[ALSA] Changed Jaroslav Kysela's e-mail from perex@suse.cz to perex@perex.cz
[linux-flexiantxendom0-3.2.10.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20
21 #include <sound/driver.h>
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30
31 #include <sound/core.h>
32 #include <sound/control.h>
33 #include <sound/info.h>
34 #include <sound/tlv.h>
35 #include <sound/ymfpci.h>
36 #include <sound/asoundef.h>
37 #include <sound/mpu401.h>
38
39 #include <asm/io.h>
40 #include <asm/byteorder.h>
41
42 /*
43  *  common I/O routines
44  */
45
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50         return readb(chip->reg_area_virt + offset);
51 }
52
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55         writeb(val, chip->reg_area_virt + offset);
56 }
57
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60         return readw(chip->reg_area_virt + offset);
61 }
62
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65         writew(val, chip->reg_area_virt + offset);
66 }
67
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70         return readl(chip->reg_area_virt + offset);
71 }
72
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75         writel(val, chip->reg_area_virt + offset);
76 }
77
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80         unsigned long end_time;
81         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82         
83         end_time = jiffies + msecs_to_jiffies(750);
84         do {
85                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86                         return 0;
87                 schedule_timeout_uninterruptible(1);
88         } while (time_before(jiffies, end_time));
89         snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
90         return -EBUSY;
91 }
92
93 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
94 {
95         struct snd_ymfpci *chip = ac97->private_data;
96         u32 cmd;
97         
98         snd_ymfpci_codec_ready(chip, 0);
99         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
100         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
101 }
102
103 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
104 {
105         struct snd_ymfpci *chip = ac97->private_data;
106
107         if (snd_ymfpci_codec_ready(chip, 0))
108                 return ~0;
109         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
110         if (snd_ymfpci_codec_ready(chip, 0))
111                 return ~0;
112         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
113                 int i;
114                 for (i = 0; i < 600; i++)
115                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
116         }
117         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
118 }
119
120 /*
121  *  Misc routines
122  */
123
124 static u32 snd_ymfpci_calc_delta(u32 rate)
125 {
126         switch (rate) {
127         case 8000:      return 0x02aaab00;
128         case 11025:     return 0x03accd00;
129         case 16000:     return 0x05555500;
130         case 22050:     return 0x07599a00;
131         case 32000:     return 0x0aaaab00;
132         case 44100:     return 0x0eb33300;
133         default:        return ((rate << 16) / 375) << 5;
134         }
135 }
136
137 static u32 def_rate[8] = {
138         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
139 };
140
141 static u32 snd_ymfpci_calc_lpfK(u32 rate)
142 {
143         u32 i;
144         static u32 val[8] = {
145                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
146                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
147         };
148         
149         if (rate == 44100)
150                 return 0x40000000;      /* FIXME: What's the right value? */
151         for (i = 0; i < 8; i++)
152                 if (rate <= def_rate[i])
153                         return val[i];
154         return val[0];
155 }
156
157 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
158 {
159         u32 i;
160         static u32 val[8] = {
161                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
162                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
163         };
164         
165         if (rate == 44100)
166                 return 0x370A0000;
167         for (i = 0; i < 8; i++)
168                 if (rate <= def_rate[i])
169                         return val[i];
170         return val[0];
171 }
172
173 /*
174  *  Hardware start management
175  */
176
177 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
178 {
179         unsigned long flags;
180
181         spin_lock_irqsave(&chip->reg_lock, flags);
182         if (chip->start_count++ > 0)
183                 goto __end;
184         snd_ymfpci_writel(chip, YDSXGR_MODE,
185                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
186         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
187       __end:
188         spin_unlock_irqrestore(&chip->reg_lock, flags);
189 }
190
191 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
192 {
193         unsigned long flags;
194         long timeout = 1000;
195
196         spin_lock_irqsave(&chip->reg_lock, flags);
197         if (--chip->start_count > 0)
198                 goto __end;
199         snd_ymfpci_writel(chip, YDSXGR_MODE,
200                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
201         while (timeout-- > 0) {
202                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
203                         break;
204         }
205         if (atomic_read(&chip->interrupt_sleep_count)) {
206                 atomic_set(&chip->interrupt_sleep_count, 0);
207                 wake_up(&chip->interrupt_sleep);
208         }
209       __end:
210         spin_unlock_irqrestore(&chip->reg_lock, flags);
211 }
212
213 /*
214  *  Playback voice management
215  */
216
217 static int voice_alloc(struct snd_ymfpci *chip,
218                        enum snd_ymfpci_voice_type type, int pair,
219                        struct snd_ymfpci_voice **rvoice)
220 {
221         struct snd_ymfpci_voice *voice, *voice2;
222         int idx;
223         
224         *rvoice = NULL;
225         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
226                 voice = &chip->voices[idx];
227                 voice2 = pair ? &chip->voices[idx+1] : NULL;
228                 if (voice->use || (voice2 && voice2->use))
229                         continue;
230                 voice->use = 1;
231                 if (voice2)
232                         voice2->use = 1;
233                 switch (type) {
234                 case YMFPCI_PCM:
235                         voice->pcm = 1;
236                         if (voice2)
237                                 voice2->pcm = 1;
238                         break;
239                 case YMFPCI_SYNTH:
240                         voice->synth = 1;
241                         break;
242                 case YMFPCI_MIDI:
243                         voice->midi = 1;
244                         break;
245                 }
246                 snd_ymfpci_hw_start(chip);
247                 if (voice2)
248                         snd_ymfpci_hw_start(chip);
249                 *rvoice = voice;
250                 return 0;
251         }
252         return -ENOMEM;
253 }
254
255 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
256                                   enum snd_ymfpci_voice_type type, int pair,
257                                   struct snd_ymfpci_voice **rvoice)
258 {
259         unsigned long flags;
260         int result;
261         
262         snd_assert(rvoice != NULL, return -EINVAL);
263         snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
264         
265         spin_lock_irqsave(&chip->voice_lock, flags);
266         for (;;) {
267                 result = voice_alloc(chip, type, pair, rvoice);
268                 if (result == 0 || type != YMFPCI_PCM)
269                         break;
270                 /* TODO: synth/midi voice deallocation */
271                 break;
272         }
273         spin_unlock_irqrestore(&chip->voice_lock, flags);       
274         return result;          
275 }
276
277 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
278 {
279         unsigned long flags;
280         
281         snd_assert(pvoice != NULL, return -EINVAL);
282         snd_ymfpci_hw_stop(chip);
283         spin_lock_irqsave(&chip->voice_lock, flags);
284         if (pvoice->number == chip->src441_used) {
285                 chip->src441_used = -1;
286                 pvoice->ypcm->use_441_slot = 0;
287         }
288         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
289         pvoice->ypcm = NULL;
290         pvoice->interrupt = NULL;
291         spin_unlock_irqrestore(&chip->voice_lock, flags);
292         return 0;
293 }
294
295 /*
296  *  PCM part
297  */
298
299 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
300 {
301         struct snd_ymfpci_pcm *ypcm;
302         u32 pos, delta;
303         
304         if ((ypcm = voice->ypcm) == NULL)
305                 return;
306         if (ypcm->substream == NULL)
307                 return;
308         spin_lock(&chip->reg_lock);
309         if (ypcm->running) {
310                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
311                 if (pos < ypcm->last_pos)
312                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
313                 else
314                         delta = pos - ypcm->last_pos;
315                 ypcm->period_pos += delta;
316                 ypcm->last_pos = pos;
317                 if (ypcm->period_pos >= ypcm->period_size) {
318                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
319                         ypcm->period_pos %= ypcm->period_size;
320                         spin_unlock(&chip->reg_lock);
321                         snd_pcm_period_elapsed(ypcm->substream);
322                         spin_lock(&chip->reg_lock);
323                 }
324
325                 if (unlikely(ypcm->update_pcm_vol)) {
326                         unsigned int subs = ypcm->substream->number;
327                         unsigned int next_bank = 1 - chip->active_bank;
328                         struct snd_ymfpci_playback_bank *bank;
329                         u32 volume;
330                         
331                         bank = &voice->bank[next_bank];
332                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
333                         bank->left_gain_end = volume;
334                         if (ypcm->output_rear)
335                                 bank->eff2_gain_end = volume;
