- Update to 2.6.25-rc3.
[linux-flexiantxendom0-3.2.10.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20
21 /* things that live in dummy.c */
22 extern struct security_operations dummy_security_ops;
23 extern void security_fixup_ops(struct security_operations *ops);
24
25 struct security_operations *security_ops;       /* Initialized to NULL */
26
27 /* amount of vm to protect from userspace access */
28 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
29
30 static inline int verify(struct security_operations *ops)
31 {
32         /* verify the security_operations structure exists */
33         if (!ops)
34                 return -EINVAL;
35         security_fixup_ops(ops);
36         return 0;
37 }
38
39 static void __init do_security_initcalls(void)
40 {
41         initcall_t *call;
42         call = __security_initcall_start;
43         while (call < __security_initcall_end) {
44                 (*call) ();
45                 call++;
46         }
47 }
48
49 /**
50  * security_init - initializes the security framework
51  *
52  * This should be called early in the kernel initialization sequence.
53  */
54 int __init security_init(void)
55 {
56         printk(KERN_INFO "Security Framework initialized\n");
57
58         if (verify(&dummy_security_ops)) {
59                 printk(KERN_ERR "%s could not verify "
60                        "dummy_security_ops structure.\n", __FUNCTION__);
61                 return -EIO;
62         }
63
64         security_ops = &dummy_security_ops;
65         do_security_initcalls();
66
67         return 0;
68 }
69
70 /**
71  * register_security - registers a security framework with the kernel
72  * @ops: a pointer to the struct security_options that is to be registered
73  *
74  * This function is to allow a security module to register itself with the
75  * kernel security subsystem.  Some rudimentary checking is done on the @ops
76  * value passed to this function.
77  *
78  * If there is already a security module registered with the kernel,
79  * an error will be returned.  Otherwise 0 is returned on success.
80  */
81 int register_security(struct security_operations *ops)
82 {
83         if (verify(ops)) {
84                 printk(KERN_DEBUG "%s could not verify "
85                        "security_operations structure.\n", __FUNCTION__);
86                 return -EINVAL;
87         }
88
89         if (security_ops != &dummy_security_ops)
90                 return -EAGAIN;
91
92         security_ops = ops;
93
94         return 0;
95 }
96
97 /**
98  * mod_reg_security - allows security modules to be "stacked"
99  * @name: a pointer to a string with the name of the security_options to be registered
100  * @ops: a pointer to the struct security_options that is to be registered
101  *
102  * This function allows security modules to be stacked if the currently loaded
103  * security module allows this to happen.  It passes the @name and @ops to the
104  * register_security function of the currently loaded security module.
105  *
106  * The return value depends on the currently loaded security module, with 0 as
107  * success.
108  */
109 int mod_reg_security(const char *name, struct security_operations *ops)
110 {
111         if (verify(ops)) {
112                 printk(KERN_INFO "%s could not verify "
113                        "security operations.\n", __FUNCTION__);
114                 return -EINVAL;
115         }
116
117         if (ops == security_ops) {
118                 printk(KERN_INFO "%s security operations "
119                        "already registered.\n", __FUNCTION__);
120                 return -EINVAL;
121         }
122
123         return security_ops->register_security(name, ops);
124 }
125
126 /* Security operations */
127
128 int security_ptrace(struct task_struct *parent, struct task_struct *child)
129 {
130         return security_ops->ptrace(parent, child);
131 }
132
133 int security_capget(struct task_struct *target,
134                      kernel_cap_t *effective,
135                      kernel_cap_t *inheritable,
136                      kernel_cap_t *permitted)
137 {
138         return security_ops->capget(target, effective, inheritable, permitted);
139 }
140
141 int security_capset_check(struct task_struct *target,
142                            kernel_cap_t *effective,
143                            kernel_cap_t *inheritable,
144                            kernel_cap_t *permitted)
145 {
146         return security_ops->capset_check(target, effective, inheritable, permitted);
147 }
148
149 void security_capset_set(struct task_struct *target,
150                           kernel_cap_t *effective,
151                           kernel_cap_t *inheritable,
152                           kernel_cap_t *permitted)
153 {
154         security_ops->capset_set(target, effective, inheritable, permitted);
155 }
156
157 int security_capable(struct task_struct *tsk, int cap)
158 {
