- Update to 2.6.25-rc3.
[linux-flexiantxendom0-3.2.10.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34
35 #include "power.h"
36
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40
41 /* List of PBEs needed for restoring the pages that were allocated before
42  * the suspend and included in the suspend image, but have also been
43  * allocated by the "resume" kernel, so their contents cannot be written
44  * directly to their "original" page frames.
45  */
46 struct pbe *restore_pblist;
47
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50
51 /**
52  *      @safe_needed - on resume, for storing the PBE list and the image,
53  *      we can only use memory pages that do not conflict with the pages
54  *      used before suspend.  The unsafe pages have PageNosaveFree set
55  *      and we count them using unsafe_pages.
56  *
57  *      Each allocated image page is marked as PageNosave and PageNosaveFree
58  *      so that swsusp_free() can release it.
59  */
60
61 #define PG_ANY          0
62 #define PG_SAFE         1
63 #define PG_UNSAFE_CLEAR 1
64 #define PG_UNSAFE_KEEP  0
65
66 static unsigned int allocated_unsafe_pages;
67
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70         void *res;
71
72         res = (void *)get_zeroed_page(gfp_mask);
73         if (safe_needed)
74                 while (res && swsusp_page_is_free(virt_to_page(res))) {
75                         /* The page is unsafe, mark it for swsusp_free() */
76                         swsusp_set_page_forbidden(virt_to_page(res));
77                         allocated_unsafe_pages++;
78                         res = (void *)get_zeroed_page(gfp_mask);
79                 }
80         if (res) {
81                 swsusp_set_page_forbidden(virt_to_page(res));
82                 swsusp_set_page_free(virt_to_page(res));
83         }
84         return res;
85 }
86
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94         struct page *page;
95
96         page = alloc_page(gfp_mask);
97         if (page) {
98                 swsusp_set_page_forbidden(page);
99                 swsusp_set_page_free(page);
100         }
101         return page;
102 }
103
104 /**
105  *      free_image_page - free page represented by @addr, allocated with
106  *      get_image_page (page flags set by it must be cleared)
107  */
108
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111         struct page *page;
112
113         BUG_ON(!virt_addr_valid(addr));
114
115         page = virt_to_page(addr);
116
117         swsusp_unset_page_forbidden(page);
118         if (clear_nosave_free)
119                 swsusp_unset_page_free(page);
120
121         __free_page(page);
122 }
123
124 /* struct linked_page is used to build chains of pages */
125
126 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
127
128 struct linked_page {
129         struct linked_page *next;
130         char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136         while (list) {
137                 struct linked_page *lp = list->next;
138
139                 free_image_page(list, clear_page_nosave);
140                 list = lp;
141         }
142 }
143
144 /**
145   *     struct chain_allocator is used for allocating small objects out of
146   *     a linked list of pages called 'the chain'.
147   *
148   *     The chain grows each time when there is no room for a new object in
149   *     the current page.  The allocated objects cannot be freed individually.
150   *     It is only possible to free them all at once, by freeing the entire
151   *     chain.
152   *
153   *     NOTE: The chain allocator may be inefficient if the allocated objects
154   *     are not much smaller than PAGE_SIZE.
155   */
156
157 struct chain_allocator {
158         struct linked_page *chain;      /* the chain */
159         unsigned int used_space;        /* total size of objects allocated out
160                                          * of the current page
161                                          */
162         gfp_t gfp_mask;         /* mask for allocating pages */
163         int safe_needed;        /* if set, only "safe" pages are allocated */
164 };
165
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169         ca->chain = NULL;
170         ca->used_space = LINKED_PAGE_DATA_SIZE;
171         ca->gfp_mask = gfp_mask;
172         ca->safe_needed = safe_needed;
173 }
174
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177         void *ret;
178
179         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180                 struct linked_page *lp;
181
182                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183                 if (!lp)
184                         return NULL;
185
186                 lp->next = ca->chain;
187                 ca->chain = lp;
188                 ca->used_space = 0;
189         }
190         ret = ca->chain->data + ca->used_space;
191         ca->used_space += size;
192         return ret;
193 }
194
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197         free_list_of_pages(ca->chain, clear_page_nosave);
198         memset(ca, 0, sizeof(struct chain_allocator));
199 }
200
201 /**
202  *      Data types related to memory bitmaps.
203  *
204  *      Memory bitmap is a structure consiting of many linked lists of
205  *      objects.  The main list's elements are of type struct zone_bitmap
206  *      and each of them corresonds to one zone.  For each zone bitmap
207  *      object there is a list of objects of type struct bm_block that
208  *      represent each blocks of bit chunks in which information is
209  *      stored.
210  *
211  *      struct memory_bitmap contains a pointer to the main list of zone
212  *      bitmap objects, a struct bm_position used for browsing the bitmap,
213  *      and a pointer to the list of pages used for allocating all of the
214  *      zone bitmap objects and bitmap block objects.
215  *
216  *      NOTE: It has to be possible to lay out the bitmap in memory
217  *      using only allocations of order 0.  Additionally, the bitmap is
218  *      designed to work with arbitrary number of zones (this is over the
219  *      top for now, but let's avoid making unnecessary assumptions ;-).
220  *
221  *      struct zone_bitmap contains a pointer to a list of bitmap block
222  *      objects and a pointer to the bitmap block object that has been
223  *      most recently used for setting bits.  Additionally, it contains the
224  *      pfns that correspond to the start and end of the represented zone.
225  *
226  *      struct bm_block contains a pointer to the memory page in which
227  *      information is stored (in the form of a block of bit chunks
228  *      of type unsigned long each).  It also contains the pfns that
229  *      correspond to the start and end of the represented memory area and
230  *      the number of bit chunks in the block.