336                         if (ypcm->voices[1])
337                                 bank = &ypcm->voices[1]->bank[next_bank];
338                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
339                         bank->right_gain_end = volume;
340                         if (ypcm->output_rear)
341                                 bank->eff3_gain_end = volume;
342                         ypcm->update_pcm_vol--;
343                 }
344         }
345         spin_unlock(&chip->reg_lock);
346 }
347
348 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
349 {
350         struct snd_pcm_runtime *runtime = substream->runtime;
351         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
352         struct snd_ymfpci *chip = ypcm->chip;
353         u32 pos, delta;
354         
355         spin_lock(&chip->reg_lock);
356         if (ypcm->running) {
357                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
358                 if (pos < ypcm->last_pos)
359                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
360                 else
361                         delta = pos - ypcm->last_pos;
362                 ypcm->period_pos += delta;
363                 ypcm->last_pos = pos;
364                 if (ypcm->period_pos >= ypcm->period_size) {
365                         ypcm->period_pos %= ypcm->period_size;
366                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
367                         spin_unlock(&chip->reg_lock);
368                         snd_pcm_period_elapsed(substream);
369                         spin_lock(&chip->reg_lock);
370                 }
371         }
372         spin_unlock(&chip->reg_lock);
373 }
374
375 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
376                                        int cmd)
377 {
378         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
379         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
380         struct snd_kcontrol *kctl = NULL;
381         int result = 0;
382
383         spin_lock(&chip->reg_lock);
384         if (ypcm->voices[0] == NULL) {
385                 result = -EINVAL;
386                 goto __unlock;
387         }
388         switch (cmd) {
389         case SNDRV_PCM_TRIGGER_START:
390         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
391         case SNDRV_PCM_TRIGGER_RESUME:
392                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
393                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
394                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
395                 ypcm->running = 1;
396                 break;
397         case SNDRV_PCM_TRIGGER_STOP:
398                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
399                         kctl = chip->pcm_mixer[substream->number].ctl;
400                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
401                 }
402                 /* fall through */
403         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
404         case SNDRV_PCM_TRIGGER_SUSPEND:
405                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
406                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
407                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
408                 ypcm->running = 0;
409                 break;
410         default:
411                 result = -EINVAL;
412                 break;
413         }
414       __unlock:
415         spin_unlock(&chip->reg_lock);
416         if (kctl)
417                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
418         return result;
419 }
420 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
421                                       int cmd)
422 {
423         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
424         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
425         int result = 0;
426         u32 tmp;
427
428         spin_lock(&chip->reg_lock);
429         switch (cmd) {
430         case SNDRV_PCM_TRIGGER_START:
431         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
432         case SNDRV_PCM_TRIGGER_RESUME:
433                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
434                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
435                 ypcm->running = 1;
436                 break;
437         case SNDRV_PCM_TRIGGER_STOP:
438         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
439         case SNDRV_PCM_TRIGGER_SUSPEND:
440                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
441                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
442                 ypcm->running = 0;
443                 break;
444         default:
445                 result = -EINVAL;
446                 break;
447         }
448         spin_unlock(&chip->reg_lock);
449         return result;
450 }
451
452 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
453 {
454         int err;
455
456         if (ypcm->voices[1] != NULL && voices < 2) {
457                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
458                 ypcm->voices[1] = NULL;
459         }
460         if (voices == 1 && ypcm->voices[0] != NULL)
461                 return 0;               /* already allocated */
462         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
463                 return 0;               /* already allocated */
464         if (voices > 1) {
465                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
466                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
467                         ypcm->voices[0] = NULL;
468                 }               
469         }
470         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
471         if (err < 0)
472                 return err;
473         ypcm->voices[0]->ypcm = ypcm;
474         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
475         if (voices > 1) {
476                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
477                 ypcm->voices[1]->ypcm = ypcm;
478         }
479         return 0;
480 }
481
482 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
483                                       struct snd_pcm_runtime *runtime,
484                                       int has_pcm_volume)
485 {
486         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
487         u32 format;
488         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
489         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
490         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
491         struct snd_ymfpci_playback_bank *bank;
492         unsigned int nbank;
493         u32 vol_left, vol_right;
494         u8 use_left, use_right;
495         unsigned long flags;
496
497         snd_assert(voice != NULL, return);
498         if (runtime->channels == 1) {
499                 use_left = 1;
500                 use_right = 1;
501         } else {
502                 use_left = (voiceidx & 1) == 0;
503                 use_right = !use_left;
504         }
505         if (has_pcm_volume) {
506                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
507                                        [ypcm->substream->number].left << 15);
508                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
509                                         [ypcm->substream->number].right << 15);
510         } else {
511                 vol_left = cpu_to_le32(0x40000000);
512                 vol_right = cpu_to_le32(0x40000000);
513         }
514         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
515         format = runtime->channels == 2 ? 0x00010000 : 0;
516         if (snd_pcm_format_width(runtime->format) == 8)
517                 format |= 0x80000000;
518         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
519                  runtime->rate == 44100 && runtime->channels == 2 &&
520                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
521                                    ypcm->chip->src441_used == voice->number)) {
522                 ypcm->chip->src441_used = voice->number;
523                 ypcm->use_441_slot = 1;
524                 format |= 0x10000000;
525         }
526         if (ypcm->chip->src441_used == voice->number &&
527             (format & 0x10000000) == 0) {
528                 ypcm->chip->src441_used = -1;
529                 ypcm->use_441_slot = 0;
530         }
531         if (runtime->channels == 2 && (voiceidx & 1) != 0)
532                 format |= 1;
533         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
534         for (nbank = 0; nbank < 2; nbank++) {
535                 bank = &voice->bank[nbank];
536                 memset(bank, 0, sizeof(*bank));
537                 bank->format = cpu_to_le32(format);
538                 bank->base = cpu_to_le32(runtime->dma_addr);
539                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
540                 bank->lpfQ = cpu_to_le32(lpfQ);
541                 bank->delta =
542                 bank->delta_end = cpu_to_le32(delta);
543                 bank->lpfK =
544                 bank->lpfK_end = cpu_to_le32(lpfK);
545                 bank->eg_gain =
546                 bank->eg_gain_end = cpu_to_le32(0x40000000);
547
548                 if (ypcm->output_front) {
549                         if (use_left) {
550                                 bank->left_gain =
551                                 bank->left_gain_end = vol_left;
552                         }
553                         if (use_right) {
554                                 bank->right_gain =
555                                 bank->right_gain_end = vol_right;
556                         }
557                 }
558                 if (ypcm->output_rear) {
559                         if (!ypcm->swap_rear) {
560                                 if (use_left) {
561                                         bank->eff2_gain =
562                                         bank->eff2_gain_end = vol_left;
563                                 }
564                                 if (use_right) {
565                                         bank->eff3_gain =
566                                         bank->eff3_gain_end = vol_right;
567                                 }
568                         } else {
569                                 /* The SPDIF out channels seem to be swapped, so we have
570                                  * to swap them here, too.  The rear analog out channels
571                                  * will be wrong, but otherwise AC3 would not work.
