writeback: introduce writeback_control.inodes_written
[linux-flexiantxendom0-3.2.10.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36         long nr_pages;
37         struct super_block *sb;
38         enum writeback_sync_modes sync_mode;
39         unsigned int tagged_writepages:1;
40         unsigned int for_kupdate:1;
41         unsigned int range_cyclic:1;
42         unsigned int for_background:1;
43
44         struct list_head list;          /* pending work list */
45         struct completion *done;        /* set if the caller waits */
46 };
47
48 /*
49  * Include the creation of the trace points after defining the
50  * wb_writeback_work structure so that the definition remains local to this
51  * file.
52  */
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/writeback.h>
55
56 /*
57  * We don't actually have pdflush, but this one is exported though /proc...
58  */
59 int nr_pdflush_threads;
60
61 /**
62  * writeback_in_progress - determine whether there is writeback in progress
63  * @bdi: the device's backing_dev_info structure.
64  *
65  * Determine whether there is writeback waiting to be handled against a
66  * backing device.
67  */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70         return test_bit(BDI_writeback_running, &bdi->state);
71 }
72
73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 {
75         struct super_block *sb = inode->i_sb;
76
77         if (strcmp(sb->s_type->name, "bdev") == 0)
78                 return inode->i_mapping->backing_dev_info;
79
80         return sb->s_bdi;
81 }
82
83 static inline struct inode *wb_inode(struct list_head *head)
84 {
85         return list_entry(head, struct inode, i_wb_list);
86 }
87
88 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
89 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
90 {
91         if (bdi->wb.task) {
92                 wake_up_process(bdi->wb.task);
93         } else {
94                 /*
95                  * The bdi thread isn't there, wake up the forker thread which
96                  * will create and run it.
97                  */
98                 wake_up_process(default_backing_dev_info.wb.task);
99         }
100 }
101
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103                            struct wb_writeback_work *work)
104 {
105         trace_writeback_queue(bdi, work);
106
107         spin_lock_bh(&bdi->wb_lock);
108         list_add_tail(&work->list, &bdi->work_list);
109         if (!bdi->wb.task)
110                 trace_writeback_nothread(bdi, work);
111         bdi_wakeup_flusher(bdi);
112         spin_unlock_bh(&bdi->wb_lock);
113 }
114
115 static void
116 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
117                       bool range_cyclic)
118 {
119         struct wb_writeback_work *work;
120
121         /*
122          * This is WB_SYNC_NONE writeback, so if allocation fails just
123          * wakeup the thread for old dirty data writeback
124          */
125         work = kzalloc(sizeof(*work), GFP_ATOMIC);
126         if (!work) {
127                 if (bdi->wb.task) {
128                         trace_writeback_nowork(bdi);
129                         wake_up_process(bdi->wb.task);
130                 }
131                 return;
132         }
133
134         work->sync_mode = WB_SYNC_NONE;
135         work->nr_pages  = nr_pages;
136         work->range_cyclic = range_cyclic;
137
138         bdi_queue_work(bdi, work);
139 }
140
141 /**
142  * bdi_start_writeback - start writeback
143  * @bdi: the backing device to write from
144  * @nr_pages: the number of pages to write
145  *
146  * Description:
147  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
148  *   started when this function returns, we make no guarantees on
149  *   completion. Caller need not hold sb s_umount semaphore.
150  *
151  */
152 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
153 {
154         __bdi_start_writeback(bdi, nr_pages, true);
155 }
156
157 /**
158  * bdi_start_background_writeback - start background writeback
159  * @bdi: the backing device to write from
160  *
161  * Description:
162  *   This makes sure WB_SYNC_NONE background writeback happens. When
163  *   this function returns, it is only guaranteed that for given BDI
164  *   some IO is happening if we are over background dirty threshold.
165  *   Caller need not hold sb s_umount semaphore.
166  */
167 void bdi_start_background_writeback(struct backing_dev_info *bdi)
168 {
169         /*
170          * We just wake up the flusher thread. It will perform background
171          * writeback as soon as there is no other work to do.
172          */
173         trace_writeback_wake_background(bdi);
174         spin_lock_bh(&bdi->wb_lock);
175         bdi_wakeup_flusher(bdi);
176         spin_unlock_bh(&bdi->wb_lock);
177 }
178
179 /*
180  * Remove the inode from the writeback list it is on.
181  */
182 void inode_wb_list_del(struct inode *inode)
183 {
184         spin_lock(&inode_wb_list_lock);
185         list_del_init(&inode->i_wb_list);
186         spin_unlock(&inode_wb_list_lock);
187 }
188
189
190 /*
191  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
192  * furthest end of its superblock's dirty-inode list.
193  *
194  * Before stamping the inode's ->dirtied_when, we check to see whether it is
195  * already the most-recently-dirtied inode on the b_dirty list.  If that is
196  * the case then the inode must have been redirtied while it was being written
197  * out and we don't reset its dirtied_when.
198  */
199 static void redirty_tail(struct inode *inode)
200 {
201         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
202
203         assert_spin_locked(&inode_wb_list_lock);
204         if (!list_empty(&wb->b_dirty)) {
205                 struct inode *tail;
206
207                 tail = wb_inode(wb->b_dirty.next);
208                 if (time_before(inode->dirtied_when, tail->dirtied_when))
209                         inode->dirtied_when = jiffies;
210         }
211         list_move(&inode->i_wb_list, &wb->b_dirty);
212 }
213
214 /*
215  * requeue inode for re-scanning after bdi->b_io list is exhausted.