231  */
232
233 #define BM_END_OF_MAP   (~0UL)
234
235 #define BM_CHUNKS_PER_BLOCK     (PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK       (sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK       (PAGE_SIZE << 3)
238
239 struct bm_block {
240         struct bm_block *next;          /* next element of the list */
241         unsigned long start_pfn;        /* pfn represented by the first bit */
242         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
243         unsigned int size;      /* number of bit chunks */
244         unsigned long *data;    /* chunks of bits representing pages */
245 };
246
247 struct zone_bitmap {
248         struct zone_bitmap *next;       /* next element of the list */
249         unsigned long start_pfn;        /* minimal pfn in this zone */
250         unsigned long end_pfn;          /* maximal pfn in this zone plus 1 */
251         struct bm_block *bm_blocks;     /* list of bitmap blocks */
252         struct bm_block *cur_block;     /* recently used bitmap block */
253 };
254
255 /* strcut bm_position is used for browsing memory bitmaps */
256
257 struct bm_position {
258         struct zone_bitmap *zone_bm;
259         struct bm_block *block;
260         int chunk;
261         int bit;
262 };
263
264 struct memory_bitmap {
265         struct zone_bitmap *zone_bm_list;       /* list of zone bitmaps */
266         struct linked_page *p_list;     /* list of pages used to store zone
267                                          * bitmap objects and bitmap block
268                                          * objects
269                                          */
270         struct bm_position cur; /* most recently used bit position */
271 };
272
273 /* Functions that operate on memory bitmaps */
274
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276 {
277         bm->cur.chunk = 0;
278         bm->cur.bit = -1;
279 }
280
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
282 {
283         struct zone_bitmap *zone_bm;
284
285         zone_bm = bm->zone_bm_list;
286         bm->cur.zone_bm = zone_bm;
287         bm->cur.block = zone_bm->bm_blocks;
288         memory_bm_reset_chunk(bm);
289 }
290
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292
293 /**
294  *      create_bm_block_list - create a list of block bitmap objects
295  */
296
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299 {
300         struct bm_block *bblist = NULL;
301
302         while (nr_blocks-- > 0) {
303                 struct bm_block *bb;
304
305                 bb = chain_alloc(ca, sizeof(struct bm_block));
306                 if (!bb)
307                         return NULL;
308
309                 bb->next = bblist;
310                 bblist = bb;
311         }
312         return bblist;
313 }
314
315 /**
316  *      create_zone_bm_list - create a list of zone bitmap objects
317  */
318
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321 {
322         struct zone_bitmap *zbmlist = NULL;
323
324         while (nr_zones-- > 0) {
325                 struct zone_bitmap *zbm;
326
327                 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328                 if (!zbm)
329                         return NULL;
330
331                 zbm->next = zbmlist;
332                 zbmlist = zbm;
333         }
334         return zbmlist;
335 }
336
337 /**
338   *     memory_bm_create - allocate memory for a memory bitmap
339   */
340
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343 {
344         struct chain_allocator ca;
345         struct zone *zone;
346         struct zone_bitmap *zone_bm;
347         struct bm_block *bb;
348         unsigned int nr;
349
350         chain_init(&ca, gfp_mask, safe_needed);
351
352         /* Compute the number of zones */
353         nr = 0;
354         for_each_zone(zone)
355                 if (populated_zone(zone))
356                         nr++;
357
358         /* Allocate the list of zones bitmap objects */
359         zone_bm = create_zone_bm_list(nr, &ca);
360         bm->zone_bm_list = zone_bm;
361         if (!zone_bm) {
362                 chain_free(&ca, PG_UNSAFE_CLEAR);
363                 return -ENOMEM;
364         }
365
366         /* Initialize the zone bitmap objects */
367         for_each_zone(zone) {
368                 unsigned long pfn;
369
370                 if (!populated_zone(zone))
371                         continue;
372
373                 zone_bm->start_pfn = zone->zone_start_pfn;
374                 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375                 /* Allocate the list of bitmap block objects */
376                 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377                 bb = create_bm_block_list(nr, &ca);
378                 zone_bm->bm_blocks = bb;
379                 zone_bm->cur_block = bb;
380                 if (!bb)
381                         goto Free;
382
383                 nr = zone->spanned_pages;
384                 pfn = zone->zone_start_pfn;
385                 /* Initialize the bitmap block objects */
386                 while (bb) {
387                         unsigned long *ptr;
388
389                         ptr = get_image_page(gfp_mask, safe_needed);
390                         bb->data = ptr;
391                         if (!ptr)
392                                 goto Free;
393
394                         bb->start_pfn = pfn;
395                         if (nr >= BM_BITS_PER_BLOCK) {
396                                 pfn += BM_BITS_PER_BLOCK;
397                                 bb->size = BM_CHUNKS_PER_BLOCK;
398                                 nr -= BM_BITS_PER_BLOCK;
399                         } else {
400                                 /* This is executed only once in the loop */
401                                 pfn += nr;
402                                 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403                         }
404                         bb->end_pfn = pfn;
405                         bb = bb->next;
406                 }
407                 zone_bm = zone_bm->next;
408         }
409         bm->p_list = ca.chain;
410         memory_bm_position_reset(bm);
411         return 0;
412
413  Free:
414         bm->p_list = ca.chain;
415         memory_bm_free(bm, PG_UNSAFE_CLEAR);
416         return -ENOMEM;
417 }
418
419 /**
420   *     memory_bm_free - free memory occupied by the memory bitmap @bm
421   */
422
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424 {
425         struct zone_bitmap *zone_bm;
426
427         /* Free the list of bit blocks for each zone_bitmap object */
428         zone_bm = bm->zone_bm_list;
429         while (zone_bm) {
430                 struct bm_block *bb;
431
432                 bb = zone_bm->bm_blocks;
433                 while (bb) {
434                         if (bb->data)
435                                 free_image_page(bb->data, clear_nosave_free);
436                         bb = bb->next;
437                 }
438                 zone_bm = zone_bm->next;
439         }
440         free_list_of_pages(bm->p_list, clear_nosave_free);
441         bm->zone_bm_list = NULL;
442 }
443
444 /**
445  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
447  *      of @bm->cur_zone_bm are updated.
448  */
449
450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451                                 void **addr, unsigned int *bit_nr)
452 {
453         struct zone_bitmap *zone_bm;
454         struct bm_block *bb;
455
456         /* Check if the pfn is from the current zone */
457         zone_bm = bm->cur.zone_bm;
458         if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459                 zone_bm = bm->zone_bm_list;
460                 /* We don't assume that the zones are sorted by pfns */
461                 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462                         zone_bm = zone_bm->next;
463
464                         BUG_ON(!zone_bm);
465                 }
466                 bm->cur.zone_bm = zone_bm;
467         }
468         /* Check if the pfn corresponds to the current bitmap block */
469         bb = zone_bm->cur_block;
470         if (pfn < bb->start_pfn)
471                 bb = zone_bm->bm_blocks;
472
473         while (pfn >= bb->end_pfn) {
474                 bb = bb->next;
475
476                 BUG_ON(!bb);
477         }
478         zone_bm->cur_block = bb;
479         pfn -= bb->start_pfn;
480         *bit_nr = pfn % BM_BITS_PER_CHUNK;
481         *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
482 }
483
484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
485 {
486         void *addr;
487         unsigned int bit;
488
489         memory_bm_find_bit(bm, pfn, &addr, &bit);
490         set_bit(bit, addr);
491 }
492
493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
494 {
495         void *addr;
496         unsigned int bit;
497
498         memory_bm_find_bit(bm, pfn, &addr, &bit);
499         clear_bit(bit, addr);
500 }
501
502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
503 {
504         void *addr;
505         unsigned int bit;
506
507         memory_bm_find_bit(bm, pfn, &addr, &bit);
508         return test_bit(bit, addr);
509 }
510
511 /* Two auxiliary functions for memory_bm_next_pfn */
512
513 /* Find the first set bit in the given chunk, if there is one */
514
515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
516 {
517         bit++;
518         while (bit < BM_BITS_PER_CHUNK) {
519                 if (test_bit(bit, chunk_p))
520                         return bit;
521
522                 bit++;
523         }
524         return -1;
525 }
526
527 /* Find a chunk containing some bits set in given block of bits */
528
529 static inline int next_chunk_in_block(int n, struct bm_block *bb)
530 {
531         n++;
532         while (n < bb->size) {
533                 if (bb->data[n])
534                         return n;
535
536                 n++;
537         }
538         return -1;
539 }
540
541 /**
542  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
544  *      returned.
545  *
546  *      It is required to run memory_bm_position_reset() before the first call to
547  *      this function.