572                                  */
573                                 if (use_left) {
574                                         bank->eff3_gain =
575                                         bank->eff3_gain_end = vol_left;
576                                 }
577                                 if (use_right) {
578                                         bank->eff2_gain =
579                                         bank->eff2_gain_end = vol_right;
580                                 }
581                         }
582                 }
583         }
584 }
585
586 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
587 {
588         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
589                                 4096, &chip->ac3_tmp_base) < 0)
590                 return -ENOMEM;
591
592         chip->bank_effect[3][0]->base =
593         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
594         chip->bank_effect[3][0]->loop_end =
595         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
596         chip->bank_effect[4][0]->base =
597         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
598         chip->bank_effect[4][0]->loop_end =
599         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
600
601         spin_lock_irq(&chip->reg_lock);
602         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
603                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
604         spin_unlock_irq(&chip->reg_lock);
605         return 0;
606 }
607
608 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
609 {
610         spin_lock_irq(&chip->reg_lock);
611         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
612                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
613         spin_unlock_irq(&chip->reg_lock);
614         // snd_ymfpci_irq_wait(chip);
615         if (chip->ac3_tmp_base.area) {
616                 snd_dma_free_pages(&chip->ac3_tmp_base);
617                 chip->ac3_tmp_base.area = NULL;
618         }
619         return 0;
620 }
621
622 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
623                                          struct snd_pcm_hw_params *hw_params)
624 {
625         struct snd_pcm_runtime *runtime = substream->runtime;
626         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
627         int err;
628
629         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
630                 return err;
631         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
632                 return err;
633         return 0;
634 }
635
636 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
637 {
638         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
639         struct snd_pcm_runtime *runtime = substream->runtime;
640         struct snd_ymfpci_pcm *ypcm;
641         
642         if (runtime->private_data == NULL)
643                 return 0;
644         ypcm = runtime->private_data;
645
646         /* wait, until the PCI operations are not finished */
647         snd_ymfpci_irq_wait(chip);
648         snd_pcm_lib_free_pages(substream);
649         if (ypcm->voices[1]) {
650                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
651                 ypcm->voices[1] = NULL;
652         }
653         if (ypcm->voices[0]) {
654                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
655                 ypcm->voices[0] = NULL;
656         }
657         return 0;
658 }
659
660 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
661 {
662         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
663         struct snd_pcm_runtime *runtime = substream->runtime;
664         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
665         struct snd_kcontrol *kctl;
666         unsigned int nvoice;
667
668         ypcm->period_size = runtime->period_size;
669         ypcm->buffer_size = runtime->buffer_size;
670         ypcm->period_pos = 0;
671         ypcm->last_pos = 0;
672         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
673                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
674                                           substream->pcm == chip->pcm);
675
676         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
677                 kctl = chip->pcm_mixer[substream->number].ctl;
678                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
679                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
680         }
681         return 0;
682 }
683
684 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
685                                         struct snd_pcm_hw_params *hw_params)
686 {
687         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
688 }
689
690 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
691 {
692         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
693
694         /* wait, until the PCI operations are not finished */
695         snd_ymfpci_irq_wait(chip);
696         return snd_pcm_lib_free_pages(substream);
697 }
698
699 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
700 {
701         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
702         struct snd_pcm_runtime *runtime = substream->runtime;
703         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
704         struct snd_ymfpci_capture_bank * bank;
705         int nbank;
706         u32 rate, format;
707
708         ypcm->period_size = runtime->period_size;
709         ypcm->buffer_size = runtime->buffer_size;
710         ypcm->period_pos = 0;
711         ypcm->last_pos = 0;
712         ypcm->shift = 0;
713         rate = ((48000 * 4096) / runtime->rate) - 1;
714         format = 0;
715         if (runtime->channels == 2) {
716                 format |= 2;
717                 ypcm->shift++;
718         }
719         if (snd_pcm_format_width(runtime->format) == 8)
720                 format |= 1;
721         else
722                 ypcm->shift++;
723         switch (ypcm->capture_bank_number) {
724         case 0:
725                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
726                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
727                 break;
728         case 1:
729                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
730                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
731                 break;
732         }
733         for (nbank = 0; nbank < 2; nbank++) {
734                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
735                 bank->base = cpu_to_le32(runtime->dma_addr);
736                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
737                 bank->start = 0;
738                 bank->num_of_loops = 0;
739         }
740         return 0;
741 }
742
743 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
744 {
745         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
746         struct snd_pcm_runtime *runtime = substream->runtime;
747         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
748         struct snd_ymfpci_voice *voice = ypcm->voices[0];
749
750         if (!(ypcm->running && voice))
751                 return 0;
752         return le32_to_cpu(voice->bank[chip->active_bank].start);
753 }
754
755 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
756 {
757         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
758         struct snd_pcm_runtime *runtime = substream->runtime;
759         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
760
761         if (!ypcm->running)
762                 return 0;
763         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
764 }
765
766 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
767 {
768         wait_queue_t wait;
769         int loops = 4;
770
771         while (loops-- > 0) {
772                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
773                         continue;
774                 init_waitqueue_entry(&wait, current);
775                 add_wait_queue(&chip->interrupt_sleep, &wait);
776                 atomic_inc(&chip->interrupt_sleep_count);
777                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
778                 remove_wait_queue(&chip->interrupt_sleep, &wait);
779         }
780 }
781
782 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
783 {
784         struct snd_ymfpci *chip = dev_id;
785         u32 status, nvoice, mode;
786         struct snd_ymfpci_voice *voice;
787
788         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
789         if (status & 0x80000000) {
790                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
791                 spin_lock(&chip->voice_lock);
792                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
793                         voice = &chip->voices[nvoice];
794                         if (voice->interrupt)
795                                 voice->interrupt(chip, voice);
796                 }
797                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
798                         if (chip->capture_substream[nvoice])
799                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
800                 }
801 #if 0
802                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
803                         if (chip->effect_substream[nvoice])
804                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
805                 }
806 #endif
807                 spin_unlock(&chip->voice_lock);
808                 spin_lock(&chip->reg_lock);
809                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
810                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
811                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
812                 spin_unlock(&chip->reg_lock);
813
814                 if (atomic_read(&chip->interrupt_sleep_count)) {
815                         atomic_set(&chip->interrupt_sleep_count, 0);
816                         wake_up(&chip->interrupt_sleep);
817                 }
818         }
819
820         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
821         if (status & 1) {
822                 if (chip->timer)
823                         snd_timer_interrupt(chip->timer, chip->timer->sticks);
824         }
825         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
826
827         if (chip->rawmidi)
828                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
829         return IRQ_HANDLED;
830 }
831
832 static struct snd_pcm_hardware snd_ymfpci_playback =
833 {
834         .info =                 (SNDRV_PCM_INFO_MMAP |
835                                  SNDRV_PCM_INFO_MMAP_VALID | 
836                                  SNDRV_PCM_INFO_INTERLEAVED |
837                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
838                                  SNDRV_PCM_INFO_PAUSE |
839                                  SNDRV_PCM_INFO_RESUME),
840         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
841         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
842         .rate_min =             8000,
843         .rate_max =             48000,
844         .channels_min =         1,
845         .channels_max =         2,
846         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
847         .period_bytes_min =     64,
848         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
849         .periods_min =          3,
850         .periods_max =          1024,
851         .fifo_size =            0,
852 };
853
854 static struct snd_pcm_hardware snd_ymfpci_capture =
855 {
856         .info =                 (SNDRV_PCM_INFO_MMAP |
857                                  SNDRV_PCM_INFO_MMAP_VALID |
858                                  SNDRV_PCM_INFO_INTERLEAVED |
859                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
860                                  SNDRV_PCM_INFO_PAUSE |
861                                  SNDRV_PCM_INFO_RESUME),
862         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
863         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
864         .rate_min =             8000,
865         .rate_max =             48000,
866         .channels_min =         1,
867         .channels_max =         2,
868         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
869         .period_bytes_min =     64,
870         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
871         .periods_min =          3,
872         .periods_max =          1024,
873         .fifo_size =            0,
874 };
875
876 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
877 {
878         kfree(runtime->private_data);
879 }
880
881 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
882 {
883         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
884         struct snd_pcm_runtime *runtime = substream->runtime;
885         struct snd_ymfpci_pcm *ypcm;
886
887         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
888         if (ypcm == NULL)
889                 return -ENOMEM;
890         ypcm->chip = chip;
891         ypcm->type = PLAYBACK_VOICE;
892         ypcm->substream = substream;
