- Update to 2.6.25-rc3.
[linux-flexiantxendom0-3.2.10.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46
47 #include "e1000.h"
48
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name[] = "e1000e";
51 const char e1000e_driver_version[] = DRV_VERSION;
52
53 static const struct e1000_info *e1000_info_tbl[] = {
54         [board_82571]           = &e1000_82571_info,
55         [board_82572]           = &e1000_82572_info,
56         [board_82573]           = &e1000_82573_info,
57         [board_80003es2lan]     = &e1000_es2_info,
58         [board_ich8lan]         = &e1000_ich8_info,
59         [board_ich9lan]         = &e1000_ich9_info,
60 };
61
62 #ifdef DEBUG
63 /**
64  * e1000_get_hw_dev_name - return device name string
65  * used by hardware layer to print debugging information
66  **/
67 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68 {
69         return hw->adapter->netdev->name;
70 }
71 #endif
72
73 /**
74  * e1000_desc_unused - calculate if we have unused descriptors
75  **/
76 static int e1000_desc_unused(struct e1000_ring *ring)
77 {
78         if (ring->next_to_clean > ring->next_to_use)
79                 return ring->next_to_clean - ring->next_to_use - 1;
80
81         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82 }
83
84 /**
85  * e1000_receive_skb - helper function to handle rx indications
86  * @adapter: board private structure
87  * @status: descriptor status field as written by hardware
88  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89  * @skb: pointer to sk_buff to be indicated to stack
90  **/
91 static void e1000_receive_skb(struct e1000_adapter *adapter,
92                               struct net_device *netdev,
93                               struct sk_buff *skb,
94                               u8 status, __le16 vlan)
95 {
96         skb->protocol = eth_type_trans(skb, netdev);
97
98         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100                                          le16_to_cpu(vlan) &
101                                          E1000_RXD_SPC_VLAN_MASK);
102         else
103                 netif_receive_skb(skb);
104
105         netdev->last_rx = jiffies;
106 }
107
108 /**
109  * e1000_rx_checksum - Receive Checksum Offload for 82543
110  * @adapter:     board private structure
111  * @status_err:  receive descriptor status and error fields
112  * @csum:       receive descriptor csum field
113  * @sk_buff:     socket buffer with received data
114  **/
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116                               u32 csum, struct sk_buff *skb)
117 {
118         u16 status = (u16)status_err;
119         u8 errors = (u8)(status_err >> 24);
120         skb->ip_summed = CHECKSUM_NONE;
121
122         /* Ignore Checksum bit is set */
123         if (status & E1000_RXD_STAT_IXSM)
124                 return;
125         /* TCP/UDP checksum error bit is set */
126         if (errors & E1000_RXD_ERR_TCPE) {
127                 /* let the stack verify checksum errors */
128                 adapter->hw_csum_err++;
129                 return;
130         }
131
132         /* TCP/UDP Checksum has not been calculated */
133         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134                 return;
135
136         /* It must be a TCP or UDP packet with a valid checksum */
137         if (status & E1000_RXD_STAT_TCPCS) {
138                 /* TCP checksum is good */
139                 skb->ip_summed = CHECKSUM_UNNECESSARY;
140         } else {
141                 /* IP fragment with UDP payload */
142                 /* Hardware complements the payload checksum, so we undo it
143                  * and then put the value in host order for further stack use.
144                  */
145                 __sum16 sum = (__force __sum16)htons(csum);
146                 skb->csum = csum_unfold(~sum);
147                 skb->ip_summed = CHECKSUM_COMPLETE;
148         }
149         adapter->hw_csum_good++;
150 }
151
152 /**
153  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154  * @adapter: address of board private structure
155  **/
156 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157                                    int cleaned_count)
158 {
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         struct e1000_ring *rx_ring = adapter->rx_ring;
162         struct e1000_rx_desc *rx_desc;
163         struct e1000_buffer *buffer_info;
164         struct sk_buff *skb;
165         unsigned int i;
166         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
167
168         i = rx_ring->next_to_use;
169         buffer_info = &rx_ring->buffer_info[i];
170
171         while (cleaned_count--) {
172                 skb = buffer_info->skb;
173                 if (skb) {
174                         skb_trim(skb, 0);
175                         goto map_skb;
176                 }
177
178                 skb = netdev_alloc_skb(netdev, bufsz);
179                 if (!skb) {
180                         /* Better luck next round */
181                         adapter->alloc_rx_buff_failed++;
182                         break;
183                 }
184
185                 /* Make buffer alignment 2 beyond a 16 byte boundary
186                  * this will result in a 16 byte aligned IP header after
187                  * the 14 byte MAC header is removed
188                  */
189                 skb_reserve(skb, NET_IP_ALIGN);
190
191                 buffer_info->skb = skb;
192 map_skb:
193                 buffer_info->dma = pci_map_single(pdev, skb->data,
194                                                   adapter->rx_buffer_len,
195                                                   PCI_DMA_FROMDEVICE);
196                 if (pci_dma_mapping_error(buffer_info->dma)) {
197                         dev_err(&pdev->dev, "RX DMA map failed\n");
198                         adapter->rx_dma_failed++;
199                         break;
200                 }
201
202                 rx_desc = E1000_RX_DESC(*rx_ring, i);
203                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
204
205                 i++;
206                 if (i == rx_ring->count)
207                         i = 0;
208                 buffer_info = &rx_ring->buffer_info[i];
209         }
210
211         if (rx_ring->next_to_use != i) {
212                 rx_ring->next_to_use = i;
213                 if (i-- == 0)
214                         i = (rx_ring->count - 1);
215
216                 /* Force memory writes to complete before letting h/w
217                  * know there are new descriptors to fetch.  (Only
218                  * applicable for weak-ordered memory model archs,
219                  * such as IA-64). */
220                 wmb();
221                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222         }
223 }
224
225 /**
226  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227  * @adapter: address of board private structure
228  **/
229 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230                                       int cleaned_count)
231 {
232         struct net_device *netdev = adapter->netdev;
233         struct pci_dev *pdev = adapter->pdev;
234         union e1000_rx_desc_packet_split *rx_desc;
235         struct e1000_ring *rx_ring = adapter->rx_ring;
236         struct e1000_buffer *buffer_info;
237         struct e1000_ps_page *ps_page;
238         struct sk_buff *skb;
239         unsigned int i, j;
240
241         i = rx_ring->next_to_use;
242         buffer_info = &rx_ring->buffer_info[i];
243
244         while (cleaned_count--) {
245                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
246
247                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
248                         ps_page = &buffer_info->ps_pages[j];
249                         if (j >= adapter->rx_ps_pages) {
250                                 /* all unused desc entries get hw null ptr */
251                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
252                                 continue;
253                         }
254                         if (!ps_page->page) {
255                                 ps_page->page = alloc_page(GFP_ATOMIC);
256                                 if (!ps_page->page) {
257                                         adapter->alloc_rx_buff_failed++;
258                                         goto no_buffers;
259                                 }
260                                 ps_page->dma = pci_map_page(pdev,
261                                                    ps_page->page,
262                                                    0, PAGE_SIZE,
263                                                    PCI_DMA_FROMDEVICE);
264                                 if (pci_dma_mapping_error(ps_page->dma)) {
265                                         dev_err(&adapter->pdev->dev,
266                                           "RX DMA page map failed\n");
267                                         adapter->rx_dma_failed++;
268                                         goto no_buffers;
269                                 }
270                         }
271                         /*
272                          * Refresh the desc even if buffer_addrs
273                          * didn't change because each write-back
274                          * erases this info.
