target: Fix bug in handling of FILEIO + block_device resize ops
[linux-flexiantxendom0-3.2.10.git] / drivers / platform / x86 / intel_ips.c
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *      Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78 #include "intel_ips.h"
79
80 #include <asm-generic/io-64-nonatomic-lo-hi.h>
81
82 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
83
84 /*
85  * Package level MSRs for monitor/control
86  */
87 #define PLATFORM_INFO   0xce
88 #define   PLATFORM_TDP          (1<<29)
89 #define   PLATFORM_RATIO        (1<<28)
90
91 #define IA32_MISC_ENABLE        0x1a0
92 #define   IA32_MISC_TURBO_EN    (1ULL<<38)
93
94 #define TURBO_POWER_CURRENT_LIMIT       0x1ac
95 #define   TURBO_TDC_OVR_EN      (1UL<<31)
96 #define   TURBO_TDC_MASK        (0x000000007fff0000UL)
97 #define   TURBO_TDC_SHIFT       (16)
98 #define   TURBO_TDP_OVR_EN      (1UL<<15)
99 #define   TURBO_TDP_MASK        (0x0000000000003fffUL)
100
101 /*
102  * Core/thread MSRs for monitoring
103  */
104 #define IA32_PERF_CTL           0x199
105 #define   IA32_PERF_TURBO_DIS   (1ULL<<32)
106
107 /*
108  * Thermal PCI device regs
109  */
110 #define THM_CFG_TBAR    0x10
111 #define THM_CFG_TBAR_HI 0x14
112
113 #define THM_TSIU        0x00
114 #define THM_TSE         0x01
115 #define   TSE_EN        0xb8
116 #define THM_TSS         0x02
117 #define THM_TSTR        0x03
118 #define THM_TSTTP       0x04
119 #define THM_TSCO        0x08
120 #define THM_TSES        0x0c
121 #define THM_TSGPEN      0x0d
122 #define   TSGPEN_HOT_LOHI       (1<<1)
123 #define   TSGPEN_CRIT_LOHI      (1<<2)
124 #define THM_TSPC        0x0e
125 #define THM_PPEC        0x10
126 #define THM_CTA         0x12
127 #define THM_PTA         0x14
128 #define   PTA_SLOPE_MASK        (0xff00)
129 #define   PTA_SLOPE_SHIFT       8
130 #define   PTA_OFFSET_MASK       (0x00ff)
131 #define THM_MGTA        0x16
132 #define   MGTA_SLOPE_MASK       (0xff00)
133 #define   MGTA_SLOPE_SHIFT      8
134 #define   MGTA_OFFSET_MASK      (0x00ff)
135 #define THM_TRC         0x1a
136 #define   TRC_CORE2_EN  (1<<15)
137 #define   TRC_THM_EN    (1<<12)
138 #define   TRC_C6_WAR    (1<<8)
139 #define   TRC_CORE1_EN  (1<<7)
140 #define   TRC_CORE_PWR  (1<<6)
141 #define   TRC_PCH_EN    (1<<5)
142 #define   TRC_MCH_EN    (1<<4)
143 #define   TRC_DIMM4     (1<<3)
144 #define   TRC_DIMM3     (1<<2)
145 #define   TRC_DIMM2     (1<<1)
146 #define   TRC_DIMM1     (1<<0)
147 #define THM_TES         0x20
148 #define THM_TEN         0x21
149 #define   TEN_UPDATE_EN 1
150 #define THM_PSC         0x24
151 #define   PSC_NTG       (1<<0) /* No GFX turbo support */
152 #define   PSC_NTPC      (1<<1) /* No CPU turbo support */
153 #define   PSC_PP_DEF    (0<<2) /* Perf policy up to driver */
154 #define   PSP_PP_PC     (1<<2) /* BIOS prefers CPU perf */
155 #define   PSP_PP_BAL    (2<<2) /* BIOS wants balanced perf */
156 #define   PSP_PP_GFX    (3<<2) /* BIOS prefers GFX perf */
157 #define   PSP_PBRT      (1<<4) /* BIOS run time support */
158 #define THM_CTV1        0x30
159 #define   CTV_TEMP_ERROR (1<<15)
160 #define   CTV_TEMP_MASK 0x3f
161 #define   CTV_
162 #define THM_CTV2        0x32
163 #define THM_CEC         0x34 /* undocumented power accumulator in joules */
164 #define THM_AE          0x3f
165 #define THM_HTS         0x50 /* 32 bits */
166 #define   HTS_PCPL_MASK (0x7fe00000)
167 #define   HTS_PCPL_SHIFT 21
168 #define   HTS_GPL_MASK  (0x001ff000)
169 #define   HTS_GPL_SHIFT 12
170 #define   HTS_PP_MASK   (0x00000c00)
171 #define   HTS_PP_SHIFT  10
172 #define   HTS_PP_DEF    0
173 #define   HTS_PP_PROC   1
174 #define   HTS_PP_BAL    2
175 #define   HTS_PP_GFX    3
176 #define   HTS_PCTD_DIS  (1<<9)
177 #define   HTS_GTD_DIS   (1<<8)
178 #define   HTS_PTL_MASK  (0x000000fe)
179 #define   HTS_PTL_SHIFT 1
180 #define   HTS_NVV       (1<<0)
181 #define THM_HTSHI       0x54 /* 16 bits */
182 #define   HTS2_PPL_MASK         (0x03ff)
183 #define   HTS2_PRST_MASK        (0x3c00)
184 #define   HTS2_PRST_SHIFT       10
185 #define   HTS2_PRST_UNLOADED    0
186 #define   HTS2_PRST_RUNNING     1
187 #define   HTS2_PRST_TDISOP      2 /* turbo disabled due to power */
188 #define   HTS2_PRST_TDISHT      3 /* turbo disabled due to high temp */
189 #define   HTS2_PRST_TDISUSR     4 /* user disabled turbo */
190 #define   HTS2_PRST_TDISPLAT    5 /* platform disabled turbo */
191 #define   HTS2_PRST_TDISPM      6 /* power management disabled turbo */
192 #define   HTS2_PRST_TDISERR     7 /* some kind of error disabled turbo */
193 #define THM_PTL         0x56
194 #define THM_MGTV        0x58
195 #define   TV_MASK       0x000000000000ff00
196 #define   TV_SHIFT      8
197 #define THM_PTV         0x60
198 #define   PTV_MASK      0x00ff
199 #define THM_MMGPC       0x64
200 #define THM_MPPC        0x66
201 #define THM_MPCPC       0x68
202 #define THM_TSPIEN      0x82
203 #define   TSPIEN_AUX_LOHI       (1<<0)
204 #define   TSPIEN_HOT_LOHI       (1<<1)
205 #define   TSPIEN_CRIT_LOHI      (1<<2)
206 #define   TSPIEN_AUX2_LOHI      (1<<3)
207 #define THM_TSLOCK      0x83
208 #define THM_ATR         0x84
209 #define THM_TOF         0x87
210 #define THM_STS         0x98
211 #define   STS_PCPL_MASK         (0x7fe00000)
212 #define   STS_PCPL_SHIFT        21
213 #define   STS_GPL_MASK          (0x001ff000)
214 #define   STS_GPL_SHIFT         12
215 #define   STS_PP_MASK           (0x00000c00)
216 #define   STS_PP_SHIFT          10
217 #define   STS_PP_DEF            0
218 #define   STS_PP_PROC           1
219 #define   STS_PP_BAL            2
220 #define   STS_PP_GFX            3
221 #define   STS_PCTD_DIS          (1<<9)
222 #define   STS_GTD_DIS           (1<<8)
223 #define   STS_PTL_MASK          (0x000000fe)
224 #define   STS_PTL_SHIFT         1
225 #define   STS_NVV               (1<<0)
226 #define THM_SEC         0x9c
227 #define   SEC_ACK       (1<<0)
228 #define THM_TC3         0xa4
229 #define THM_TC1         0xa8
230 #define   STS_PPL_MASK          (0x0003ff00)