548  */
549
550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
551 {
552         struct zone_bitmap *zone_bm;
553         struct bm_block *bb;
554         int chunk;
555         int bit;
556
557         do {
558                 bb = bm->cur.block;
559                 do {
560                         chunk = bm->cur.chunk;
561                         bit = bm->cur.bit;
562                         do {
563                                 bit = next_bit_in_chunk(bit, bb->data + chunk);
564                                 if (bit >= 0)
565                                         goto Return_pfn;
566
567                                 chunk = next_chunk_in_block(chunk, bb);
568                                 bit = -1;
569                         } while (chunk >= 0);
570                         bb = bb->next;
571                         bm->cur.block = bb;
572                         memory_bm_reset_chunk(bm);
573                 } while (bb);
574                 zone_bm = bm->cur.zone_bm->next;
575                 if (zone_bm) {
576                         bm->cur.zone_bm = zone_bm;
577                         bm->cur.block = zone_bm->bm_blocks;
578                         memory_bm_reset_chunk(bm);
579                 }
580         } while (zone_bm);
581         memory_bm_position_reset(bm);
582         return BM_END_OF_MAP;
583
584  Return_pfn:
585         bm->cur.chunk = chunk;
586         bm->cur.bit = bit;
587         return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
588 }
589
590 /**
591  *      This structure represents a range of page frames the contents of which
592  *      should not be saved during the suspend.
593  */
594
595 struct nosave_region {
596         struct list_head list;
597         unsigned long start_pfn;
598         unsigned long end_pfn;
599 };
600
601 static LIST_HEAD(nosave_regions);
602
603 /**
604  *      register_nosave_region - register a range of page frames the contents
605  *      of which should not be saved during the suspend (to be used in the early
606  *      initialization code)
607  */
608
609 void __init
610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
611                          int use_kmalloc)
612 {
613         struct nosave_region *region;
614
615         if (start_pfn >= end_pfn)
616                 return;
617
618         if (!list_empty(&nosave_regions)) {
619                 /* Try to extend the previous region (they should be sorted) */
620                 region = list_entry(nosave_regions.prev,
621                                         struct nosave_region, list);
622                 if (region->end_pfn == start_pfn) {
623                         region->end_pfn = end_pfn;
624                         goto Report;
625                 }
626         }
627         if (use_kmalloc) {
628                 /* during init, this shouldn't fail */
629                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
630                 BUG_ON(!region);
631         } else
632                 /* This allocation cannot fail */
633                 region = alloc_bootmem_low(sizeof(struct nosave_region));
634         region->start_pfn = start_pfn;
635         region->end_pfn = end_pfn;
636         list_add_tail(&region->list, &nosave_regions);
637  Report:
638         printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
639                 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
640 }
641
642 /*
643  * Set bits in this map correspond to the page frames the contents of which
644  * should not be saved during the suspend.
645  */
646 static struct memory_bitmap *forbidden_pages_map;
647
648 /* Set bits in this map correspond to free page frames. */
649 static struct memory_bitmap *free_pages_map;
650
651 /*
652  * Each page frame allocated for creating the image is marked by setting the
653  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
654  */
655
656 void swsusp_set_page_free(struct page *page)
657 {
658         if (free_pages_map)
659                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
660 }
661
662 static int swsusp_page_is_free(struct page *page)
663 {
664         return free_pages_map ?
665                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
666 }
667
668 void swsusp_unset_page_free(struct page *page)
669 {
670         if (free_pages_map)
671                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
672 }
673
674 static void swsusp_set_page_forbidden(struct page *page)
675 {
676         if (forbidden_pages_map)
677                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
678 }
679
680 int swsusp_page_is_forbidden(struct page *page)
681 {
682         return forbidden_pages_map ?
683                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
684 }
685
686 static void swsusp_unset_page_forbidden(struct page *page)
687 {
688         if (forbidden_pages_map)
689                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
690 }
691
692 /**
693  *      mark_nosave_pages - set bits corresponding to the page frames the
694  *      contents of which should not be saved in a given bitmap.
695  */
696
697 static void mark_nosave_pages(struct memory_bitmap *bm)
698 {
699         struct nosave_region *region;
700
701         if (list_empty(&nosave_regions))
702                 return;
703
704         list_for_each_entry(region, &nosave_regions, list) {
705                 unsigned long pfn;
706
707                 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
708                                 region->start_pfn << PAGE_SHIFT,
709                                 region->end_pfn << PAGE_SHIFT);
710
711                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
712                         if (pfn_valid(pfn))
713                                 memory_bm_set_bit(bm, pfn);
714         }
715 }
716
717 /**
718  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
719  *      frames that should not be saved and free page frames.  The pointers
720  *      forbidden_pages_map and free_pages_map are only modified if everything
721  *      goes well, because we don't want the bits to be used before both bitmaps
722  *      are set up.
723  */
724
725 int create_basic_memory_bitmaps(void)
726 {
727         struct memory_bitmap *bm1, *bm2;
728         int error = 0;
729
730         BUG_ON(forbidden_pages_map || free_pages_map);
731
732         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
733         if (!bm1)
734                 return -ENOMEM;
735
736         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
737         if (error)
738                 goto Free_first_object;
739
740         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
741         if (!bm2)
742                 goto Free_first_bitmap;
743
744         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
745         if (error)
746                 goto Free_second_object;
747
748         forbidden_pages_map = bm1;
749         free_pages_map = bm2;
750         mark_nosave_pages(forbidden_pages_map);
751
752         pr_debug("PM: Basic memory bitmaps created\n");
753
754         return 0;
755
756  Free_second_object:
757         kfree(bm2);
758  Free_first_bitmap:
759         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
760  Free_first_object:
761         kfree(bm1);
762         return -ENOMEM;
763 }
764
765 /**
766  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
767  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
768  *      so that the bitmaps themselves are not referred to while they are being
769  *      freed.
770  */
771
772 void free_basic_memory_bitmaps(void)
773 {
774         struct memory_bitmap *bm1, *bm2;
775
776         BUG_ON(!(forbidden_pages_map && free_pages_map));
777
778         bm1 = forbidden_pages_map;
779         bm2 = free_pages_map;
780         forbidden_pages_map = NULL;
781         free_pages_map = NULL;
782         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
783         kfree(bm1);
784         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
785         kfree(bm2);
786
787         pr_debug("PM: Basic memory bitmaps freed\n");
788 }
789
790 /**
791  *      snapshot_additional_pages - estimate the number of additional pages
792  *      be needed for setting up the suspend image data structures for given
793  *      zone (usually the returned value is greater than the exact number)
794  */
795
796 unsigned int snapshot_additional_pages(struct zone *zone)
797 {
798         unsigned int res;
799
800         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
801         res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
802         return 2 * res;
803 }
804
805 #ifdef CONFIG_HIGHMEM
806 /**
807  *      count_free_highmem_pages - compute the total number of free highmem
808  *      pages, system-wide.
809  */
810
811 static unsigned int count_free_highmem_pages(void)
812 {
813         struct zone *zone;
814         unsigned int cnt = 0;
815
816         for_each_zone(zone)
817                 if (populated_zone(zone) && is_highmem(zone))
818                         cnt += zone_page_state(zone, NR_FREE_PAGES);
819
820         return cnt;
821 }
822
823 /**
824  *      saveable_highmem_page - Determine whether a highmem page should be
825  *      included in the suspend image.