159         return security_ops->capable(tsk, cap);
160 }
161
162 int security_acct(struct file *file)
163 {
164         return security_ops->acct(file);
165 }
166
167 int security_sysctl(struct ctl_table *table, int op)
168 {
169         return security_ops->sysctl(table, op);
170 }
171
172 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
173 {
174         return security_ops->quotactl(cmds, type, id, sb);
175 }
176
177 int security_quota_on(struct dentry *dentry)
178 {
179         return security_ops->quota_on(dentry);
180 }
181
182 int security_syslog(int type)
183 {
184         return security_ops->syslog(type);
185 }
186
187 int security_settime(struct timespec *ts, struct timezone *tz)
188 {
189         return security_ops->settime(ts, tz);
190 }
191
192 int security_vm_enough_memory(long pages)
193 {
194         return security_ops->vm_enough_memory(current->mm, pages);
195 }
196
197 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
198 {
199         return security_ops->vm_enough_memory(mm, pages);
200 }
201
202 int security_bprm_alloc(struct linux_binprm *bprm)
203 {
204         return security_ops->bprm_alloc_security(bprm);
205 }
206
207 void security_bprm_free(struct linux_binprm *bprm)
208 {
209         security_ops->bprm_free_security(bprm);
210 }
211
212 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
213 {
214         security_ops->bprm_apply_creds(bprm, unsafe);
215 }
216
217 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
218 {
219         security_ops->bprm_post_apply_creds(bprm);
220 }
221
222 int security_bprm_set(struct linux_binprm *bprm)
223 {
224         return security_ops->bprm_set_security(bprm);
225 }
226
227 int security_bprm_check(struct linux_binprm *bprm)
228 {
229         return security_ops->bprm_check_security(bprm);
230 }
231
232 int security_bprm_secureexec(struct linux_binprm *bprm)
233 {
234         return security_ops->bprm_secureexec(bprm);
235 }
236
237 int security_sb_alloc(struct super_block *sb)
238 {
239         return security_ops->sb_alloc_security(sb);
240 }
241
242 void security_sb_free(struct super_block *sb)
243 {
244         security_ops->sb_free_security(sb);
245 }
246
247 int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
248 {
249         return security_ops->sb_copy_data(type, orig, copy);
250 }
251
252 int security_sb_kern_mount(struct super_block *sb, void *data)
253 {
254         return security_ops->sb_kern_mount(sb, data);
255 }
256
257 int security_sb_statfs(struct dentry *dentry)
258 {
259         return security_ops->sb_statfs(dentry);
260 }
261
262 int security_sb_mount(char *dev_name, struct nameidata *nd,
263                        char *type, unsigned long flags, void *data)
264 {
265         return security_ops->sb_mount(dev_name, nd, type, flags, data);
266 }
267
268 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
269 {
270         return security_ops->sb_check_sb(mnt, nd);
271 }
272
273 int security_sb_umount(struct vfsmount *mnt, int flags)
274 {
275         return security_ops->sb_umount(mnt, flags);
276 }
277
278 void security_sb_umount_close(struct vfsmount *mnt)
279 {
280         security_ops->sb_umount_close(mnt);
281 }
282
283 void security_sb_umount_busy(struct vfsmount *mnt)
284 {
285         security_ops->sb_umount_busy(mnt);
286 }
287
288 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
289 {
290         security_ops->sb_post_remount(mnt, flags, data);
291 }
292
293 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
294 {
295         security_ops->sb_post_addmount(mnt, mountpoint_nd);
296 }
297
298 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
299 {
300         return security_ops->sb_pivotroot(old_nd, new_nd);
301 }
302
303 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
304 {
305         security_ops->sb_post_pivotroot(old_nd, new_nd);
306 }
307
308 int security_sb_get_mnt_opts(const struct super_block *sb,
309                               char ***mount_options,
310                               int **flags, int *num_opts)
311 {
312         return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts);
313 }
314
315 int security_sb_set_mnt_opts(struct super_block *sb,
316                               char **mount_options,
317                               int *flags, int num_opts)
318 {
319         return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts);
320 }
321
322 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
323                                 struct super_block *newsb)
324 {
325         security_ops->sb_clone_mnt_opts(oldsb, newsb);
326 }
327
328 int security_inode_alloc(struct inode *inode)
329 {
330         inode->i_security = NULL;
331         return security_ops->inode_alloc_security(inode);
332 }
333
334 void security_inode_free(struct inode *inode)
335 {
336         security_ops->inode_free_security(inode);
337 }
338
339 int security_inode_init_security(struct inode *inode, struct inode *dir,