275                          */
276                         rx_desc->read.buffer_addr[j+1] =
277                              cpu_to_le64(ps_page->dma);
278                 }
279
280                 skb = netdev_alloc_skb(netdev,
281                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
282
283                 if (!skb) {
284                         adapter->alloc_rx_buff_failed++;
285                         break;
286                 }
287
288                 /* Make buffer alignment 2 beyond a 16 byte boundary
289                  * this will result in a 16 byte aligned IP header after
290                  * the 14 byte MAC header is removed
291                  */
292                 skb_reserve(skb, NET_IP_ALIGN);
293
294                 buffer_info->skb = skb;
295                 buffer_info->dma = pci_map_single(pdev, skb->data,
296                                                   adapter->rx_ps_bsize0,
297                                                   PCI_DMA_FROMDEVICE);
298                 if (pci_dma_mapping_error(buffer_info->dma)) {
299                         dev_err(&pdev->dev, "RX DMA map failed\n");
300                         adapter->rx_dma_failed++;
301                         /* cleanup skb */
302                         dev_kfree_skb_any(skb);
303                         buffer_info->skb = NULL;
304                         break;
305                 }
306
307                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
308
309                 i++;
310                 if (i == rx_ring->count)
311                         i = 0;
312                 buffer_info = &rx_ring->buffer_info[i];
313         }
314
315 no_buffers:
316         if (rx_ring->next_to_use != i) {
317                 rx_ring->next_to_use = i;
318
319                 if (!(i--))
320                         i = (rx_ring->count - 1);
321
322                 /* Force memory writes to complete before letting h/w
323                  * know there are new descriptors to fetch.  (Only
324                  * applicable for weak-ordered memory model archs,
325                  * such as IA-64). */
326                 wmb();
327                 /* Hardware increments by 16 bytes, but packet split
328                  * descriptors are 32 bytes...so we increment tail
329                  * twice as much.
330                  */
331                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
332         }
333 }
334
335 /**
336  * e1000_clean_rx_irq - Send received data up the network stack; legacy
337  * @adapter: board private structure
338  *
339  * the return value indicates whether actual cleaning was done, there
340  * is no guarantee that everything was cleaned
341  **/
342 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
343                                int *work_done, int work_to_do)
344 {
345         struct net_device *netdev = adapter->netdev;
346         struct pci_dev *pdev = adapter->pdev;
347         struct e1000_ring *rx_ring = adapter->rx_ring;
348         struct e1000_rx_desc *rx_desc, *next_rxd;
349         struct e1000_buffer *buffer_info, *next_buffer;
350         u32 length;
351         unsigned int i;
352         int cleaned_count = 0;
353         bool cleaned = 0;
354         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
355
356         i = rx_ring->next_to_clean;
357         rx_desc = E1000_RX_DESC(*rx_ring, i);
358         buffer_info = &rx_ring->buffer_info[i];
359
360         while (rx_desc->status & E1000_RXD_STAT_DD) {
361                 struct sk_buff *skb;
362                 u8 status;
363
364                 if (*work_done >= work_to_do)
365                         break;
366                 (*work_done)++;
367
368                 status = rx_desc->status;
369                 skb = buffer_info->skb;
370                 buffer_info->skb = NULL;
371
372                 prefetch(skb->data - NET_IP_ALIGN);
373
374                 i++;
375                 if (i == rx_ring->count)
376                         i = 0;
377                 next_rxd = E1000_RX_DESC(*rx_ring, i);
378                 prefetch(next_rxd);
379
380                 next_buffer = &rx_ring->buffer_info[i];
381
382                 cleaned = 1;
383                 cleaned_count++;
384                 pci_unmap_single(pdev,
385                                  buffer_info->dma,
386                                  adapter->rx_buffer_len,
387                                  PCI_DMA_FROMDEVICE);
388                 buffer_info->dma = 0;
389
390                 length = le16_to_cpu(rx_desc->length);
391
392                 /* !EOP means multiple descriptors were used to store a single
393                  * packet, also make sure the frame isn't just CRC only */
394                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
395                         /* All receives must fit into a single buffer */
396                         ndev_dbg(netdev, "%s: Receive packet consumed "
397                                  "multiple buffers\n", netdev->name);
398                         /* recycle */
399                         buffer_info->skb = skb;
400                         goto next_desc;
401                 }
402
403                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
404                         /* recycle */
405                         buffer_info->skb = skb;
406                         goto next_desc;
407                 }
408
409                 total_rx_bytes += length;
410                 total_rx_packets++;
411
412                 /* code added for copybreak, this should improve
413                  * performance for small packets with large amounts
414                  * of reassembly being done in the stack */
415                 if (length < copybreak) {
416                         struct sk_buff *new_skb =
417                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
418                         if (new_skb) {
419                                 skb_reserve(new_skb, NET_IP_ALIGN);
420                                 memcpy(new_skb->data - NET_IP_ALIGN,
421                                        skb->data - NET_IP_ALIGN,
422                                        length + NET_IP_ALIGN);
423                                 /* save the skb in buffer_info as good */
424                                 buffer_info->skb = skb;
425                                 skb = new_skb;
426                         }
427                         /* else just continue with the old one */
428                 }
429                 /* end copybreak code */
430                 skb_put(skb, length);
431
432                 /* Receive Checksum Offload */
433                 e1000_rx_checksum(adapter,
434                                   (u32)(status) |
435                                   ((u32)(rx_desc->errors) << 24),
436                                   le16_to_cpu(rx_desc->csum), skb);
437
438                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
439
440 next_desc:
441                 rx_desc->status = 0;
442
443                 /* return some buffers to hardware, one at a time is too slow */
444                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
445                         adapter->alloc_rx_buf(adapter, cleaned_count);
446                         cleaned_count = 0;
447                 }
448
449                 /* use prefetched values */
450                 rx_desc = next_rxd;
451                 buffer_info = next_buffer;
452         }
453         rx_ring->next_to_clean = i;
454
455         cleaned_count = e1000_desc_unused(rx_ring);
456         if (cleaned_count)
457                 adapter->alloc_rx_buf(adapter, cleaned_count);
458
459         adapter->total_rx_packets += total_rx_packets;
460         adapter->total_rx_bytes += total_rx_bytes;
461         adapter->net_stats.rx_packets += total_rx_packets;
462         adapter->net_stats.rx_bytes += total_rx_bytes;
463         return cleaned;
464 }
465
466 static void e1000_put_txbuf(struct e1000_adapter *adapter,
467                              struct e1000_buffer *buffer_info)
468 {
469         if (buffer_info->dma) {
470                 pci_unmap_page(adapter->pdev, buffer_info->dma,
471                                buffer_info->length, PCI_DMA_TODEVICE);
472                 buffer_info->dma = 0;
473         }
474         if (buffer_info->skb) {
475                 dev_kfree_skb_any(buffer_info->skb);
476                 buffer_info->skb = NULL;
477         }
478 }
479
480 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
481 {
482         struct e1000_ring *tx_ring = adapter->tx_ring;
483         unsigned int i = tx_ring->next_to_clean;
484         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
485         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
486         struct net_device *netdev = adapter->netdev;
487
488         /* detected Tx unit hang */
489         ndev_err(netdev,
490                  "Detected Tx Unit Hang:\n"
491                  "  TDH                  <%x>\n"
492                  "  TDT                  <%x>\n"
493                  "  next_to_use          <%x>\n"
494                  "  next_to_clean        <%x>\n"
495                  "buffer_info[next_to_clean]:\n"
496                  "  time_stamp           <%lx>\n"
497                  "  next_to_watch        <%x>\n"
498                  "  jiffies              <%lx>\n"
499                  "  next_to_watch.status <%x>\n",
500                  readl(adapter->hw.hw_addr + tx_ring->head),
501                  readl(adapter->hw.hw_addr + tx_ring->tail),
502                  tx_ring->next_to_use,
503                  tx_ring->next_to_clean,
504                  tx_ring->buffer_info[eop].time_stamp,
505                  eop,
506                  jiffies,
507                  eop_desc->upper.fields.status);
508 }
509
510 /**
511  * e1000_clean_tx_irq - Reclaim resources after transmit completes
512  * @adapter: board private structure
513  *
514  * the return value indicates whether actual cleaning was done, there
515  * is no guarantee that everything was cleaned
516  **/
517 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
518 {
519         struct net_device *netdev = adapter->netdev;
520         struct e1000_hw *hw = &adapter->hw;
521         struct e1000_ring *tx_ring = adapter->tx_ring;
522         struct e1000_tx_desc *tx_desc, *eop_desc;
523         struct e1000_buffer *buffer_info;
524         unsigned int i, eop;
525         unsigned int count = 0;
526         bool cleaned = 0;
527         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
528
529         i = tx_ring->next_to_clean;
530         eop = tx_ring->buffer_info[i].next_to_watch;
531         eop_desc = E1000_TX_DESC(*tx_ring, eop);
532
533         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
534                 for (cleaned = 0; !cleaned; ) {
535                         tx_desc = E1000_TX_DESC(*tx_ring, i);
536                         buffer_info = &tx_ring->buffer_info[i];
537                         cleaned = (i == eop);
538
539                         if (cleaned) {
540                                 struct sk_buff *skb = buffer_info->skb;
541                                 unsigned int segs, bytecount;
542                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
543                                 /* multiply data chunks by size of headers */
544                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
545                                             skb->len;
546                                 total_tx_packets += segs;
547                                 total_tx_bytes += bytecount;
548                         }
549
550                         e1000_put_txbuf(adapter, buffer_info);
551                         tx_desc->upper.data = 0;
552
553                         i++;
554                         if (i == tx_ring->count)
555                                 i = 0;
556                 }
557
558                 eop = tx_ring->buffer_info[i].next_to_watch;
559                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
560 #define E1000_TX_WEIGHT 64
561                 /* weight of a sort for tx, to avoid endless transmit cleanup */
562                 if (count++ == E1000_TX_WEIGHT)
563                         break;
564         }
565
566         tx_ring->next_to_clean = i;
567
568 #define TX_WAKE_THRESHOLD 32
569         if (cleaned && netif_carrier_ok(netdev) &&
570                      e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
571                 /* Make sure that anybody stopping the queue after this
572                  * sees the new next_to_clean.