826  *
827  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
828  *      and it isn't a part of a free chunk of pages.
829  */
830
831 static struct page *saveable_highmem_page(unsigned long pfn)
832 {
833         struct page *page;
834
835         if (!pfn_valid(pfn))
836                 return NULL;
837
838         page = pfn_to_page(pfn);
839
840         BUG_ON(!PageHighMem(page));
841
842         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
843             PageReserved(page))
844                 return NULL;
845
846         return page;
847 }
848
849 /**
850  *      count_highmem_pages - compute the total number of saveable highmem
851  *      pages.
852  */
853
854 unsigned int count_highmem_pages(void)
855 {
856         struct zone *zone;
857         unsigned int n = 0;
858
859         for_each_zone(zone) {
860                 unsigned long pfn, max_zone_pfn;
861
862                 if (!is_highmem(zone))
863                         continue;
864
865                 mark_free_pages(zone);
866                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
867                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
868                         if (saveable_highmem_page(pfn))
869                                 n++;
870         }
871         return n;
872 }
873 #else
874 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
875 #endif /* CONFIG_HIGHMEM */
876
877 /**
878  *      saveable_page - Determine whether a non-highmem page should be included
879  *      in the suspend image.
880  *
881  *      We should save the page if it isn't Nosave, and is not in the range
882  *      of pages statically defined as 'unsaveable', and it isn't a part of
883  *      a free chunk of pages.
884  */
885
886 static struct page *saveable_page(unsigned long pfn)
887 {
888         struct page *page;
889
890         if (!pfn_valid(pfn))
891                 return NULL;
892
893         page = pfn_to_page(pfn);
894
895         BUG_ON(PageHighMem(page));
896
897         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
898                 return NULL;
899
900         if (PageReserved(page)
901             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
902                 return NULL;
903
904         return page;
905 }
906
907 /**
908  *      count_data_pages - compute the total number of saveable non-highmem
909  *      pages.
910  */
911
912 unsigned int count_data_pages(void)
913 {
914         struct zone *zone;
915         unsigned long pfn, max_zone_pfn;
916         unsigned int n = 0;
917
918         for_each_zone(zone) {
919                 if (is_highmem(zone))
920                         continue;
921
922                 mark_free_pages(zone);
923                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
924                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
925                         if(saveable_page(pfn))
926                                 n++;
927         }
928         return n;
929 }
930
931 /* This is needed, because copy_page and memcpy are not usable for copying
932  * task structs.
933  */
934 static inline void do_copy_page(long *dst, long *src)
935 {
936         int n;
937
938         for (n = PAGE_SIZE / sizeof(long); n; n--)
939                 *dst++ = *src++;
940 }
941
942
943 /**
944  *      safe_copy_page - check if the page we are going to copy is marked as
945  *              present in the kernel page tables (this always is the case if
946  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
947  *              kernel_page_present() always returns 'true').
948  */
949 static void safe_copy_page(void *dst, struct page *s_page)
950 {
951         if (kernel_page_present(s_page)) {
952                 do_copy_page(dst, page_address(s_page));
953         } else {
954                 kernel_map_pages(s_page, 1, 1);
955                 do_copy_page(dst, page_address(s_page));
956                 kernel_map_pages(s_page, 1, 0);
957         }
958 }
959
960
961 #ifdef CONFIG_HIGHMEM
962 static inline struct page *
963 page_is_saveable(struct zone *zone, unsigned long pfn)
964 {
965         return is_highmem(zone) ?
966                         saveable_highmem_page(pfn) : saveable_page(pfn);
967 }
968
969 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
970 {
971         struct page *s_page, *d_page;
972         void *src, *dst;
973
974         s_page = pfn_to_page(src_pfn);
975         d_page = pfn_to_page(dst_pfn);
976         if (PageHighMem(s_page)) {
977                 src = kmap_atomic(s_page, KM_USER0);
978                 dst = kmap_atomic(d_page, KM_USER1);
979                 do_copy_page(dst, src);
980                 kunmap_atomic(src, KM_USER0);
981                 kunmap_atomic(dst, KM_USER1);
982         } else {
983                 if (PageHighMem(d_page)) {
984                         /* Page pointed to by src may contain some kernel
985                          * data modified by kmap_atomic()
986                          */
987                         safe_copy_page(buffer, s_page);
988                         dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
989                         memcpy(dst, buffer, PAGE_SIZE);
990                         kunmap_atomic(dst, KM_USER0);
991                 } else {
992                         safe_copy_page(page_address(d_page), s_page);
993                 }
994         }
995 }
996 #else
997 #define page_is_saveable(zone, pfn)     saveable_page(pfn)
998
999 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1000 {
1001         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1002                                 pfn_to_page(src_pfn));
1003 }
1004 #endif /* CONFIG_HIGHMEM */
1005
1006 static void
1007 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1008 {
1009         struct zone *zone;
1010         unsigned long pfn;
1011
1012         for_each_zone(zone) {
1013                 unsigned long max_zone_pfn;
1014
1015                 mark_free_pages(zone);
1016                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1017                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1018                         if (page_is_saveable(zone, pfn))
1019                                 memory_bm_set_bit(orig_bm, pfn);
1020         }
1021         memory_bm_position_reset(orig_bm);
1022         memory_bm_position_reset(copy_bm);
1023         for(;;) {
1024                 pfn = memory_bm_next_pfn(orig_bm);
1025                 if (unlikely(pfn == BM_END_OF_MAP))
1026                         break;
1027                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1028         }
1029 }
1030
1031 /* Total number of image pages */
1032 static unsigned int nr_copy_pages;
1033 /* Number of pages needed for saving the original pfns of the image pages */
1034 static unsigned int nr_meta_pages;
1035
1036 /**
1037  *      swsusp_free - free pages allocated for the suspend.
1038  *
1039  *      Suspend pages are alocated before the atomic copy is made, so we
1040  *      need to release them after the resume.
1041  */
1042
1043 void swsusp_free(void)
1044 {
1045         struct zone *zone;
1046         unsigned long pfn, max_zone_pfn;
1047
1048         for_each_zone(zone) {
1049                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1050                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1051                         if (pfn_valid(pfn)) {
1052                                 struct page *page = pfn_to_page(pfn);
1053
1054                                 if (swsusp_page_is_forbidden(page) &&
1055                                     swsusp_page_is_free(page)) {
1056                                         swsusp_unset_page_forbidden(page);
1057                                         swsusp_unset_page_free(page);
1058                                         __free_page(page);
1059                                 }
1060                         }
1061         }
1062         nr_copy_pages = 0;
1063         nr_meta_pages = 0;
1064         restore_pblist = NULL;
1065         buffer = NULL;
1066 }
1067
1068 #ifdef CONFIG_HIGHMEM
1069 /**
1070   *     count_pages_for_highmem - compute the number of non-highmem pages
1071   *     that will be necessary for creating copies of highmem pages.
1072   */
1073
1074 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1075 {
1076         unsigned int free_highmem = count_free_highmem_pages();
1077
1078         if (free_highmem >= nr_highmem)
1079                 nr_highmem = 0;
1080         else
1081                 nr_highmem -= free_highmem;
1082
1083         return nr_highmem;
1084 }
1085 #else
1086 static unsigned int
1087 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1088 #endif /* CONFIG_HIGHMEM */
1089
1090 /**
1091  *      enough_free_mem - Make sure we have enough free memory for the
1092  *      snapshot image.