340                                   char **name, void **value, size_t *len)
341 {
342         if (unlikely(IS_PRIVATE(inode)))
343                 return -EOPNOTSUPP;
344         return security_ops->inode_init_security(inode, dir, name, value, len);
345 }
346 EXPORT_SYMBOL(security_inode_init_security);
347
348 int security_inode_create(struct inode *dir, struct dentry *dentry,
349                           struct vfsmount *mnt, int mode)
350 {
351         if (unlikely(IS_PRIVATE(dir)))
352                 return 0;
353         return security_ops->inode_create(dir, dentry, mnt, mode);
354 }
355
356 int security_inode_link(struct dentry *old_dentry, struct vfsmount *old_mnt,
357                         struct inode *dir, struct dentry *new_dentry,
358                         struct vfsmount *new_mnt)
359 {
360         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
361                 return 0;
362         return security_ops->inode_link(old_dentry, old_mnt, dir,
363                                          new_dentry, new_mnt);
364 }
365
366 int security_inode_unlink(struct inode *dir, struct dentry *dentry,
367                           struct vfsmount *mnt)
368 {
369         if (unlikely(IS_PRIVATE(dentry->d_inode)))
370                 return 0;
371         return security_ops->inode_unlink(dir, dentry, mnt);
372 }
373
374 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
375                            struct vfsmount *mnt, const char *old_name)
376 {
377         if (unlikely(IS_PRIVATE(dir)))
378                 return 0;
379         return security_ops->inode_symlink(dir, dentry, mnt, old_name);
380 }
381
382 int security_inode_mkdir(struct inode *dir, struct dentry *dentry,
383                          struct vfsmount *mnt, int mode)
384 {
385         if (unlikely(IS_PRIVATE(dir)))
386                 return 0;
387         return security_ops->inode_mkdir(dir, dentry, mnt, mode);
388 }
389
390 int security_inode_rmdir(struct inode *dir, struct dentry *dentry,
391                          struct vfsmount *mnt)
392 {
393         if (unlikely(IS_PRIVATE(dentry->d_inode)))
394                 return 0;
395         return security_ops->inode_rmdir(dir, dentry, mnt);
396 }
397
398 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
399                          struct vfsmount *mnt, int mode, dev_t dev)
400 {
401         if (unlikely(IS_PRIVATE(dir)))
402                 return 0;
403         return security_ops->inode_mknod(dir, dentry, mnt, mode, dev);
404 }
405
406 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
407                           struct vfsmount *old_mnt, struct inode *new_dir,
408                           struct dentry *new_dentry, struct vfsmount *new_mnt)
409 {
410         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
411             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
412                 return 0;
413         return security_ops->inode_rename(old_dir, old_dentry, old_mnt,
414                                            new_dir, new_dentry, new_mnt);
415 }
416
417 int security_inode_readlink(struct dentry *dentry, struct vfsmount *mnt)
418 {
419         if (unlikely(IS_PRIVATE(dentry->d_inode)))
420                 return 0;
421         return security_ops->inode_readlink(dentry, mnt);
422 }
423
424 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
425 {
426         if (unlikely(IS_PRIVATE(dentry->d_inode)))
427                 return 0;
428         return security_ops->inode_follow_link(dentry, nd);
429 }
430
431 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
432 {
433         if (unlikely(IS_PRIVATE(inode)))
434                 return 0;
435         return security_ops->inode_permission(inode, mask, nd);
436 }
437
438 int security_inode_setattr(struct dentry *dentry, struct vfsmount *mnt,
439                            struct iattr *attr)
440 {
441         if (unlikely(IS_PRIVATE(dentry->d_inode)))
442                 return 0;
443         return security_ops->inode_setattr(dentry, mnt, attr);
444 }
445
446 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
447 {
448         if (unlikely(IS_PRIVATE(dentry->d_inode)))
449                 return 0;
450         return security_ops->inode_getattr(mnt, dentry);
451 }
452
453 void security_inode_delete(struct inode *inode)
454 {
455         if (unlikely(IS_PRIVATE(inode)))
456                 return;
457         security_ops->inode_delete(inode);
458 }
459
460 int security_inode_setxattr(struct dentry *dentry, struct vfsmount *mnt,
461                             char *name, void *value, size_t size, int flags,
462                             struct file *file)
463 {
464         if (unlikely(IS_PRIVATE(dentry->d_inode)))
465                 return 0;
466         return security_ops->inode_setxattr(dentry, mnt, name, value, size,
467                                             flags, file);
