- Update to 3.4-rc7.
[linux-flexiantxendom0-3.2.10.git] / arch / arm / kernel / ptrace.c
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27
28 #include <asm/pgtable.h>
29 #include <asm/traps.h>
30
31 #define REG_PC  15
32 #define REG_PSR 16
33 /*
34  * does not yet catch signals sent when the child dies.
35  * in exit.c or in signal.c.
36  */
37
38 #if 0
39 /*
40  * Breakpoint SWI instruction: SWI &9F0001
41  */
42 #define BREAKINST_ARM   0xef9f0001
43 #define BREAKINST_THUMB 0xdf00          /* fill this in later */
44 #else
45 /*
46  * New breakpoints - use an undefined instruction.  The ARM architecture
47  * reference manual guarantees that the following instruction space
48  * will produce an undefined instruction exception on all CPUs:
49  *
50  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
51  *  Thumb: 1101 1110 xxxx xxxx
52  */
53 #define BREAKINST_ARM   0xe7f001f0
54 #define BREAKINST_THUMB 0xde01
55 #endif
56
57 struct pt_regs_offset {
58         const char *name;
59         int offset;
60 };
61
62 #define REG_OFFSET_NAME(r) \
63         {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
64 #define REG_OFFSET_END {.name = NULL, .offset = 0}
65
66 static const struct pt_regs_offset regoffset_table[] = {
67         REG_OFFSET_NAME(r0),
68         REG_OFFSET_NAME(r1),
69         REG_OFFSET_NAME(r2),
70         REG_OFFSET_NAME(r3),
71         REG_OFFSET_NAME(r4),
72         REG_OFFSET_NAME(r5),
73         REG_OFFSET_NAME(r6),
74         REG_OFFSET_NAME(r7),
75         REG_OFFSET_NAME(r8),
76         REG_OFFSET_NAME(r9),
77         REG_OFFSET_NAME(r10),
78         REG_OFFSET_NAME(fp),
79         REG_OFFSET_NAME(ip),
80         REG_OFFSET_NAME(sp),
81         REG_OFFSET_NAME(lr),
82         REG_OFFSET_NAME(pc),
83         REG_OFFSET_NAME(cpsr),
84         REG_OFFSET_NAME(ORIG_r0),
85         REG_OFFSET_END,
86 };
87
88 /**
89  * regs_query_register_offset() - query register offset from its name
90  * @name:       the name of a register
91  *
92  * regs_query_register_offset() returns the offset of a register in struct
93  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
94  */
95 int regs_query_register_offset(const char *name)
96 {
97         const struct pt_regs_offset *roff;
98         for (roff = regoffset_table; roff->name != NULL; roff++)
99                 if (!strcmp(roff->name, name))
100                         return roff->offset;
101         return -EINVAL;
102 }
103
104 /**
105  * regs_query_register_name() - query register name from its offset
106  * @offset:     the offset of a register in struct pt_regs.
107  *
108  * regs_query_register_name() returns the name of a register from its
109  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
110  */
111 const char *regs_query_register_name(unsigned int offset)
112 {
113         const struct pt_regs_offset *roff;
114         for (roff = regoffset_table; roff->name != NULL; roff++)
115                 if (roff->offset == offset)
116                         return roff->name;
117         return NULL;
118 }
119
120 /**
121  * regs_within_kernel_stack() - check the address in the stack
122  * @regs:      pt_regs which contains kernel stack pointer.
123  * @addr:      address which is checked.
124  *
125  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
126  * If @addr is within the kernel stack, it returns true. If not, returns false.
127  */
128 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
129 {
130         return ((addr & ~(THREAD_SIZE - 1))  ==
131                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
132 }
133
134 /**
135  * regs_get_kernel_stack_nth() - get Nth entry of the stack
136  * @regs:       pt_regs which contains kernel stack pointer.
137  * @n:          stack entry number.
138  *
139  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
140  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
141  * this returns 0.