231 #define   STS_PPL_SHIFT         16
232 #define THM_TC2         0xac
233 #define THM_DTV         0xb0
234 #define THM_ITV         0xd8
235 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
236 #define   ITV_ME_SEQNO_SHIFT (16)
237 #define   ITV_MCH_TEMP_MASK 0x0000ff00
238 #define   ITV_MCH_TEMP_SHIFT (8)
239 #define   ITV_PCH_TEMP_MASK 0x000000ff
240
241 #define thm_readb(off) readb(ips->regmap + (off))
242 #define thm_readw(off) readw(ips->regmap + (off))
243 #define thm_readl(off) readl(ips->regmap + (off))
244 #define thm_readq(off) readq(ips->regmap + (off))
245
246 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
247 #define thm_writew(off, val) writew((val), ips->regmap + (off))
248 #define thm_writel(off, val) writel((val), ips->regmap + (off))
249
250 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
251 static bool late_i915_load = false;
252
253 /* For initial average collection */
254 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
255 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
256 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
257
258 /* Per-SKU limits */
259 struct ips_mcp_limits {
260         int cpu_family;
261         int cpu_model; /* includes extended model... */
262         int mcp_power_limit; /* mW units */
263         int core_power_limit;
264         int mch_power_limit;
265         int core_temp_limit; /* degrees C */
266         int mch_temp_limit;
267 };
268
269 /* Max temps are -10 degrees C to avoid PROCHOT# */
270
271 struct ips_mcp_limits ips_sv_limits = {
272         .mcp_power_limit = 35000,
273         .core_power_limit = 29000,
274         .mch_power_limit = 20000,
275         .core_temp_limit = 95,
276         .mch_temp_limit = 90
277 };
278
279 struct ips_mcp_limits ips_lv_limits = {
280         .mcp_power_limit = 25000,
281         .core_power_limit = 21000,
282         .mch_power_limit = 13000,
283         .core_temp_limit = 95,
284         .mch_temp_limit = 90
285 };
286
287 struct ips_mcp_limits ips_ulv_limits = {
288         .mcp_power_limit = 18000,
289         .core_power_limit = 14000,
290         .mch_power_limit = 11000,
291         .core_temp_limit = 95,
292         .mch_temp_limit = 90
293 };
294
295 struct ips_driver {
296         struct pci_dev *dev;
297         void *regmap;
298         struct task_struct *monitor;
299         struct task_struct *adjust;
300         struct dentry *debug_root;
301
302         /* Average CPU core temps (all averages in .01 degrees C for precision) */
303         u16 ctv1_avg_temp;
304         u16 ctv2_avg_temp;
305         /* GMCH average */
306         u16 mch_avg_temp;
307         /* Average for the CPU (both cores?) */
308         u16 mcp_avg_temp;
309         /* Average power consumption (in mW) */
310         u32 cpu_avg_power;
311         u32 mch_avg_power;
312
313         /* Offset values */
314         u16 cta_val;
315         u16 pta_val;
316         u16 mgta_val;
317
318         /* Maximums & prefs, protected by turbo status lock */
319         spinlock_t turbo_status_lock;
320         u16 mcp_temp_limit;
321         u16 mcp_power_limit;
322         u16 core_power_limit;
323         u16 mch_power_limit;
324         bool cpu_turbo_enabled;
325         bool __cpu_turbo_on;
326         bool gpu_turbo_enabled;
327         bool __gpu_turbo_on;
328         bool gpu_preferred;
329         bool poll_turbo_status;
330         bool second_cpu;
331         bool turbo_toggle_allowed;
332         struct ips_mcp_limits *limits;
333
334         /* Optional MCH interfaces for if i915 is in use */
335         unsigned long (*read_mch_val)(void);
336         bool (*gpu_raise)(void);
337         bool (*gpu_lower)(void);
338         bool (*gpu_busy)(void);
339         bool (*gpu_turbo_disable)(void);
340
341         /* For restoration at unload */
342         u64 orig_turbo_limit;
343         u64 orig_turbo_ratios;
344 };
345
346 static bool
347 ips_gpu_turbo_enabled(struct ips_driver *ips);
348
349 /**
350  * ips_cpu_busy - is CPU busy?
351  * @ips: IPS driver struct
352  *
353  * Check CPU for load to see whether we should increase its thermal budget.
354  *
355  * RETURNS:
356  * True if the CPU could use more power, false otherwise.
357  */
358 static bool ips_cpu_busy(struct ips_driver *ips)
359 {
360         if ((avenrun[0] >> FSHIFT) > 1)
361                 return true;
362
363         return false;
364 }
365
366 /**
367  * ips_cpu_raise - raise CPU power clamp
368  * @ips: IPS driver struct
369  *
370  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
371  * this platform.
372  *
373  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
374  * long as we haven't hit the TDP limit for the SKU).
375  */
376 static void ips_cpu_raise(struct ips_driver *ips)
377 {
378         u64 turbo_override;
379         u16 cur_tdp_limit, new_tdp_limit;
380
381         if (!ips->cpu_turbo_enabled)
382                 return;
383
384         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
385
386         cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
387         new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
388
389         /* Clamp to SKU TDP limit */
390         if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
391                 new_tdp_limit = cur_tdp_limit;
392
393         thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
394
395         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
396         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
397
398         turbo_override &= ~TURBO_TDP_MASK;
399         turbo_override |= new_tdp_limit;
400
401         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
402 }
403
404 /**
405  * ips_cpu_lower - lower CPU power clamp
406  * @ips: IPS driver struct
407  *
408  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
409  *
410  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
411  * as low as the platform limits will allow (though we could go lower there
412  * wouldn't be much point).