573                  */
574                 smp_mb();
575
576                 if (netif_queue_stopped(netdev) &&
577                     !(test_bit(__E1000_DOWN, &adapter->state))) {
578                         netif_wake_queue(netdev);
579                         ++adapter->restart_queue;
580                 }
581         }
582
583         if (adapter->detect_tx_hung) {
584                 /* Detect a transmit hang in hardware, this serializes the
585                  * check with the clearing of time_stamp and movement of i */
586                 adapter->detect_tx_hung = 0;
587                 if (tx_ring->buffer_info[eop].dma &&
588                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
589                                + (adapter->tx_timeout_factor * HZ))
590                     && !(er32(STATUS) &
591                          E1000_STATUS_TXOFF)) {
592                         e1000_print_tx_hang(adapter);
593                         netif_stop_queue(netdev);
594                 }
595         }
596         adapter->total_tx_bytes += total_tx_bytes;
597         adapter->total_tx_packets += total_tx_packets;
598         adapter->net_stats.tx_packets += total_tx_packets;
599         adapter->net_stats.tx_bytes += total_tx_bytes;
600         return cleaned;
601 }
602
603 /**
604  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
605  * @adapter: board private structure
606  *
607  * the return value indicates whether actual cleaning was done, there
608  * is no guarantee that everything was cleaned
609  **/
610 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
611                                   int *work_done, int work_to_do)
612 {
613         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
614         struct net_device *netdev = adapter->netdev;
615         struct pci_dev *pdev = adapter->pdev;
616         struct e1000_ring *rx_ring = adapter->rx_ring;
617         struct e1000_buffer *buffer_info, *next_buffer;
618         struct e1000_ps_page *ps_page;
619         struct sk_buff *skb;
620         unsigned int i, j;
621         u32 length, staterr;
622         int cleaned_count = 0;
623         bool cleaned = 0;
624         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
625
626         i = rx_ring->next_to_clean;
627         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
628         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
629         buffer_info = &rx_ring->buffer_info[i];
630
631         while (staterr & E1000_RXD_STAT_DD) {
632                 if (*work_done >= work_to_do)
633                         break;
634                 (*work_done)++;
635                 skb = buffer_info->skb;
636
637                 /* in the packet split case this is header only */
638                 prefetch(skb->data - NET_IP_ALIGN);
639
640                 i++;
641                 if (i == rx_ring->count)
642                         i = 0;
643                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
644                 prefetch(next_rxd);
645
646                 next_buffer = &rx_ring->buffer_info[i];
647
648                 cleaned = 1;
649                 cleaned_count++;
650                 pci_unmap_single(pdev, buffer_info->dma,
651                                  adapter->rx_ps_bsize0,
652                                  PCI_DMA_FROMDEVICE);
653                 buffer_info->dma = 0;
654
655                 if (!(staterr & E1000_RXD_STAT_EOP)) {
656                         ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
657                                  "up the full packet\n", netdev->name);
658                         dev_kfree_skb_irq(skb);
659                         goto next_desc;
660                 }
661
662                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
663                         dev_kfree_skb_irq(skb);
664                         goto next_desc;
665                 }
666
667                 length = le16_to_cpu(rx_desc->wb.middle.length0);
668
669                 if (!length) {
670                         ndev_dbg(netdev, "%s: Last part of the packet spanning"
671                                  " multiple descriptors\n", netdev->name);
672                         dev_kfree_skb_irq(skb);
673                         goto next_desc;
674                 }
675
676                 /* Good Receive */
677                 skb_put(skb, length);
678
679                 {
680                 /* this looks ugly, but it seems compiler issues make it
681                    more efficient than reusing j */
682                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
683
684                 /* page alloc/put takes too long and effects small packet
685                  * throughput, so unsplit small packets and save the alloc/put*/
686                 if (l1 && (l1 <= copybreak) &&
687                     ((length + l1) <= adapter->rx_ps_bsize0)) {
688                         u8 *vaddr;
689
690                         ps_page = &buffer_info->ps_pages[0];
691
692                         /* there is no documentation about how to call
693                          * kmap_atomic, so we can't hold the mapping
694                          * very long */
695                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
696                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
697                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
698                         memcpy(skb_tail_pointer(skb), vaddr, l1);
699                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
700                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
701                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
702
703                         skb_put(skb, l1);
704                         goto copydone;
705                 } /* if */
706                 }
707
708                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
709                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
710                         if (!length)
711                                 break;
712
713                         ps_page = &buffer_info->ps_pages[j];
714                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
715                                        PCI_DMA_FROMDEVICE);
716                         ps_page->dma = 0;
717                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
718                         ps_page->page = NULL;
719                         skb->len += length;
720                         skb->data_len += length;
721                         skb->truesize += length;
722                 }
723
724 copydone:
725                 total_rx_bytes += skb->len;
726                 total_rx_packets++;
727
728                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
729                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
730
731                 if (rx_desc->wb.upper.header_status &
732                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
733                         adapter->rx_hdr_split++;
734
735                 e1000_receive_skb(adapter, netdev, skb,
736                                   staterr, rx_desc->wb.middle.vlan);
737
738 next_desc:
739                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
740                 buffer_info->skb = NULL;
741
742                 /* return some buffers to hardware, one at a time is too slow */
743                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
744                         adapter->alloc_rx_buf(adapter, cleaned_count);
745                         cleaned_count = 0;
746                 }
747
748                 /* use prefetched values */
749                 rx_desc = next_rxd;
750                 buffer_info = next_buffer;
751
752                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
753         }
754         rx_ring->next_to_clean = i;
755
756         cleaned_count = e1000_desc_unused(rx_ring);
757         if (cleaned_count)
758                 adapter->alloc_rx_buf(adapter, cleaned_count);
759
760         adapter->total_rx_packets += total_rx_packets;
761         adapter->total_rx_bytes += total_rx_bytes;
762         adapter->net_stats.rx_packets += total_rx_packets;
763         adapter->net_stats.rx_bytes += total_rx_bytes;
764         return cleaned;
765 }
766
767 /**
768  * e1000_clean_rx_ring - Free Rx Buffers per Queue
769  * @adapter: board private structure
770  **/
771 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
772 {
773         struct e1000_ring *rx_ring = adapter->rx_ring;
774         struct e1000_buffer *buffer_info;
775         struct e1000_ps_page *ps_page;
776         struct pci_dev *pdev = adapter->pdev;
777         unsigned int i, j;
778
779         /* Free all the Rx ring sk_buffs */
780         for (i = 0; i < rx_ring->count; i++) {
781                 buffer_info = &rx_ring->buffer_info[i];
782                 if (buffer_info->dma) {
783                         if (adapter->clean_rx == e1000_clean_rx_irq)
784                                 pci_unmap_single(pdev, buffer_info->dma,
785                                                  adapter->rx_buffer_len,