893         runtime->hw = snd_ymfpci_playback;
894         runtime->private_data = ypcm;
895         runtime->private_free = snd_ymfpci_pcm_free_substream;
896         /* FIXME? True value is 256/48 = 5.33333 ms */
897         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
898         return 0;
899 }
900
901 /* call with spinlock held */
902 static void ymfpci_open_extension(struct snd_ymfpci *chip)
903 {
904         if (! chip->rear_opened) {
905                 if (! chip->spdif_opened) /* set AC3 */
906                         snd_ymfpci_writel(chip, YDSXGR_MODE,
907                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
908                 /* enable second codec (4CHEN) */
909                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
910                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
911         }
912 }
913
914 /* call with spinlock held */
915 static void ymfpci_close_extension(struct snd_ymfpci *chip)
916 {
917         if (! chip->rear_opened) {
918                 if (! chip->spdif_opened)
919                         snd_ymfpci_writel(chip, YDSXGR_MODE,
920                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
921                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
922                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
923         }
924 }
925
926 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
927 {
928         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
929         struct snd_pcm_runtime *runtime = substream->runtime;
930         struct snd_ymfpci_pcm *ypcm;
931         int err;
932         
933         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
934                 return err;
935         ypcm = runtime->private_data;
936         ypcm->output_front = 1;
937         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
938         ypcm->swap_rear = 0;
939         spin_lock_irq(&chip->reg_lock);
940         if (ypcm->output_rear) {
941                 ymfpci_open_extension(chip);
942                 chip->rear_opened++;
943         }
944         spin_unlock_irq(&chip->reg_lock);
945         return 0;
946 }
947
948 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
949 {
950         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
951         struct snd_pcm_runtime *runtime = substream->runtime;
952         struct snd_ymfpci_pcm *ypcm;
953         int err;
954         
955         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
956                 return err;
957         ypcm = runtime->private_data;
958         ypcm->output_front = 0;
959         ypcm->output_rear = 1;
960         ypcm->swap_rear = 1;
961         spin_lock_irq(&chip->reg_lock);
962         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
963                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
964         ymfpci_open_extension(chip);
965         chip->spdif_pcm_bits = chip->spdif_bits;
966         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
967         chip->spdif_opened++;
968         spin_unlock_irq(&chip->reg_lock);
969
970         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
971         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
972                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
973         return 0;
974 }
975
976 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
977 {
978         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
979         struct snd_pcm_runtime *runtime = substream->runtime;
980         struct snd_ymfpci_pcm *ypcm;
981         int err;
982         
983         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
984                 return err;
985         ypcm = runtime->private_data;
986         ypcm->output_front = 0;
987         ypcm->output_rear = 1;
988         ypcm->swap_rear = 0;
989         spin_lock_irq(&chip->reg_lock);
990         ymfpci_open_extension(chip);
991         chip->rear_opened++;
992         spin_unlock_irq(&chip->reg_lock);
993         return 0;
994 }
995
996 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
997                                    u32 capture_bank_number)
998 {
999         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1000         struct snd_pcm_runtime *runtime = substream->runtime;
1001         struct snd_ymfpci_pcm *ypcm;
1002
1003         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1004         if (ypcm == NULL)
1005                 return -ENOMEM;
1006         ypcm->chip = chip;
1007         ypcm->type = capture_bank_number + CAPTURE_REC;
1008         ypcm->substream = substream;    
1009         ypcm->capture_bank_number = capture_bank_number;
1010         chip->capture_substream[capture_bank_number] = substream;
1011         runtime->hw = snd_ymfpci_capture;
1012         /* FIXME? True value is 256/48 = 5.33333 ms */
1013         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
1014         runtime->private_data = ypcm;
1015         runtime->private_free = snd_ymfpci_pcm_free_substream;
1016         snd_ymfpci_hw_start(chip);
1017         return 0;
1018 }
1019
1020 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1021 {
1022         return snd_ymfpci_capture_open(substream, 0);
1023 }
1024
1025 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1026 {
1027         return snd_ymfpci_capture_open(substream, 1);
1028 }
1029
1030 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1031 {
1032         return 0;
1033 }
1034
1035 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1036 {
1037         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1038         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1039
1040         spin_lock_irq(&chip->reg_lock);
1041         if (ypcm->output_rear && chip->rear_opened > 0) {
1042                 chip->rear_opened--;
1043                 ymfpci_close_extension(chip);
1044         }
1045         spin_unlock_irq(&chip->reg_lock);
1046         return snd_ymfpci_playback_close_1(substream);
1047 }
1048
1049 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1050 {
1051         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1052
1053         spin_lock_irq(&chip->reg_lock);
1054         chip->spdif_opened = 0;
1055         ymfpci_close_extension(chip);
1056         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1057                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1058         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1059         spin_unlock_irq(&chip->reg_lock);
1060         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1061         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1062                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1063         return snd_ymfpci_playback_close_1(substream);
1064 }
1065
1066 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1067 {
1068         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1069
1070         spin_lock_irq(&chip->reg_lock);
1071         if (chip->rear_opened > 0) {
1072                 chip->rear_opened--;
1073                 ymfpci_close_extension(chip);
1074         }
1075         spin_unlock_irq(&chip->reg_lock);
1076         return snd_ymfpci_playback_close_1(substream);
1077 }
1078
1079 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1080 {
1081         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1082         struct snd_pcm_runtime *runtime = substream->runtime;
1083         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1084
1085         if (ypcm != NULL) {
1086                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1087                 snd_ymfpci_hw_stop(chip);
1088         }
1089         return 0;
1090 }
1091
1092 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1093         .open =                 snd_ymfpci_playback_open,
1094         .close =                snd_ymfpci_playback_close,
1095         .ioctl =                snd_pcm_lib_ioctl,
1096         .hw_params =            snd_ymfpci_playback_hw_params,
1097         .hw_free =              snd_ymfpci_playback_hw_free,
1098         .prepare =              snd_ymfpci_playback_prepare,
1099         .trigger =              snd_ymfpci_playback_trigger,
1100         .pointer =              snd_ymfpci_playback_pointer,
1101 };
1102
1103 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1104         .open =                 snd_ymfpci_capture_rec_open,
1105         .close =                snd_ymfpci_capture_close,
1106         .ioctl =                snd_pcm_lib_ioctl,
1107         .hw_params =            snd_ymfpci_capture_hw_params,
1108         .hw_free =              snd_ymfpci_capture_hw_free,
1109         .prepare =              snd_ymfpci_capture_prepare,
1110         .trigger =              snd_ymfpci_capture_trigger,
1111         .pointer =              snd_ymfpci_capture_pointer,
1112 };
1113
1114 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1115 {
1116         struct snd_pcm *pcm;
1117         int err;
1118
1119         if (rpcm)
1120                 *rpcm = NULL;
1121         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1122                 return err;
1123         pcm->private_data = chip;
1124
1125         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1126         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1127
1128         /* global setup */
1129         pcm->info_flags = 0;
1130         strcpy(pcm->name, "YMFPCI");
1131         chip->pcm = pcm;
1132
1133         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1134                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1135
1136         if (rpcm)
1137                 *rpcm = pcm;
1138         return 0;
1139 }
1140
1141 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1142         .open =                 snd_ymfpci_capture_ac97_open,
1143         .close =                snd_ymfpci_capture_close,
1144         .ioctl =                snd_pcm_lib_ioctl,
1145         .hw_params =            snd_ymfpci_capture_hw_params,
1146         .hw_free =              snd_ymfpci_capture_hw_free,
1147         .prepare =              snd_ymfpci_capture_prepare,
1148         .trigger =              snd_ymfpci_capture_trigger,
1149         .pointer =              snd_ymfpci_capture_pointer,
1150 };
1151
1152 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1153 {
1154         struct snd_pcm *pcm;
1155         int err;
1156
1157         if (rpcm)
1158                 *rpcm = NULL;
1159         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1160                 return err;
1161         pcm->private_data = chip;
1162
1163         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1164
1165         /* global setup */
1166         pcm->info_flags = 0;
1167         sprintf(pcm->name, "YMFPCI - %s",
1168                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1169         chip->pcm2 = pcm;
1170
1171         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1172                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1173
1174         if (rpcm)
1175                 *rpcm = pcm;
1176         return 0;
1177 }
1178
1179 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1180         .open =                 snd_ymfpci_playback_spdif_open,
1181         .close =                snd_ymfpci_playback_spdif_close,
1182         .ioctl =                snd_pcm_lib_ioctl,
1183         .hw_params =            snd_ymfpci_playback_hw_params,
1184         .hw_free =              snd_ymfpci_playback_hw_free,
1185         .prepare =              snd_ymfpci_playback_prepare,
1186         .trigger =              snd_ymfpci_playback_trigger,
1187         .pointer =              snd_ymfpci_playback_pointer,
1188 };
1189
1190 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1191 {
1192         struct snd_pcm *pcm;
1193         int err;
1194
1195         if (rpcm)
1196                 *rpcm = NULL;
1197         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1198                 return err;
1199         pcm->private_data = chip;
1200
1201         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1202
1203         /* global setup */
1204         pcm->info_flags = 0;
1205         strcpy(pcm->name, "YMFPCI - IEC958");
1206         chip->pcm_spdif = pcm;
1207
1208         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1209                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1210
1211         if (rpcm)
1212                 *rpcm = pcm;
1213         return 0;
1214 }
1215
1216 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1217         .open =                 snd_ymfpci_playback_4ch_open,
1218         .close =                snd_ymfpci_playback_4ch_close,
1219         .ioctl =                snd_pcm_lib_ioctl,
1220         .hw_params =            snd_ymfpci_playback_hw_params,
1221         .hw_free =              snd_ymfpci_playback_hw_free,
1222         .prepare =              snd_ymfpci_playback_prepare,
1223         .trigger =              snd_ymfpci_playback_trigger,
1224         .pointer =              snd_ymfpci_playback_pointer,
1225 };
1226
1227 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1228 {