413  */
414 static void ips_cpu_lower(struct ips_driver *ips)
415 {
416         u64 turbo_override;
417         u16 cur_limit, new_limit;
418
419         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
420
421         cur_limit = turbo_override & TURBO_TDP_MASK;
422         new_limit = cur_limit - 8; /* 1W decrease */
423
424         /* Clamp to SKU TDP limit */
425         if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
426                 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
427
428         thm_writew(THM_MPCPC, (new_limit * 10) / 8);
429
430         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
431         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
432
433         turbo_override &= ~TURBO_TDP_MASK;
434         turbo_override |= new_limit;
435
436         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
437 }
438
439 /**
440  * do_enable_cpu_turbo - internal turbo enable function
441  * @data: unused
442  *
443  * Internal function for actually updating MSRs.  When we enable/disable
444  * turbo, we need to do it on each CPU; this function is the one called
445  * by on_each_cpu() when needed.
446  */
447 static void do_enable_cpu_turbo(void *data)
448 {
449         u64 perf_ctl;
450
451         rdmsrl(IA32_PERF_CTL, perf_ctl);
452         if (perf_ctl & IA32_PERF_TURBO_DIS) {
453                 perf_ctl &= ~IA32_PERF_TURBO_DIS;
454                 wrmsrl(IA32_PERF_CTL, perf_ctl);
455         }
456 }
457
458 /**
459  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
460  * @ips: IPS driver struct
461  *
462  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
463  * all logical threads.
464  */
465 static void ips_enable_cpu_turbo(struct ips_driver *ips)
466 {
467         /* Already on, no need to mess with MSRs */
468         if (ips->__cpu_turbo_on)
469                 return;
470
471         if (ips->turbo_toggle_allowed)
472                 on_each_cpu(do_enable_cpu_turbo, ips, 1);
473
474         ips->__cpu_turbo_on = true;
475 }
476
477 /**
478  * do_disable_cpu_turbo - internal turbo disable function
479  * @data: unused
480  *
481  * Internal function for actually updating MSRs.  When we enable/disable
482  * turbo, we need to do it on each CPU; this function is the one called
483  * by on_each_cpu() when needed.
484  */
485 static void do_disable_cpu_turbo(void *data)
486 {
487         u64 perf_ctl;
488
489         rdmsrl(IA32_PERF_CTL, perf_ctl);
490         if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
491                 perf_ctl |= IA32_PERF_TURBO_DIS;
492                 wrmsrl(IA32_PERF_CTL, perf_ctl);
493         }
494 }
495
496 /**
497  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
498  * @ips: IPS driver struct
499  *
500  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
501  * all logical threads.
502  */
503 static void ips_disable_cpu_turbo(struct ips_driver *ips)
504 {
505         /* Already off, leave it */
506         if (!ips->__cpu_turbo_on)
507                 return;
508
509         if (ips->turbo_toggle_allowed)
510                 on_each_cpu(do_disable_cpu_turbo, ips, 1);
511
512         ips->__cpu_turbo_on = false;
513 }
514
515 /**
516  * ips_gpu_busy - is GPU busy?
517  * @ips: IPS driver struct
518  *
519  * Check GPU for load to see whether we should increase its thermal budget.
520  * We need to call into the i915 driver in this case.
521  *
522  * RETURNS:
523  * True if the GPU could use more power, false otherwise.
524  */
525 static bool ips_gpu_busy(struct ips_driver *ips)
526 {
527         if (!ips_gpu_turbo_enabled(ips))
528                 return false;
529
530         return ips->gpu_busy();
531 }
532
533 /**
534  * ips_gpu_raise - raise GPU power clamp
535  * @ips: IPS driver struct
536  *
537  * Raise the GPU frequency/power if possible.  We need to call into the
538  * i915 driver in this case.
539  */
540 static void ips_gpu_raise(struct ips_driver *ips)
541 {
542         if (!ips_gpu_turbo_enabled(ips))
543                 return;
544
545         if (!ips->gpu_raise())
546                 ips->gpu_turbo_enabled = false;
547
548         return;
549 }
550
551 /**
552  * ips_gpu_lower - lower GPU power clamp
553  * @ips: IPS driver struct
554  *
555  * Lower GPU frequency/power if possible.  Need to call i915.
556  */
557 static void ips_gpu_lower(struct ips_driver *ips)
558 {
559         if (!ips_gpu_turbo_enabled(ips))
560                 return;
561
562         if (!ips->gpu_lower())
563                 ips->gpu_turbo_enabled = false;
564
565         return;
566 }
567
568 /**
569  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
570  * @ips: IPS driver struct
571  *
572  * Call into the graphics driver indicating that it can safely use
573  * turbo mode.
574  */
575 static void ips_enable_gpu_turbo(struct ips_driver *ips)
576 {
577         if (ips->__gpu_turbo_on)
578                 return;
579         ips->__gpu_turbo_on = true;
580 }
581
582 /**
583  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
584  * @ips: IPS driver struct
585  *
586  * Request that the graphics driver disable turbo mode.
587  */
588 static void ips_disable_gpu_turbo(struct ips_driver *ips)
589 {
590         /* Avoid calling i915 if turbo is already disabled */
591         if (!ips->__gpu_turbo_on)
592                 return;
593
594         if (!ips->gpu_turbo_disable())
595                 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
596         else
597                 ips->__gpu_turbo_on = false;
598 }
599
600 /**
601  * mcp_exceeded - check whether we're outside our thermal & power limits
602  * @ips: IPS driver struct
603  *
604  * Check whether the MCP is over its thermal or power budget.
605  */
606 static bool mcp_exceeded(struct ips_driver *ips)
607 {
608         unsigned long flags;
609         bool ret = false;
610         u32 temp_limit;
611         u32 avg_power;
612
613         spin_lock_irqsave(&ips->turbo_status_lock, flags);
614
615         temp_limit = ips->mcp_temp_limit * 100;
616         if (ips->mcp_avg_temp > temp_limit)
617                 ret = true;
618
619         avg_power = ips->cpu_avg_power + ips->mch_avg_power;
620         if (avg_power > ips->mcp_power_limit)
621                 ret = true;
622
623         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
624
625         return ret;
626 }
627
628 /**
629  * cpu_exceeded - check whether a CPU core is outside its limits
630  * @ips: IPS driver struct
631  * @cpu: CPU number to check
632  *
633  * Check a given CPU's average temp or power is over its limit.