468 }
469
470 void security_inode_post_setxattr(struct dentry *dentry, struct vfsmount *mnt,
471                                   char *name, void *value, size_t size,
472                                   int flags)
473 {
474         if (unlikely(IS_PRIVATE(dentry->d_inode)))
475                 return;
476         security_ops->inode_post_setxattr(dentry, mnt, name, value, size,
477                                          flags);
478 }
479
480 int security_inode_getxattr(struct dentry *dentry, struct vfsmount *mnt,
481                             char *name, struct file *file)
482 {
483         if (unlikely(IS_PRIVATE(dentry->d_inode)))
484                 return 0;
485         return security_ops->inode_getxattr(dentry, mnt, name, file);
486 }
487
488 int security_inode_listxattr(struct dentry *dentry, struct vfsmount *mnt,
489                              struct file *file)
490 {
491         if (unlikely(IS_PRIVATE(dentry->d_inode)))
492                 return 0;
493         return security_ops->inode_listxattr(dentry, mnt, file);
494 }
495
496 int security_inode_removexattr(struct dentry *dentry, struct vfsmount *mnt,
497                                char *name, struct file *file)
498 {
499         if (unlikely(IS_PRIVATE(dentry->d_inode)))
500                 return 0;
501         return security_ops->inode_removexattr(dentry, mnt, name, file);
502 }
503
504 int security_inode_need_killpriv(struct dentry *dentry)
505 {
506         return security_ops->inode_need_killpriv(dentry);
507 }
508
509 int security_inode_killpriv(struct dentry *dentry)
510 {
511         return security_ops->inode_killpriv(dentry);
512 }
513
514 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
515 {
516         if (unlikely(IS_PRIVATE(inode)))
517                 return 0;
518         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
519 }
520
521 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
522 {
523         if (unlikely(IS_PRIVATE(inode)))
524                 return 0;
525         return security_ops->inode_setsecurity(inode, name, value, size, flags);
526 }
527
528 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
529 {
530         if (unlikely(IS_PRIVATE(inode)))
531                 return 0;
532         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
533 }
534
535 int security_file_permission(struct file *file, int mask)
536 {
537         return security_ops->file_permission(file, mask);
538 }
539
540 int security_file_alloc(struct file *file)
541 {
542         return security_ops->file_alloc_security(file);
543 }
544
545 void security_file_free(struct file *file)
546 {
547         security_ops->file_free_security(file);
548 }
549
550 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
551 {
552         return security_ops->file_ioctl(file, cmd, arg);
553 }
554
555 int security_file_mmap(struct file *file, unsigned long reqprot,
556                         unsigned long prot, unsigned long flags,
557                         unsigned long addr, unsigned long addr_only)
558 {
559         return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
560 }
561
562 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
563                             unsigned long prot)
564 {
565         return security_ops->file_mprotect(vma, reqprot, prot);
566 }
567
568 int security_file_lock(struct file *file, unsigned int cmd)
569 {
570         return security_ops->file_lock(file, cmd);
571 }
572
573 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
574 {
575         return security_ops->file_fcntl(file, cmd, arg);
576 }
577
578 int security_file_set_fowner(struct file *file)
579 {
580         return security_ops->file_set_fowner(file);
581 }
582
583 int security_file_send_sigiotask(struct task_struct *tsk,
584                                   struct fown_struct *fown, int sig)
585 {
586         return security_ops->file_send_sigiotask(tsk, fown, sig);
587 }
588
589 int security_file_receive(struct file *file)
590 {
591         return security_ops->file_receive(file);
592 }
593
594 int security_dentry_open(struct file *file)
595 {
596         return security_ops->dentry_open(file);
597 }
598
599 int security_task_create(unsigned long clone_flags)
600 {
601         return security_ops->task_create(clone_flags);
602 }
603
604 int security_task_alloc(struct task_struct *p)
605 {
606         return security_ops->task_alloc_security(p);
607 }
608
609 void security_task_free(struct task_struct *p)
610 {
611         security_ops->task_free_security(p);
612 }
613
614 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
615 {
616         return security_ops->task_setuid(id0, id1, id2, flags);
617 }
618
619 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
620                                uid_t old_suid, int flags)
621 {
622         return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
623 }
624
625 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
