, ring);
491                                 if (ret)
492                                         goto err_unpin;
493
494                                 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
495                                 i915_gem_object_pin_fence(obj);
496                         } else {
497                                 ret = i915_gem_object_put_fence(obj);
498                                 if (ret)
499                                         goto err_unpin;
500                         }
501                 }
502                 obj->pending_fenced_gpu_access = need_fence;
503         }
504
505         entry->offset = obj->gtt_offset;
506         return 0;
507
508 err_unpin:
509         i915_gem_object_unpin(obj);
510         return ret;
511 }
512
513 static int
514 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
515                             struct drm_file *file,
516                             struct list_head *objects)
517 {
518         drm_i915_private_t *dev_priv = ring->dev->dev_private;
519         struct drm_i915_gem_object *obj;
520         int ret, retry;
521         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
522         struct list_head ordered_objects;
523
524         INIT_LIST_HEAD(&ordered_objects);
525         while (!list_empty(objects)) {
526                 struct drm_i915_gem_exec_object2 *entry;
527                 bool need_fence, need_mappable;
528
529                 obj = list_first_entry(objects,
530                                        struct drm_i915_gem_object,
531                                        exec_list);
532                 entry = obj->exec_entry;
533
534                 need_fence =
535                         has_fenced_gpu_access &&
536                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
537                         obj->tiling_mode != I915_TILING_NONE;
538                 need_mappable =
539                         entry->relocation_count ? true : need_fence;
540
541                 if (need_mappable)
542                         list_move(&obj->exec_list, &ordered_objects);
543                 else
544                         list_move_tail(&obj->exec_list, &ordered_objects);
545
546                 obj->base.pending_read_domains = 0;
547                 obj->base.pending_write_domain = 0;
548         }
549         list_splice(&ordered_objects, objects);
550
551         /* Attempt to pin all of the buffers into the GTT.
552          * This is done in 3 phases:
553          *
554          * 1a. Unbind all objects that do not match the GTT constraints for
555          *     the execbuffer (fenceable, mappable, alignment etc).
556          * 1b. Increment pin count for already bound objects.
557          * 2.  Bind new objects.
558          * 3.  Decrement pin count.
559          *
560          * This avoid unnecessary unbinding of later objects in order to makr
561          * room for the earlier objects *unless* we need to defragment.
562          */
563         retry = 0;
564         do {
565                 ret = 0;
566
567                 /* Unbind any ill-fitting objects or pin. */
568                 list_for_each_entry(obj, objects, exec_list) {
569                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
570                         bool need_fence, need_mappable;
571
572                         if (!obj->gtt_space)
573                                 continue;
574
575                         need_fence =
576                                 has_fenced_gpu_access &&
577                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
578                                 obj->tiling_mode != I915_TILING_NONE;
579                         need_mappable =
580                                 entry->relocation_count ? true : need_fence;
581
582                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
583                             (need_mappable && !obj->map_and_fenceable))
584                                 ret = i915_gem_object_unbind(obj);
585                         else
586                                 ret = pin_and_fence_object(obj, ring);
587                         if (ret)
588                                 goto err;
589                 }
590
591                 /* Bind fresh objects */
592                 list_for_each_entry(obj, objects, exec_list) {
593                         if (obj->gtt_space)
594                                 continue;
595
596                         ret = pin_and_fence_object(obj, ring);
597                         if (ret) {
598                                 int ret_ignore;
599
600                                 /* This can potentially raise a harmless
601                                  * -EINVAL if we failed to bind in the above
602                                  * call. It cannot raise -EINTR since we know
603                                  * that the bo is freshly bound and so will
604                                  * not need to be flushed or waited upon.
605                                  */
606                                 ret_ignore = i915_gem_object_unbind(obj);
607                                 (void)ret_ignore;
608                                 WARN_ON(obj->gtt_space);
609                                 break;
610                         }
611                 }
612
613                 /* Decrement pin count for bound objects */
614                 list_for_each_entry(obj, objects, exec_list) {
615                         struct drm_i915_gem_exec_object2 *entry;
616
617                         if (!obj->gtt_space)
618                                 continue;
619
620                         entry = obj->exec_entry;
621                         if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
622                                 i915_gem_object_unpin_fence(obj);
623                                 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
624                         }
625
626                         i915_gem_object_unpin(obj);
627
628                         /* ... and ensure ppgtt mapping exist if needed. */
629                         if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
630                                 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
631                                                        obj, obj->cache_level);
632
633                                 obj->has_aliasing_ppgtt_mapping = 1;
634                         }
635                 }
636
637                 if (ret != -ENOSPC || retry > 1)
638                         return ret;
639
640                 /* First attempt, just clear anything that is purgeable.