216  */
217 static void requeue_io(struct inode *inode)
218 {
219         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
220
221         assert_spin_locked(&inode_wb_list_lock);
222         list_move(&inode->i_wb_list, &wb->b_more_io);
223 }
224
225 static void inode_sync_complete(struct inode *inode)
226 {
227         /*
228          * Prevent speculative execution through
229          * spin_unlock(&inode_wb_list_lock);
230          */
231
232         smp_mb();
233         wake_up_bit(&inode->i_state, __I_SYNC);
234 }
235
236 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
237 {
238         bool ret = time_after(inode->dirtied_when, t);
239 #ifndef CONFIG_64BIT
240         /*
241          * For inodes being constantly redirtied, dirtied_when can get stuck.
242          * It _appears_ to be in the future, but is actually in distant past.
243          * This test is necessary to prevent such wrapped-around relative times
244          * from permanently stopping the whole bdi writeback.
245          */
246         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
247 #endif
248         return ret;
249 }
250
251 /*
252  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
253  */
254 static void move_expired_inodes(struct list_head *delaying_queue,
255                                struct list_head *dispatch_queue,
256                                 unsigned long *older_than_this)
257 {
258         LIST_HEAD(tmp);
259         struct list_head *pos, *node;
260         struct super_block *sb = NULL;
261         struct inode *inode;
262         int do_sb_sort = 0;
263
264         while (!list_empty(delaying_queue)) {
265                 inode = wb_inode(delaying_queue->prev);
266                 if (older_than_this &&
267                     inode_dirtied_after(inode, *older_than_this))
268                         break;
269                 if (sb && sb != inode->i_sb)
270                         do_sb_sort = 1;
271                 sb = inode->i_sb;
272                 list_move(&inode->i_wb_list, &tmp);
273         }
274
275         /* just one sb in list, splice to dispatch_queue and we're done */
276         if (!do_sb_sort) {
277                 list_splice(&tmp, dispatch_queue);
278                 return;
279         }
280
281         /* Move inodes from one superblock together */
282         while (!list_empty(&tmp)) {
283                 sb = wb_inode(tmp.prev)->i_sb;
284                 list_for_each_prev_safe(pos, node, &tmp) {
285                         inode = wb_inode(pos);
286                         if (inode->i_sb == sb)
287                                 list_move(&inode->i_wb_list, dispatch_queue);
288                 }
289         }
290 }
291
292 /*
293  * Queue all expired dirty inodes for io, eldest first.
294  * Before
295  *         newly dirtied     b_dirty    b_io    b_more_io
296  *         =============>    gf         edc     BA
297  * After
298  *         newly dirtied     b_dirty    b_io    b_more_io
299  *         =============>    g          fBAedc
300  *                                           |
301  *                                           +--> dequeue for IO
302  */
303 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
304 {
305         assert_spin_locked(&inode_wb_list_lock);
306         list_splice_init(&wb->b_more_io, &wb->b_io);
307         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
308 }
309
310 static int write_inode(struct inode *inode, struct writeback_control *wbc)
311 {
312         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
313                 return inode->i_sb->s_op->write_inode(inode, wbc);
314         return 0;
315 }
316
317 /*
318  * Wait for writeback on an inode to complete.
319  */
320 static void inode_wait_for_writeback(struct inode *inode)
321 {
322         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
323         wait_queue_head_t *wqh;
324
325         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
326         while (inode->i_state & I_SYNC) {
327                 spin_unlock(&inode->i_lock);
328                 spin_unlock(&inode_wb_list_lock);
329                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
330                 spin_lock(&inode_wb_list_lock);
331                 spin_lock(&inode->i_lock);
332         }
333 }
334
335 /*
336  * Write out an inode's dirty pages.  Called under inode_wb_list_lock and
337  * inode->i_lock.  Either the caller has an active reference on the inode or
338  * the inode has I_WILL_FREE set.
339  *
340  * If `wait' is set, wait on the writeout.
341  *
342  * The whole writeout design is quite complex and fragile.  We want to avoid
343  * starvation of particular inodes when others are being redirtied, prevent
344  * livelocks, etc.
345  */
346 static int
347 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
348 {
349         struct address_space *mapping = inode->i_mapping;
350         unsigned dirty;
351         int ret;
352
353         assert_spin_locked(&inode_wb_list_lock);
354         assert_spin_locked(&inode->i_lock);
355
356         if (!atomic_read(&inode->i_count))
357                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
358         else
359                 WARN_ON(inode->i_state & I_WILL_FREE);
360
361         if (inode->i_state & I_SYNC) {
362                 /*
363                  * If this inode is locked for writeback and we are not doing
364                  * writeback-for-data-integrity, move it to b_more_io so that
365                  * writeback can proceed with the other inodes on s_io.
366                  *
367                  * We'll have another go at writing back this inode when we
368                  * completed a full scan of b_io.
369                  */
370                 if (wbc->sync_mode != WB_SYNC_ALL) {
371                         requeue_io(inode);
372                         return 0;
373                 }
374
375                 /*
376                  * It's a data-integrity sync.  We must wait.