634  */
635 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
636 {
637         unsigned long flags;
638         int avg;
639         bool ret = false;
640
641         spin_lock_irqsave(&ips->turbo_status_lock, flags);
642         avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
643         if (avg > (ips->limits->core_temp_limit * 100))
644                 ret = true;
645         if (ips->cpu_avg_power > ips->core_power_limit * 100)
646                 ret = true;
647         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
648
649         if (ret)
650                 dev_info(&ips->dev->dev,
651                          "CPU power or thermal limit exceeded\n");
652
653         return ret;
654 }
655
656 /**
657  * mch_exceeded - check whether the GPU is over budget
658  * @ips: IPS driver struct
659  *
660  * Check the MCH temp & power against their maximums.
661  */
662 static bool mch_exceeded(struct ips_driver *ips)
663 {
664         unsigned long flags;
665         bool ret = false;
666
667         spin_lock_irqsave(&ips->turbo_status_lock, flags);
668         if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
669                 ret = true;
670         if (ips->mch_avg_power > ips->mch_power_limit)
671                 ret = true;
672         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
673
674         return ret;
675 }
676
677 /**
678  * verify_limits - verify BIOS provided limits
679  * @ips: IPS structure
680  *
681  * BIOS can optionally provide non-default limits for power and temp.  Check
682  * them here and use the defaults if the BIOS values are not provided or
683  * are otherwise unusable.
684  */
685 static void verify_limits(struct ips_driver *ips)
686 {
687         if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
688             ips->mcp_power_limit > 35000)
689                 ips->mcp_power_limit = ips->limits->mcp_power_limit;
690
691         if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
692             ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
693             ips->mcp_temp_limit > 150)
694                 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
695                                           ips->limits->mch_temp_limit);
696 }
697
698 /**
699  * update_turbo_limits - get various limits & settings from regs
700  * @ips: IPS driver struct
701  *
702  * Update the IPS power & temp limits, along with turbo enable flags,
703  * based on latest register contents.
704  *
705  * Used at init time and for runtime BIOS support, which requires polling
706  * the regs for updates (as a result of AC->DC transition for example).
707  *
708  * LOCKING:
709  * Caller must hold turbo_status_lock (outside of init)
710  */
711 static void update_turbo_limits(struct ips_driver *ips)
712 {
713         u32 hts = thm_readl(THM_HTS);
714
715         ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
716         /* 
717          * Disable turbo for now, until we can figure out why the power figures
718          * are wrong
719          */
720         ips->cpu_turbo_enabled = false;
721
722         if (ips->gpu_busy)
723                 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
724
725         ips->core_power_limit = thm_readw(THM_MPCPC);
726         ips->mch_power_limit = thm_readw(THM_MMGPC);
727         ips->mcp_temp_limit = thm_readw(THM_PTL);
728         ips->mcp_power_limit = thm_readw(THM_MPPC);
729
730         verify_limits(ips);
731         /* Ignore BIOS CPU vs GPU pref */
732 }
733
734 /**
735  * ips_adjust - adjust power clamp based on thermal state
736  * @data: ips driver structure
737  *
738  * Wake up every 5s or so and check whether we should adjust the power clamp.
739  * Check CPU and GPU load to determine which needs adjustment.  There are
740  * several things to consider here:
741  *   - do we need to adjust up or down?
742  *   - is CPU busy?
743  *   - is GPU busy?
744  *   - is CPU in turbo?
745  *   - is GPU in turbo?
746  *   - is CPU or GPU preferred? (CPU is default)
747  *
748  * So, given the above, we do the following:
749  *   - up (TDP available)
750  *     - CPU not busy, GPU not busy - nothing
751  *     - CPU busy, GPU not busy - adjust CPU up
752  *     - CPU not busy, GPU busy - adjust GPU up
753  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
754  *       non-preferred unit if necessary
755  *   - down (at TDP limit)
756  *     - adjust both CPU and GPU down if possible
757  *
758                 cpu+ gpu+       cpu+gpu-        cpu-gpu+        cpu-gpu-
759 cpu < gpu <     cpu+gpu+        cpu+            gpu+            nothing
760 cpu < gpu >=    cpu+gpu-(mcp<)  cpu+gpu-(mcp<)  gpu-            gpu-
761 cpu >= gpu <    cpu-gpu+(mcp<)  cpu-            cpu-gpu+(mcp<)  cpu-
762 cpu >= gpu >=   cpu-gpu-        cpu-gpu-        cpu-gpu-        cpu-gpu-
763  *
764  */
765 static int ips_adjust(void *data)
766 {
767         struct ips_driver *ips = data;
768         unsigned long flags;
769
770         dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
771
772         /*
773          * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
774          * often isn't recommended due to ME interaction.
775          */
776         do {
777                 bool cpu_busy = ips_cpu_busy(ips);
778                 bool gpu_busy = ips_gpu_busy(ips);
779
780                 spin_lock_irqsave(&ips->turbo_status_lock, flags);
781                 if (ips->poll_turbo_status)
782                         update_turbo_limits(ips);
783                 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
784
785                 /* Update turbo status if necessary */
786                 if (ips->cpu_turbo_enabled)
787                         ips_enable_cpu_turbo(ips);
788                 else
789                         ips_disable_cpu_turbo(ips);
790
791                 if (ips->gpu_turbo_enabled)
792                         ips_enable_gpu_turbo(ips);
793                 else
794                         ips_disable_gpu_turbo(ips);
795
796                 /* We're outside our comfort zone, crank them down */
797                 if (mcp_exceeded(ips)) {
798                         ips_cpu_lower(ips);
799                         ips_gpu_lower(ips);
800                         goto sleep;
801                 }
802
803                 if (!cpu_exceeded(ips, 0) && cpu_busy)
804                         ips_cpu_raise(ips);
805                 else
806                         ips_cpu_lower(ips);
807
808                 if (!mch_exceeded(ips) && gpu_busy)
809                         ips_gpu_raise(ips);
810                 else
811                         ips_gpu_lower(ips);
812
813 sleep:
814                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
815         } while (!kthread_should_stop());
816
817         dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
818
819         return 0;
820 }
821
822 /*
823  * Helpers for reading out temp/power values and calculating their
824  * averages for the decision making and monitoring functions.