1093  */
1094
1095 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1096 {
1097         struct zone *zone;
1098         unsigned int free = 0, meta = 0;
1099
1100         for_each_zone(zone) {
1101                 meta += snapshot_additional_pages(zone);
1102                 if (!is_highmem(zone))
1103                         free += zone_page_state(zone, NR_FREE_PAGES);
1104         }
1105
1106         nr_pages += count_pages_for_highmem(nr_highmem);
1107         pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1108                 nr_pages, PAGES_FOR_IO, meta, free);
1109
1110         return free > nr_pages + PAGES_FOR_IO + meta;
1111 }
1112
1113 #ifdef CONFIG_HIGHMEM
1114 /**
1115  *      get_highmem_buffer - if there are some highmem pages in the suspend
1116  *      image, we may need the buffer to copy them and/or load their data.
1117  */
1118
1119 static inline int get_highmem_buffer(int safe_needed)
1120 {
1121         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1122         return buffer ? 0 : -ENOMEM;
1123 }
1124
1125 /**
1126  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1127  *      Try to allocate as many pages as needed, but if the number of free
1128  *      highmem pages is lesser than that, allocate them all.
1129  */
1130
1131 static inline unsigned int
1132 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1133 {
1134         unsigned int to_alloc = count_free_highmem_pages();
1135
1136         if (to_alloc > nr_highmem)
1137                 to_alloc = nr_highmem;
1138
1139         nr_highmem -= to_alloc;
1140         while (to_alloc-- > 0) {
1141                 struct page *page;
1142
1143                 page = alloc_image_page(__GFP_HIGHMEM);
1144                 memory_bm_set_bit(bm, page_to_pfn(page));
1145         }
1146         return nr_highmem;
1147 }
1148 #else
1149 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1150
1151 static inline unsigned int
1152 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1153 #endif /* CONFIG_HIGHMEM */
1154
1155 /**
1156  *      swsusp_alloc - allocate memory for the suspend image
1157  *
1158  *      We first try to allocate as many highmem pages as there are
1159  *      saveable highmem pages in the system.  If that fails, we allocate
1160  *      non-highmem pages for the copies of the remaining highmem ones.
1161  *
1162  *      In this approach it is likely that the copies of highmem pages will
1163  *      also be located in the high memory, because of the way in which
1164  *      copy_data_pages() works.
1165  */
1166
1167 static int
1168 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1169                 unsigned int nr_pages, unsigned int nr_highmem)
1170 {
1171         int error;
1172
1173         error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1174         if (error)
1175                 goto Free;
1176
1177         error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1178         if (error)
1179                 goto Free;
1180
1181         if (nr_highmem > 0) {
1182                 error = get_highmem_buffer(PG_ANY);
1183                 if (error)
1184                         goto Free;
1185
1186                 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1187         }
1188         while (nr_pages-- > 0) {
1189                 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1190
1191                 if (!page)
1192                         goto Free;
1193
1194                 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1195         }
1196         return 0;
1197
1198  Free:
1199         swsusp_free();
1200         return -ENOMEM;
1201 }
1202
1203 /* Memory bitmap used for marking saveable pages (during suspend) or the
1204  * suspend image pages (during resume)
1205  */
1206 static struct memory_bitmap orig_bm;
1207 /* Memory bitmap used on suspend for marking allocated pages that will contain
1208  * the copies of saveable pages.  During resume it is initially used for
1209  * marking the suspend image pages, but then its set bits are duplicated in
1210  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1211  * used for marking "safe" highmem pages, but it has to be reinitialized for
1212  * this purpose.
1213  */
1214 static struct memory_bitmap copy_bm;
1215
1216 asmlinkage int swsusp_save(void)
1217 {
1218         unsigned int nr_pages, nr_highmem;
1219
1220         printk(KERN_INFO "PM: Creating hibernation image: \n");
1221
1222         drain_local_pages(NULL);
1223         nr_pages = count_data_pages();
1224         nr_highmem = count_highmem_pages();
1225         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1226
1227         if (!enough_free_mem(nr_pages, nr_highmem)) {
1228                 printk(KERN_ERR "PM: Not enough free memory\n");
1229                 return -ENOMEM;
1230         }
1231
1232         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1233                 printk(KERN_ERR "PM: Memory allocation failed\n");
1234                 return -ENOMEM;
1235         }
1236
1237         /* During allocating of suspend pagedir, new cold pages may appear.
1238          * Kill them.
1239          */
1240         drain_local_pages(NULL);
1241         copy_data_pages(&copy_bm, &orig_bm);
1242
1243         /*
1244          * End of critical section. From now on, we can write to memory,
1245          * but we should not touch disk. This specially means we must _not_
1246          * touch swap space! Except we must write out our image of course.
1247          */
1248
1249         nr_pages += nr_highmem;
1250         nr_copy_pages = nr_pages;
1251         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1252
1253         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1254                 nr_pages);
1255
1256         return 0;
1257 }
1258
1259 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1260 static int init_header_complete(struct swsusp_info *info)
1261 {
1262         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1263         info->version_code = LINUX_VERSION_CODE;
1264         return 0;
1265 }
1266
1267 static char *check_image_kernel(struct swsusp_info *info)
1268 {
1269         if (info->version_code != LINUX_VERSION_CODE)
1270                 return "kernel version";
1271         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1272                 return "system type";
1273         if (strcmp(info->uts.release,init_utsname()->release))
1274                 return "kernel release";
1275         if (strcmp(info->uts.version,init_utsname()->version))
1276                 return "version";
1277         if (strcmp(info->uts.machine,init_utsname()->machine))
1278                 return "machine";
1279         return NULL;
1280 }
1281 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1282
1283 unsigned long snapshot_get_image_size(void)
1284 {
1285         return nr_copy_pages + nr_meta_pages + 1;
1286 }
1287
1288 static int init_header(struct swsusp_info *info)
1289 {
1290         memset(info, 0, sizeof(struct swsusp_info));
1291         info->num_physpages = num_physpages;
1292         info->image_pages = nr_copy_pages;
1293         info->pages = snapshot_get_image_size();
1294         info->size = info->pages;
1295         info->size <<= PAGE_SHIFT;
1296         return init_header_complete(info);
1297 }
1298
1299 /**
1300  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1301  *      are stored in the array @buf[] (1 page at a time)
1302  */
1303
1304 static inline void
1305 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1306 {
1307         int j;
1308
1309         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1310                 buf[j] = memory_bm_next_pfn(bm);
1311                 if (unlikely(buf[j] == BM_END_OF_MAP))
1312                         break;
1313         }
1314 }
1315
1316 /**
1317  *      snapshot_read_next - used for reading the system memory snapshot.
1318  *
1319  *      On the first call to it @handle should point to a zeroed
1320  *      snapshot_handle structure.  The structure gets updated and a pointer
1321  *      to it should be passed to this function every next time.
1322  *
1323  *      The @count parameter should contain the number of bytes the caller
1324  *      wants to read from the snapshot.  It must not be zero.