377                  */
378                 inode_wait_for_writeback(inode);
379         }
380
381         BUG_ON(inode->i_state & I_SYNC);
382
383         /* Set I_SYNC, reset I_DIRTY_PAGES */
384         inode->i_state |= I_SYNC;
385         inode->i_state &= ~I_DIRTY_PAGES;
386         spin_unlock(&inode->i_lock);
387         spin_unlock(&inode_wb_list_lock);
388
389         ret = do_writepages(mapping, wbc);
390
391         /*
392          * Make sure to wait on the data before writing out the metadata.
393          * This is important for filesystems that modify metadata on data
394          * I/O completion.
395          */
396         if (wbc->sync_mode == WB_SYNC_ALL) {
397                 int err = filemap_fdatawait(mapping);
398                 if (ret == 0)
399                         ret = err;
400         }
401
402         /*
403          * Some filesystems may redirty the inode during the writeback
404          * due to delalloc, clear dirty metadata flags right before
405          * write_inode()
406          */
407         spin_lock(&inode->i_lock);
408         dirty = inode->i_state & I_DIRTY;
409         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
410         spin_unlock(&inode->i_lock);
411         /* Don't write the inode if only I_DIRTY_PAGES was set */
412         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
413                 int err = write_inode(inode, wbc);
414                 if (ret == 0)
415                         ret = err;
416         }
417
418         spin_lock(&inode_wb_list_lock);
419         spin_lock(&inode->i_lock);
420         inode->i_state &= ~I_SYNC;
421         if (!(inode->i_state & I_FREEING)) {
422                 /*
423                  * Sync livelock prevention. Each inode is tagged and synced in
424                  * one shot. If still dirty, it will be redirty_tail()'ed below.
425                  * Update the dirty time to prevent enqueue and sync it again.
426                  */
427                 if ((inode->i_state & I_DIRTY) &&
428                     (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
429                         inode->dirtied_when = jiffies;
430
431                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
432                         /*
433                          * We didn't write back all the pages.  nfs_writepages()
434                          * sometimes bales out without doing anything.
435                          */
436                         inode->i_state |= I_DIRTY_PAGES;
437                         if (wbc->nr_to_write <= 0) {
438                                 /*
439                                  * slice used up: queue for next turn
440                                  */
441                                 requeue_io(inode);
442                         } else {
443                                 /*
444                                  * Writeback blocked by something other than
445                                  * congestion. Delay the inode for some time to
446                                  * avoid spinning on the CPU (100% iowait)
447                                  * retrying writeback of the dirty page/inode
448                                  * that cannot be performed immediately.
449                                  */
450                                 redirty_tail(inode);
451                         }
452                 } else if (inode->i_state & I_DIRTY) {
453                         /*
454                          * Filesystems can dirty the inode during writeback
455                          * operations, such as delayed allocation during
456                          * submission or metadata updates after data IO
457                          * completion.
458                          */
459                         redirty_tail(inode);
460                 } else {
461                         /*
462                          * The inode is clean.  At this point we either have
463                          * a reference to the inode or it's on it's way out.
464                          * No need to add it back to the LRU.
465                          */
466                         list_del_init(&inode->i_wb_list);
467                         wbc->inodes_written++;
468                 }
469         }
470         inode_sync_complete(inode);
471         return ret;
472 }
473
474 /*
475  * For background writeback the caller does not have the sb pinned
476  * before calling writeback. So make sure that we do pin it, so it doesn't
477  * go away while we are writing inodes from it.
478  */
479 static bool pin_sb_for_writeback(struct super_block *sb)
480 {
481         spin_lock(&sb_lock);
482         if (list_empty(&sb->s_instances)) {
483                 spin_unlock(&sb_lock);
484                 return false;
485         }
486
487         sb->s_count++;
488         spin_unlock(&sb_lock);
489
490         if (down_read_trylock(&sb->s_umount)) {
491                 if (sb->s_root)
492                         return true;
493                 up_read(&sb->s_umount);
494         }
495
496         put_super(sb);
497         return false;
498 }
499
500 /*
501  * Write a portion of b_io inodes which belong to @sb.
502  *
503  * If @only_this_sb is true, then find and write all such
504  * inodes. Otherwise write only ones which go sequentially
505  * in reverse order.
506  *
507  * Return 1, if the caller writeback routine should be
508  * interrupted. Otherwise return 0.
509  */
510 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
511                 struct writeback_control *wbc, bool only_this_sb)
512 {
513         while (!list_empty(&wb->b_io)) {
514                 long pages_skipped;
515                 struct inode *inode = wb_inode(wb->b_io.prev);
516
517                 if (inode->i_sb != sb) {
518                         if (only_this_sb) {
519                                 /*
520                                  * We only want to write back data for this
521                                  * superblock, move all inodes not belonging
522                                  * to it back onto the dirty list.
523                                  */
524                                 redirty_tail(inode);
525                                 continue;
526                         }
527
528                         /*
529                          * The inode belongs to a different superblock.
530                          * Bounce back to the caller to unpin this and
531                          * pin the next superblock.
532                          */
533                         return 0;
534                 }
535
536                 /*
537                  * Don't bother with new inodes or inodes beeing freed, first
538                  * kind does not need peridic writeout yet, and for the latter
539                  * kind writeout is handled by the freer.
540                  */
541                 spin_lock(&inode->i_lock);
542                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
543                         spin_unlock(&inode->i_lock);
544                         requeue_io(inode);
545                         continue;
546                 }
547
548                 /*
549                  * Was this inode dirtied after sync_sb_inodes was called?
550                  * This keeps sync from extra jobs and livelock.