825  */
826
827 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
828 {
829         u64 total = 0;
830         int i;
831         u16 avg;
832
833         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
834                 total += (u64)(array[i] * 100);
835
836         do_div(total, IPS_SAMPLE_COUNT);
837
838         avg = (u16)total;
839
840         return avg;
841 }
842
843 static u16 read_mgtv(struct ips_driver *ips)
844 {
845         u16 ret;
846         u64 slope, offset;
847         u64 val;
848
849         val = thm_readq(THM_MGTV);
850         val = (val & TV_MASK) >> TV_SHIFT;
851
852         slope = offset = thm_readw(THM_MGTA);
853         slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
854         offset = offset & MGTA_OFFSET_MASK;
855
856         ret = ((val * slope + 0x40) >> 7) + offset;
857
858         return 0; /* MCH temp reporting buggy */
859 }
860
861 static u16 read_ptv(struct ips_driver *ips)
862 {
863         u16 val, slope, offset;
864
865         slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
866         offset = ips->pta_val & PTA_OFFSET_MASK;
867
868         val = thm_readw(THM_PTV) & PTV_MASK;
869
870         return val;
871 }
872
873 static u16 read_ctv(struct ips_driver *ips, int cpu)
874 {
875         int reg = cpu ? THM_CTV2 : THM_CTV1;
876         u16 val;
877
878         val = thm_readw(reg);
879         if (!(val & CTV_TEMP_ERROR))
880                 val = (val) >> 6; /* discard fractional component */
881         else
882                 val = 0;
883
884         return val;
885 }
886
887 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
888 {
889         u32 val;
890         u32 ret;
891
892         /*
893          * CEC is in joules/65535.  Take difference over time to
894          * get watts.
895          */
896         val = thm_readl(THM_CEC);
897
898         /* period is in ms and we want mW */
899         ret = (((val - *last) * 1000) / period);
900         ret = (ret * 1000) / 65535;
901         *last = val;
902
903         return 0;
904 }
905
906 static const u16 temp_decay_factor = 2;
907 static u16 update_average_temp(u16 avg, u16 val)
908 {
909         u16 ret;
910
911         /* Multiply by 100 for extra precision */
912         ret = (val * 100 / temp_decay_factor) +
913                 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
914         return ret;
915 }
916
917 static const u16 power_decay_factor = 2;
918 static u16 update_average_power(u32 avg, u32 val)
919 {
920         u32 ret;
921
922         ret = (val / power_decay_factor) +
923                 (((power_decay_factor - 1) * avg) / power_decay_factor);
924
925         return ret;
926 }
927
928 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
929 {
930         u64 total = 0;
931         u32 avg;
932         int i;
933
934         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
935                 total += array[i];
936
937         do_div(total, IPS_SAMPLE_COUNT);
938         avg = (u32)total;
939
940         return avg;
941 }
942
943 static void monitor_timeout(unsigned long arg)
944 {
945         wake_up_process((struct task_struct *)arg);
946 }
947
948 /**
949  * ips_monitor - temp/power monitoring thread
950  * @data: ips driver structure
951  *
952  * This is the main function for the IPS driver.  It monitors power and
953  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
954  *
955  * We keep a 5s moving average of power consumption and tempurature.  Using
956  * that data, along with CPU vs GPU preference, we adjust the power clamps
957  * up or down.
958  */
959 static int ips_monitor(void *data)
960 {
961         struct ips_driver *ips = data;
962         struct timer_list timer;
963         unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
964         int i;
965         u32 *cpu_samples, *mchp_samples, old_cpu_power;
966         u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
967         u8 cur_seqno, last_seqno;
968
969         mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
970         ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971         ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972         mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973         cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974         mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975         if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
976                         !cpu_samples || !mchp_samples) {
977                 dev_err(&ips->dev->dev,
978                         "failed to allocate sample array, ips disabled\n");
979                 kfree(mcp_samples);
980                 kfree(ctv1_samples);
981                 kfree(ctv2_samples);
982                 kfree(mch_samples);
983                 kfree(cpu_samples);
984                 kfree(mchp_samples);
985                 return -ENOMEM;
986         }
987
988         last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
989                 ITV_ME_SEQNO_SHIFT;
990         seqno_timestamp = get_jiffies_64();
991
992         old_cpu_power = thm_readl(THM_CEC);
993         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
994
995         /* Collect an initial average */
996         for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
997                 u32 mchp, cpu_power;
998                 u16 val;
999
1000                 mcp_samples[i] = read_ptv(ips);
1001
1002                 val = read_ctv(ips, 0);
1003                 ctv1_samples[i] = val;
1004
1005                 val = read_ctv(ips, 1);
1006                 ctv2_samples[i] = val;
1007
1008                 val = read_mgtv(ips);
1009                 mch_samples[i] = val;
1010
1011                 cpu_power = get_cpu_power(ips, &old_cpu_power,
1012                                           IPS_SAMPLE_PERIOD);
1013                 cpu_samples[i] = cpu_power;
1014
1015                 if (ips->read_mch_val) {
1016                         mchp = ips->read_mch_val();
1017                         mchp_samples[i] = mchp;
1018                 }
1019
1020                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1021                 if (kthread_should_stop())
1022                         break;
1023         }
1024
1025         ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1026         ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1027         ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1028         ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1029         ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1030         ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1031         kfree(mcp_samples);
1032         kfree(ctv1_samples);
1033         kfree(ctv2_samples);
1034         kfree(mch_samples);
1035         kfree(cpu_samples);
1036         kfree(mchp_samples);
1037
1038         /* Start the adjustment thread now that we have data */
1039         wake_up_process(ips->adjust);
1040
1041         /*
1042          * Ok, now we have an initial avg.  From here on out, we track the
1043          * running avg using a decaying average calculation.  This allows
1044          * us to reduce the sample frequency if the CPU and GPU are idle.
1045          */
1046         old_cpu_power = thm_readl(THM_CEC);
1047         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1048         last_sample_period = IPS_SAMPLE_PERIOD;
1049
1050         setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1051                                         (unsigned long)current);
1052         do {
1053                 u32 cpu_val, mch_val;
1054                 u16 val;
1055
1056                 /* MCP itself */
1057                 val = read_ptv(ips);
1058                 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1059
1060                 /* Processor 0 */
1061                 val = read_ctv(ips, 0);
1062                 ips->ctv1_avg_temp =
1063                         update_average_temp(ips->ctv1_avg_temp, val);
1064                 /* Power */
1065                 cpu_val = get_cpu_power(ips, &old_cpu_power,
1066                                         last_sample_period);
1067                 ips->cpu_avg_power =
1068                         update_average_power(ips->cpu_avg_power, cpu_val);
1069
1070                 if (ips->second_cpu) {
1071                         /* Processor 1 */
1072                         val = read_ctv(ips, 1);
1073                         ips->ctv2_avg_temp =
1074                                 update_average_temp(ips->ctv2_avg_temp, val);
1075                 }
1076
1077                 /* MCH */
1078                 val = read_mgtv(ips);
1079                 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1080                 /* Power */
1081                 if (ips->read_mch_val) {
1082                         mch_val = ips->read_mch_val();
1083                         ips->mch_avg_power =
1084                                 update_average_power(ips->mch_avg_power,
1085                                                      mch_val);
1086                 }
1087
1088                 /*
1089                  * Make sure ME is updating thermal regs.