641                  * Second attempt, clear the entire GTT.
642                  */
643                 ret = i915_gem_evict_everything(ring->dev, retry == 0);
644                 if (ret)
645                         return ret;
646
647                 retry++;
648         } while (1);
649
650 err:
651         list_for_each_entry_continue_reverse(obj, objects, exec_list) {
652                 struct drm_i915_gem_exec_object2 *entry;
653
654                 if (!obj->gtt_space)
655                         continue;
656
657                 entry = obj->exec_entry;
658                 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
659                         i915_gem_object_unpin_fence(obj);
660                         entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
661                 }
662
663                 i915_gem_object_unpin(obj);
664         }
665
666         return ret;
667 }
668
669 static int
670 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
671                                   struct drm_file *file,
672                                   struct intel_ring_buffer *ring,
673                                   struct list_head *objects,
674                                   struct eb_objects *eb,
675                                   struct drm_i915_gem_exec_object2 *exec,
676                                   int count)
677 {
678         struct drm_i915_gem_relocation_entry *reloc;
679         struct drm_i915_gem_object *obj;
680         int *reloc_offset;
681         int i, total, ret;
682
683         /* We may process another execbuffer during the unlock... */
684         while (!list_empty(objects)) {
685                 obj = list_first_entry(objects,
686                                        struct drm_i915_gem_object,
687                                        exec_list);
688                 list_del_init(&obj->exec_list);
689                 drm_gem_object_unreference(&obj->base);
690         }
691
692         mutex_unlock(&dev->struct_mutex);
693
694         total = 0;
695         for (i = 0; i < count; i++)
696                 total += exec[i].relocation_count;
697
698         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
699         reloc = drm_malloc_ab(total, sizeof(*reloc));
700         if (reloc == NULL || reloc_offset == NULL) {
701                 drm_free_large(reloc);
702                 drm_free_large(reloc_offset);
703                 mutex_lock(&dev->struct_mutex);
704                 return -ENOMEM;
705         }
706
707         total = 0;
708         for (i = 0; i < count; i++) {
709                 struct drm_i915_gem_relocation_entry __user *user_relocs;
710
711                 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
712
713                 if (copy_from_user(reloc+total, user_relocs,
714                                    exec[i].relocation_count * sizeof(*reloc))) {
715                         ret = -EFAULT;
716                         mutex_lock(&dev->struct_mutex);
717                         goto err;
718                 }
719
720                 reloc_offset[i] = total;
721                 total += exec[i].relocation_count;
722         }
723
724         ret = i915_mutex_lock_interruptible(dev);
725         if (ret) {
726                 mutex_lock(&dev->struct_mutex);
727                 goto err;
728         }
729
730         /* reacquire the objects */
731         eb_reset(eb);
732         for (i = 0; i < count; i++) {
733                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
734                                                         exec[i].handle));
735                 if (&obj->base == NULL) {
736                         DRM_DEBUG("Invalid object handle %d at index %d\n",
737                                    exec[i].handle, i);
738                         ret = -ENOENT;
739                         goto err;
740                 }
741
742                 list_add_tail(&obj->exec_list, objects);
743                 obj->exec_handle = exec[i].handle;
744                 obj->exec_entry = &exec[i];
745                 eb_add_object(eb, obj);
746         }
747
748         ret = i915_gem_execbuffer_reserve(ring, file, objects);
749         if (ret)
750                 goto err;
751
752         list_for_each_entry(obj, objects, exec_list) {
753                 int offset = obj->exec_entry - exec;
754                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
755                                                                reloc + reloc_offset[offset]);
756                 if (ret)
757                         goto err;
758         }
759
760         /* Leave the user relocations as are, this is the painfully slow path,
761          * and we want to avoid the complication of dropping the lock whilst
762          * having buffers reserved in the aperture and so causing spurious
763          * ENOSPC for random operations.