142  */
143 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
144 {
145         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
146         addr += n;
147         if (regs_within_kernel_stack(regs, (unsigned long)addr))
148                 return *addr;
149         else
150                 return 0;
151 }
152
153 /*
154  * this routine will get a word off of the processes privileged stack.
155  * the offset is how far from the base addr as stored in the THREAD.
156  * this routine assumes that all the privileged stacks are in our
157  * data space.
158  */
159 static inline long get_user_reg(struct task_struct *task, int offset)
160 {
161         return task_pt_regs(task)->uregs[offset];
162 }
163
164 /*
165  * this routine will put a word on the processes privileged stack.
166  * the offset is how far from the base addr as stored in the THREAD.
167  * this routine assumes that all the privileged stacks are in our
168  * data space.
169  */
170 static inline int
171 put_user_reg(struct task_struct *task, int offset, long data)
172 {
173         struct pt_regs newregs, *regs = task_pt_regs(task);
174         int ret = -EINVAL;
175
176         newregs = *regs;
177         newregs.uregs[offset] = data;
178
179         if (valid_user_regs(&newregs)) {
180                 regs->uregs[offset] = data;
181                 ret = 0;
182         }
183
184         return ret;
185 }
186
187 /*
188  * Called by kernel/ptrace.c when detaching..
189  */
190 void ptrace_disable(struct task_struct *child)
191 {
192         /* Nothing to do. */
193 }
194
195 /*
196  * Handle hitting a breakpoint.
197  */
198 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
199 {
200         siginfo_t info;
201
202         info.si_signo = SIGTRAP;
203         info.si_errno = 0;
204         info.si_code  = TRAP_BRKPT;
205         info.si_addr  = (void __user *)instruction_pointer(regs);
206
207         force_sig_info(SIGTRAP, &info, tsk);
208 }
209
210 static int break_trap(struct pt_regs *regs, unsigned int instr)
211 {
212         ptrace_break(current, regs);
213         return 0;
214 }
215
216 static struct undef_hook arm_break_hook = {
217         .instr_mask     = 0x0fffffff,
218         .instr_val      = 0x07f001f0,
219         .cpsr_mask      = PSR_T_BIT,
220         .cpsr_val       = 0,
221         .fn             = break_trap,
222 };
223
224 static struct undef_hook thumb_break_hook = {
225         .instr_mask     = 0xffff,
226         .instr_val      = 0xde01,
227         .cpsr_mask      = PSR_T_BIT,
228         .cpsr_val       = PSR_T_BIT,
229         .fn             = break_trap,
230 };
231
232 static struct undef_hook thumb2_break_hook = {
233         .instr_mask     = 0xffffffff,
234         .instr_val      = 0xf7f0a000,
235         .cpsr_mask      = PSR_T_BIT,
236         .cpsr_val       = PSR_T_BIT,
237         .fn             = break_trap,
238 };
239
240 static int __init ptrace_break_init(void)
241 {
242         register_undef_hook(&arm_break_hook);
243         register_undef_hook(&thumb_break_hook);
244         register_undef_hook(&thumb2_break_hook);
245         return 0;
246 }
247
248 core_initcall(ptrace_break_init);
249
250 /*
251  * Read the word at offset "off" into the "struct user".  We
252  * actually access the pt_regs stored on the kernel stack.
253  */
254 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
255                             unsigned long __user *ret)
256 {
257         unsigned long tmp;
258
259         if (off & 3)
260                 return -EIO;
261
262         tmp = 0;
263         if (off == PT_TEXT_ADDR)
264                 tmp = tsk->mm->start_code;
265         else if (off == PT_DATA_ADDR)
266                 tmp = tsk->mm->start_data;
267         else if (off == PT_TEXT_END_ADDR)
268                 tmp = tsk->mm->end_code;
269         else if (off < sizeof(struct pt_regs))
270                 tmp = get_user_reg(tsk, off >> 2);
271         else if (off >= sizeof(struct user))
272                 return -EIO;
273
274         return put_user(tmp, ret);
275 }
276
277 /*
278  * Write the word at offset "off" into "struct user".  We
279  * actually access the pt_regs stored on the kernel stack.