551                  */
552                 if (inode_dirtied_after(inode, wbc->wb_start)) {
553                         spin_unlock(&inode->i_lock);
554                         return 1;
555                 }
556
557                 __iget(inode);
558
559                 pages_skipped = wbc->pages_skipped;
560                 writeback_single_inode(inode, wbc);
561                 if (wbc->pages_skipped != pages_skipped) {
562                         /*
563                          * writeback is not making progress due to locked
564                          * buffers.  Skip this inode for now.
565                          */
566                         redirty_tail(inode);
567                 }
568                 spin_unlock(&inode->i_lock);
569                 spin_unlock(&inode_wb_list_lock);
570                 iput(inode);
571                 cond_resched();
572                 spin_lock(&inode_wb_list_lock);
573                 if (wbc->nr_to_write <= 0) {
574                         wbc->more_io = 1;
575                         return 1;
576                 }
577                 if (!list_empty(&wb->b_more_io))
578                         wbc->more_io = 1;
579         }
580         /* b_io is empty */
581         return 1;
582 }
583
584 void writeback_inodes_wb(struct bdi_writeback *wb,
585                 struct writeback_control *wbc)
586 {
587         int ret = 0;
588
589         if (!wbc->wb_start)
590                 wbc->wb_start = jiffies; /* livelock avoidance */
591         spin_lock(&inode_wb_list_lock);
592         if (!wbc->for_kupdate || list_empty(&wb->b_io))
593                 queue_io(wb, wbc->older_than_this);
594
595         while (!list_empty(&wb->b_io)) {
596                 struct inode *inode = wb_inode(wb->b_io.prev);
597                 struct super_block *sb = inode->i_sb;
598
599                 if (!pin_sb_for_writeback(sb)) {
600                         requeue_io(inode);
601                         continue;
602                 }
603                 ret = writeback_sb_inodes(sb, wb, wbc, false);
604                 drop_super(sb);
605
606                 if (ret)
607                         break;
608         }
609         spin_unlock(&inode_wb_list_lock);
610         /* Leave any unwritten inodes on b_io */
611 }
612
613 static void __writeback_inodes_sb(struct super_block *sb,
614                 struct bdi_writeback *wb, struct writeback_control *wbc)
615 {
616         WARN_ON(!rwsem_is_locked(&sb->s_umount));
617
618         spin_lock(&inode_wb_list_lock);
619         if (!wbc->for_kupdate || list_empty(&wb->b_io))
620                 queue_io(wb, wbc->older_than_this);
621         writeback_sb_inodes(sb, wb, wbc, true);
622         spin_unlock(&inode_wb_list_lock);
623 }
624
625 /*
626  * The maximum number of pages to writeout in a single bdi flush/kupdate
627  * operation.  We do this so we don't hold I_SYNC against an inode for
628  * enormous amounts of time, which would block a userspace task which has
629  * been forced to throttle against that inode.  Also, the code reevaluates
630  * the dirty each time it has written this many pages.
631  */
632 #define MAX_WRITEBACK_PAGES     1024
633
634 static inline bool over_bground_thresh(void)
635 {
636         unsigned long background_thresh, dirty_thresh;
637
638         global_dirty_limits(&background_thresh, &dirty_thresh);
639
640         return (global_page_state(NR_FILE_DIRTY) +
641                 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
642 }
643
644 /*
645  * Explicit flushing or periodic writeback of "old" data.
646  *
647  * Define "old": the first time one of an inode's pages is dirtied, we mark the
648  * dirtying-time in the inode's address_space.  So this periodic writeback code
649  * just walks the superblock inode list, writing back any inodes which are
650  * older than a specific point in time.
651  *
652  * Try to run once per dirty_writeback_interval.  But if a writeback event
653  * takes longer than a dirty_writeback_interval interval, then leave a
654  * one-second gap.
655  *
656  * older_than_this takes precedence over nr_to_write.  So we'll only write back
657  * all dirty pages if they are all attached to "old" mappings.
658  */
659 static long wb_writeback(struct bdi_writeback *wb,
660                          struct wb_writeback_work *work)
661 {
662         struct writeback_control wbc = {
663                 .sync_mode              = work->sync_mode,
664                 .tagged_writepages      = work->tagged_writepages,
665                 .older_than_this        = NULL,
666                 .for_kupdate            = work->for_kupdate,
667                 .for_background         = work->for_background,
668                 .range_cyclic           = work->range_cyclic,
669         };
670         unsigned long oldest_jif;
671         long wrote = 0;
672         long write_chunk = MAX_WRITEBACK_PAGES;
673         struct inode *inode;
674
675         if (wbc.for_kupdate) {
676                 wbc.older_than_this = &oldest_jif;
677                 oldest_jif = jiffies -
678                                 msecs_to_jiffies(dirty_expire_interval * 10);
679         }
680         if (!wbc.range_cyclic) {
681                 wbc.range_start = 0;
682                 wbc.range_end = LLONG_MAX;
683         }
684
685         /*
686          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
687          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
688          * here avoids calling into writeback_inodes_wb() more than once.