764          */
765
766 err:
767         drm_free_large(reloc);
768         drm_free_large(reloc_offset);
769         return ret;
770 }
771
772 static int
773 i915_gem_execbuffer_flush(struct drm_device *dev,
774                           uint32_t invalidate_domains,
775                           uint32_t flush_domains,
776                           uint32_t flush_rings)
777 {
778         drm_i915_private_t *dev_priv = dev->dev_private;
779         int i, ret;
780
781         if (flush_domains & I915_GEM_DOMAIN_CPU)
782                 intel_gtt_chipset_flush();
783
784         if (flush_domains & I915_GEM_DOMAIN_GTT)
785                 wmb();
786
787         if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
788                 for (i = 0; i < I915_NUM_RINGS; i++)
789                         if (flush_rings & (1 << i)) {
790                                 ret = i915_gem_flush_ring(&dev_priv->ring[i],
791                                                           invalidate_domains,
792                                                           flush_domains);
793                                 if (ret)
794                                         return ret;
795                         }
796         }
797
798         return 0;
799 }
800
801 static bool
802 intel_enable_semaphores(struct drm_device *dev)
803 {
804         if (INTEL_INFO(dev)->gen < 6)
805                 return 0;
806
807         if (i915_semaphores >= 0)
808                 return i915_semaphores;
809
810         /* Disable semaphores on SNB */
811         if (INTEL_INFO(dev)->gen == 6)
812                 return 0;
813
814         return 1;
815 }
816
817 static int
818 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
819                                struct intel_ring_buffer *to)
820 {
821         struct intel_ring_buffer *from = obj->ring;
822         u32 seqno;
823         int ret, idx;
824
825         if (from == NULL || to == from)
826                 return 0;
827
828         /* XXX gpu semaphores are implicated in various hard hangs on SNB */
829         if (!intel_enable_semaphores(obj->base.dev))
830                 return i915_gem_object_wait_rendering(obj);
831
832         idx = intel_ring_sync_index(from, to);
833
834         seqno = obj->last_rendering_seqno;
835         if (seqno <= from->sync_seqno[idx])
836                 return 0;
837
838         if (seqno == from->outstanding_lazy_request) {
839                 struct drm_i915_gem_request *request;
840
841                 request = kzalloc(sizeof(*request), GFP_KERNEL);
842                 if (request == NULL)
843                         return -ENOMEM;
844
845                 ret = i915_add_request(from, NULL, request);
846                 if (ret) {
847                         kfree(request);
848                         return ret;
849                 }
850
851                 seqno = request->seqno;
852         }
853
854         from->sync_seqno[idx] = seqno;
855
856         return to->sync_to(to, from, seqno - 1);
857 }
858
859 static int
860 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
861 {
862         u32 plane, flip_mask;
863         int ret;
864
865         /* Check for any pending flips. As we only maintain a flip queue depth
866          * of 1, we can simply insert a WAIT for the next display flip prior
867          * to executing the batch and avoid stalling the CPU.
868          */
869
870         for (plane = 0; flips >> plane; plane++) {
871                 if (((flips >> plane) & 1) == 0)
872                         continue;
873
874                 if (plane)
875                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
876                 else
877                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
878
879                 ret = intel_ring_begin(ring, 2);
880                 if (ret)
881                         return ret;
882
883                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
884                 intel_ring_emit(ring, MI_NOOP);
885                 intel_ring_advance(ring);
886         }
887
888         return 0;
889 }
890
891
892 static int
893 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
894                                 struct list_head *objects)
895 {
896         struct drm_i915_gem_object *obj;
897         struct change_domains cd;
898         int ret;
899
900         memset(&cd, 0, sizeof(cd));
901         list_for_each_entry(obj, objects, exec_list)
902                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
903
904         if (cd.invalidate_domains | cd.flush_domains) {
905                 ret = i915_gem_execbuffer_flush(ring->dev,
906                                                 cd.invalidate_domains,
907                                                 cd.flush_domains,
908                                                 cd.flush_rings);
909                 if (ret)
910                         return ret;
911         }
912
913         if (cd.flips) {
914                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
915                 if (ret)
916                         return ret;
917         }
918
919         list_for_each_entry(obj, objects, exec_list) {
920                 ret = i915_gem_execbuffer_sync_rings(obj, ring);