626 {
627         return security_ops->task_setgid(id0, id1, id2, flags);
628 }
629
630 int security_task_setpgid(struct task_struct *p, pid_t pgid)
631 {
632         return security_ops->task_setpgid(p, pgid);
633 }
634
635 int security_task_getpgid(struct task_struct *p)
636 {
637         return security_ops->task_getpgid(p);
638 }
639
640 int security_task_getsid(struct task_struct *p)
641 {
642         return security_ops->task_getsid(p);
643 }
644
645 void security_task_getsecid(struct task_struct *p, u32 *secid)
646 {
647         security_ops->task_getsecid(p, secid);
648 }
649 EXPORT_SYMBOL(security_task_getsecid);
650
651 int security_task_setgroups(struct group_info *group_info)
652 {
653         return security_ops->task_setgroups(group_info);
654 }
655
656 int security_task_setnice(struct task_struct *p, int nice)
657 {
658         return security_ops->task_setnice(p, nice);
659 }
660
661 int security_task_setioprio(struct task_struct *p, int ioprio)
662 {
663         return security_ops->task_setioprio(p, ioprio);
664 }
665
666 int security_task_getioprio(struct task_struct *p)
667 {
668         return security_ops->task_getioprio(p);
669 }
670
671 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
672 {
673         return security_ops->task_setrlimit(resource, new_rlim);
674 }
675
676 int security_task_setscheduler(struct task_struct *p,
677                                 int policy, struct sched_param *lp)
678 {
679         return security_ops->task_setscheduler(p, policy, lp);
680 }
681
682 int security_task_getscheduler(struct task_struct *p)
683 {
684         return security_ops->task_getscheduler(p);
685 }
686
687 int security_task_movememory(struct task_struct *p)
688 {
689         return security_ops->task_movememory(p);
690 }
691
692 int security_task_kill(struct task_struct *p, struct siginfo *info,
693                         int sig, u32 secid)
694 {
695         return security_ops->task_kill(p, info, sig, secid);
696 }
697
698 int security_task_wait(struct task_struct *p)
699 {
700         return security_ops->task_wait(p);
701 }
702
703 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
704                          unsigned long arg4, unsigned long arg5)
705 {
706         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
707 }
708
709 void security_task_reparent_to_init(struct task_struct *p)
710 {
711         security_ops->task_reparent_to_init(p);
712 }
713
714 void security_task_to_inode(struct task_struct *p, struct inode *inode)
715 {
716         security_ops->task_to_inode(p, inode);
717 }
718
719 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
720 {
721         return security_ops->ipc_permission(ipcp, flag);
722 }
723
724 int security_msg_msg_alloc(struct msg_msg *msg)
725 {
726         return security_ops->msg_msg_alloc_security(msg);
727 }
728
729 void security_msg_msg_free(struct msg_msg *msg)
730 {
731         security_ops->msg_msg_free_security(msg);
732 }
733
734 int security_msg_queue_alloc(struct msg_queue *msq)
735 {
736         return security_ops->msg_queue_alloc_security(msq);
737 }
738
739 void security_msg_queue_free(struct msg_queue *msq)
740 {
741         security_ops->msg_queue_free_security(msq);
742 }
743
744 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
745 {
746         return security_ops->msg_queue_associate(msq, msqflg);
747 }
748
749 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
750 {
751         return security_ops->msg_queue_msgctl(msq, cmd);
752 }
753
754 int security_msg_queue_msgsnd(struct msg_queue *msq,
755                                struct msg_msg *msg, int msqflg)
756 {
757         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
758 }
759
760 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
761                                struct task_struct *target, long type, int mode)
762 {
763         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
764 }
765
766 int security_shm_alloc(struct shmid_kernel *shp)
767 {
768         return security_ops->shm_alloc_security(shp);
769 }
770
771 void security_shm_free(struct shmid_kernel *shp)
772 {
773         security_ops->shm_free_security(shp);
774 }
775
776 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
777 {
778         return security_ops->shm_associate(shp, shmflg);
779 }
780
781 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
782 {
783         return security_ops->shm_shmctl(shp, cmd);
784 }
785
786 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
787 {
788         return security_ops->shm_shmat(shp, shmaddr, shmflg);
789 }
790
791 int security_sem_alloc(struct sem_array *sma)
792 {
793         return security_ops->sem_alloc_security(sma);
794 }
795
796 void security_sem_free(struct sem_array *sma)
797 {
798         security_ops->sem_free_security(sma);
799 }
800
801 int security_sem_associate(struct sem_array *sma, int semflg)
802 {