1229         struct snd_pcm *pcm;
1230         int err;
1231
1232         if (rpcm)
1233                 *rpcm = NULL;
1234         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1235                 return err;
1236         pcm->private_data = chip;
1237
1238         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1239
1240         /* global setup */
1241         pcm->info_flags = 0;
1242         strcpy(pcm->name, "YMFPCI - Rear PCM");
1243         chip->pcm_4ch = pcm;
1244
1245         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1246                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1247
1248         if (rpcm)
1249                 *rpcm = pcm;
1250         return 0;
1251 }
1252
1253 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1254 {
1255         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1256         uinfo->count = 1;
1257         return 0;
1258 }
1259
1260 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1261                                         struct snd_ctl_elem_value *ucontrol)
1262 {
1263         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1264
1265         spin_lock_irq(&chip->reg_lock);
1266         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1267         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1268         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1269         spin_unlock_irq(&chip->reg_lock);
1270         return 0;
1271 }
1272
1273 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1274                                          struct snd_ctl_elem_value *ucontrol)
1275 {
1276         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1277         unsigned int val;
1278         int change;
1279
1280         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1281               (ucontrol->value.iec958.status[1] << 8);
1282         spin_lock_irq(&chip->reg_lock);
1283         change = chip->spdif_bits != val;
1284         chip->spdif_bits = val;
1285         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1286                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1287         spin_unlock_irq(&chip->reg_lock);
1288         return change;
1289 }
1290
1291 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1292 {
1293         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1294         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1295         .info =         snd_ymfpci_spdif_default_info,
1296         .get =          snd_ymfpci_spdif_default_get,
1297         .put =          snd_ymfpci_spdif_default_put
1298 };
1299
1300 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1301 {
1302         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1303         uinfo->count = 1;
1304         return 0;
1305 }
1306
1307 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1308                                       struct snd_ctl_elem_value *ucontrol)
1309 {
1310         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1311
1312         spin_lock_irq(&chip->reg_lock);
1313         ucontrol->value.iec958.status[0] = 0x3e;
1314         ucontrol->value.iec958.status[1] = 0xff;
1315         spin_unlock_irq(&chip->reg_lock);
1316         return 0;
1317 }
1318
1319 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1320 {
1321         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1322         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1323         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1324         .info =         snd_ymfpci_spdif_mask_info,
1325         .get =          snd_ymfpci_spdif_mask_get,
1326 };
1327
1328 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1329 {
1330         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1331         uinfo->count = 1;
1332         return 0;
1333 }
1334
1335 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1336                                         struct snd_ctl_elem_value *ucontrol)
1337 {
1338         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1339
1340         spin_lock_irq(&chip->reg_lock);
1341         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1342         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1343         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1344         spin_unlock_irq(&chip->reg_lock);
1345         return 0;
1346 }
1347
1348 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1349                                         struct snd_ctl_elem_value *ucontrol)
1350 {
1351         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1352         unsigned int val;
1353         int change;
1354
1355         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1356               (ucontrol->value.iec958.status[1] << 8);
1357         spin_lock_irq(&chip->reg_lock);
1358         change = chip->spdif_pcm_bits != val;
1359         chip->spdif_pcm_bits = val;
1360         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1361                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1362         spin_unlock_irq(&chip->reg_lock);
1363         return change;
1364 }
1365
1366 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1367 {
1368         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1369         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1370         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1371         .info =         snd_ymfpci_spdif_stream_info,
1372         .get =          snd_ymfpci_spdif_stream_get,
1373         .put =          snd_ymfpci_spdif_stream_put
1374 };
1375
1376 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1377 {
1378         static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1379
1380         info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1381         info->count = 1;
1382         info->value.enumerated.items = 3;
1383         if (info->value.enumerated.item > 2)
1384                 info->value.enumerated.item = 2;
1385         strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1386         return 0;
1387 }
1388
1389 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1390 {
1391         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1392         u16 reg;
1393
1394         spin_lock_irq(&chip->reg_lock);
1395         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1396         spin_unlock_irq(&chip->reg_lock);
1397         if (!(reg & 0x100))
1398                 value->value.enumerated.item[0] = 0;
1399         else
1400                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1401         return 0;
1402 }
1403
1404 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1405 {
1406         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1407         u16 reg, old_reg;
1408
1409         spin_lock_irq(&chip->reg_lock);
1410         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1411         if (value->value.enumerated.item[0] == 0)
1412                 reg = old_reg & ~0x100;
1413         else
1414                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1415         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1416         spin_unlock_irq(&chip->reg_lock);
1417         return reg != old_reg;
1418 }
1419
1420 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1421         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1422         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1423         .name =         "Direct Recording Source",
1424         .info =         snd_ymfpci_drec_source_info,
1425         .get =          snd_ymfpci_drec_source_get,
1426         .put =          snd_ymfpci_drec_source_put
1427 };
1428
1429 /*
1430  *  Mixer controls
1431  */
1432
1433 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1434 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1435   .info = snd_ymfpci_info_single, \
1436   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1437   .private_value = ((reg) | ((shift) << 16)) }
1438
1439 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1440
1441 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1442                                  struct snd_ctl_elem_value *ucontrol)
1443 {
1444         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1445         int reg = kcontrol->private_value & 0xffff;
1446         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1447         unsigned int mask = 1;
1448         
1449         switch (reg) {
1450         case YDSXGR_SPDIFOUTCTRL: break;
1451         case YDSXGR_SPDIFINCTRL: break;
1452         default: return -EINVAL;
1453         }
1454         ucontrol->value.integer.value[0] =
1455                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1456         return 0;
1457 }
1458
1459 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1460                                  struct snd_ctl_elem_value *ucontrol)
1461 {
1462         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1463         int reg = kcontrol->private_value & 0xffff;
1464         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1465         unsigned int mask = 1;
1466         int change;
1467         unsigned int val, oval;
1468         
1469         switch (reg) {
1470         case YDSXGR_SPDIFOUTCTRL: break;
1471         case YDSXGR_SPDIFINCTRL: break;
1472         default: return -EINVAL;
1473         }
1474         val = (ucontrol->value.integer.value[0] & mask);
1475         val <<= shift;
1476         spin_lock_irq(&chip->reg_lock);
1477         oval = snd_ymfpci_readl(chip, reg);
1478         val = (oval & ~(mask << shift)) | val;
1479         change = val != oval;
1480         snd_ymfpci_writel(chip, reg, val);
1481         spin_unlock_irq(&chip->reg_lock);
1482         return change;
1483 }
1484
1485 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1486
1487 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1488 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1489   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1490   .info = snd_ymfpci_info_double, \
1491   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1492   .private_value = reg, \
1493   .tlv = { .p = db_scale_native } }
1494
1495 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1496 {
1497         unsigned int reg = kcontrol->private_value;
1498
1499         if (reg < 0x80 || reg >= 0xc0)
1500                 return -EINVAL;
1501         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1502         uinfo->count = 2;
1503         uinfo->value.integer.min = 0;
1504         uinfo->value.integer.max = 16383;
1505         return 0;
1506 }
1507
1508 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1509 {
1510         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1511         unsigned int reg = kcontrol->private_value;
1512         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1513         unsigned int val;
1514         
1515         if (reg < 0x80 || reg >= 0xc0)
1516                 return -EINVAL;
1517         spin_lock_irq(&chip->reg_lock);
1518         val = snd_ymfpci_readl(chip, reg);
1519         spin_unlock_irq(&chip->reg_lock);
1520         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1521         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1522         return 0;
1523 }
1524
1525 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1526 {
1527         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1528         unsigned int reg = kcontrol->private_value;
1529         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1530         int change;
1531         unsigned int val1, val2, oval;
1532         
1533         if (reg < 0x80 || reg >= 0xc0)
1534                 return -EINVAL;
1535         val1 = ucontrol->value.integer.value[0] & mask;
1536         val2 = ucontrol->value.integer.value[1] & mask;
1537         val1 <<= shift_left;
1538         val2 <<= shift_right;
1539         spin_lock_irq(&chip->reg_lock);
1540         oval = snd_ymfpci_readl(chip, reg);
1541         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1542         change = val1 != oval;
1543         snd_ymfpci_writel(chip, reg, val1);
1544         spin_unlock_irq(&chip->reg_lock);
1545         return change;
1546 }
1547
1548 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1549                                        struct snd_ctl_elem_value *ucontrol)
1550 {
1551         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1552         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1553         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1554         int change;
1555         unsigned int value, oval;
1556         
1557         value = ucontrol->value.integer.value[0] & 0x3fff;
1558         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1559         spin_lock_irq(&chip->reg_lock);
1560         oval = snd_ymfpci_readl(chip, reg);
1561         change = value != oval;
1562         snd_ymfpci_writel(chip, reg, value);
1563         snd_ymfpci_writel(chip, reg2, value);
1564         spin_unlock_irq(&chip->reg_lock);
1565         return change;
1566 }
1567
1568 /*
1569  * 4ch duplication
1570  */
1571 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1572
1573 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1574 {