921                 if (ret)
922                         return ret;
923         }
924
925         return 0;
926 }
927
928 static bool
929 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
930 {
931         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
932 }
933
934 static int
935 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
936                    int count)
937 {
938         int i;
939
940         for (i = 0; i < count; i++) {
941                 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
942                 int length; /* limited by fault_in_pages_readable() */
943
944                 /* First check for malicious input causing overflow */
945                 if (exec[i].relocation_count >
946                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
947                         return -EINVAL;
948
949                 length = exec[i].relocation_count *
950                         sizeof(struct drm_i915_gem_relocation_entry);
951                 if (!access_ok(VERIFY_READ, ptr, length))
952                         return -EFAULT;
953
954                 /* we may also need to update the presumed offsets */
955                 if (!access_ok(VERIFY_WRITE, ptr, length))
956                         return -EFAULT;
957
958                 if (fault_in_pages_readable(ptr, length))
959                         return -EFAULT;
960         }
961
962         return 0;
963 }
964
965 static void
966 i915_gem_execbuffer_move_to_active(struct list_head *objects,
967                                    struct intel_ring_buffer *ring,
968                                    u32 seqno)
969 {
970         struct drm_i915_gem_object *obj;
971
972         list_for_each_entry(obj, objects, exec_list) {
973                   u32 old_read = obj->base.read_domains;
974                   u32 old_write = obj->base.write_domain;
975
976
977                 obj->base.read_domains = obj->base.pending_read_domains;
978                 obj->base.write_domain = obj->base.pending_write_domain;
979                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
980
981                 i915_gem_object_move_to_active(obj, ring, seqno);
982                 if (obj->base.write_domain) {
983                         obj->dirty = 1;
984                         obj->pending_gpu_write = true;
985                         list_move_tail(&obj->gpu_write_list,
986                                        &ring->gpu_write_list);
987                         intel_mark_busy(ring->dev, obj);
988                 }
989
990                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
991         }
992 }
993
994 static void
995 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
996                                     struct drm_file *file,
997                                     struct intel_ring_buffer *ring)
998 {
999         struct drm_i915_gem_request *request;
1000         u32 invalidate;
1001
1002         /*
1003          * Ensure that the commands in the batch buffer are
1004          * finished before the interrupt fires.
1005          *
1006          * The sampler always gets flushed on i965 (sigh).
1007          */
1008         invalidate = I915_GEM_DOMAIN_COMMAND;
1009         if (INTEL_INFO(dev)->gen >= 4)
1010                 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1011         if (ring->flush(ring, invalidate, 0)) {
1012                 i915_gem_next_request_seqno(ring);
1013                 return;
1014         }
1015
1016         /* Add a breadcrumb for the completion of the batch buffer */
1017         request = kzalloc(sizeof(*request), GFP_KERNEL);
1018         if (request == NULL || i915_add_request(ring, file, request)) {
1019                 i915_gem_next_request_seqno(ring);
1020                 kfree(request);
1021         }
1022 }
1023
1024 static int
1025 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1026                             struct intel_ring_buffer *ring)
1027 {
1028         drm_i915_private_t *dev_priv = dev->dev_private;
1029         int ret, i;
1030
1031         if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1032                 return 0;
1033
1034         ret = intel_ring_begin(ring, 4 * 3);
1035         if (ret)
1036                 return ret;
1037
1038         for (i = 0; i < 4; i++) {
1039                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1040                 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1041                 intel_ring_emit(ring, 0);
1042         }
1043
1044         intel_ring_advance(ring);
1045
1046         return 0;
1047 }
1048
1049 static int
1050 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1051                        struct drm_file *file,
1052                        struct drm_i915_gem_execbuffer2 *args,
1053                        struct drm_i915_gem_exec_object2 *exec)
1054 {
1055         drm_i915_private_t *dev_priv = dev->dev_private;
1056         struct list_head objects;
1057         struct eb_objects *eb;
1058         struct drm_i915_gem_object *batch_obj;
1059         struct drm_clip_rect *cliprects = NULL;
1060         struct intel_ring_buffer *ring;
1061         u32 exec_start, exec_len;
1062         u32 seqno;
1063         u32 mask;