1325  *
1326  *      On success the function returns a positive number.  Then, the caller
1327  *      is allowed to read up to the returned number of bytes from the memory
1328  *      location computed by the data_of() macro.  The number returned
1329  *      may be smaller than @count, but this only happens if the read would
1330  *      cross a page boundary otherwise.
1331  *
1332  *      The function returns 0 to indicate the end of data stream condition,
1333  *      and a negative number is returned on error.  In such cases the
1334  *      structure pointed to by @handle is not updated and should not be used
1335  *      any more.
1336  */
1337
1338 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1339 {
1340         if (handle->cur > nr_meta_pages + nr_copy_pages)
1341                 return 0;
1342
1343         if (!buffer) {
1344                 /* This makes the buffer be freed by swsusp_free() */
1345                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1346                 if (!buffer)
1347                         return -ENOMEM;
1348         }
1349         if (!handle->offset) {
1350                 int error;
1351
1352                 error = init_header((struct swsusp_info *)buffer);
1353                 if (error)
1354                         return error;
1355                 handle->buffer = buffer;
1356                 memory_bm_position_reset(&orig_bm);
1357                 memory_bm_position_reset(&copy_bm);
1358         }
1359         if (handle->prev < handle->cur) {
1360                 if (handle->cur <= nr_meta_pages) {
1361                         memset(buffer, 0, PAGE_SIZE);
1362                         pack_pfns(buffer, &orig_bm);
1363                 } else {
1364                         struct page *page;
1365
1366                         page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1367                         if (PageHighMem(page)) {
1368                                 /* Highmem pages are copied to the buffer,
1369                                  * because we can't return with a kmapped
1370                                  * highmem page (we may not be called again).
1371                                  */
1372                                 void *kaddr;
1373
1374                                 kaddr = kmap_atomic(page, KM_USER0);
1375                                 memcpy(buffer, kaddr, PAGE_SIZE);
1376                                 kunmap_atomic(kaddr, KM_USER0);
1377                                 handle->buffer = buffer;
1378                         } else {
1379                                 handle->buffer = page_address(page);
1380                         }
1381                 }
1382                 handle->prev = handle->cur;
1383         }
1384         handle->buf_offset = handle->cur_offset;
1385         if (handle->cur_offset + count >= PAGE_SIZE) {
1386                 count = PAGE_SIZE - handle->cur_offset;
1387                 handle->cur_offset = 0;
1388                 handle->cur++;
1389         } else {
1390                 handle->cur_offset += count;
1391         }
1392         handle->offset += count;
1393         return count;
1394 }
1395
1396 /**
1397  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1398  *      the image during resume, because they conflict with the pages that
1399  *      had been used before suspend
1400  */
1401
1402 static int mark_unsafe_pages(struct memory_bitmap *bm)
1403 {
1404         struct zone *zone;
1405         unsigned long pfn, max_zone_pfn;
1406
1407         /* Clear page flags */
1408         for_each_zone(zone) {
1409                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1410                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1411                         if (pfn_valid(pfn))
1412                                 swsusp_unset_page_free(pfn_to_page(pfn));
1413         }
1414
1415         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1416         memory_bm_position_reset(bm);
1417         do {
1418                 pfn = memory_bm_next_pfn(bm);
1419                 if (likely(pfn != BM_END_OF_MAP)) {
1420                         if (likely(pfn_valid(pfn)))
1421                                 swsusp_set_page_free(pfn_to_page(pfn));
1422                         else
1423                                 return -EFAULT;
1424                 }
1425         } while (pfn != BM_END_OF_MAP);
1426
1427         allocated_unsafe_pages = 0;
1428
1429         return 0;
1430 }
1431
1432 static void
1433 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1434 {
1435         unsigned long pfn;
1436
1437         memory_bm_position_reset(src);
1438         pfn = memory_bm_next_pfn(src);
1439         while (pfn != BM_END_OF_MAP) {
1440                 memory_bm_set_bit(dst, pfn);
1441                 pfn = memory_bm_next_pfn(src);
1442         }
1443 }
1444
1445 static int check_header(struct swsusp_info *info)
1446 {
1447         char *reason;
1448
1449         reason = check_image_kernel(info);
1450         if (!reason && info->num_physpages != num_physpages)
1451                 reason = "memory size";
1452         if (reason) {
1453                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1454                 return -EPERM;
1455         }
1456         return 0;
1457 }
1458
1459 /**
1460  *      load header - check the image header and copy data from it
1461  */
1462
1463 static int
1464 load_header(struct swsusp_info *info)
1465 {
1466         int error;
1467
1468         restore_pblist = NULL;
1469         error = check_header(info);
1470         if (!error) {
1471                 nr_copy_pages = info->image_pages;
1472                 nr_meta_pages = info->pages - info->image_pages - 1;
1473         }
1474         return error;
1475 }
1476
1477 /**
1478  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1479  *      the corresponding bit in the memory bitmap @bm
1480  */
1481
1482 static inline void
1483 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1484 {
1485         int j;
1486
1487         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1488                 if (unlikely(buf[j] == BM_END_OF_MAP))
1489                         break;
1490
1491                 memory_bm_set_bit(bm, buf[j]);
1492         }
1493 }
1494
1495 /* List of "safe" pages that may be used to store data loaded from the suspend
1496  * image
1497  */
1498 static struct linked_page *safe_pages_list;
1499
1500 #ifdef CONFIG_HIGHMEM
1501 /* struct highmem_pbe is used for creating the list of highmem pages that
1502  * should be restored atomically during the resume from disk, because the page
1503  * frames they have occupied before the suspend are in use.
1504  */
1505 struct highmem_pbe {
1506         struct page *copy_page; /* data is here now */
1507         struct page *orig_page; /* data was here before the suspend */
1508         struct highmem_pbe *next;
1509 };
1510
1511 /* List of highmem PBEs needed for restoring the highmem pages that were
1512  * allocated before the suspend and included in the suspend image, but have
1513  * also been allocated by the "resume" kernel, so their contents cannot be
1514  * written directly to their "original" page frames.
1515  */
1516 static struct highmem_pbe *highmem_pblist;
1517
1518 /**
1519  *      count_highmem_image_pages - compute the number of highmem pages in the
1520  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1521  *      image pages are assumed to be set.
1522  */
1523
1524 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1525 {
1526         unsigned long pfn;
1527         unsigned int cnt = 0;
1528
1529         memory_bm_position_reset(bm);
1530         pfn = memory_bm_next_pfn(bm);
1531         while (pfn != BM_END_OF_MAP) {
1532                 if (PageHighMem(pfn_to_page(pfn)))
1533                         cnt++;
1534
1535                 pfn = memory_bm_next_pfn(bm);
1536         }
1537         return cnt;
1538 }
1539
1540 /**
1541  *      prepare_highmem_image - try to allocate as many highmem pages as
1542  *      there are highmem image pages (@nr_highmem_p points to the variable
1543  *      containing the number of highmem image pages).  The pages that are
1544  *      "safe" (ie. will not be overwritten when the suspend image is
1545  *      restored) have the corresponding bits set in @bm (it must be
1546  *      unitialized).
1547  *
1548  *      NOTE: This function should not be called if there are no highmem
1549  *      image pages.