280  */
281 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
282                              unsigned long val)
283 {
284         if (off & 3 || off >= sizeof(struct user))
285                 return -EIO;
286
287         if (off >= sizeof(struct pt_regs))
288                 return 0;
289
290         return put_user_reg(tsk, off >> 2, val);
291 }
292
293 #ifdef CONFIG_IWMMXT
294
295 /*
296  * Get the child iWMMXt state.
297  */
298 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
299 {
300         struct thread_info *thread = task_thread_info(tsk);
301
302         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
303                 return -ENODATA;
304         iwmmxt_task_disable(thread);  /* force it to ram */
305         return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
306                 ? -EFAULT : 0;
307 }
308
309 /*
310  * Set the child iWMMXt state.
311  */
312 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
313 {
314         struct thread_info *thread = task_thread_info(tsk);
315
316         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
317                 return -EACCES;
318         iwmmxt_task_release(thread);  /* force a reload */
319         return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
320                 ? -EFAULT : 0;
321 }
322
323 #endif
324
325 #ifdef CONFIG_CRUNCH
326 /*
327  * Get the child Crunch state.
328  */
329 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
330 {
331         struct thread_info *thread = task_thread_info(tsk);
332
333         crunch_task_disable(thread);  /* force it to ram */
334         return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
335                 ? -EFAULT : 0;
336 }
337
338 /*
339  * Set the child Crunch state.
340  */
341 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
342 {
343         struct thread_info *thread = task_thread_info(tsk);
344
345         crunch_task_release(thread);  /* force a reload */
346         return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
347                 ? -EFAULT : 0;
348 }
349 #endif
350
351 #ifdef CONFIG_HAVE_HW_BREAKPOINT
352 /*
353  * Convert a virtual register number into an index for a thread_info
354  * breakpoint array. Breakpoints are identified using positive numbers
355  * whilst watchpoints are negative. The registers are laid out as pairs
356  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
357  * Register 0 is reserved for describing resource information.
358  */
359 static int ptrace_hbp_num_to_idx(long num)
360 {
361         if (num < 0)
362                 num = (ARM_MAX_BRP << 1) - num;
363         return (num - 1) >> 1;
364 }
365
366 /*
367  * Returns the virtual register number for the address of the
368  * breakpoint at index idx.
369  */
370 static long ptrace_hbp_idx_to_num(int idx)
371 {
372         long mid = ARM_MAX_BRP << 1;
373         long num = (idx << 1) + 1;
374         return num > mid ? mid - num : num;
375 }
376
377 /*
378  * Handle hitting a HW-breakpoint.
379  */
380 static void ptrace_hbptriggered(struct perf_event *bp,
381                                      struct perf_sample_data *data,
382                                      struct pt_regs *regs)
383 {
384         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
385         long num;
386         int i;
387         siginfo_t info;
388
389         for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
390                 if (current->thread.debug.hbp[i] == bp)
391                         break;
392
393         num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
394
395         info.si_signo   = SIGTRAP;
396         info.si_errno   = (int)num;
397         info.si_code    = TRAP_HWBKPT;
398         info.si_addr    = (void __user *)(bkpt->trigger);
399
400         force_sig_info(SIGTRAP, &info, current);
401 }
402
403 /*
404  * Set ptrace breakpoint pointers to zero for this task.
405  * This is required in order to prevent child processes from unregistering
406  * breakpoints held by their parent.
407  */
408 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
409 {
410         memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
411 }
412
413 /*
414  * Unregister breakpoints from this task and reset the pointers in
415  * the thread_struct.