1064         int ret, mode, i;
1065
1066         if (!i915_gem_check_execbuffer(args)) {
1067                 DRM_DEBUG("execbuf with invalid offset/length\n");
1068                 return -EINVAL;
1069         }
1070
1071         ret = validate_exec_list(exec, args->buffer_count);
1072         if (ret)
1073                 return ret;
1074
1075         switch (args->flags & I915_EXEC_RING_MASK) {
1076         case I915_EXEC_DEFAULT:
1077         case I915_EXEC_RENDER:
1078                 ring = &dev_priv->ring[RCS];
1079                 break;
1080         case I915_EXEC_BSD:
1081                 if (!HAS_BSD(dev)) {
1082                         DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1083                         return -EINVAL;
1084                 }
1085                 ring = &dev_priv->ring[VCS];
1086                 break;
1087         case I915_EXEC_BLT:
1088                 if (!HAS_BLT(dev)) {
1089                         DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1090                         return -EINVAL;
1091                 }
1092                 ring = &dev_priv->ring[BCS];
1093                 break;
1094         default:
1095                 DRM_DEBUG("execbuf with unknown ring: %d\n",
1096                           (int)(args->flags & I915_EXEC_RING_MASK));
1097                 return -EINVAL;
1098         }
1099
1100         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1101         mask = I915_EXEC_CONSTANTS_MASK;
1102         switch (mode) {
1103         case I915_EXEC_CONSTANTS_REL_GENERAL:
1104         case I915_EXEC_CONSTANTS_ABSOLUTE:
1105         case I915_EXEC_CONSTANTS_REL_SURFACE:
1106                 if (ring == &dev_priv->ring[RCS] &&
1107                     mode != dev_priv->relative_constants_mode) {
1108                         if (INTEL_INFO(dev)->gen < 4)
1109                                 return -EINVAL;
1110
1111                         if (INTEL_INFO(dev)->gen > 5 &&
1112                             mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1113                                 return -EINVAL;
1114
1115                         /* The HW changed the meaning on this bit on gen6 */
1116                         if (INTEL_INFO(dev)->gen >= 6)
1117                                 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1118                 }
1119                 break;
1120         default:
1121                 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1122                 return -EINVAL;
1123         }
1124
1125         if (args->buffer_count < 1) {
1126                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1127                 return -EINVAL;
1128         }
1129
1130         if (args->num_cliprects != 0) {
1131                 if (ring != &dev_priv->ring[RCS]) {
1132                         DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1133                         return -EINVAL;
1134                 }
1135
1136                 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1137                                     GFP_KERNEL);
1138                 if (cliprects == NULL) {
1139                         ret = -ENOMEM;
1140                         goto pre_mutex_err;
1141                 }
1142
1143                 if (copy_from_user(cliprects,
1144                                      (struct drm_clip_rect __user *)(uintptr_t)
1145                                      args->cliprects_ptr,
1146                                      sizeof(*cliprects)*args->num_cliprects)) {
1147                         ret = -EFAULT;
1148                         goto pre_mutex_err;
1149                 }
1150         }
1151
1152         ret = i915_mutex_lock_interruptible(dev);
1153         if (ret)
1154                 goto pre_mutex_err;
1155
1156         if (dev_priv->mm.suspended) {
1157                 mutex_unlock(&dev->struct_mutex);
1158                 ret = -EBUSY;
1159                 goto pre_mutex_err;
1160         }
1161
1162         eb = eb_create(args->buffer_count);
1163         if (eb == NULL) {
1164                 mutex_unlock(&dev->struct_mutex);
1165                 ret = -ENOMEM;
1166                 goto pre_mutex_err;
1167         }
1168
1169         /* Look up object handles */
1170         INIT_LIST_HEAD(&objects);
1171         for (i = 0; i < args->buffer_count; i++) {
1172                 struct drm_i915_gem_object *obj;
1173
1174                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1175                                                         exec[i].handle));
1176                 if (&obj->base == NULL) {
1177                         DRM_DEBUG("Invalid object handle %d at index %d\n",
1178                                    exec[i].handle, i);
1179                         /* prevent error path from reading uninitialized data */
1180                         ret = -ENOENT;
1181                         goto err;
1182                 }
1183
1184                 if (!list_empty(&obj->exec_list)) {
1185                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1186                                    obj, exec[i].handle, i);
1187                         ret = -EINVAL;
1188                         goto err;
1189                 }