803         return security_ops->sem_associate(sma, semflg);
804 }
805
806 int security_sem_semctl(struct sem_array *sma, int cmd)
807 {
808         return security_ops->sem_semctl(sma, cmd);
809 }
810
811 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
812                         unsigned nsops, int alter)
813 {
814         return security_ops->sem_semop(sma, sops, nsops, alter);
815 }
816
817 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
818 {
819         if (unlikely(inode && IS_PRIVATE(inode)))
820                 return;
821         security_ops->d_instantiate(dentry, inode);
822 }
823 EXPORT_SYMBOL(security_d_instantiate);
824
825 int security_getprocattr(struct task_struct *p, char *name, char **value)
826 {
827         return security_ops->getprocattr(p, name, value);
828 }
829
830 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
831 {
832         return security_ops->setprocattr(p, name, value, size);
833 }
834
835 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
836 {
837         return security_ops->netlink_send(sk, skb);
838 }
839
840 int security_netlink_recv(struct sk_buff *skb, int cap)
841 {
842         return security_ops->netlink_recv(skb, cap);
843 }
844 EXPORT_SYMBOL(security_netlink_recv);
845
846 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
847 {
848         return security_ops->secid_to_secctx(secid, secdata, seclen);
849 }
850 EXPORT_SYMBOL(security_secid_to_secctx);
851
852 int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
853 {
854         return security_ops->secctx_to_secid(secdata, seclen, secid);
855 }
856 EXPORT_SYMBOL(security_secctx_to_secid);
857
858 void security_release_secctx(char *secdata, u32 seclen)
859 {
860         return security_ops->release_secctx(secdata, seclen);
861 }
862 EXPORT_SYMBOL(security_release_secctx);
863
864 #ifdef CONFIG_SECURITY_NETWORK
865
866 int security_unix_stream_connect(struct socket *sock, struct socket *other,
867                                  struct sock *newsk)
868 {
869         return security_ops->unix_stream_connect(sock, other, newsk);
870 }
871 EXPORT_SYMBOL(security_unix_stream_connect);
872
873 int security_unix_may_send(struct socket *sock,  struct socket *other)
874 {
875         return security_ops->unix_may_send(sock, other);
876 }
877 EXPORT_SYMBOL(security_unix_may_send);
878
879 int security_socket_create(int family, int type, int protocol, int kern)
880 {
881         return security_ops->socket_create(family, type, protocol, kern);
882 }
883
884 int security_socket_post_create(struct socket *sock, int family,
885                                 int type, int protocol, int kern)
886 {
887         return security_ops->socket_post_create(sock, family, type,
888                                                 protocol, kern);
889 }
890
891 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
892 {
893         return security_ops->socket_bind(sock, address, addrlen);
894 }
895
896 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
897 {
898         return security_ops->socket_connect(sock, address, addrlen);
899 }
900
901 int security_socket_listen(struct socket *sock, int backlog)
902 {
903         return security_ops->socket_listen(sock, backlog);
904 }
905
906 int security_socket_accept(struct socket *sock, struct socket *newsock)
907 {
908         return security_ops->socket_accept(sock, newsock);
909 }
910
911 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
912 {
913         security_ops->socket_post_accept(sock, newsock);
914 }
915
916 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
917 {
918         return security_ops->socket_sendmsg(sock, msg, size);
919 }
920
921 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
922                             int size, int flags)
923 {
924         return security_ops->socket_recvmsg(sock, msg, size, flags);
925 }
926
927 int security_socket_getsockname(struct socket *sock)
928 {
929         return security_ops->socket_getsockname(sock);
930 }
931
932 int security_socket_getpeername(struct socket *sock)
933 {
934         return security_ops->socket_getpeername(sock);
935 }
936
937 int security_socket_getsockopt(struct socket *sock, int level, int optname)
938 {
939         return security_ops->socket_getsockopt(sock, level, optname);
940 }
941
942 int security_socket_setsockopt(struct socket *sock, int level, int optname)
943 {
944         return security_ops->socket_setsockopt(sock, level, optname);
945 }
946
947 int security_socket_shutdown(struct socket *sock, int how)
948 {
949         return security_ops->socket_shutdown(sock, how);
950 }
951
952 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
953 {
954         return security_ops->socket_sock_rcv_skb(sk, skb);
955 }
956 EXPORT_SYMBOL(security_sock_rcv_skb);
957
958 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
959                                       int __user *optlen, unsigned len)
960 {