416  */
417 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
418 {
419         int i;
420         struct thread_struct *t = &tsk->thread;
421
422         for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
423                 if (t->debug.hbp[i]) {
424                         unregister_hw_breakpoint(t->debug.hbp[i]);
425                         t->debug.hbp[i] = NULL;
426                 }
427         }
428 }
429
430 static u32 ptrace_get_hbp_resource_info(void)
431 {
432         u8 num_brps, num_wrps, debug_arch, wp_len;
433         u32 reg = 0;
434
435         num_brps        = hw_breakpoint_slots(TYPE_INST);
436         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
437         debug_arch      = arch_get_debug_arch();
438         wp_len          = arch_get_max_wp_len();
439
440         reg             |= debug_arch;
441         reg             <<= 8;
442         reg             |= wp_len;
443         reg             <<= 8;
444         reg             |= num_wrps;
445         reg             <<= 8;
446         reg             |= num_brps;
447
448         return reg;
449 }
450
451 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
452 {
453         struct perf_event_attr attr;
454
455         ptrace_breakpoint_init(&attr);
456
457         /* Initialise fields to sane defaults. */
458         attr.bp_addr    = 0;
459         attr.bp_len     = HW_BREAKPOINT_LEN_4;
460         attr.bp_type    = type;
461         attr.disabled   = 1;
462
463         return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
464                                            tsk);
465 }
466
467 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
468                              unsigned long  __user *data)
469 {
470         u32 reg;
471         int idx, ret = 0;
472         struct perf_event *bp;
473         struct arch_hw_breakpoint_ctrl arch_ctrl;
474
475         if (num == 0) {
476                 reg = ptrace_get_hbp_resource_info();
477         } else {
478                 idx = ptrace_hbp_num_to_idx(num);
479                 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
480                         ret = -EINVAL;
481                         goto out;
482                 }
483
484                 bp = tsk->thread.debug.hbp[idx];
485                 if (!bp) {
486                         reg = 0;
487                         goto put;
488                 }
489
490                 arch_ctrl = counter_arch_bp(bp)->ctrl;
491
492                 /*
493                  * Fix up the len because we may have adjusted it
494                  * to compensate for an unaligned address.
495                  */
496                 while (!(arch_ctrl.len & 0x1))
497                         arch_ctrl.len >>= 1;
498
499                 if (num & 0x1)
500                         reg = bp->attr.bp_addr;
501                 else
502                         reg = encode_ctrl_reg(arch_ctrl);
503         }
504
505 put:
506         if (put_user(reg, data))
507                 ret = -EFAULT;
508
509 out:
510         return ret;
511 }
512
513 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
514                              unsigned long __user *data)
515 {
516         int idx, gen_len, gen_type, implied_type, ret = 0;
517         u32 user_val;
518         struct perf_event *bp;
519         struct arch_hw_breakpoint_ctrl ctrl;
520         struct perf_event_attr attr;
521
522         if (num == 0)
523                 goto out;
524         else if (num < 0)
525                 implied_type = HW_BREAKPOINT_RW;
526         else
527                 implied_type = HW_BREAKPOINT_X;
528
529         idx = ptrace_hbp_num_to_idx(num);
530         if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
531                 ret = -EINVAL;
532                 goto out;
533         }
534
535         if (get_user(user_val, data)) {
536                 ret = -EFAULT;
537                 goto out;
538         }
539
540         bp = tsk->thread.debug.hbp[idx];
541         if (!bp) {
542                 bp = ptrace_hbp_create(tsk, implied_type);
543                 if (IS_ERR(bp)) {
544                         ret = PTR_ERR(bp);
545                         goto out;
546                 }
547                 tsk->thread.debug.hbp[idx] = bp;
548         }
549
550         attr = bp->attr;
551
552         if (num & 0x1) {
553                 /* Address */
554                 attr.bp_addr    = user_val;
555         } else {
556                 /* Control */
557                 decode_ctrl_reg(user_val, &ctrl);
558                 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
559                 if (ret)
560                         goto out;
561
562                 if ((gen_type & implied_type) != gen_type) {
563                         ret = -EINVAL;
564                         goto out;
565                 }
566
567                 attr.bp_len     = gen_len;