1190
1191                 list_add_tail(&obj->exec_list, &objects);
1192                 obj->exec_handle = exec[i].handle;
1193                 obj->exec_entry = &exec[i];
1194                 eb_add_object(eb, obj);
1195         }
1196
1197         /* take note of the batch buffer before we might reorder the lists */
1198         batch_obj = list_entry(objects.prev,
1199                                struct drm_i915_gem_object,
1200                                exec_list);
1201
1202         /* Move the objects en-masse into the GTT, evicting if necessary. */
1203         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1204         if (ret)
1205                 goto err;
1206
1207         /* The objects are in their final locations, apply the relocations. */
1208         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1209         if (ret) {
1210                 if (ret == -EFAULT) {
1211                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1212                                                                 &objects, eb,
1213                                                                 exec,
1214                                                                 args->buffer_count);
1215                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1216                 }
1217                 if (ret)
1218                         goto err;
1219         }
1220
1221         /* Set the pending read domains for the batch buffer to COMMAND */
1222         if (batch_obj->base.pending_write_domain) {
1223                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1224                 ret = -EINVAL;
1225                 goto err;
1226         }
1227         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1228
1229         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1230         if (ret)
1231                 goto err;
1232
1233         seqno = i915_gem_next_request_seqno(ring);
1234         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1235                 if (seqno < ring->sync_seqno[i]) {
1236                         /* The GPU can not handle its semaphore value wrapping,
1237                          * so every billion or so execbuffers, we need to stall
1238                          * the GPU in order to reset the counters.
1239                          */
1240                         ret = i915_gpu_idle(dev, true);
1241                         if (ret)
1242                                 goto err;
1243
1244                         BUG_ON(ring->sync_seqno[i]);
1245                 }
1246         }
1247
1248         if (ring == &dev_priv->ring[RCS] &&
1249             mode != dev_priv->relative_constants_mode) {
1250                 ret = intel_ring_begin(ring, 4);
1251                 if (ret)
1252                                 goto err;
1253
1254                 intel_ring_emit(ring, MI_NOOP);
1255                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1256                 intel_ring_emit(ring, INSTPM);
1257                 intel_ring_emit(ring, mask << 16 | mode);
1258                 intel_ring_advance(ring);
1259
1260                 dev_priv->relative_constants_mode = mode;
1261         }
1262
1263         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1264                 ret = i915_reset_gen7_sol_offsets(dev, ring);
1265                 if (ret)
1266                         goto err;
1267         }
1268
1269         trace_i915_gem_ring_dispatch(ring, seqno);
1270
1271         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1272         exec_len = args->batch_len;
1273         if (cliprects) {
1274                 for (i = 0; i < args->num_cliprects; i++) {
1275                         ret = i915_emit_box(dev, &cliprects[i],
1276                                             args->DR1, args->DR4);
1277                         if (ret)
1278                                 goto err;
1279
1280                         ret = ring->dispatch_execbuffer(ring,
1281                                                         exec_start, exec_len);
1282                         if (ret)
1283                                 goto err;
1284                 }
1285         } else {
1286                 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1287                 if (ret)
1288                         goto err;
1289         }
1290
1291         i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1292         i915_gem_execbuffer_retire_commands(dev, file, ring);
1293
1294 err:
1295         eb_destroy(eb);
1296         while (!list_empty(&objects)) {
1297                 struct drm_i915_gem_object *obj;
1298
1299                 obj = list_first_entry(&objects,
1300                                        struct drm_i915_gem_object,
1301                                        exec_list);
1302                 list_del_init(&obj->exec_list);
1303                 drm_gem_object_unreference(&obj->base);
1304         }
1305
1306         mutex_unlock(&dev->struct_mutex);
1307
1308 pre_mutex_err:
1309         kfree(cliprects);
1310         return ret;
1311 }
1312
1313 /*
1314  * Legacy execbuffer just creates an exec2 list from the original exec object
1315  * list array and passes it to the real function.