786                                                  PCI_DMA_FROMDEVICE);
787                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
788                                 pci_unmap_single(pdev, buffer_info->dma,
789                                                  adapter->rx_ps_bsize0,
790                                                  PCI_DMA_FROMDEVICE);
791                         buffer_info->dma = 0;
792                 }
793
794                 if (buffer_info->skb) {
795                         dev_kfree_skb(buffer_info->skb);
796                         buffer_info->skb = NULL;
797                 }
798
799                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
800                         ps_page = &buffer_info->ps_pages[j];
801                         if (!ps_page->page)
802                                 break;
803                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
804                                        PCI_DMA_FROMDEVICE);
805                         ps_page->dma = 0;
806                         put_page(ps_page->page);
807                         ps_page->page = NULL;
808                 }
809         }
810
811         /* there also may be some cached data from a chained receive */
812         if (rx_ring->rx_skb_top) {
813                 dev_kfree_skb(rx_ring->rx_skb_top);
814                 rx_ring->rx_skb_top = NULL;
815         }
816
817         /* Zero out the descriptor ring */
818         memset(rx_ring->desc, 0, rx_ring->size);
819
820         rx_ring->next_to_clean = 0;
821         rx_ring->next_to_use = 0;
822
823         writel(0, adapter->hw.hw_addr + rx_ring->head);
824         writel(0, adapter->hw.hw_addr + rx_ring->tail);
825 }
826
827 /**
828  * e1000_intr_msi - Interrupt Handler
829  * @irq: interrupt number
830  * @data: pointer to a network interface device structure
831  **/
832 static irqreturn_t e1000_intr_msi(int irq, void *data)
833 {
834         struct net_device *netdev = data;
835         struct e1000_adapter *adapter = netdev_priv(netdev);
836         struct e1000_hw *hw = &adapter->hw;
837         u32 icr = er32(ICR);
838
839         /* read ICR disables interrupts using IAM, so keep up with our
840          * enable/disable accounting */
841         atomic_inc(&adapter->irq_sem);
842
843         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
844                 hw->mac.get_link_status = 1;
845                 /* ICH8 workaround-- Call gig speed drop workaround on cable
846                  * disconnect (LSC) before accessing any PHY registers */
847                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
848                     (!(er32(STATUS) & E1000_STATUS_LU)))
849                         e1000e_gig_downshift_workaround_ich8lan(hw);
850
851                 /* 80003ES2LAN workaround-- For packet buffer work-around on
852                  * link down event; disable receives here in the ISR and reset
853                  * adapter in watchdog */
854                 if (netif_carrier_ok(netdev) &&
855                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
856                         /* disable receives */
857                         u32 rctl = er32(RCTL);
858                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
859                 }
860                 /* guard against interrupt when we're going down */
861                 if (!test_bit(__E1000_DOWN, &adapter->state))
862                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
863         }
864
865         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
866                 adapter->total_tx_bytes = 0;
867                 adapter->total_tx_packets = 0;
868                 adapter->total_rx_bytes = 0;
869                 adapter->total_rx_packets = 0;
870                 __netif_rx_schedule(netdev, &adapter->napi);
871         } else {
872                 atomic_dec(&adapter->irq_sem);
873         }
874
875         return IRQ_HANDLED;
876 }
877
878 /**
879  * e1000_intr - Interrupt Handler
880  * @irq: interrupt number
881  * @data: pointer to a network interface device structure
882  **/
883 static irqreturn_t e1000_intr(int irq, void *data)
884 {
885         struct net_device *netdev = data;
886         struct e1000_adapter *adapter = netdev_priv(netdev);
887         struct e1000_hw *hw = &adapter->hw;
888
889         u32 rctl, icr = er32(ICR);
890         if (!icr)
891                 return IRQ_NONE;  /* Not our interrupt */
892
893         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
894          * not set, then the adapter didn't send an interrupt */
895         if (!(icr & E1000_ICR_INT_ASSERTED))
896                 return IRQ_NONE;
897
898         /* Interrupt Auto-Mask...upon reading ICR,
899          * interrupts are masked.  No need for the
900          * IMC write, but it does mean we should
901          * account for it ASAP. */
902         atomic_inc(&adapter->irq_sem);
903
904         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
905                 hw->mac.get_link_status = 1;
906                 /* ICH8 workaround-- Call gig speed drop workaround on cable
907                  * disconnect (LSC) before accessing any PHY registers */
908                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
909                     (!(er32(STATUS) & E1000_STATUS_LU)))
910                         e1000e_gig_downshift_workaround_ich8lan(hw);
911
912                 /* 80003ES2LAN workaround--
913                  * For packet buffer work-around on link down event;
914                  * disable receives here in the ISR and
915                  * reset adapter in watchdog
916                  */
917                 if (netif_carrier_ok(netdev) &&
918                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
919                         /* disable receives */
920                         rctl = er32(RCTL);
921                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
922                 }
923                 /* guard against interrupt when we're going down */
924                 if (!test_bit(__E1000_DOWN, &adapter->state))
925                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
926         }
927
928         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
929                 adapter->total_tx_bytes = 0;
930                 adapter->total_tx_packets = 0;
931                 adapter->total_rx_bytes = 0;
932                 adapter->total_rx_packets = 0;
933                 __netif_rx_schedule(netdev, &adapter->napi);
934         } else {
935                 atomic_dec(&adapter->irq_sem);
936         }
937
938         return IRQ_HANDLED;
939 }
940
941 static int e1000_request_irq(struct e1000_adapter *adapter)
942 {
943         struct net_device *netdev = adapter->netdev;
944         irq_handler_t handler = e1000_intr;
945         int irq_flags = IRQF_SHARED;
946         int err;
947
948         if (!pci_enable_msi(adapter->pdev)) {
949                 adapter->flags |= FLAG_MSI_ENABLED;
950                 handler = e1000_intr_msi;
951                 irq_flags = 0;
952         }
953
954         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
955                           netdev);
956         if (err) {
957                 ndev_err(netdev,
958                        "Unable to allocate %s interrupt (return: %d)\n",
959                         adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
960                         err);
961                 if (adapter->flags & FLAG_MSI_ENABLED)
962                         pci_disable_msi(adapter->pdev);
963         }
964
965         return err;
966 }
967
968 static void e1000_free_irq(struct e1000_adapter *adapter)
969 {
970         struct net_device *netdev = adapter->netdev;
971
972         free_irq(adapter->pdev->irq, netdev);
973         if (adapter->flags & FLAG_MSI_ENABLED) {
974                 pci_disable_msi(adapter->pdev);
975                 adapter->flags &= ~FLAG_MSI_ENABLED;
976         }
977 }
978
979 /**
980  * e1000_irq_disable - Mask off interrupt generation on the NIC
981  **/
982 static void e1000_irq_disable(struct e1000_adapter *adapter)
983 {
984         struct e1000_hw *hw = &adapter->hw;
985
986         atomic_inc(&adapter->irq_sem);
987         ew32(IMC, ~0);
988         e1e_flush();
989         synchronize_irq(adapter->pdev->irq);
990 }
991
992 /**
993  * e1000_irq_enable - Enable default interrupt generation settings
994  **/
995 static void e1000_irq_enable(struct e1000_adapter *adapter)
996 {
997         struct e1000_hw *hw = &adapter->hw;
998
999         if (atomic_dec_and_test(&adapter->irq_sem)) {
1000                 ew32(IMS, IMS_ENABLE_MASK);
1001                 e1e_flush();
1002         }
1003 }
1004
1005 /**
1006  * e1000_get_hw_control - get control of the h/w from f/w
1007  * @adapter: address of board private structure
1008  *
1009  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1010  * For ASF and Pass Through versions of f/w this means that
1011  * the driver is loaded. For AMT version (only with 82573)
1012  * of the f/w this means that the network i/f is open.