568                 attr.bp_type    = gen_type;
569                 attr.disabled   = !ctrl.enabled;
570         }
571
572         ret = modify_user_hw_breakpoint(bp, &attr);
573 out:
574         return ret;
575 }
576 #endif
577
578 /* regset get/set implementations */
579
580 static int gpr_get(struct task_struct *target,
581                    const struct user_regset *regset,
582                    unsigned int pos, unsigned int count,
583                    void *kbuf, void __user *ubuf)
584 {
585         struct pt_regs *regs = task_pt_regs(target);
586
587         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
588                                    regs,
589                                    0, sizeof(*regs));
590 }
591
592 static int gpr_set(struct task_struct *target,
593                    const struct user_regset *regset,
594                    unsigned int pos, unsigned int count,
595                    const void *kbuf, const void __user *ubuf)
596 {
597         int ret;
598         struct pt_regs newregs;
599
600         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
601                                  &newregs,
602                                  0, sizeof(newregs));
603         if (ret)
604                 return ret;
605
606         if (!valid_user_regs(&newregs))
607                 return -EINVAL;
608
609         *task_pt_regs(target) = newregs;
610         return 0;
611 }
612
613 static int fpa_get(struct task_struct *target,
614                    const struct user_regset *regset,
615                    unsigned int pos, unsigned int count,
616                    void *kbuf, void __user *ubuf)
617 {
618         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
619                                    &task_thread_info(target)->fpstate,
620                                    0, sizeof(struct user_fp));
621 }
622
623 static int fpa_set(struct task_struct *target,
624                    const struct user_regset *regset,
625                    unsigned int pos, unsigned int count,
626                    const void *kbuf, const void __user *ubuf)
627 {
628         struct thread_info *thread = task_thread_info(target);
629
630         thread->used_cp[1] = thread->used_cp[2] = 1;
631
632         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
633                 &thread->fpstate,
634                 0, sizeof(struct user_fp));
635 }
636
637 #ifdef CONFIG_VFP
638 /*
639  * VFP register get/set implementations.
640  *
641  * With respect to the kernel, struct user_fp is divided into three chunks:
642  * 16 or 32 real VFP registers (d0-d15 or d0-31)
643  *      These are transferred to/from the real registers in the task's
644  *      vfp_hard_struct.  The number of registers depends on the kernel
645  *      configuration.
646  *
647  * 16 or 0 fake VFP registers (d16-d31 or empty)
648  *      i.e., the user_vfp structure has space for 32 registers even if
649  *      the kernel doesn't have them all.
650  *
651  *      vfp_get() reads this chunk as zero where applicable
652  *      vfp_set() ignores this chunk
653  *
654  * 1 word for the FPSCR
655  *
656  * The bounds-checking logic built into user_regset_copyout and friends
657  * means that we can make a simple sequence of calls to map the relevant data
658  * to/from the specified slice of the user regset structure.
659  */
660 static int vfp_get(struct task_struct *target,
661                    const struct user_regset *regset,
662                    unsigned int pos, unsigned int count,
663                    void *kbuf, void __user *ubuf)
664 {
665         int ret;
666         struct thread_info *thread = task_thread_info(target);
667         struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
668         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
669         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
670
671         vfp_sync_hwstate(thread);
672
673         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
674                                   &vfp->fpregs,
675                                   user_fpregs_offset,
676                                   user_fpregs_offset + sizeof(vfp->fpregs));
677         if (ret)
678                 return ret;
679
680         ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
681                                        user_fpregs_offset + sizeof(vfp->fpregs),
682                                        user_fpscr_offset);
683         if (ret)
684                 return ret;
685
686         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
687                                    &vfp->fpscr,
688                                    user_fpscr_offset,
689                                    user_fpscr_offset + sizeof(vfp->fpscr));
690 }
691
692 /*
693  * For vfp_set() a read-modify-write is done on the VFP registers,
694  * in order to avoid writing back a half-modified set of registers on
695  * failure.