1575         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1576         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1577         return 0;
1578 }
1579
1580 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1581 {
1582         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1583         int change;
1584         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1585         if (change)
1586                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1587         return change;
1588 }
1589
1590
1591 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1592 {
1593         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1594         .name = "Wave Playback Volume",
1595         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1596                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1597         .info = snd_ymfpci_info_double,
1598         .get = snd_ymfpci_get_double,
1599         .put = snd_ymfpci_put_nativedacvol,
1600         .private_value = YDSXGR_NATIVEDACOUTVOL,
1601         .tlv = { .p = db_scale_native },
1602 },
1603 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1604 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1605 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1606 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1607 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1608 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1609 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1610 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1614 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1617 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1618 {
1619         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1620         .name = "4ch Duplication",
1621         .info = snd_ymfpci_info_dup4ch,
1622         .get = snd_ymfpci_get_dup4ch,
1623         .put = snd_ymfpci_put_dup4ch,
1624 },
1625 };
1626
1627
1628 /*
1629  * GPIO
1630  */
1631
1632 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1633 {
1634         u16 reg, mode;
1635         unsigned long flags;
1636
1637         spin_lock_irqsave(&chip->reg_lock, flags);
1638         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1639         reg &= ~(1 << (pin + 8));
1640         reg |= (1 << pin);
1641         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1642         /* set the level mode for input line */
1643         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1644         mode &= ~(3 << (pin * 2));
1645         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1646         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1647         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1648         spin_unlock_irqrestore(&chip->reg_lock, flags);
1649         return (mode >> pin) & 1;
1650 }
1651
1652 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1653 {
1654         u16 reg;
1655         unsigned long flags;
1656
1657         spin_lock_irqsave(&chip->reg_lock, flags);
1658         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1659         reg &= ~(1 << pin);
1660         reg &= ~(1 << (pin + 8));
1661         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1662         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1663         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1664         spin_unlock_irqrestore(&chip->reg_lock, flags);
1665
1666         return 0;
1667 }
1668
1669 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1670
1671 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1672 {
1673         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1674         int pin = (int)kcontrol->private_value;
1675         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1676         return 0;
1677 }
1678
1679 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1680 {
1681         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1682         int pin = (int)kcontrol->private_value;
1683
1684         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1685                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1686                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1687                 return 1;
1688         }
1689         return 0;
1690 }
1691
1692 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1693         .name = "Shared Rear/Line-In Switch",
1694         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1695         .info = snd_ymfpci_gpio_sw_info,
1696         .get = snd_ymfpci_gpio_sw_get,
1697         .put = snd_ymfpci_gpio_sw_put,
1698         .private_value = 2,
1699 };
1700
1701 /*
1702  * PCM voice volume
1703  */
1704
1705 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1706                                    struct snd_ctl_elem_info *uinfo)
1707 {
1708         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1709         uinfo->count = 2;
1710         uinfo->value.integer.min = 0;
1711         uinfo->value.integer.max = 0x8000;
1712         return 0;
1713 }
1714
1715 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1716                                   struct snd_ctl_elem_value *ucontrol)
1717 {
1718         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1719         unsigned int subs = kcontrol->id.subdevice;
1720
1721         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1722         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1723         return 0;
1724 }
1725
1726 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1727                                   struct snd_ctl_elem_value *ucontrol)
1728 {
1729         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1730         unsigned int subs = kcontrol->id.subdevice;
1731         struct snd_pcm_substream *substream;
1732         unsigned long flags;
1733
1734         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1735             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1736                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1737                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1738
1739                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1740                 spin_lock_irqsave(&chip->voice_lock, flags);
1741                 if (substream->runtime && substream->runtime->private_data) {
1742                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1743                         if (!ypcm->use_441_slot)
1744                                 ypcm->update_pcm_vol = 2;
1745                 }
1746                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1747                 return 1;
1748         }
1749         return 0;
1750 }
1751
1752 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1753         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1754         .name = "PCM Playback Volume",
1755         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1756                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1757         .info = snd_ymfpci_pcm_vol_info,
1758         .get = snd_ymfpci_pcm_vol_get,
1759         .put = snd_ymfpci_pcm_vol_put,
1760 };
1761
1762
1763 /*
1764  *  Mixer routines
1765  */
1766
1767 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1768 {
1769         struct snd_ymfpci *chip = bus->private_data;
1770         chip->ac97_bus = NULL;
1771 }
1772
1773 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1774 {
1775         struct snd_ymfpci *chip = ac97->private_data;
1776         chip->ac97 = NULL;
1777 }
1778
1779 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1780 {
1781         struct snd_ac97_template ac97;
1782         struct snd_kcontrol *kctl;
1783         struct snd_pcm_substream *substream;
1784         unsigned int idx;
1785         int err;
1786         static struct snd_ac97_bus_ops ops = {
1787                 .write = snd_ymfpci_codec_write,
1788                 .read = snd_ymfpci_codec_read,
1789         };
1790
1791         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1792                 return err;
1793         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1794         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1795
1796         memset(&ac97, 0, sizeof(ac97));
1797         ac97.private_data = chip;
1798         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1799         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1800                 return err;
1801
1802         /* to be sure */
1803         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1804                              AC97_EA_VRA|AC97_EA_VRM, 0);
1805
1806         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1807                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1808                         return err;
1809         }
1810
1811         /* add S/PDIF control */
1812         snd_assert(chip->pcm_spdif != NULL, return -EIO);
1813         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1814                 return err;
1815         kctl->id.device = chip->pcm_spdif->device;
1816         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1817                 return err;
1818         kctl->id.device = chip->pcm_spdif->device;
1819         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1820                 return err;
1821         kctl->id.device = chip->pcm_spdif->device;
1822         chip->spdif_pcm_ctl = kctl;
1823
1824         /* direct recording source */
1825         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1826             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1827                 return err;
1828
1829         /*
1830          * shared rear/line-in
1831          */
1832         if (rear_switch) {
1833                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1834                         return err;
1835         }
1836
1837         /* per-voice volume */
1838         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1839         for (idx = 0; idx < 32; ++idx) {
1840                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1841                 if (!kctl)
1842                         return -ENOMEM;
1843                 kctl->id.device = chip->pcm->device;
1844                 kctl->id.subdevice = idx;
1845                 kctl->private_value = (unsigned long)substream;
1846                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1847                         return err;
1848                 chip->pcm_mixer[idx].left = 0x8000;
1849                 chip->pcm_mixer[idx].right = 0x8000;
1850                 chip->pcm_mixer[idx].ctl = kctl;
1851                 substream = substream->next;
1852         }
1853
1854         return 0;
1855 }
1856
1857
1858 /*
1859  * timer
1860  */
1861
1862 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1863 {
1864         struct snd_ymfpci *chip;
1865         unsigned long flags;
1866         unsigned int count;
1867
1868         chip = snd_timer_chip(timer);
1869         count = (timer->sticks << 1) - 1;
1870         spin_lock_irqsave(&chip->reg_lock, flags);
1871         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1872         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1873         spin_unlock_irqrestore(&chip->reg_lock, flags);
1874         return 0;
1875 }
1876
1877 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1878 {
1879         struct snd_ymfpci *chip;
1880         unsigned long flags;
1881
1882         chip = snd_timer_chip(timer);
1883         spin_lock_irqsave(&chip->reg_lock, flags);
1884         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1885         spin_unlock_irqrestore(&chip->reg_lock, flags);
1886         return 0;
1887 }
1888
1889 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1890                                                unsigned long *num, unsigned long *den)
1891 {
1892         *num = 1;
1893         *den = 48000;
1894         return 0;
1895 }
1896
1897 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1898         .flags = SNDRV_TIMER_HW_AUTO,
1899         .resolution = 20833, /* 1/fs = 20.8333...us */
1900         .ticks = 0x8000,
1901         .start = snd_ymfpci_timer_start,
1902         .stop = snd_ymfpci_timer_stop,
1903         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1904 };
1905
1906 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1907 {
1908         struct snd_timer *timer = NULL;
1909         struct snd_timer_id tid;
1910         int err;
1911
1912         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1913         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1914         tid.card = chip->card->number;
1915         tid.device = device;
1916         tid.subdevice = 0;
1917         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1918                 strcpy(timer->name, "YMFPCI timer");
1919                 timer->private_data = chip;
1920                 timer->hw = snd_ymfpci_timer_hw;
1921         }
1922         chip->timer = timer;
1923         return err;
1924 }
1925
1926
1927 /*
1928  *  proc interface
1929  */
1930
1931 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1932                                  struct snd_info_buffer *buffer)