1090                  * Note:
1091                  * If it's been more than a second since the last update,
1092                  * the ME is probably hung.
1093                  */
1094                 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1095                         ITV_ME_SEQNO_SHIFT;
1096                 if (cur_seqno == last_seqno &&
1097                     time_after(jiffies, seqno_timestamp + HZ)) {
1098                         dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1099                 } else {
1100                         seqno_timestamp = get_jiffies_64();
1101                         last_seqno = cur_seqno;
1102                 }
1103
1104                 last_msecs = jiffies_to_msecs(jiffies);
1105                 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1106
1107                 __set_current_state(TASK_INTERRUPTIBLE);
1108                 mod_timer(&timer, expire);
1109                 schedule();
1110
1111                 /* Calculate actual sample period for power averaging */
1112                 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1113                 if (!last_sample_period)
1114                         last_sample_period = 1;
1115         } while (!kthread_should_stop());
1116
1117         del_timer_sync(&timer);
1118         destroy_timer_on_stack(&timer);
1119
1120         dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1121
1122         return 0;
1123 }
1124
1125 #if 0
1126 #define THM_DUMPW(reg) \
1127         { \
1128         u16 val = thm_readw(reg); \
1129         dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1130         }
1131 #define THM_DUMPL(reg) \
1132         { \
1133         u32 val = thm_readl(reg); \
1134         dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1135         }
1136 #define THM_DUMPQ(reg) \
1137         { \
1138         u64 val = thm_readq(reg); \
1139         dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1140         }
1141
1142 static void dump_thermal_info(struct ips_driver *ips)
1143 {
1144         u16 ptl;
1145
1146         ptl = thm_readw(THM_PTL);
1147         dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1148
1149         THM_DUMPW(THM_CTA);
1150         THM_DUMPW(THM_TRC);
1151         THM_DUMPW(THM_CTV1);
1152         THM_DUMPL(THM_STS);
1153         THM_DUMPW(THM_PTV);
1154         THM_DUMPQ(THM_MGTV);
1155 }
1156 #endif
1157
1158 /**
1159  * ips_irq_handler - handle temperature triggers and other IPS events
1160  * @irq: irq number
1161  * @arg: unused
1162  *
1163  * Handle temperature limit trigger events, generally by lowering the clamps.
1164  * If we're at a critical limit, we clamp back to the lowest possible value
1165  * to prevent emergency shutdown.
1166  */
1167 static irqreturn_t ips_irq_handler(int irq, void *arg)
1168 {
1169         struct ips_driver *ips = arg;
1170         u8 tses = thm_readb(THM_TSES);
1171         u8 tes = thm_readb(THM_TES);
1172
1173         if (!tses && !tes)
1174                 return IRQ_NONE;
1175
1176         dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1177         dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1178
1179         /* STS update from EC? */
1180         if (tes & 1) {
1181                 u32 sts, tc1;
1182
1183                 sts = thm_readl(THM_STS);
1184                 tc1 = thm_readl(THM_TC1);
1185
1186                 if (sts & STS_NVV) {
1187                         spin_lock(&ips->turbo_status_lock);
1188                         ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1189                                 STS_PCPL_SHIFT;
1190                         ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1191                                 STS_GPL_SHIFT;
1192                         /* ignore EC CPU vs GPU pref */
1193                         ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1194                         /* 
1195                          * Disable turbo for now, until we can figure
1196                          * out why the power figures are wrong
1197                          */
1198                         ips->cpu_turbo_enabled = false;
1199                         if (ips->gpu_busy)
1200                                 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1201                         ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1202                                 STS_PTL_SHIFT;
1203                         ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1204                                 STS_PPL_SHIFT;
1205                         verify_limits(ips);
1206                         spin_unlock(&ips->turbo_status_lock);
1207
1208                         thm_writeb(THM_SEC, SEC_ACK);
1209                 }
1210                 thm_writeb(THM_TES, tes);
1211         }
1212
1213         /* Thermal trip */
1214         if (tses) {
1215                 dev_warn(&ips->dev->dev,
1216                          "thermal trip occurred, tses: 0x%04x\n", tses);
1217                 thm_writeb(THM_TSES, tses);
1218         }
1219
1220         return IRQ_HANDLED;
1221 }
1222
1223 #ifndef CONFIG_DEBUG_FS
1224 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1225 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1226 #else
1227
1228 /* Expose current state and limits in debugfs if possible */
1229
1230 struct ips_debugfs_node {
1231         struct ips_driver *ips;
1232         char *name;
1233         int (*show)(struct seq_file *m, void *data);
1234 };
1235
1236 static int show_cpu_temp(struct seq_file *m, void *data)
1237 {
1238         struct ips_driver *ips = m->private;
1239
1240         seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1241                    ips->ctv1_avg_temp % 100);
1242
1243         return 0;
1244 }
1245
1246 static int show_cpu_power(struct seq_file *m, void *data)
1247 {
1248         struct ips_driver *ips = m->private;
1249
1250         seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1251
1252         return 0;
1253 }
1254
1255 static int show_cpu_clamp(struct seq_file *m, void *data)
1256 {
1257         u64 turbo_override;
1258         int tdp, tdc;
1259
1260         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1261
1262         tdp = (int)(turbo_override & TURBO_TDP_MASK);
1263         tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1264
1265         /* Convert to .1W/A units */
1266         tdp = tdp * 10 / 8;
1267         tdc = tdc * 10 / 8;
1268
1269         /* Watts Amperes */
1270         seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1271                    tdc / 10, tdc % 10);
1272
1273         return 0;
1274 }
1275
1276 static int show_mch_temp(struct seq_file *m, void *data)
1277 {
1278         struct ips_driver *ips = m->private;
1279