1316  */
1317 int
1318 i915_gem_execbuffer(struct drm_device *dev, void *data,
1319                     struct drm_file *file)
1320 {
1321         struct drm_i915_gem_execbuffer *args = data;
1322         struct drm_i915_gem_execbuffer2 exec2;
1323         struct drm_i915_gem_exec_object *exec_list = NULL;
1324         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1325         int ret, i;
1326
1327         if (args->buffer_count < 1) {
1328                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1329                 return -EINVAL;
1330         }
1331
1332         /* Copy in the exec list from userland */
1333         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1334         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1335         if (exec_list == NULL || exec2_list == NULL) {
1336                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1337                           args->buffer_count);
1338                 drm_free_large(exec_list);
1339                 drm_free_large(exec2_list);
1340                 return -ENOMEM;
1341         }
1342         ret = copy_from_user(exec_list,
1343                              (struct drm_i915_relocation_entry __user *)
1344                              (uintptr_t) args->buffers_ptr,
1345                              sizeof(*exec_list) * args->buffer_count);
1346         if (ret != 0) {
1347                 DRM_DEBUG("copy %d exec entries failed %d\n",
1348                           args->buffer_count, ret);
1349                 drm_free_large(exec_list);
1350                 drm_free_large(exec2_list);
1351                 return -EFAULT;
1352         }
1353
1354         for (i = 0; i < args->buffer_count; i++) {
1355                 exec2_list[i].handle = exec_list[i].handle;
1356                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1357                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1358                 exec2_list[i].alignment = exec_list[i].alignment;
1359                 exec2_list[i].offset = exec_list[i].offset;
1360                 if (INTEL_INFO(dev)->gen < 4)
1361                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1362                 else
1363                         exec2_list[i].flags = 0;
1364         }
1365
1366         exec2.buffers_ptr = args->buffers_ptr;
1367         exec2.buffer_count = args->buffer_count;
1368         exec2.batch_start_offset = args->batch_start_offset;
1369         exec2.batch_len = args->batch_len;
1370         exec2.DR1 = args->DR1;
1371         exec2.DR4 = args->DR4;
1372         exec2.num_cliprects = args->num_cliprects;
1373         exec2.cliprects_ptr = args->cliprects_ptr;
1374         exec2.flags = I915_EXEC_RENDER;
1375
1376         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1377         if (!ret) {
1378                 /* Copy the new buffer offsets back to the user's exec list. */
1379                 for (i = 0; i < args->buffer_count; i++)
1380                         exec_list[i].offset = exec2_list[i].offset;
1381                 /* ... and back out to userspace */
1382                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1383                                    (uintptr_t) args->buffers_ptr,
1384                                    exec_list,
1385                                    sizeof(*exec_list) * args->buffer_count);
1386                 if (ret) {
1387                         ret = -EFAULT;
1388                         DRM_DEBUG("failed to copy %d exec entries "
1389                                   "back to user (%d)\n",
1390                                   args->buffer_count, ret);
1391                 }
1392         }
1393
1394         drm_free_large(exec_list);
1395         drm_free_large(exec2_list);
1396         return ret;
1397 }
1398
1399 int
1400 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1401                      struct drm_file *file)
1402 {
1403         struct drm_i915_gem_execbuffer2 *args = data;
1404         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1405         int ret;
1406
1407         if (args->buffer_count < 1) {
1408                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1409                 return -EINVAL;
1410         }
1411
1412         exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1413                              GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1414         if (exec2_list == NULL)
1415                 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1416                                            args->buffer_count);
1417         if (exec2_list == NULL) {
1418                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1419                           args->buffer_count);
1420                 return -ENOMEM;
1421         }
1422         ret = copy_from_user(exec2_list,
1423                              (struct drm_i915_relocation_entry __user *)
1424                              (uintptr_t) args->buffers_ptr,
1425                              sizeof(*exec2_list) * args->buffer_count);
1426         if (ret != 0) {
1427                 DRM_DEBUG("copy %d exec entries failed %d\n",
1428                           args->buffer_count, ret);
1429                 drm_free_large(exec2_list);
1430                 return -EFAULT;
1431         }
1432
1433         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1434         if (!ret) {
1435                 /* Copy the new buffer offsets back to the user's exec list. */
1436                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1437                                    (uintptr_t) args->buffers_ptr,
1438                                    exec2_list,
1439                                    sizeof(*exec2_list) * args->buffer_count);
1440                 if (ret) {
1441                         ret = -EFAULT;
1442                         DRM_DEBUG("failed to copy %d exec entries "
1443                                   "back to user (%d)\n",
1444                                   args->buffer_count, ret);
1445                 }
1446         }
1447
1448         drm_free_large(exec2_list);
1449         return ret;
1450 }