1933 {
1934         struct snd_ymfpci *chip = entry->private_data;
1935         int i;
1936         
1937         snd_iprintf(buffer, "YMFPCI\n\n");
1938         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1939                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1940 }
1941
1942 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1943 {
1944         struct snd_info_entry *entry;
1945         
1946         if (! snd_card_proc_new(card, "ymfpci", &entry))
1947                 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1948         return 0;
1949 }
1950
1951 /*
1952  *  initialization routines
1953  */
1954
1955 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1956 {
1957         u8 cmd;
1958
1959         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1960 #if 0 // force to reset
1961         if (cmd & 0x03) {
1962 #endif
1963                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1964                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1965                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1966                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1967                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1968 #if 0
1969         }
1970 #endif
1971 }
1972
1973 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1974 {
1975         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1976 }
1977
1978 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1979 {
1980         u32 val;
1981         int timeout = 1000;
1982
1983         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1984         if (val)
1985                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1986         while (timeout-- > 0) {
1987                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1988                 if ((val & 0x00000002) == 0)
1989                         break;
1990         }
1991 }
1992
1993 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
1994
1995 #include "ymfpci_image.h"
1996
1997 static struct firmware snd_ymfpci_dsp_microcode = {
1998         .size = YDSXG_DSPLENGTH,
1999         .data = (u8 *)DspInst,
2000 };
2001 static struct firmware snd_ymfpci_controller_microcode = {
2002         .size = YDSXG_CTRLLENGTH,
2003         .data = (u8 *)CntrlInst,
2004 };
2005 static struct firmware snd_ymfpci_controller_1e_microcode = {
2006         .size = YDSXG_CTRLLENGTH,
2007         .data = (u8 *)CntrlInst1E,
2008 };
2009 #endif
2010
2011 #ifdef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
2012 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2013 {
2014         chip->dsp_microcode = &snd_ymfpci_dsp_microcode;
2015         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2016             chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2017             chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2018             chip->device_id == PCI_DEVICE_ID_YAMAHA_754)
2019                 chip->controller_microcode =
2020                         &snd_ymfpci_controller_1e_microcode;
2021         else
2022                 chip->controller_microcode =
2023                         &snd_ymfpci_controller_microcode;
2024         return 0;
2025 }
2026
2027 #else /* use fw_loader */
2028
2029 #ifdef __LITTLE_ENDIAN
2030 static inline void snd_ymfpci_convert_from_le(const struct firmware *fw) { }
2031 #else
2032 static void snd_ymfpci_convert_from_le(const struct firmware *fw)
2033 {
2034         int i;
2035         u32 *data = (u32 *)fw->data;
2036
2037         for (i = 0; i < fw->size / 4; ++i)
2038                 le32_to_cpus(&data[i]);
2039 }
2040 #endif
2041
2042 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2043 {
2044         int err, is_1e;
2045         const char *name;
2046
2047         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2048                                &chip->pci->dev);
2049         if (err >= 0) {
2050                 if (chip->dsp_microcode->size == YDSXG_DSPLENGTH)
2051                         snd_ymfpci_convert_from_le(chip->dsp_microcode);
2052                 else {
2053                         snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2054                         err = -EINVAL;
2055                 }
2056         }
2057         if (err < 0)
2058                 return err;
2059         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2060                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2061                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2062                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2063         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2064         err = request_firmware(&chip->controller_microcode, name,
2065                                &chip->pci->dev);
2066         if (err >= 0) {
2067                 if (chip->controller_microcode->size == YDSXG_CTRLLENGTH)
2068                         snd_ymfpci_convert_from_le(chip->controller_microcode);
2069                 else {
2070                         snd_printk(KERN_ERR "controller microcode"
2071                                    " has wrong size\n");
2072                         err = -EINVAL;
2073                 }
2074         }
2075         if (err < 0)
2076                 return err;
2077         return 0;
2078 }
2079
2080 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2081 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2082 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2083
2084 #endif
2085
2086 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2087 {
2088         int i;
2089         u16 ctrl;
2090         u32 *inst;
2091
2092         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2093         snd_ymfpci_disable_dsp(chip);
2094         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2095         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2096         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2097         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2098         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2099         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2100         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2101         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2102         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2103
2104         /* setup DSP instruction code */
2105         inst = (u32 *)chip->dsp_microcode->data;
2106         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2107                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), inst[i]);
2108
2109         /* setup control instruction code */
2110         inst = (u32 *)chip->controller_microcode->data;
2111         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2112                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);
2113
2114         snd_ymfpci_enable_dsp(chip);
2115 }
2116
2117 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2118 {
2119         long size, playback_ctrl_size;
2120         int voice, bank, reg;
2121         u8 *ptr;
2122         dma_addr_t ptr_addr;
2123
2124         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2125         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2126         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2127         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2128         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2129         
2130         size = ALIGN(playback_ctrl_size, 0x100) +
2131                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2132                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2133                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2134                chip->work_size;
2135         /* work_ptr must be aligned to 256 bytes, but it's already
2136            covered with the kernel page allocation mechanism */
2137         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2138                                 size, &chip->work_ptr) < 0) 
2139                 return -ENOMEM;
2140         ptr = chip->work_ptr.area;
2141         ptr_addr = chip->work_ptr.addr;
2142         memset(ptr, 0, size);   /* for sure */
2143
2144         chip->bank_base_playback = ptr;
2145         chip->bank_base_playback_addr = ptr_addr;
2146         chip->ctrl_playback = (u32 *)ptr;
2147         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2148         ptr += ALIGN(playback_ctrl_size, 0x100);
2149         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2150         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2151                 chip->voices[voice].number = voice;
2152                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2153                 chip->voices[voice].bank_addr = ptr_addr;
2154                 for (bank = 0; bank < 2; bank++) {
2155                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2156                         ptr += chip->bank_size_playback;
2157                         ptr_addr += chip->bank_size_playback;
2158                 }
2159         }
2160         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2161         ptr_addr = ALIGN(ptr_addr, 0x100);
2162         chip->bank_base_capture = ptr;
2163         chip->bank_base_capture_addr = ptr_addr;
2164         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2165                 for (bank = 0; bank < 2; bank++) {
2166                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2167                         ptr += chip->bank_size_capture;
2168                         ptr_addr += chip->bank_size_capture;
2169                 }
2170         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2171         ptr_addr = ALIGN(ptr_addr, 0x100);
2172         chip->bank_base_effect = ptr;
2173         chip->bank_base_effect_addr = ptr_addr;
2174         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2175                 for (bank = 0; bank < 2; bank++) {
2176                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2177                         ptr += chip->bank_size_effect;
2178                         ptr_addr += chip->bank_size_effect;
2179                 }
2180         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2181         ptr_addr = ALIGN(ptr_addr, 0x100);
2182         chip->work_base = ptr;
2183         chip->work_base_addr = ptr_addr;
2184         
2185         snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2186
2187         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2188         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2189         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2190         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2191         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2192
2193         /* S/PDIF output initialization */
2194         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2195         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2196         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2197
2198         /* S/PDIF input initialization */
2199         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2200
2201         /* digital mixer setup */
2202         for (reg = 0x80; reg < 0xc0; reg += 4)
2203                 snd_ymfpci_writel(chip, reg, 0);
2204         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2205         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2206         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2207         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2208         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2209         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2210         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2211         
2212         return 0;
2213 }
2214
2215 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2216 {
2217         u16 ctrl;
2218
2219         snd_assert(chip != NULL, return -EINVAL);
2220
2221         if (chip->res_reg_area) {       /* don't touch busy hardware */
2222                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2223                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2224                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2225                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2226                 snd_ymfpci_disable_dsp(chip);
2227                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2228                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2229                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2230                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2231                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2232                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2233                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2234         }
2235
2236         snd_ymfpci_ac3_done(chip);
2237
2238         /* Set PCI device to D3 state */
2239 #if 0
2240         /* FIXME: temporarily disabled, otherwise we cannot fire up
2241          * the chip again unless reboot.  ACPI bug?