689          *
690          * The intended call sequence for WB_SYNC_ALL writeback is:
691          *
692          *      wb_writeback()
693          *          __writeback_inodes_sb()     <== called only once
694          *              write_cache_pages()     <== called once for each inode
695          *                   (quickly) tag currently dirty pages
696          *                   (maybe slowly) sync all tagged pages
697          */
698         if (wbc.sync_mode == WB_SYNC_ALL || wbc.tagged_writepages)
699                 write_chunk = LONG_MAX;
700
701         wbc.wb_start = jiffies; /* livelock avoidance */
702         for (;;) {
703                 /*
704                  * Stop writeback when nr_pages has been consumed
705                  */
706                 if (work->nr_pages <= 0)
707                         break;
708
709                 /*
710                  * Background writeout and kupdate-style writeback may
711                  * run forever. Stop them if there is other work to do
712                  * so that e.g. sync can proceed. They'll be restarted
713                  * after the other works are all done.
714                  */
715                 if ((work->for_background || work->for_kupdate) &&
716                     !list_empty(&wb->bdi->work_list))
717                         break;
718
719                 /*
720                  * For background writeout, stop when we are below the
721                  * background dirty threshold
722                  */
723                 if (work->for_background && !over_bground_thresh())
724                         break;
725
726                 wbc.more_io = 0;
727                 wbc.nr_to_write = write_chunk;
728                 wbc.pages_skipped = 0;
729                 wbc.inodes_written = 0;
730
731                 trace_wbc_writeback_start(&wbc, wb->bdi);
732                 if (work->sb)
733                         __writeback_inodes_sb(work->sb, wb, &wbc);
734                 else
735                         writeback_inodes_wb(wb, &wbc);
736                 trace_wbc_writeback_written(&wbc, wb->bdi);
737
738                 work->nr_pages -= write_chunk - wbc.nr_to_write;
739                 wrote += write_chunk - wbc.nr_to_write;
740
741                 /*
742                  * If we consumed everything, see if we have more
743                  */
744                 if (wbc.nr_to_write <= 0)
745                         continue;
746                 if (wbc.inodes_written)
747                         continue;
748                 /*
749                  * Didn't write everything and we don't have more IO, bail
750                  */
751                 if (!wbc.more_io)
752                         break;
753                 /*
754                  * Did we write something? Try for more
755                  */
756                 if (wbc.nr_to_write < write_chunk)
757                         continue;
758                 /*
759                  * Nothing written. Wait for some inode to
760                  * become available for writeback. Otherwise
761                  * we'll just busyloop.
762                  */
763                 spin_lock(&inode_wb_list_lock);
764                 if (!list_empty(&wb->b_more_io))  {
765                         inode = wb_inode(wb->b_more_io.prev);
766                         trace_wbc_writeback_wait(&wbc, wb->bdi);
767                         spin_lock(&inode->i_lock);
768                         inode_wait_for_writeback(inode);
769                         spin_unlock(&inode->i_lock);
770                 }
771                 spin_unlock(&inode_wb_list_lock);
772         }
773
774         return wrote;
775 }
776
777 /*
778  * Return the next wb_writeback_work struct that hasn't been processed yet.
779  */
780 static struct wb_writeback_work *
781 get_next_work_item(struct backing_dev_info *bdi)
782 {
783         struct wb_writeback_work *work = NULL;
784
785         spin_lock_bh(&bdi->wb_lock);
786         if (!list_empty(&bdi->work_list)) {
787                 work = list_entry(bdi->work_list.next,
788                                   struct wb_writeback_work, list);
789                 list_del_init(&work->list);
790         }
791         spin_unlock_bh(&bdi->wb_lock);
792         return work;
793 }
794
795 /*
796  * Add in the number of potentially dirty inodes, because each inode
797  * write can dirty pagecache in the underlying blockdev.
798  */
799 static unsigned long get_nr_dirty_pages(void)
800 {
801         return global_page_state(NR_FILE_DIRTY) +
802                 global_page_state(NR_UNSTABLE_NFS) +
803                 get_nr_dirty_inodes();
804 }
805
806 static long wb_check_background_flush(struct bdi_writeback *wb)
807 {
808         if (over_bground_thresh()) {
809
810                 struct wb_writeback_work work = {
811                         .nr_pages       = LONG_MAX,
812                         .sync_mode      = WB_SYNC_NONE,
813                         .for_background = 1,
814                         .range_cyclic   = 1,
815                 };
816
817                 return wb_writeback(wb, &work);
818         }
819
820         return 0;
821 }
822
823 static long wb_check_old_data_flush(struct bdi_writeback *wb)
824 {
825         unsigned long expired;
826         long nr_pages;
827
828         /*
829          * When set to zero, disable periodic writeback
830          */
831         if (!dirty_writeback_interval)
832                 return 0;
833
834         expired = wb->last_old_flush +
835                         msecs_to_jiffies(dirty_writeback_interval * 10);
836         if (time_before(jiffies, expired))
837                 return 0;
838
839         wb->last_old_flush = jiffies;
840         nr_pages = get_nr_dirty_pages();
841
842         if (nr_pages) {
843                 struct wb_writeback_work work = {
844                         .nr_pages       = nr_pages,
845                         .sync_mode      = WB_SYNC_NONE,
846                         .for_kupdate    = 1,
847                         .range_cyclic   = 1,
848                 };
849
850                 return wb_writeback(wb, &work);
851         }
852
853         return 0;
854 }
855
856 /*
857  * Retrieve work items and do the writeback they describe
858  */
859 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
860 {
861         struct backing_dev_info *bdi = wb->bdi;
862         struct wb_writeback_work *work;
863         long wrote = 0;
864
865         set_bit(BDI_writeback_running, &wb->bdi->state);
866         while ((work = get_next_work_item(bdi)) != NULL) {
867                 /*
868                  * Override sync mode, in case we must wait for completion
869                  * because this thread is exiting now.