696  */
697 static int vfp_set(struct task_struct *target,
698                           const struct user_regset *regset,
699                           unsigned int pos, unsigned int count,
700                           const void *kbuf, const void __user *ubuf)
701 {
702         int ret;
703         struct thread_info *thread = task_thread_info(target);
704         struct vfp_hard_struct new_vfp;
705         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
706         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
707
708         vfp_sync_hwstate(thread);
709         new_vfp = thread->vfpstate.hard;
710
711         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
712                                   &new_vfp.fpregs,
713                                   user_fpregs_offset,
714                                   user_fpregs_offset + sizeof(new_vfp.fpregs));
715         if (ret)
716                 return ret;
717
718         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
719                                 user_fpregs_offset + sizeof(new_vfp.fpregs),
720                                 user_fpscr_offset);
721         if (ret)
722                 return ret;
723
724         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
725                                  &new_vfp.fpscr,
726                                  user_fpscr_offset,
727                                  user_fpscr_offset + sizeof(new_vfp.fpscr));
728         if (ret)
729                 return ret;
730
731         vfp_flush_hwstate(thread);
732         thread->vfpstate.hard = new_vfp;
733
734         return 0;
735 }
736 #endif /* CONFIG_VFP */
737
738 enum arm_regset {
739         REGSET_GPR,
740         REGSET_FPR,
741 #ifdef CONFIG_VFP
742         REGSET_VFP,
743 #endif
744 };
745
746 static const struct user_regset arm_regsets[] = {
747         [REGSET_GPR] = {
748                 .core_note_type = NT_PRSTATUS,
749                 .n = ELF_NGREG,
750                 .size = sizeof(u32),
751                 .align = sizeof(u32),
752                 .get = gpr_get,
753                 .set = gpr_set
754         },
755         [REGSET_FPR] = {
756                 /*
757                  * For the FPA regs in fpstate, the real fields are a mixture
758                  * of sizes, so pretend that the registers are word-sized:
759                  */
760                 .core_note_type = NT_PRFPREG,
761                 .n = sizeof(struct user_fp) / sizeof(u32),
762                 .size = sizeof(u32),
763                 .align = sizeof(u32),
764                 .get = fpa_get,
765                 .set = fpa_set
766         },
767 #ifdef CONFIG_VFP
768         [REGSET_VFP] = {
769                 /*
770                  * Pretend that the VFP regs are word-sized, since the FPSCR is
771                  * a single word dangling at the end of struct user_vfp:
772                  */
773                 .core_note_type = NT_ARM_VFP,
774                 .n = ARM_VFPREGS_SIZE / sizeof(u32),
775                 .size = sizeof(u32),
776                 .align = sizeof(u32),
777                 .get = vfp_get,
778                 .set = vfp_set
779         },
780 #endif /* CONFIG_VFP */
781 };
782
783 static const struct user_regset_view user_arm_view = {
784         .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
785         .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
786 };
787
788 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
789 {
790         return &user_arm_view;
791 }
792
793 long arch_ptrace(struct task_struct *child, long request,
794                  unsigned long addr, unsigned long data)
795 {
796         int ret;
797         unsigned long __user *datap = (unsigned long __user *) data;
798
799         switch (request) {
800                 case PTRACE_PEEKUSR:
801                         ret = ptrace_read_user(child, addr, datap);
802                         break;
803
804                 case PTRACE_POKEUSR:
805                         ret = ptrace_write_user(child, addr, data);
806                         break;
807
808                 case PTRACE_GETREGS:
809                         ret = copy_regset_to_user(child,
810                                                   &user_arm_view, REGSET_GPR,
811                                                   0, sizeof(struct pt_regs),
812                                                   datap);
813                         break;
814
815                 case PTRACE_SETREGS:
816                         ret = copy_regset_from_user(child,
817                                                     &user_arm_view, REGSET_GPR,
818                                                     0, sizeof(struct pt_regs),
819                                                     datap);
820                         break;
821
822                 case PTRACE_GETFPREGS:
823                         ret = copy_regset_to_user(child,
824                                                   &user_arm_view, REGSET_FPR,