2242          */
2243         pci_set_power_state(chip->pci, 3);
2244 #endif
2245
2246 #ifdef CONFIG_PM
2247         vfree(chip->saved_regs);
2248 #endif
2249         release_and_free_resource(chip->mpu_res);
2250         release_and_free_resource(chip->fm_res);
2251         snd_ymfpci_free_gameport(chip);
2252         if (chip->reg_area_virt)
2253                 iounmap(chip->reg_area_virt);
2254         if (chip->work_ptr.area)
2255                 snd_dma_free_pages(&chip->work_ptr);
2256         
2257         if (chip->irq >= 0)
2258                 free_irq(chip->irq, chip);
2259         release_and_free_resource(chip->res_reg_area);
2260
2261         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2262         
2263         pci_disable_device(chip->pci);
2264 #ifndef CONFIG_SND_YMFPCI_FIRMWARE_IN_KERNEL
2265         release_firmware(chip->dsp_microcode);
2266         release_firmware(chip->controller_microcode);
2267 #endif
2268         kfree(chip);
2269         return 0;
2270 }
2271
2272 static int snd_ymfpci_dev_free(struct snd_device *device)
2273 {
2274         struct snd_ymfpci *chip = device->device_data;
2275         return snd_ymfpci_free(chip);
2276 }
2277
2278 #ifdef CONFIG_PM
2279 static int saved_regs_index[] = {
2280         /* spdif */
2281         YDSXGR_SPDIFOUTCTRL,
2282         YDSXGR_SPDIFOUTSTATUS,
2283         YDSXGR_SPDIFINCTRL,
2284         /* volumes */
2285         YDSXGR_PRIADCLOOPVOL,
2286         YDSXGR_NATIVEDACINVOL,
2287         YDSXGR_NATIVEDACOUTVOL,
2288         YDSXGR_BUF441OUTVOL,
2289         YDSXGR_NATIVEADCINVOL,
2290         YDSXGR_SPDIFLOOPVOL,
2291         YDSXGR_SPDIFOUTVOL,
2292         YDSXGR_ZVOUTVOL,
2293         YDSXGR_LEGACYOUTVOL,
2294         /* address bases */
2295         YDSXGR_PLAYCTRLBASE,
2296         YDSXGR_RECCTRLBASE,
2297         YDSXGR_EFFCTRLBASE,
2298         YDSXGR_WORKBASE,
2299         /* capture set up */
2300         YDSXGR_MAPOFREC,
2301         YDSXGR_RECFORMAT,
2302         YDSXGR_RECSLOTSR,
2303         YDSXGR_ADCFORMAT,
2304         YDSXGR_ADCSLOTSR,
2305 };
2306 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2307
2308 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2309 {
2310         struct snd_card *card = pci_get_drvdata(pci);
2311         struct snd_ymfpci *chip = card->private_data;
2312         unsigned int i;
2313         
2314         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2315         snd_pcm_suspend_all(chip->pcm);
2316         snd_pcm_suspend_all(chip->pcm2);
2317         snd_pcm_suspend_all(chip->pcm_spdif);
2318         snd_pcm_suspend_all(chip->pcm_4ch);
2319         snd_ac97_suspend(chip->ac97);
2320         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2321                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2322         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2323         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2324         snd_ymfpci_disable_dsp(chip);
2325         pci_disable_device(pci);
2326         pci_save_state(pci);
2327         pci_set_power_state(pci, pci_choose_state(pci, state));
2328         return 0;
2329 }
2330
2331 int snd_ymfpci_resume(struct pci_dev *pci)
2332 {
2333         struct snd_card *card = pci_get_drvdata(pci);
2334         struct snd_ymfpci *chip = card->private_data;
2335         unsigned int i;
2336
2337         pci_set_power_state(pci, PCI_D0);
2338         pci_restore_state(pci);
2339         if (pci_enable_device(pci) < 0) {
2340                 printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2341                        "disabling device\n");
2342                 snd_card_disconnect(card);
2343                 return -EIO;
2344         }
2345         pci_set_master(pci);
2346         snd_ymfpci_aclink_reset(pci);
2347         snd_ymfpci_codec_ready(chip, 0);
2348         snd_ymfpci_download_image(chip);
2349         udelay(100);
2350
2351         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2352                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2353
2354         snd_ac97_resume(chip->ac97);
2355
2356         /* start hw again */
2357         if (chip->start_count > 0) {
2358                 spin_lock_irq(&chip->reg_lock);
2359                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2360                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2361                 spin_unlock_irq(&chip->reg_lock);
2362         }
2363         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2364         return 0;
2365 }
2366 #endif /* CONFIG_PM */
2367
2368 int __devinit snd_ymfpci_create(struct snd_card *card,
2369                                 struct pci_dev * pci,
2370                                 unsigned short old_legacy_ctrl,
2371                                 struct snd_ymfpci ** rchip)
2372 {
2373         struct snd_ymfpci *chip;
2374         int err;
2375         static struct snd_device_ops ops = {
2376                 .dev_free =     snd_ymfpci_dev_free,
2377         };
2378         
2379         *rchip = NULL;
2380
2381         /* enable PCI device */
2382         if ((err = pci_enable_device(pci)) < 0)
2383                 return err;
2384
2385         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2386         if (chip == NULL) {
2387                 pci_disable_device(pci);
2388                 return -ENOMEM;
2389         }
2390         chip->old_legacy_ctrl = old_legacy_ctrl;
2391         spin_lock_init(&chip->reg_lock);
2392         spin_lock_init(&chip->voice_lock);
2393         init_waitqueue_head(&chip->interrupt_sleep);
2394         atomic_set(&chip->interrupt_sleep_count, 0);
2395         chip->card = card;
2396         chip->pci = pci;
2397         chip->irq = -1;
2398         chip->device_id = pci->device;
2399         chip->rev = pci->revision;
2400         chip->reg_area_phys = pci_resource_start(pci, 0);
2401         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2402         pci_set_master(pci);
2403         chip->src441_used = -1;
2404
2405         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2406                 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2407                 snd_ymfpci_free(chip);
2408                 return -EBUSY;
2409         }
2410         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2411                         "YMFPCI", chip)) {
2412                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2413                 snd_ymfpci_free(chip);
2414                 return -EBUSY;
2415         }
2416         chip->irq = pci->irq;
2417
2418         snd_ymfpci_aclink_reset(pci);
2419         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2420                 snd_ymfpci_free(chip);
2421                 return -EIO;
2422         }
2423
2424         err = snd_ymfpci_request_firmware(chip);
2425         if (err < 0) {
2426                 snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2427                 snd_ymfpci_free(chip);
2428                 return err;
2429         }
2430         snd_ymfpci_download_image(chip);
2431
2432         udelay(100); /* seems we need a delay after downloading image.. */
2433
2434         if (snd_ymfpci_memalloc(chip) < 0) {
2435                 snd_ymfpci_free(chip);
2436                 return -EIO;
2437         }
2438
2439         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2440                 snd_ymfpci_free(chip);
2441                 return err;
2442         }
2443
2444 #ifdef CONFIG_PM
2445         chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2446         if (chip->saved_regs == NULL) {
2447                 snd_ymfpci_free(chip);
2448                 return -ENOMEM;
2449         }
2450 #endif
2451
2452         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2453                 snd_ymfpci_free(chip);
2454                 return err;
2455         }
2456
2457         snd_ymfpci_proc_init(card, chip);
2458
2459         snd_card_set_dev(card, &pci->dev);
2460
2461         *rchip = chip;
2462         return 0;
2463 }