1280         seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1281                    ips->mch_avg_temp % 100);
1282
1283         return 0;
1284 }
1285
1286 static int show_mch_power(struct seq_file *m, void *data)
1287 {
1288         struct ips_driver *ips = m->private;
1289
1290         seq_printf(m, "%dmW\n", ips->mch_avg_power);
1291
1292         return 0;
1293 }
1294
1295 static struct ips_debugfs_node ips_debug_files[] = {
1296         { NULL, "cpu_temp", show_cpu_temp },
1297         { NULL, "cpu_power", show_cpu_power },
1298         { NULL, "cpu_clamp", show_cpu_clamp },
1299         { NULL, "mch_temp", show_mch_temp },
1300         { NULL, "mch_power", show_mch_power },
1301 };
1302
1303 static int ips_debugfs_open(struct inode *inode, struct file *file)
1304 {
1305         struct ips_debugfs_node *node = inode->i_private;
1306
1307         return single_open(file, node->show, node->ips);
1308 }
1309
1310 static const struct file_operations ips_debugfs_ops = {
1311         .owner = THIS_MODULE,
1312         .open = ips_debugfs_open,
1313         .read = seq_read,
1314         .llseek = seq_lseek,
1315         .release = single_release,
1316 };
1317
1318 static void ips_debugfs_cleanup(struct ips_driver *ips)
1319 {
1320         if (ips->debug_root)
1321                 debugfs_remove_recursive(ips->debug_root);
1322         return;
1323 }
1324
1325 static void ips_debugfs_init(struct ips_driver *ips)
1326 {
1327         int i;
1328
1329         ips->debug_root = debugfs_create_dir("ips", NULL);
1330         if (!ips->debug_root) {
1331                 dev_err(&ips->dev->dev,
1332                         "failed to create debugfs entries: %ld\n",
1333                         PTR_ERR(ips->debug_root));
1334                 return;
1335         }
1336
1337         for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1338                 struct dentry *ent;
1339                 struct ips_debugfs_node *node = &ips_debug_files[i];
1340
1341                 node->ips = ips;
1342                 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1343                                           ips->debug_root, node,
1344                                           &ips_debugfs_ops);
1345                 if (!ent) {
1346                         dev_err(&ips->dev->dev,
1347                                 "failed to create debug file: %ld\n",
1348                                 PTR_ERR(ent));
1349                         goto err_cleanup;
1350                 }
1351         }
1352
1353         return;
1354
1355 err_cleanup:
1356         ips_debugfs_cleanup(ips);
1357         return;
1358 }
1359 #endif /* CONFIG_DEBUG_FS */
1360
1361 /**
1362  * ips_detect_cpu - detect whether CPU supports IPS
1363  *
1364  * Walk our list and see if we're on a supported CPU.  If we find one,
1365  * return the limits for it.
1366  */
1367 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1368 {
1369         u64 turbo_power, misc_en;
1370         struct ips_mcp_limits *limits = NULL;
1371         u16 tdp;
1372
1373         if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1374                 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1375                 goto out;
1376         }
1377
1378         rdmsrl(IA32_MISC_ENABLE, misc_en);
1379         /*
1380          * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1381          * turbo manually or we'll get an illegal MSR access, even though
1382          * turbo will still be available.
1383          */
1384         if (misc_en & IA32_MISC_TURBO_EN)
1385                 ips->turbo_toggle_allowed = true;
1386         else
1387                 ips->turbo_toggle_allowed = false;
1388
1389         if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1390                 limits = &ips_sv_limits;
1391         else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1392                 limits = &ips_lv_limits;
1393         else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1394                 limits = &ips_ulv_limits;
1395         else {
1396                 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1397                 goto out;
1398         }
1399
1400         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1401         tdp = turbo_power & TURBO_TDP_MASK;
1402
1403         /* Sanity check TDP against CPU */
1404         if (limits->core_power_limit != (tdp / 8) * 1000) {
1405                 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1406                          tdp / 8, limits->core_power_limit / 1000);
1407                 limits->core_power_limit = (tdp / 8) * 1000;
1408         }
1409
1410 out:
1411         return limits;
1412 }
1413
1414 /**
1415  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1416  * @ips: IPS driver
1417  *
1418  * The i915 driver exports several interfaces to allow the IPS driver to
1419  * monitor and control graphics turbo mode.  If we can find them, we can
1420  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1421  * thermal and power limits in the MCP.
1422  */
1423 static bool ips_get_i915_syms(struct ips_driver *ips)
1424 {
1425         ips->read_mch_val = symbol_get(i915_read_mch_val);
1426         if (!ips->read_mch_val)
1427                 goto out_err;
1428         ips->gpu_raise = symbol_get(i915_gpu_raise);
1429         if (!ips->gpu_raise)
1430                 goto out_put_mch;
1431         ips->gpu_lower = symbol_get(i915_gpu_lower);
1432         if (!ips->gpu_lower)
1433                 goto out_put_raise;
1434         ips->gpu_busy = symbol_get(i915_gpu_busy);
1435         if (!ips->gpu_busy)
1436                 goto out_put_lower;
1437         ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1438         if (!ips->gpu_turbo_disable)
1439                 goto out_put_busy;
1440
1441         return true;
1442
1443 out_put_busy:
1444         symbol_put(i915_gpu_busy);
1445 out_put_lower:
1446         symbol_put(i915_gpu_lower);
1447 out_put_raise:
1448         symbol_put(i915_gpu_raise);
1449 out_put_mch:
1450         symbol_put(i915_read_mch_val);
1451 out_err:
1452         return false;
1453 }
1454
1455 static bool
1456 ips_gpu_turbo_enabled(struct ips_driver *ips)
1457 {
1458         if (!ips->gpu_busy && late_i915_load) {
1459                 if (ips_get_i915_syms(ips)) {
1460                         dev_info(&ips->dev->dev,
1461                                  "i915 driver attached, reenabling gpu turbo\n");
1462                         ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1463                 }
1464         }
1465
1466         return ips->gpu_turbo_enabled;
1467 }
1468
1469 void
1470 ips_link_to_i915_driver(void)
1471 {
1472         /* We can't cleanly get at the various ips_driver structs from
1473          * this caller (the i915 driver), so just set a flag saying
1474          * that it's time to try getting the symbols again.