825                                                   0, sizeof(union fp_state),
826                                                   datap);
827                         break;
828
829                 case PTRACE_SETFPREGS:
830                         ret = copy_regset_from_user(child,
831                                                     &user_arm_view, REGSET_FPR,
832                                                     0, sizeof(union fp_state),
833                                                     datap);
834                         break;
835
836 #ifdef CONFIG_IWMMXT
837                 case PTRACE_GETWMMXREGS:
838                         ret = ptrace_getwmmxregs(child, datap);
839                         break;
840
841                 case PTRACE_SETWMMXREGS:
842                         ret = ptrace_setwmmxregs(child, datap);
843                         break;
844 #endif
845
846                 case PTRACE_GET_THREAD_AREA:
847                         ret = put_user(task_thread_info(child)->tp_value,
848                                        datap);
849                         break;
850
851                 case PTRACE_SET_SYSCALL:
852                         task_thread_info(child)->syscall = data;
853                         ret = 0;
854                         break;
855
856 #ifdef CONFIG_CRUNCH
857                 case PTRACE_GETCRUNCHREGS:
858                         ret = ptrace_getcrunchregs(child, datap);
859                         break;
860
861                 case PTRACE_SETCRUNCHREGS:
862                         ret = ptrace_setcrunchregs(child, datap);
863                         break;
864 #endif
865
866 #ifdef CONFIG_VFP
867                 case PTRACE_GETVFPREGS:
868                         ret = copy_regset_to_user(child,
869                                                   &user_arm_view, REGSET_VFP,
870                                                   0, ARM_VFPREGS_SIZE,
871                                                   datap);
872                         break;
873
874                 case PTRACE_SETVFPREGS:
875                         ret = copy_regset_from_user(child,
876                                                     &user_arm_view, REGSET_VFP,
877                                                     0, ARM_VFPREGS_SIZE,
878                                                     datap);
879                         break;
880 #endif
881
882 #ifdef CONFIG_HAVE_HW_BREAKPOINT
883                 case PTRACE_GETHBPREGS:
884                         if (ptrace_get_breakpoints(child) < 0)
885                                 return -ESRCH;
886
887                         ret = ptrace_gethbpregs(child, addr,
888                                                 (unsigned long __user *)data);
889                         ptrace_put_breakpoints(child);
890                         break;
891                 case PTRACE_SETHBPREGS:
892                         if (ptrace_get_breakpoints(child) < 0)
893                                 return -ESRCH;
894
895                         ret = ptrace_sethbpregs(child, addr,
896                                                 (unsigned long __user *)data);
897                         ptrace_put_breakpoints(child);
898                         break;
899 #endif
900
901                 default:
902                         ret = ptrace_request(child, request, addr, data);
903                         break;
904         }
905
906         return ret;
907 }
908
909 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
910 {
911         unsigned long ip;
912
913         if (why)
914                 audit_syscall_exit(regs);
915         else
916                 audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0,
917                                     regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
918
919         if (!test_thread_flag(TIF_SYSCALL_TRACE))
920                 return scno;
921         if (!(current->ptrace & PT_PTRACED))
922                 return scno;
923
924         current_thread_info()->syscall = scno;
925
926         /*
927          * IP is used to denote syscall entry/exit:
928          * IP = 0 -> entry, =1 -> exit
929          */
930         ip = regs->ARM_ip;
931         regs->ARM_ip = why;
932
933         /* the 0x80 provides a way for the tracing parent to distinguish
934            between a syscall stop and SIGTRAP delivery */
935         ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
936                                  ? 0x80 : 0));
937         /*
938          * this isn't the same as continuing with a signal, but it will do
939          * for normal use.  strace only continues with a signal if the
940          * stopping signal is not SIGTRAP.  -brl
941          */
942         if (current->exit_code) {
943                 send_sig(current->exit_code, current, 1);
944                 current->exit_code = 0;
945         }
946         regs->ARM_ip = ip;
947
948         return current_thread_info()->syscall;
949 }