870                  */
871                 if (force_wait)
872                         work->sync_mode = WB_SYNC_ALL;
873
874                 trace_writeback_exec(bdi, work);
875
876                 wrote += wb_writeback(wb, work);
877
878                 /*
879                  * Notify the caller of completion if this is a synchronous
880                  * work item, otherwise just free it.
881                  */
882                 if (work->done)
883                         complete(work->done);
884                 else
885                         kfree(work);
886         }
887
888         /*
889          * Check for periodic writeback, kupdated() style
890          */
891         wrote += wb_check_old_data_flush(wb);
892         wrote += wb_check_background_flush(wb);
893         clear_bit(BDI_writeback_running, &wb->bdi->state);
894
895         return wrote;
896 }
897
898 /*
899  * Handle writeback of dirty data for the device backed by this bdi. Also
900  * wakes up periodically and does kupdated style flushing.
901  */
902 int bdi_writeback_thread(void *data)
903 {
904         struct bdi_writeback *wb = data;
905         struct backing_dev_info *bdi = wb->bdi;
906         long pages_written;
907
908         current->flags |= PF_SWAPWRITE;
909         set_freezable();
910         wb->last_active = jiffies;
911
912         /*
913          * Our parent may run at a different priority, just set us to normal
914          */
915         set_user_nice(current, 0);
916
917         trace_writeback_thread_start(bdi);
918
919         while (!kthread_should_stop()) {
920                 /*
921                  * Remove own delayed wake-up timer, since we are already awake
922                  * and we'll take care of the preriodic write-back.
923                  */
924                 del_timer(&wb->wakeup_timer);
925
926                 pages_written = wb_do_writeback(wb, 0);
927
928                 trace_writeback_pages_written(pages_written);
929
930                 if (pages_written)
931                         wb->last_active = jiffies;
932
933                 set_current_state(TASK_INTERRUPTIBLE);
934                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
935                         __set_current_state(TASK_RUNNING);
936                         continue;
937                 }
938
939                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
940                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
941                 else {
942                         /*
943                          * We have nothing to do, so can go sleep without any
944                          * timeout and save power. When a work is queued or
945                          * something is made dirty - we will be woken up.
946                          */
947                         schedule();
948                 }
949
950                 try_to_freeze();
951         }
952
953         /* Flush any work that raced with us exiting */
954         if (!list_empty(&bdi->work_list))
955                 wb_do_writeback(wb, 1);
956
957         trace_writeback_thread_stop(bdi);
958         return 0;
959 }
960
961
962 /*
963  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
964  * the whole world.
965  */
966 void wakeup_flusher_threads(long nr_pages)
967 {
968         struct backing_dev_info *bdi;
969
970         if (!nr_pages) {
971                 nr_pages = global_page_state(NR_FILE_DIRTY) +
972                                 global_page_state(NR_UNSTABLE_NFS);
973         }
974
975         rcu_read_lock();
976         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
977                 if (!bdi_has_dirty_io(bdi))
978                         continue;
979                 __bdi_start_writeback(bdi, nr_pages, false);
980         }
981         rcu_read_unlock();
982 }
983
984 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
985 {
986         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
987                 struct dentry *dentry;
988                 const char *name = "?";
989
990                 dentry = d_find_alias(inode);
991                 if (dentry) {
992                         spin_lock(&dentry->d_lock);
993                         name = (const char *) dentry->d_name.name;
994                 }
995                 printk(KERN_DEBUG
996                        "%s(%d): dirtied inode %lu (%s) on %s\n",
997                        current->comm, task_pid_nr(current), inode->i_ino,
998                        name, inode->i_sb->s_id);
999                 if (dentry) {
1000                         spin_unlock(&dentry->d_lock);
1001                         dput(dentry);
1002                 }
1003         }
1004 }
1005
1006 /**
1007  *      __mark_inode_dirty -    internal function
1008  *      @inode: inode to mark
1009  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1010  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1011  *      mark_inode_dirty_sync.
1012  *
1013  * Put the inode on the super block's dirty list.
1014  *
1015  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1016  * dirty list only if it is hashed or if it refers to a blockdev.
1017  * If it was not hashed, it will never be added to the dirty list
1018  * even if it is later hashed, as it will have been marked dirty already.
1019  *
1020  * In short, make sure you hash any inodes _before_ you start marking
1021  * them dirty.
1022  *
1023  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1024  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1025  * the kernel-internal blockdev inode represents the dirtying time of the
1026  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1027  * page->mapping->host, so the page-dirtying time is recorded in the internal
1028  * blockdev inode.
1029  */
1030 void __mark_inode_dirty(struct inode *inode, int flags)
1031 {
1032         struct super_block *sb = inode->i_sb;
1033         struct backing_dev_info *bdi = NULL;
1034
1035         /*
1036          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1037          * dirty the inode itself
1038          */
1039         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1040                 if (sb->s_op->dirty_inode)
1041                         sb->s_op->dirty_inode(inode, flags);
1042         }
1043
1044         /*
1045          * make sure that changes are seen by all cpus before we test i_state
1046          * -- mikulas
1047          */
1048         smp_mb();
1049
1050         /* avoid the locking if we can */
1051         if ((inode->i_state & flags) == flags)
1052                 return;
1053
1054         if (unlikely(block_dump))
1055                 block_dump___mark_inode_dirty(inode);
1056
1057         spin_lock(&inode->i_lock);
1058         if ((inode->i_state & flags) != flags) {
1059                 const int was_dirty = inode->i_state & I_DIRTY;
1060
1061                 inode->i_state |= flags;
1062
1063                 /*
1064                  * If the inode is being synced, just update its dirty state.