961         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
962 }
963
964 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
965 {
966         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
967 }
968 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
969
970 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
971 {
972         return security_ops->sk_alloc_security(sk, family, priority);
973 }
974
975 void security_sk_free(struct sock *sk)
976 {
977         return security_ops->sk_free_security(sk);
978 }
979
980 void security_sk_clone(const struct sock *sk, struct sock *newsk)
981 {
982         return security_ops->sk_clone_security(sk, newsk);
983 }
984
985 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
986 {
987         security_ops->sk_getsecid(sk, &fl->secid);
988 }
989 EXPORT_SYMBOL(security_sk_classify_flow);
990
991 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
992 {
993         security_ops->req_classify_flow(req, fl);
994 }
995 EXPORT_SYMBOL(security_req_classify_flow);
996
997 void security_sock_graft(struct sock *sk, struct socket *parent)
998 {
999         security_ops->sock_graft(sk, parent);
1000 }
1001 EXPORT_SYMBOL(security_sock_graft);
1002
1003 int security_inet_conn_request(struct sock *sk,
1004                         struct sk_buff *skb, struct request_sock *req)
1005 {
1006         return security_ops->inet_conn_request(sk, skb, req);
1007 }
1008 EXPORT_SYMBOL(security_inet_conn_request);
1009
1010 void security_inet_csk_clone(struct sock *newsk,
1011                         const struct request_sock *req)
1012 {
1013         security_ops->inet_csk_clone(newsk, req);
1014 }
1015
1016 void security_inet_conn_established(struct sock *sk,
1017                         struct sk_buff *skb)
1018 {
1019         security_ops->inet_conn_established(sk, skb);
1020 }
1021
1022 #endif  /* CONFIG_SECURITY_NETWORK */
1023
1024 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1025
1026 int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
1027 {
1028         return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
1029 }
1030 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1031
1032 int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
1033 {
1034         return security_ops->xfrm_policy_clone_security(old, new);
1035 }
1036
1037 void security_xfrm_policy_free(struct xfrm_policy *xp)
1038 {
1039         security_ops->xfrm_policy_free_security(xp);
1040 }
1041 EXPORT_SYMBOL(security_xfrm_policy_free);
1042
1043 int security_xfrm_policy_delete(struct xfrm_policy *xp)
1044 {
1045         return security_ops->xfrm_policy_delete_security(xp);
1046 }
1047
1048 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1049 {
1050         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1051 }
1052 EXPORT_SYMBOL(security_xfrm_state_alloc);
1053
1054 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1055                                       struct xfrm_sec_ctx *polsec, u32 secid)
1056 {
1057         if (!polsec)
1058                 return 0;
1059         /*
1060          * We want the context to be taken from secid which is usually
1061          * from the sock.
1062          */
1063         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1064 }
1065
1066 int security_xfrm_state_delete(struct xfrm_state *x)
1067 {
1068         return security_ops->xfrm_state_delete_security(x);
1069 }
1070 EXPORT_SYMBOL(security_xfrm_state_delete);
1071
1072 void security_xfrm_state_free(struct xfrm_state *x)
1073 {
1074         security_ops->xfrm_state_free_security(x);
1075 }
1076
1077 int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1078 {
1079         return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1080 }
1081
1082 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1083                                        struct xfrm_policy *xp, struct flowi *fl)
1084 {
1085         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1086 }
1087
1088 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1089 {
1090         return security_ops->xfrm_decode_session(skb, secid, 1);
1091 }
1092
1093 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1094 {
1095         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1096
1097         BUG_ON(rc);
1098 }
1099 EXPORT_SYMBOL(security_skb_classify_flow);
1100
1101 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1102
1103 #ifdef CONFIG_KEYS
1104
1105 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1106 {
1107         return security_ops->key_alloc(key, tsk, flags);
1108 }
1109
1110 void security_key_free(struct key *key)
1111 {
1112         security_ops->key_free(key);
1113 }
1114
1115 int security_key_permission(key_ref_t key_ref,
1116                             struct task_struct *context, key_perm_t perm)
1117 {
1118         return security_ops->key_permission(key_ref, context, perm);
1119 }
1120
1121 #endif  /* CONFIG_KEYS */