1013  **/
1014 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1015 {
1016         struct e1000_hw *hw = &adapter->hw;
1017         u32 ctrl_ext;
1018         u32 swsm;
1019
1020         /* Let firmware know the driver has taken over */
1021         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1022                 swsm = er32(SWSM);
1023                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1024         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1025                 ctrl_ext = er32(CTRL_EXT);
1026                 ew32(CTRL_EXT,
1027                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1028         }
1029 }
1030
1031 /**
1032  * e1000_release_hw_control - release control of the h/w to f/w
1033  * @adapter: address of board private structure
1034  *
1035  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1036  * For ASF and Pass Through versions of f/w this means that the
1037  * driver is no longer loaded. For AMT version (only with 82573) i
1038  * of the f/w this means that the network i/f is closed.
1039  *
1040  **/
1041 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1042 {
1043         struct e1000_hw *hw = &adapter->hw;
1044         u32 ctrl_ext;
1045         u32 swsm;
1046
1047         /* Let firmware taken over control of h/w */
1048         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1049                 swsm = er32(SWSM);
1050                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1051         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1052                 ctrl_ext = er32(CTRL_EXT);
1053                 ew32(CTRL_EXT,
1054                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1055         }
1056 }
1057
1058 /**
1059  * @e1000_alloc_ring - allocate memory for a ring structure
1060  **/
1061 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1062                                 struct e1000_ring *ring)
1063 {
1064         struct pci_dev *pdev = adapter->pdev;
1065
1066         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1067                                         GFP_KERNEL);
1068         if (!ring->desc)
1069                 return -ENOMEM;
1070
1071         return 0;
1072 }
1073
1074 /**
1075  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1076  * @adapter: board private structure
1077  *
1078  * Return 0 on success, negative on failure
1079  **/
1080 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1081 {
1082         struct e1000_ring *tx_ring = adapter->tx_ring;
1083         int err = -ENOMEM, size;
1084
1085         size = sizeof(struct e1000_buffer) * tx_ring->count;
1086         tx_ring->buffer_info = vmalloc(size);
1087         if (!tx_ring->buffer_info)
1088                 goto err;
1089         memset(tx_ring->buffer_info, 0, size);
1090
1091         /* round up to nearest 4K */
1092         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1093         tx_ring->size = ALIGN(tx_ring->size, 4096);
1094
1095         err = e1000_alloc_ring_dma(adapter, tx_ring);
1096         if (err)
1097                 goto err;
1098
1099         tx_ring->next_to_use = 0;
1100         tx_ring->next_to_clean = 0;
1101         spin_lock_init(&adapter->tx_queue_lock);
1102
1103         return 0;
1104 err:
1105         vfree(tx_ring->buffer_info);
1106         ndev_err(adapter->netdev,
1107         "Unable to allocate memory for the transmit descriptor ring\n");
1108         return err;
1109 }
1110
1111 /**
1112  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1113  * @adapter: board private structure
1114  *
1115  * Returns 0 on success, negative on failure
1116  **/
1117 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1118 {
1119         struct e1000_ring *rx_ring = adapter->rx_ring;
1120         struct e1000_buffer *buffer_info;
1121         int i, size, desc_len, err = -ENOMEM;
1122
1123         size = sizeof(struct e1000_buffer) * rx_ring->count;
1124         rx_ring->buffer_info = vmalloc(size);
1125         if (!rx_ring->buffer_info)
1126                 goto err;
1127         memset(rx_ring->buffer_info, 0, size);
1128
1129         for (i = 0; i < rx_ring->count; i++) {
1130                 buffer_info = &rx_ring->buffer_info[i];
1131                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1132                                                 sizeof(struct e1000_ps_page),
1133                                                 GFP_KERNEL);
1134                 if (!buffer_info->ps_pages)
1135                         goto err_pages;
1136         }
1137
1138         desc_len = sizeof(union e1000_rx_desc_packet_split);
1139
1140         /* Round up to nearest 4K */
1141         rx_ring->size = rx_ring->count * desc_len;
1142         rx_ring->size = ALIGN(rx_ring->size, 4096);
1143
1144         err = e1000_alloc_ring_dma(adapter, rx_ring);
1145         if (err)
1146                 goto err_pages;
1147
1148         rx_ring->next_to_clean = 0;
1149         rx_ring->next_to_use = 0;
1150         rx_ring->rx_skb_top = NULL;
1151
1152         return 0;
1153
1154 err_pages:
1155         for (i = 0; i < rx_ring->count; i++) {
1156                 buffer_info = &rx_ring->buffer_info[i];
1157                 kfree(buffer_info->ps_pages);
1158         }
1159 err:
1160         vfree(rx_ring->buffer_info);
1161         ndev_err(adapter->netdev,
1162         "Unable to allocate memory for the transmit descriptor ring\n");
1163         return err;
1164 }
1165
1166 /**
1167  * e1000_clean_tx_ring - Free Tx Buffers
1168  * @adapter: board private structure
1169  **/
1170 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1171 {
1172         struct e1000_ring *tx_ring = adapter->tx_ring;
1173         struct e1000_buffer *buffer_info;
1174         unsigned long size;
1175         unsigned int i;
1176
1177         for (i = 0; i < tx_ring->count; i++) {
1178                 buffer_info = &tx_ring->buffer_info[i];
1179                 e1000_put_txbuf(adapter, buffer_info);
1180         }
1181
1182         size = sizeof(struct e1000_buffer) * tx_ring->count;
1183         memset(tx_ring->buffer_info, 0, size);
1184
1185         memset(tx_ring->desc, 0, tx_ring->size);
1186
1187         tx_ring->next_to_use = 0;
1188         tx_ring->next_to_clean = 0;
1189
1190         writel(0, adapter->hw.hw_addr + tx_ring->head);
1191         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1192 }
1193
1194 /**
1195  * e1000e_free_tx_resources - Free Tx Resources per Queue
1196  * @adapter: board private structure
1197  *
1198  * Free all transmit software resources
1199  **/
1200 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1201 {
1202         struct pci_dev *pdev = adapter->pdev;
1203         struct e1000_ring *tx_ring = adapter->tx_ring;
1204
1205         e1000_clean_tx_ring(adapter);
1206
1207         vfree(tx_ring->buffer_info);
1208         tx_ring->buffer_info = NULL;
1209
1210         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1211                           tx_ring->dma);
1212         tx_ring->desc = NULL;
1213 }
1214
1215 /**
1216  * e1000e_free_rx_resources - Free Rx Resources
1217  * @adapter: board private structure
1218  *
1219  * Free all receive software resources
1220  **/
1221
1222 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1223 {
1224         struct pci_dev *pdev = adapter->pdev;
1225         struct e1000_ring *rx_ring = adapter->rx_ring;
1226         int i;
1227
1228         e1000_clean_rx_ring(adapter);
1229
1230         for (i = 0; i < rx_ring->count; i++) {
1231                 kfree(rx_ring->buffer_info[i].ps_pages);
1232         }
1233
1234         vfree(rx_ring->buffer_info);
1235         rx_ring->buffer_info = NULL;
1236
1237         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1238                           rx_ring->dma);
1239         rx_ring->desc = NULL;
1240 }
1241
1242 /**
1243  * e1000_update_itr - update the dynamic ITR value based on statistics
1244  *      Stores a new ITR value based on packets and byte
1245  *      counts during the last interrupt.  The advantage of per interrupt
1246  *      computation is faster updates and more accurate ITR for the current
1247  *      traffic pattern.  Constants in this function were computed
1248  *      based on theoretical maximum wire speed and thresholds were set based
1249  *      on testing data as well as attempting to minimize response time
1250  *      while increasing bulk throughput.