1065                  * The unlocker will place the inode on the appropriate
1066                  * superblock list, based upon its state.
1067                  */
1068                 if (inode->i_state & I_SYNC)
1069                         goto out_unlock_inode;
1070
1071                 /*
1072                  * Only add valid (hashed) inodes to the superblock's
1073                  * dirty list.  Add blockdev inodes as well.
1074                  */
1075                 if (!S_ISBLK(inode->i_mode)) {
1076                         if (inode_unhashed(inode))
1077                                 goto out_unlock_inode;
1078                 }
1079                 if (inode->i_state & I_FREEING)
1080                         goto out_unlock_inode;
1081
1082                 /*
1083                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1084                  * reposition it (that would break b_dirty time-ordering).
1085                  */
1086                 if (!was_dirty) {
1087                         bool wakeup_bdi = false;
1088                         bdi = inode_to_bdi(inode);
1089
1090                         if (bdi_cap_writeback_dirty(bdi)) {
1091                                 WARN(!test_bit(BDI_registered, &bdi->state),
1092                                      "bdi-%s not registered\n", bdi->name);
1093
1094                                 /*
1095                                  * If this is the first dirty inode for this
1096                                  * bdi, we have to wake-up the corresponding
1097                                  * bdi thread to make sure background
1098                                  * write-back happens later.
1099                                  */
1100                                 if (!wb_has_dirty_io(&bdi->wb))
1101                                         wakeup_bdi = true;
1102                         }
1103
1104                         spin_unlock(&inode->i_lock);
1105                         spin_lock(&inode_wb_list_lock);
1106                         inode->dirtied_when = jiffies;
1107                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1108                         spin_unlock(&inode_wb_list_lock);
1109
1110                         if (wakeup_bdi)
1111                                 bdi_wakeup_thread_delayed(bdi);
1112                         return;
1113                 }
1114         }
1115 out_unlock_inode:
1116         spin_unlock(&inode->i_lock);
1117
1118 }
1119 EXPORT_SYMBOL(__mark_inode_dirty);
1120
1121 /*
1122  * Write out a superblock's list of dirty inodes.  A wait will be performed
1123  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1124  *
1125  * If older_than_this is non-NULL, then only write out inodes which
1126  * had their first dirtying at a time earlier than *older_than_this.
1127  *
1128  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1129  * This function assumes that the blockdev superblock's inodes are backed by
1130  * a variety of queues, so all inodes are searched.  For other superblocks,
1131  * assume that all inodes are backed by the same queue.
1132  *
1133  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1134  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1135  * on the writer throttling path, and we get decent balancing between many
1136  * throttled threads: we don't want them all piling up on inode_sync_wait.
1137  */
1138 static void wait_sb_inodes(struct super_block *sb)
1139 {
1140         struct inode *inode, *old_inode = NULL;
1141
1142         /*
1143          * We need to be protected against the filesystem going from
1144          * r/o to r/w or vice versa.
1145          */
1146         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1147
1148         spin_lock(&inode_sb_list_lock);
1149
1150         /*
1151          * Data integrity sync. Must wait for all pages under writeback,
1152          * because there may have been pages dirtied before our sync
1153          * call, but which had writeout started before we write it out.
1154          * In which case, the inode may not be on the dirty list, but
1155          * we still have to wait for that writeout.
1156          */
1157         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1158                 struct address_space *mapping = inode->i_mapping;
1159
1160                 spin_lock(&inode->i_lock);
1161                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1162                     (mapping->nrpages == 0)) {
1163                         spin_unlock(&inode->i_lock);
1164                         continue;
1165                 }
1166                 __iget(inode);
1167                 spin_unlock(&inode->i_lock);
1168                 spin_unlock(&inode_sb_list_lock);
1169
1170                 /*
1171                  * We hold a reference to 'inode' so it couldn't have been
1172                  * removed from s_inodes list while we dropped the
1173                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1174                  * be holding the last reference and we cannot iput it under
1175                  * inode_sb_list_lock. So we keep the reference and iput it
1176                  * later.
1177                  */
1178                 iput(old_inode);
1179                 old_inode = inode;
1180
1181                 filemap_fdatawait(mapping);
1182
1183                 cond_resched();
1184
1185                 spin_lock(&inode_sb_list_lock);
1186         }
1187         spin_unlock(&inode_sb_list_lock);
1188         iput(old_inode);
1189 }
1190
1191 /**
1192  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1193  * @sb: the superblock
1194  * @nr: the number of pages to write
1195  *
1196  * Start writeback on some inodes on this super_block. No guarantees are made
1197  * on how many (if any) will be written, and this function does not wait
1198  * for IO completion of submitted IO.