1550  */
1551
1552 static unsigned int safe_highmem_pages;
1553
1554 static struct memory_bitmap *safe_highmem_bm;
1555
1556 static int
1557 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1558 {
1559         unsigned int to_alloc;
1560
1561         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1562                 return -ENOMEM;
1563
1564         if (get_highmem_buffer(PG_SAFE))
1565                 return -ENOMEM;
1566
1567         to_alloc = count_free_highmem_pages();
1568         if (to_alloc > *nr_highmem_p)
1569                 to_alloc = *nr_highmem_p;
1570         else
1571                 *nr_highmem_p = to_alloc;
1572
1573         safe_highmem_pages = 0;
1574         while (to_alloc-- > 0) {
1575                 struct page *page;
1576
1577                 page = alloc_page(__GFP_HIGHMEM);
1578                 if (!swsusp_page_is_free(page)) {
1579                         /* The page is "safe", set its bit the bitmap */
1580                         memory_bm_set_bit(bm, page_to_pfn(page));
1581                         safe_highmem_pages++;
1582                 }
1583                 /* Mark the page as allocated */
1584                 swsusp_set_page_forbidden(page);
1585                 swsusp_set_page_free(page);
1586         }
1587         memory_bm_position_reset(bm);
1588         safe_highmem_bm = bm;
1589         return 0;
1590 }
1591
1592 /**
1593  *      get_highmem_page_buffer - for given highmem image page find the buffer
1594  *      that suspend_write_next() should set for its caller to write to.
1595  *
1596  *      If the page is to be saved to its "original" page frame or a copy of
1597  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1598  *      the copy of the page is to be made in normal memory, so the address of
1599  *      the copy is returned.
1600  *
1601  *      If @buffer is returned, the caller of suspend_write_next() will write
1602  *      the page's contents to @buffer, so they will have to be copied to the
1603  *      right location on the next call to suspend_write_next() and it is done
1604  *      with the help of copy_last_highmem_page().  For this purpose, if
1605  *      @buffer is returned, @last_highmem page is set to the page to which
1606  *      the data will have to be copied from @buffer.
1607  */
1608
1609 static struct page *last_highmem_page;
1610
1611 static void *
1612 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1613 {
1614         struct highmem_pbe *pbe;
1615         void *kaddr;
1616
1617         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1618                 /* We have allocated the "original" page frame and we can
1619                  * use it directly to store the loaded page.
1620                  */
1621                 last_highmem_page = page;
1622                 return buffer;
1623         }
1624         /* The "original" page frame has not been allocated and we have to
1625          * use a "safe" page frame to store the loaded page.
1626          */
1627         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1628         if (!pbe) {
1629                 swsusp_free();
1630                 return NULL;
1631         }
1632         pbe->orig_page = page;
1633         if (safe_highmem_pages > 0) {
1634                 struct page *tmp;
1635
1636                 /* Copy of the page will be stored in high memory */
1637                 kaddr = buffer;
1638                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1639                 safe_highmem_pages--;
1640                 last_highmem_page = tmp;
1641                 pbe->copy_page = tmp;
1642         } else {
1643                 /* Copy of the page will be stored in normal memory */
1644                 kaddr = safe_pages_list;
1645                 safe_pages_list = safe_pages_list->next;
1646                 pbe->copy_page = virt_to_page(kaddr);
1647         }
1648         pbe->next = highmem_pblist;
1649         highmem_pblist = pbe;
1650         return kaddr;
1651 }
1652
1653 /**
1654  *      copy_last_highmem_page - copy the contents of a highmem image from
1655  *      @buffer, where the caller of snapshot_write_next() has place them,
1656  *      to the right location represented by @last_highmem_page .
1657  */
1658
1659 static void copy_last_highmem_page(void)
1660 {
1661         if (last_highmem_page) {
1662                 void *dst;
1663
1664                 dst = kmap_atomic(last_highmem_page, KM_USER0);
1665                 memcpy(dst, buffer, PAGE_SIZE);
1666                 kunmap_atomic(dst, KM_USER0);
1667                 last_highmem_page = NULL;
1668         }
1669 }
1670
1671 static inline int last_highmem_page_copied(void)
1672 {
1673         return !last_highmem_page;
1674 }
1675
1676 static inline void free_highmem_data(void)
1677 {
1678         if (safe_highmem_bm)
1679                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1680
1681         if (buffer)
1682                 free_image_page(buffer, PG_UNSAFE_CLEAR);
1683 }
1684 #else
1685 static inline int get_safe_write_buffer(void) { return 0; }
1686
1687 static unsigned int
1688 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1689
1690 static inline int
1691 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1692 {
1693         return 0;
1694 }
1695
1696 static inline void *
1697 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1698 {
1699         return NULL;
1700 }
1701
1702 static inline void copy_last_highmem_page(void) {}
1703 static inline int last_highmem_page_copied(void) { return 1; }
1704 static inline void free_highmem_data(void) {}
1705 #endif /* CONFIG_HIGHMEM */
1706
1707 /**
1708  *      prepare_image - use the memory bitmap @bm to mark the pages that will
1709  *      be overwritten in the process of restoring the system memory state
1710  *      from the suspend image ("unsafe" pages) and allocate memory for the
1711  *      image.
1712  *
1713  *      The idea is to allocate a new memory bitmap first and then allocate
1714  *      as many pages as needed for the image data, but not to assign these
1715  *      pages to specific tasks initially.  Instead, we just mark them as
1716  *      allocated and create a lists of "safe" pages that will be used
1717  *      later.  On systems with high memory a list of "safe" highmem pages is
1718  *      also created.
1719  */
1720
1721 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1722
1723 static int
1724 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1725 {
1726         unsigned int nr_pages, nr_highmem;
1727         struct linked_page *sp_list, *lp;
1728         int error;
1729
1730         /* If there is no highmem, the buffer will not be necessary */
1731         free_image_page(buffer, PG_UNSAFE_CLEAR);
1732         buffer = NULL;
1733
1734         nr_highmem = count_highmem_image_pages(bm);
1735         error = mark_unsafe_pages(bm);
1736         if (error)
1737                 goto Free;
1738
1739         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1740         if (error)
1741                 goto Free;
1742
1743         duplicate_memory_bitmap(new_bm, bm);
1744         memory_bm_free(bm, PG_UNSAFE_KEEP);
1745         if (nr_highmem > 0) {
1746                 error = prepare_highmem_image(bm, &nr_highmem);
1747                 if (error)
1748                         goto Free;
1749         }
1750         /* Reserve some safe pages for potential later use.
1751          *
1752          * NOTE: This way we make sure there will be enough safe pages for the
1753          * chain_alloc() in get_buffer().  It is a bit wasteful, but
1754          * nr_copy_pages cannot be greater than 50% of the memory anyway.