1251  *      this functionality is controlled by the InterruptThrottleRate module
1252  *      parameter (see e1000_param.c)
1253  * @adapter: pointer to adapter
1254  * @itr_setting: current adapter->itr
1255  * @packets: the number of packets during this measurement interval
1256  * @bytes: the number of bytes during this measurement interval
1257  **/
1258 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1259                                      u16 itr_setting, int packets,
1260                                      int bytes)
1261 {
1262         unsigned int retval = itr_setting;
1263
1264         if (packets == 0)
1265                 goto update_itr_done;
1266
1267         switch (itr_setting) {
1268         case lowest_latency:
1269                 /* handle TSO and jumbo frames */
1270                 if (bytes/packets > 8000)
1271                         retval = bulk_latency;
1272                 else if ((packets < 5) && (bytes > 512)) {
1273                         retval = low_latency;
1274                 }
1275                 break;
1276         case low_latency:  /* 50 usec aka 20000 ints/s */
1277                 if (bytes > 10000) {
1278                         /* this if handles the TSO accounting */
1279                         if (bytes/packets > 8000) {
1280                                 retval = bulk_latency;
1281                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1282                                 retval = bulk_latency;
1283                         } else if ((packets > 35)) {
1284                                 retval = lowest_latency;
1285                         }
1286                 } else if (bytes/packets > 2000) {
1287                         retval = bulk_latency;
1288                 } else if (packets <= 2 && bytes < 512) {
1289                         retval = lowest_latency;
1290                 }
1291                 break;
1292         case bulk_latency: /* 250 usec aka 4000 ints/s */
1293                 if (bytes > 25000) {
1294                         if (packets > 35) {
1295                                 retval = low_latency;
1296                         }
1297                 } else if (bytes < 6000) {
1298                         retval = low_latency;
1299                 }
1300                 break;
1301         }
1302
1303 update_itr_done:
1304         return retval;
1305 }
1306
1307 static void e1000_set_itr(struct e1000_adapter *adapter)
1308 {
1309         struct e1000_hw *hw = &adapter->hw;
1310         u16 current_itr;
1311         u32 new_itr = adapter->itr;
1312
1313         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1314         if (adapter->link_speed != SPEED_1000) {
1315                 current_itr = 0;
1316                 new_itr = 4000;
1317                 goto set_itr_now;
1318         }
1319
1320         adapter->tx_itr = e1000_update_itr(adapter,
1321                                     adapter->tx_itr,
1322                                     adapter->total_tx_packets,
1323                                     adapter->total_tx_bytes);
1324         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1325         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1326                 adapter->tx_itr = low_latency;
1327
1328         adapter->rx_itr = e1000_update_itr(adapter,
1329                                     adapter->rx_itr,
1330                                     adapter->total_rx_packets,
1331                                     adapter->total_rx_bytes);
1332         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1333         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1334                 adapter->rx_itr = low_latency;
1335
1336         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1337
1338         switch (current_itr) {
1339         /* counts and packets in update_itr are dependent on these numbers */
1340         case lowest_latency:
1341                 new_itr = 70000;
1342                 break;
1343         case low_latency:
1344                 new_itr = 20000; /* aka hwitr = ~200 */
1345                 break;
1346         case bulk_latency:
1347                 new_itr = 4000;
1348                 break;
1349         default:
1350                 break;
1351         }
1352
1353 set_itr_now:
1354         if (new_itr != adapter->itr) {
1355                 /* this attempts to bias the interrupt rate towards Bulk
1356                  * by adding intermediate steps when interrupt rate is
1357                  * increasing */
1358                 new_itr = new_itr > adapter->itr ?
1359                              min(adapter->itr + (new_itr >> 2), new_itr) :
1360                              new_itr;
1361                 adapter->itr = new_itr;
1362                 ew32(ITR, 1000000000 / (new_itr * 256));
1363         }
1364 }
1365
1366 /**
1367  * e1000_clean - NAPI Rx polling callback
1368  * @adapter: board private structure
1369  **/
1370 static int e1000_clean(struct napi_struct *napi, int budget)
1371 {
1372         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1373         struct net_device *poll_dev = adapter->netdev;
1374         int tx_cleaned = 0, work_done = 0;
1375
1376         /* Must NOT use netdev_priv macro here. */
1377         adapter = poll_dev->priv;
1378
1379         /* e1000_clean is called per-cpu.  This lock protects
1380          * tx_ring from being cleaned by multiple cpus
1381          * simultaneously.  A failure obtaining the lock means
1382          * tx_ring is currently being cleaned anyway. */
1383         if (spin_trylock(&adapter->tx_queue_lock)) {
1384                 tx_cleaned = e1000_clean_tx_irq(adapter);
1385                 spin_unlock(&adapter->tx_queue_lock);
1386         }
1387
1388         adapter->clean_rx(adapter, &work_done, budget);
1389
1390         if (tx_cleaned)
1391                 work_done = budget;
1392
1393         /* If budget not fully consumed, exit the polling mode */
1394         if (work_done < budget) {
1395                 if (adapter->itr_setting & 3)
1396                         e1000_set_itr(adapter);
1397                 netif_rx_complete(poll_dev, napi);
1398                 e1000_irq_enable(adapter);
1399         }
1400
1401         return work_done;
1402 }
1403
1404 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1405 {
1406         struct e1000_adapter *adapter = netdev_priv(netdev);
1407         struct e1000_hw *hw = &adapter->hw;
1408         u32 vfta, index;
1409
1410         /* don't update vlan cookie if already programmed */
1411         if ((adapter->hw.mng_cookie.status &
1412              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1413             (vid == adapter->mng_vlan_id))
1414                 return;
1415         /* add VID to filter table */
1416         index = (vid >> 5) & 0x7F;
1417         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1418         vfta |= (1 << (vid & 0x1F));
1419         e1000e_write_vfta(hw, index, vfta);
1420 }
1421
1422 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1423 {
1424         struct e1000_adapter *adapter = netdev_priv(netdev);
1425         struct e1000_hw *hw = &adapter->hw;
1426         u32 vfta, index;
1427
1428         e1000_irq_disable(adapter);
1429         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1430         e1000_irq_enable(adapter);
1431
1432         if ((adapter->hw.mng_cookie.status &
1433              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1434             (vid == adapter->mng_vlan_id)) {
1435                 /* release control to f/w */
1436                 e1000_release_hw_control(adapter);
1437                 return;
1438         }
1439
1440         /* remove VID from filter table */
1441         index = (vid >> 5) & 0x7F;
1442         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1443         vfta &= ~(1 << (vid & 0x1F));
1444         e1000e_write_vfta(hw, index, vfta);
1445 }
1446
1447 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1448 {
1449         struct net_device *netdev = adapter->netdev;
1450         u16 vid = adapter->hw.mng_cookie.vlan_id;
1451         u16 old_vid = adapter->mng_vlan_id;
1452
1453         if (!adapter->vlgrp)
1454                 return;
1455
1456         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1457                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1458                 if (adapter->hw.mng_cookie.status &
1459                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1460                         e1000_vlan_rx_add_vid(netdev, vid);
1461                         adapter->mng_vlan_id = vid;
1462                 }
1463
1464                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1465                                 (vid != old_vid) &&
1466                     !vlan_group_get_device(adapter->vlgrp, old_vid))
1467                         e1000_vlan_rx_kill_vid(netdev, old_vid);
1468         } else {
1469                 adapter->mng_vlan_id = vid;
1470         }
1471 }
1472
1473
1474 static void e1000_vlan_rx_register(struct net_device *netdev,
1475                                    struct vlan_group *grp)
1476 {
1477         struct e1000_adapter *adapter = netdev_priv(netdev);
1478         struct e1000_hw *hw = &adapter->hw;
1479         u32 ctrl, rctl;
1480
1481         e1000_irq_disable(adapter);
1482         adapter->vlgrp = grp;
1483
1484         if (grp) {
1485                 /* enable VLAN tag insert/strip */
1486                 ctrl = er32(CTRL);
1487                 ctrl |= E1000_CTRL_VME;
1488                 ew32(CTRL, ctrl);
1489
1490                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1491                         /* enable VLAN receive filtering */
1492                         rctl = er32(RCTL);
1493                         rctl |= E1000_RCTL_VFE;
1494                         rctl &= ~E1000_RCTL_CFIEN;
1495                         ew32(RCTL, rctl);
1496                         e1000_update_mng_vlan(adapter);
1497                 }
1498         } else {
1499                 /* disable VLAN tag insert/strip */
1500                 ctrl = er32(CTRL);
1501                 ctrl &= ~E1000_CTRL_VME;
1502                 ew32(CTRL, ctrl);
1503
1504                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1505                         /* disable VLAN filtering */
1506                         rctl = er32(RCTL);
1507                         rctl &= ~E1000_RCTL_VFE;
1508                         ew32(RCTL, rctl);
1509                         if (adapter->mng_vlan_id !=
1510                             (u16)E1000_MNG_VLAN_NONE) {
1511                                 e1000_vlan_rx_kill_vid(netdev,
1512                                                        adapter->mng_vlan_id);
1513                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1514                         }
1515                 }
1516         }
1517
1518         e1000_irq_enable(adapter);
1519 }
1520
1521 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1522 {
1523         u16 vid;
1524
1525         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1526
1527         if (!adapter->vlgrp)
1528                 return;
1529
1530         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1531                 if (!vlan_group_get_device(adapter->vlgrp, vid))
1532                         continue;
1533                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1534         }
1535 }
1536
1537 static void e1000_init_manageability(struct e1000_adapter *adapter)
1538 {
1539         struct e1000_hw *hw = &adapter->hw;
1540         u32 manc, manc2h;
1541
1542         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1543                 return;
1544
1545         manc = er32(MANC);
1546
1547         /* enable receiving management packets to the host. this will probably
1548          * generate destination unreachable messages from the host OS, but
1549          * the packets will be handled on SMBUS */
1550         manc |= E1000_MANC_EN_MNG2HOST;
1551         manc2h = er32(MANC2H);
1552 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1553 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1554         manc2h |= E1000_MNG2HOST_PORT_623;
1555         manc2h |= E1000_MNG2HOST_PORT_664;
1556         ew32(MANC2H, manc2h);
1557         ew32(MANC, manc);
1558 }
1559
1560 /**
1561  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1562  * @adapter: board private structure
1563  *
1564  * Configure the Tx unit of the MAC after a reset.