1199  */
1200 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1201 {
1202         DECLARE_COMPLETION_ONSTACK(done);
1203         struct wb_writeback_work work = {
1204                 .sb                     = sb,
1205                 .sync_mode              = WB_SYNC_NONE,
1206                 .tagged_writepages      = 1,
1207                 .done                   = &done,
1208                 .nr_pages               = nr,
1209         };
1210
1211         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1212         bdi_queue_work(sb->s_bdi, &work);
1213         wait_for_completion(&done);
1214 }
1215 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1216
1217 /**
1218  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1219  * @sb: the superblock
1220  *
1221  * Start writeback on some inodes on this super_block. No guarantees are made
1222  * on how many (if any) will be written, and this function does not wait
1223  * for IO completion of submitted IO.
1224  */
1225 void writeback_inodes_sb(struct super_block *sb)
1226 {
1227         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1228 }
1229 EXPORT_SYMBOL(writeback_inodes_sb);
1230
1231 /**
1232  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1233  * @sb: the superblock
1234  *
1235  * Invoke writeback_inodes_sb if no writeback is currently underway.
1236  * Returns 1 if writeback was started, 0 if not.
1237  */
1238 int writeback_inodes_sb_if_idle(struct super_block *sb)
1239 {
1240         if (!writeback_in_progress(sb->s_bdi)) {
1241                 down_read(&sb->s_umount);
1242                 writeback_inodes_sb(sb);
1243                 up_read(&sb->s_umount);
1244                 return 1;
1245         } else
1246                 return 0;
1247 }
1248 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1249
1250 /**
1251  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1252  * @sb: the superblock
1253  * @nr: the number of pages to write
1254  *
1255  * Invoke writeback_inodes_sb if no writeback is currently underway.
1256  * Returns 1 if writeback was started, 0 if not.
1257  */
1258 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1259                                    unsigned long nr)
1260 {
1261         if (!writeback_in_progress(sb->s_bdi)) {
1262                 down_read(&sb->s_umount);
1263                 writeback_inodes_sb_nr(sb, nr);
1264                 up_read(&sb->s_umount);
1265                 return 1;
1266         } else
1267                 return 0;
1268 }
1269 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1270
1271 /**
1272  * sync_inodes_sb       -       sync sb inode pages
1273  * @sb: the superblock
1274  *
1275  * This function writes and waits on any dirty inode belonging to this
1276  * super_block.
1277  */
1278 void sync_inodes_sb(struct super_block *sb)
1279 {
1280         DECLARE_COMPLETION_ONSTACK(done);
1281         struct wb_writeback_work work = {
1282                 .sb             = sb,
1283                 .sync_mode      = WB_SYNC_ALL,
1284                 .nr_pages       = LONG_MAX,
1285                 .range_cyclic   = 0,
1286                 .done           = &done,
1287         };
1288
1289         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1290
1291         bdi_queue_work(sb->s_bdi, &work);
1292         wait_for_completion(&done);
1293
1294         wait_sb_inodes(sb);
1295 }
1296 EXPORT_SYMBOL(sync_inodes_sb);
1297
1298 /**
1299  * write_inode_now      -       write an inode to disk
1300  * @inode: inode to write to disk
1301  * @sync: whether the write should be synchronous or not
1302  *
1303  * This function commits an inode to disk immediately if it is dirty. This is
1304  * primarily needed by knfsd.
1305  *
1306  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1307  */
1308 int write_inode_now(struct inode *inode, int sync)
1309 {
1310         int ret;
1311         struct writeback_control wbc = {
1312                 .nr_to_write = LONG_MAX,
1313                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1314                 .range_start = 0,
1315                 .range_end = LLONG_MAX,
1316         };
1317
1318         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1319                 wbc.nr_to_write = 0;
1320
1321         might_sleep();
1322         spin_lock(&inode_wb_list_lock);
1323         spin_lock(&inode->i_lock);
1324         ret = writeback_single_inode(inode, &wbc);
1325         spin_unlock(&inode->i_lock);
1326         spin_unlock(&inode_wb_list_lock);
1327         if (sync)
1328                 inode_sync_wait(inode);
1329         return ret;
1330 }
1331 EXPORT_SYMBOL(write_inode_now);
1332
1333 /**
1334  * sync_inode - write an inode and its pages to disk.
1335  * @inode: the inode to sync
1336  * @wbc: controls the writeback mode
1337  *
1338  * sync_inode() will write an inode and its pages to disk.  It will also
1339  * correctly update the inode on its superblock's dirty inode lists and will
1340  * update inode->i_state.
1341  *
1342  * The caller must have a ref on the inode.
1343  */
1344 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1345 {
1346         int ret;
1347
1348         spin_lock(&inode_wb_list_lock);
1349         spin_lock(&inode->i_lock);
1350         ret = writeback_single_inode(inode, wbc);
1351         spin_unlock(&inode->i_lock);
1352         spin_unlock(&inode_wb_list_lock);
1353         return ret;
1354 }
1355 EXPORT_SYMBOL(sync_inode);
1356
1357 /**
1358  * sync_inode_metadata - write an inode to disk
1359  * @inode: the inode to sync
1360  * @wait: wait for I/O to complete.
1361  *
1362  * Write an inode to disk and adjust its dirty state after completion.
1363  *
1364  * Note: only writes the actual inode, no associated data or other metadata.
1365  */
1366 int sync_inode_metadata(struct inode *inode, int wait)
1367 {
1368         struct writeback_control wbc = {
1369                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1370                 .nr_to_write = 0, /* metadata-only */
1371         };
1372
1373         return sync_inode(inode, &wbc);
1374 }
1375 EXPORT_SYMBOL(sync_inode_metadata);