1475          */
1476         late_i915_load = true;
1477 }
1478 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1479
1480 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1481         { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1482                      PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1483         { 0, }
1484 };
1485
1486 MODULE_DEVICE_TABLE(pci, ips_id_table);
1487
1488 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1489 {
1490         u64 platform_info;
1491         struct ips_driver *ips;
1492         u32 hts;
1493         int ret = 0;
1494         u16 htshi, trc, trc_required_mask;
1495         u8 tse;
1496
1497         ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1498         if (!ips)
1499                 return -ENOMEM;
1500
1501         pci_set_drvdata(dev, ips);
1502         ips->dev = dev;
1503
1504         ips->limits = ips_detect_cpu(ips);
1505         if (!ips->limits) {
1506                 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1507                 ret = -ENXIO;
1508                 goto error_free;
1509         }
1510
1511         spin_lock_init(&ips->turbo_status_lock);
1512
1513         ret = pci_enable_device(dev);
1514         if (ret) {
1515                 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1516                 goto error_free;
1517         }
1518
1519         if (!pci_resource_start(dev, 0)) {
1520                 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1521                 ret = -ENXIO;
1522                 goto error_free;
1523         }
1524
1525         ret = pci_request_regions(dev, "ips thermal sensor");
1526         if (ret) {
1527                 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1528                 goto error_free;
1529         }
1530
1531
1532         ips->regmap = ioremap(pci_resource_start(dev, 0),
1533                               pci_resource_len(dev, 0));
1534         if (!ips->regmap) {
1535                 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1536                 ret = -EBUSY;
1537                 goto error_release;
1538         }
1539
1540         tse = thm_readb(THM_TSE);
1541         if (tse != TSE_EN) {
1542                 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1543                 ret = -ENXIO;
1544                 goto error_unmap;
1545         }
1546
1547         trc = thm_readw(THM_TRC);
1548         trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1549         if ((trc & trc_required_mask) != trc_required_mask) {
1550                 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1551                 ret = -ENXIO;
1552                 goto error_unmap;
1553         }
1554
1555         if (trc & TRC_CORE2_EN)
1556                 ips->second_cpu = true;
1557
1558         update_turbo_limits(ips);
1559         dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1560                 ips->mcp_power_limit / 10);
1561         dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1562                 ips->core_power_limit / 10);
1563         /* BIOS may update limits at runtime */
1564         if (thm_readl(THM_PSC) & PSP_PBRT)
1565                 ips->poll_turbo_status = true;
1566
1567         if (!ips_get_i915_syms(ips)) {
1568                 dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1569                 ips->gpu_turbo_enabled = false;
1570         } else {
1571                 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1572                 ips->gpu_turbo_enabled = true;
1573         }
1574
1575         /*
1576          * Check PLATFORM_INFO MSR to make sure this chip is
1577          * turbo capable.
1578          */
1579         rdmsrl(PLATFORM_INFO, platform_info);
1580         if (!(platform_info & PLATFORM_TDP)) {
1581                 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1582                 ret = -ENODEV;
1583                 goto error_unmap;
1584         }
1585
1586         /*
1587          * IRQ handler for ME interaction
1588          * Note: don't use MSI here as the PCH has bugs.
1589          */
1590         pci_disable_msi(dev);
1591         ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1592                           ips);
1593         if (ret) {
1594                 dev_err(&dev->dev, "request irq failed, aborting\n");
1595                 goto error_unmap;
1596         }
1597
1598         /* Enable aux, hot & critical interrupts */
1599         thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1600                    TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1601         thm_writeb(THM_TEN, TEN_UPDATE_EN);
1602
1603         /* Collect adjustment values */
1604         ips->cta_val = thm_readw(THM_CTA);
1605         ips->pta_val = thm_readw(THM_PTA);
1606         ips->mgta_val = thm_readw(THM_MGTA);
1607
1608         /* Save turbo limits & ratios */
1609         rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1610
1611         ips_disable_cpu_turbo(ips);
1612         ips->cpu_turbo_enabled = false;
1613
1614         /* Create thermal adjust thread */
1615         ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1616         if (IS_ERR(ips->adjust)) {
1617                 dev_err(&dev->dev,
1618                         "failed to create thermal adjust thread, aborting\n");
1619                 ret = -ENOMEM;
1620                 goto error_free_irq;
1621
1622         }
1623
1624         /*
1625          * Set up the work queue and monitor thread. The monitor thread
1626          * will wake up ips_adjust thread.
1627          */
1628         ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1629         if (IS_ERR(ips->monitor)) {
1630                 dev_err(&dev->dev,
1631                         "failed to create thermal monitor thread, aborting\n");
1632                 ret = -ENOMEM;
1633                 goto error_thread_cleanup;
1634         }
1635
1636         hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1637                 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1638         htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1639
1640         thm_writew(THM_HTSHI, htshi);
1641         thm_writel(THM_HTS, hts);
1642
1643         ips_debugfs_init(ips);
1644
1645         dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1646                  ips->mcp_temp_limit);
1647         return ret;
1648
1649 error_thread_cleanup:
1650         kthread_stop(ips->adjust);
1651 error_free_irq:
1652         free_irq(ips->dev->irq, ips);
1653 error_unmap:
1654         iounmap(ips->regmap);
1655 error_release:
1656         pci_release_regions(dev);
1657 error_free:
1658         kfree(ips);
1659         return ret;
1660 }
1661
1662 static void ips_remove(struct pci_dev *dev)
1663 {
1664         struct ips_driver *ips = pci_get_drvdata(dev);
1665         u64 turbo_override;
1666
1667         if (!ips)
1668                 return;
1669
1670         ips_debugfs_cleanup(ips);
1671
1672         /* Release i915 driver */
1673         if (ips->read_mch_val)
1674                 symbol_put(i915_read_mch_val);
1675         if (ips->gpu_raise)
1676                 symbol_put(i915_gpu_raise);
1677         if (ips->gpu_lower)
1678                 symbol_put(i915_gpu_lower);
1679         if (ips->gpu_busy)
1680                 symbol_put(i915_gpu_busy);
1681         if (ips->gpu_turbo_disable)
1682                 symbol_put(i915_gpu_turbo_disable);
1683
1684         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1685         turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1686         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1687         wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1688
1689         free_irq(ips->dev->irq, ips);
1690         if (ips->adjust)
1691                 kthread_stop(ips->adjust);
1692         if (ips->monitor)
1693                 kthread_stop(ips->monitor);
1694         iounmap(ips->regmap);
1695         pci_release_regions(dev);
1696         kfree(ips);
1697         dev_dbg(&dev->dev, "IPS driver removed\n");
1698 }
1699
1700 #ifdef CONFIG_PM
1701 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1702 {
1703         return 0;
1704 }
1705
1706 static int ips_resume(struct pci_dev *dev)
1707 {
1708         return 0;
1709 }
1710 #else
1711 #define ips_suspend NULL
1712 #define ips_resume NULL
1713 #endif /* CONFIG_PM */
1714
1715 static void ips_shutdown(struct pci_dev *dev)
1716 {
1717 }
1718
1719 static struct pci_driver ips_pci_driver = {
1720         .name = "intel ips",
1721         .id_table = ips_id_table,
1722         .probe = ips_probe,
1723         .remove = ips_remove,
1724         .suspend = ips_suspend,
1725         .resume = ips_resume,
1726         .shutdown = ips_shutdown,
1727 };
1728
1729 static int __init ips_init(void)
1730 {
1731         return pci_register_driver(&ips_pci_driver);
1732 }
1733 module_init(ips_init);
1734
1735 static void ips_exit(void)
1736 {
1737         pci_unregister_driver(&ips_pci_driver);
1738         return;
1739 }
1740 module_exit(ips_exit);
1741
1742 MODULE_LICENSE("GPL");
1743 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1744 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");