1565  **/
1566 static void e1000_configure_tx(struct e1000_adapter *adapter)
1567 {
1568         struct e1000_hw *hw = &adapter->hw;
1569         struct e1000_ring *tx_ring = adapter->tx_ring;
1570         u64 tdba;
1571         u32 tdlen, tctl, tipg, tarc;
1572         u32 ipgr1, ipgr2;
1573
1574         /* Setup the HW Tx Head and Tail descriptor pointers */
1575         tdba = tx_ring->dma;
1576         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1577         ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1578         ew32(TDBAH, (tdba >> 32));
1579         ew32(TDLEN, tdlen);
1580         ew32(TDH, 0);
1581         ew32(TDT, 0);
1582         tx_ring->head = E1000_TDH;
1583         tx_ring->tail = E1000_TDT;
1584
1585         /* Set the default values for the Tx Inter Packet Gap timer */
1586         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
1587         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
1588         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
1589
1590         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1591                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
1592
1593         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1594         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1595         ew32(TIPG, tipg);
1596
1597         /* Set the Tx Interrupt Delay register */
1598         ew32(TIDV, adapter->tx_int_delay);
1599         /* tx irq moderation */
1600         ew32(TADV, adapter->tx_abs_int_delay);
1601
1602         /* Program the Transmit Control Register */
1603         tctl = er32(TCTL);
1604         tctl &= ~E1000_TCTL_CT;
1605         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1606                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1607
1608         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1609                 tarc = er32(TARC0);
1610                 /* set the speed mode bit, we'll clear it if we're not at
1611                  * gigabit link later */
1612 #define SPEED_MODE_BIT (1 << 21)
1613                 tarc |= SPEED_MODE_BIT;
1614                 ew32(TARC0, tarc);
1615         }
1616
1617         /* errata: program both queues to unweighted RR */
1618         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1619                 tarc = er32(TARC0);
1620                 tarc |= 1;
1621                 ew32(TARC0, tarc);
1622                 tarc = er32(TARC1);
1623                 tarc |= 1;
1624                 ew32(TARC1, tarc);
1625         }
1626
1627         e1000e_config_collision_dist(hw);
1628
1629         /* Setup Transmit Descriptor Settings for eop descriptor */
1630         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1631
1632         /* only set IDE if we are delaying interrupts using the timers */
1633         if (adapter->tx_int_delay)
1634                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1635
1636         /* enable Report Status bit */
1637         adapter->txd_cmd |= E1000_TXD_CMD_RS;
1638
1639         ew32(TCTL, tctl);
1640
1641         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1642 }
1643
1644 /**
1645  * e1000_setup_rctl - configure the receive control registers
1646  * @adapter: Board private structure
1647  **/
1648 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1649                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1650 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1651 {
1652         struct e1000_hw *hw = &adapter->hw;
1653         u32 rctl, rfctl;
1654         u32 psrctl = 0;
1655         u32 pages = 0;
1656
1657         /* Program MC offset vector base */
1658         rctl = er32(RCTL);
1659         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1660         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1661                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1662                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1663
1664         /* Do not Store bad packets */
1665         rctl &= ~E1000_RCTL_SBP;
1666
1667         /* Enable Long Packet receive */
1668         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1669                 rctl &= ~E1000_RCTL_LPE;
1670         else
1671                 rctl |= E1000_RCTL_LPE;
1672
1673         /* Enable hardware CRC frame stripping */
1674         rctl |= E1000_RCTL_SECRC;
1675
1676         /* Setup buffer sizes */
1677         rctl &= ~E1000_RCTL_SZ_4096;
1678         rctl |= E1000_RCTL_BSEX;
1679         switch (adapter->rx_buffer_len) {
1680         case 256:
1681                 rctl |= E1000_RCTL_SZ_256;
1682                 rctl &= ~E1000_RCTL_BSEX;
1683                 break;
1684         case 512:
1685                 rctl |= E1000_RCTL_SZ_512;
1686                 rctl &= ~E1000_RCTL_BSEX;
1687                 break;
1688         case 1024:
1689                 rctl |= E1000_RCTL_SZ_1024;
1690                 rctl &= ~E1000_RCTL_BSEX;
1691                 break;
1692         case 2048:
1693         default:
1694                 rctl |= E1000_RCTL_SZ_2048;
1695                 rctl &= ~E1000_RCTL_BSEX;
1696                 break;
1697         case 4096:
1698                 rctl |= E1000_RCTL_SZ_4096;
1699                 break;
1700         case 8192:
1701                 rctl |= E1000_RCTL_SZ_8192;
1702                 break;
1703         case 16384:
1704                 rctl |= E1000_RCTL_SZ_16384;
1705                 break;
1706         }
1707
1708         /*
1709          * 82571 and greater support packet-split where the protocol
1710          * header is placed in skb->data and the packet data is
1711          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1712          * In the case of a non-split, skb->data is linearly filled,
1713          * followed by the page buffers.  Therefore, skb->data is
1714          * sized to hold the largest protocol header.
1715          *
1716          * allocations using alloc_page take too long for regular MTU
1717          * so only enable packet split for jumbo frames
1718          *
1719          * Using pages when the page size is greater than 16k wastes
1720          * a lot of memory, since we allocate 3 pages at all times
1721          * per packet.