1755          */
1756         sp_list = NULL;
1757         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1758         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1759         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1760         while (nr_pages > 0) {
1761                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1762                 if (!lp) {
1763                         error = -ENOMEM;
1764                         goto Free;
1765                 }
1766                 lp->next = sp_list;
1767                 sp_list = lp;
1768                 nr_pages--;
1769         }
1770         /* Preallocate memory for the image */
1771         safe_pages_list = NULL;
1772         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1773         while (nr_pages > 0) {
1774                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1775                 if (!lp) {
1776                         error = -ENOMEM;
1777                         goto Free;
1778                 }
1779                 if (!swsusp_page_is_free(virt_to_page(lp))) {
1780                         /* The page is "safe", add it to the list */
1781                         lp->next = safe_pages_list;
1782                         safe_pages_list = lp;
1783                 }
1784                 /* Mark the page as allocated */
1785                 swsusp_set_page_forbidden(virt_to_page(lp));
1786                 swsusp_set_page_free(virt_to_page(lp));
1787                 nr_pages--;
1788         }
1789         /* Free the reserved safe pages so that chain_alloc() can use them */
1790         while (sp_list) {
1791                 lp = sp_list->next;
1792                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1793                 sp_list = lp;
1794         }
1795         return 0;
1796
1797  Free:
1798         swsusp_free();
1799         return error;
1800 }
1801
1802 /**
1803  *      get_buffer - compute the address that snapshot_write_next() should
1804  *      set for its caller to write to.
1805  */
1806
1807 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1808 {
1809         struct pbe *pbe;
1810         struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1811
1812         if (PageHighMem(page))
1813                 return get_highmem_page_buffer(page, ca);
1814
1815         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1816                 /* We have allocated the "original" page frame and we can
1817                  * use it directly to store the loaded page.
1818                  */
1819                 return page_address(page);
1820
1821         /* The "original" page frame has not been allocated and we have to
1822          * use a "safe" page frame to store the loaded page.
1823          */
1824         pbe = chain_alloc(ca, sizeof(struct pbe));
1825         if (!pbe) {
1826                 swsusp_free();
1827                 return NULL;
1828         }
1829         pbe->orig_address = page_address(page);
1830         pbe->address = safe_pages_list;
1831         safe_pages_list = safe_pages_list->next;
1832         pbe->next = restore_pblist;
1833         restore_pblist = pbe;
1834         return pbe->address;
1835 }
1836
1837 /**
1838  *      snapshot_write_next - used for writing the system memory snapshot.
1839  *
1840  *      On the first call to it @handle should point to a zeroed
1841  *      snapshot_handle structure.  The structure gets updated and a pointer
1842  *      to it should be passed to this function every next time.
1843  *
1844  *      The @count parameter should contain the number of bytes the caller
1845  *      wants to write to the image.  It must not be zero.
1846  *
1847  *      On success the function returns a positive number.  Then, the caller
1848  *      is allowed to write up to the returned number of bytes to the memory
1849  *      location computed by the data_of() macro.  The number returned
1850  *      may be smaller than @count, but this only happens if the write would
1851  *      cross a page boundary otherwise.
1852  *
1853  *      The function returns 0 to indicate the "end of file" condition,
1854  *      and a negative number is returned on error.  In such cases the
1855  *      structure pointed to by @handle is not updated and should not be used
1856  *      any more.
1857  */
1858
1859 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1860 {
1861         static struct chain_allocator ca;
1862         int error = 0;
1863
1864         /* Check if we have already loaded the entire image */
1865         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1866                 return 0;
1867
1868         if (handle->offset == 0) {
1869                 if (!buffer)
1870                         /* This makes the buffer be freed by swsusp_free() */
1871                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1872
1873                 if (!buffer)
1874                         return -ENOMEM;
1875
1876                 handle->buffer = buffer;
1877         }
1878         handle->sync_read = 1;
1879         if (handle->prev < handle->cur) {
1880                 if (handle->prev == 0) {
1881                         error = load_header(buffer);
1882                         if (error)
1883                                 return error;
1884
1885                         error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1886                         if (error)
1887                                 return error;
1888
1889                 } else if (handle->prev <= nr_meta_pages) {
1890                         unpack_orig_pfns(buffer, &copy_bm);
1891                         if (handle->prev == nr_meta_pages) {
1892                                 error = prepare_image(&orig_bm, &copy_bm);
1893                                 if (error)
1894                                         return error;
1895
1896                                 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1897                                 memory_bm_position_reset(&orig_bm);
1898                                 restore_pblist = NULL;
1899                                 handle->buffer = get_buffer(&orig_bm, &ca);
1900                                 handle->sync_read = 0;
1901                                 if (!handle->buffer)
1902                                         return -ENOMEM;
1903                         }
1904                 } else {
1905                         copy_last_highmem_page();
1906                         handle->buffer = get_buffer(&orig_bm, &ca);
1907                         if (handle->buffer != buffer)
1908                                 handle->sync_read = 0;
1909                 }
1910                 handle->prev = handle->cur;
1911         }
1912         handle->buf_offset = handle->cur_offset;
1913         if (handle->cur_offset + count >= PAGE_SIZE) {
1914                 count = PAGE_SIZE - handle->cur_offset;
1915                 handle->cur_offset = 0;
1916                 handle->cur++;
1917         } else {
1918                 handle->cur_offset += count;
1919         }
1920         handle->offset += count;
1921         return count;
1922 }
1923
1924 /**
1925  *      snapshot_write_finalize - must be called after the last call to
1926  *      snapshot_write_next() in case the last page in the image happens
1927  *      to be a highmem page and its contents should be stored in the
1928  *      highmem.  Additionally, it releases the memory that will not be
1929  *      used any more.
1930  */
1931
1932 void snapshot_write_finalize(struct snapshot_handle *handle)
1933 {
1934         copy_last_highmem_page();
1935         /* Free only if we have loaded the image entirely */
1936         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1937                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1938                 free_highmem_data();
1939         }
1940 }
1941
1942 int snapshot_image_loaded(struct snapshot_handle *handle)
1943 {
1944         return !(!nr_copy_pages || !last_highmem_page_copied() ||
1945                         handle->cur <= nr_meta_pages + nr_copy_pages);
1946 }
1947
1948 #ifdef CONFIG_HIGHMEM
1949 /* Assumes that @buf is ready and points to a "safe" page */
1950 static inline void
1951 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1952 {
1953         void *kaddr1, *kaddr2;
1954
1955         kaddr1 = kmap_atomic(p1, KM_USER0);
1956         kaddr2 = kmap_atomic(p2, KM_USER1);
1957         memcpy(buf, kaddr1, PAGE_SIZE);
1958         memcpy(kaddr1, kaddr2, PAGE_SIZE);
1959         memcpy(kaddr2, buf, PAGE_SIZE);
1960         kunmap_atomic(kaddr1, KM_USER0);
1961         kunmap_atomic(kaddr2, KM_USER1);
1962 }
1963
1964 /**
1965  *      restore_highmem - for each highmem page that was allocated before
1966  *      the suspend and included in the suspend image, and also has been
1967  *      allocated by the "resume" kernel swap its current (ie. "before
1968  *      resume") contents with the previous (ie. "before suspend") one.
1969  *
1970  *      If the resume eventually fails, we can call this function once
1971  *      again and restore the "before resume" highmem state.
1972  */
1973
1974 int restore_highmem(void)
1975 {
1976         struct highmem_pbe *pbe = highmem_pblist;
1977         void *buf;
1978
1979         if (!pbe)
1980                 return 0;
1981
1982         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1983         if (!buf)
1984                 return -ENOMEM;
1985
1986         while (pbe) {
1987                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1988                 pbe = pbe->next;
1989         }
1990         free_image_page(buf, PG_UNSAFE_CLEAR);
1991         return 0;
1992 }
1993 #endif /* CONFIG_HIGHMEM */