1722          */
1723         adapter->rx_ps_pages = 0;
1724         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1725         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1726                 adapter->rx_ps_pages = pages;
1727
1728         if (adapter->rx_ps_pages) {
1729                 /* Configure extra packet-split registers */
1730                 rfctl = er32(RFCTL);
1731                 rfctl |= E1000_RFCTL_EXTEN;
1732                 /* disable packet split support for IPv6 extension headers,
1733                  * because some malformed IPv6 headers can hang the RX */
1734                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1735                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1736
1737                 ew32(RFCTL, rfctl);
1738
1739                 /* Enable Packet split descriptors */
1740                 rctl |= E1000_RCTL_DTYP_PS;
1741
1742                 psrctl |= adapter->rx_ps_bsize0 >>
1743                         E1000_PSRCTL_BSIZE0_SHIFT;
1744
1745                 switch (adapter->rx_ps_pages) {
1746                 case 3:
1747                         psrctl |= PAGE_SIZE <<
1748                                 E1000_PSRCTL_BSIZE3_SHIFT;
1749                 case 2:
1750                         psrctl |= PAGE_SIZE <<
1751                                 E1000_PSRCTL_BSIZE2_SHIFT;
1752                 case 1:
1753                         psrctl |= PAGE_SIZE >>
1754                                 E1000_PSRCTL_BSIZE1_SHIFT;
1755                         break;
1756                 }
1757
1758                 ew32(PSRCTL, psrctl);
1759         }
1760
1761         ew32(RCTL, rctl);
1762 }
1763
1764 /**
1765  * e1000_configure_rx - Configure Receive Unit after Reset
1766  * @adapter: board private structure
1767  *
1768  * Configure the Rx unit of the MAC after a reset.
1769  **/
1770 static void e1000_configure_rx(struct e1000_adapter *adapter)
1771 {
1772         struct e1000_hw *hw = &adapter->hw;
1773         struct e1000_ring *rx_ring = adapter->rx_ring;
1774         u64 rdba;
1775         u32 rdlen, rctl, rxcsum, ctrl_ext;
1776
1777         if (adapter->rx_ps_pages) {
1778                 /* this is a 32 byte descriptor */
1779                 rdlen = rx_ring->count *
1780                         sizeof(union e1000_rx_desc_packet_split);
1781                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1782                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1783         } else {
1784                 rdlen = rx_ring->count *
1785                         sizeof(struct e1000_rx_desc);
1786                 adapter->clean_rx = e1000_clean_rx_irq;
1787                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1788         }
1789
1790         /* disable receives while setting up the descriptors */
1791         rctl = er32(RCTL);
1792         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1793         e1e_flush();
1794         msleep(10);
1795
1796         /* set the Receive Delay Timer Register */
1797         ew32(RDTR, adapter->rx_int_delay);
1798
1799         /* irq moderation */
1800         ew32(RADV, adapter->rx_abs_int_delay);
1801         if (adapter->itr_setting != 0)
1802                 ew32(ITR,
1803                         1000000000 / (adapter->itr * 256));
1804
1805         ctrl_ext = er32(CTRL_EXT);
1806         /* Reset delay timers after every interrupt */
1807         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1808         /* Auto-Mask interrupts upon ICR access */
1809         ctrl_ext |= E1000_CTRL_EXT_IAME;
1810         ew32(IAM, 0xffffffff);
1811         ew32(CTRL_EXT, ctrl_ext);
1812         e1e_flush();
1813
1814         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1815          * the Base and Length of the Rx Descriptor Ring */
1816         rdba = rx_ring->dma;
1817         ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1818         ew32(RDBAH, (rdba >> 32));
1819         ew32(RDLEN, rdlen);
1820         ew32(RDH, 0);
1821         ew32(RDT, 0);
1822         rx_ring->head = E1000_RDH;
1823         rx_ring->tail = E1000_RDT;
1824
1825         /* Enable Receive Checksum Offload for TCP and UDP */
1826         rxcsum = er32(RXCSUM);
1827         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1828                 rxcsum |= E1000_RXCSUM_TUOFL;
1829
1830                 /* IPv4 payload checksum for UDP fragments must be
1831                  * used in conjunction with packet-split. */
1832                 if (adapter->rx_ps_pages)
1833                         rxcsum |= E1000_RXCSUM_IPPCSE;
1834         } else {
1835                 rxcsum &= ~E1000_RXCSUM_TUOFL;
1836                 /* no need to clear IPPCSE as it defaults to 0 */
1837         }
1838         ew32(RXCSUM, rxcsum);
1839
1840         /* Enable early receives on supported devices, only takes effect when
1841          * packet size is equal or larger than the specified value (in 8 byte
1842          * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1843         if ((adapter->flags & FLAG_HAS_ERT) &&
1844             (adapter->netdev->mtu > ETH_DATA_LEN))
1845                 ew32(ERT, E1000_ERT_2048);
1846
1847         /* Enable Receives */
1848         ew32(RCTL, rctl);
1849 }
1850
1851 /**
1852  *  e1000_mc_addr_list_update - Update Multicast addresses
1853  *  @hw: pointer to the HW structure
1854  *  @mc_addr_list: array of multicast addresses to program
1855  *  @mc_addr_count: number of multicast addresses to program
1856  *  @rar_used_count: the first RAR register free to program
1857  *  @rar_count: total number of supported Receive Address Registers
1858  *
1859  *  Updates the Receive Address Registers and Multicast Table Array.
1860  *  The caller must have a packed mc_addr_list of multicast addresses.
1861  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1862  *  unless there are workarounds that change this.  Currently no func pointer
1863  *  exists and all implementations are handled in the generic version of this
1864  *  function.
1865  **/
1866 static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
1867                                u32 mc_addr_count, u32 rar_used_count,
1868                                u32 rar_count)
1869 {
1870         hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
1871                                         rar_used_count, rar_count);
1872 }
1873
1874 /**
1875  * e1000_set_multi - Multicast and Promiscuous mode set
1876  * @netdev: network interface device structure
1877  *
1878  * The set_multi entry point is called whenever the multicast address
1879  * list or the network interface flags are updated.  This routine is
1880  * responsible for configuring the hardware for proper multicast,
1881  * promiscuous mode, and all-multi behavior.
1882  **/
1883 static void e1000_set_multi(struct net_device *netdev)
1884 {
1885         struct e1000_adapter *adapter = netdev_priv(netdev);
1886         struct e1000_hw *hw = &adapter->hw;
1887         struct e1000_mac_info *mac = &hw->mac;
1888         struct dev_mc_list *mc_ptr;
1889         u8  *mta_list;
1890         u32 rctl;
1891         int i;
1892
1893         /* Check for Promiscuous and All Multicast modes */
1894
1895         rctl = er32(RCTL);
1896
1897         if (netdev->flags & IFF_PROMISC) {
1898                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1899         } else if (netdev->flags & IFF_ALLMULTI) {
1900                 rctl |= E1000_RCTL_MPE;
1901                 rctl &= ~E1000_RCTL_UPE;
1902         } else {
1903                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1904         }
1905
1906         ew32(RCTL, rctl);
1907
1908         if (netdev->mc_count) {
1909                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1910                 if (!mta_list)
1911                         return;
1912
1913                 /* prepare a packed array of only addresses. */
1914                 mc_ptr = netdev->mc_list;
1915
1916                 for (i = 0; i < netdev->mc_count; i++) {
1917                         if (!mc_ptr)
1918                                 break;
1919                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1920                                ETH_ALEN);
1921                         mc_ptr = mc_ptr->next;
1922                 }
1923
1924                 e1000_mc_addr_list_update(hw, mta_list, i, 1,
1925                                           mac->rar_entry_count);
1926                 kfree(mta_list);
1927         } else {
1928                 /*
1929                  * if we're called from probe, we might not have
1930                  * anything to do here, so clear out the list
1931                  */
1932                 e1000_mc_addr_list_update(hw, NULL, 0, 1,
1933                                           mac->rar_entry_count);
1934         }
1935 }
1936
1937 /**
1938  * e1000_configure - configure the hardware for RX and TX
1939  * @adapter: private board structure
1940  **/
1941 static void e1000_configure(struct e1000_adapter *adapter)
1942 {
1943         e1000_set_multi(adapter->netdev);
1944
1945         e1000_restore_vlan(adapter);
1946         e1000_init_manageability(adapter);
1947
1948         e1000_configure_tx(adapter);
1949         e1000_setup_rctl(adapter);
1950         e1000_configure_rx(adapter);
1951         adapter->alloc_rx_buf(adapter,
1952                               e1000_desc_unused(adapter->rx_ring));
1953 }
1954
1955 /**
1956  * e1000e_power_up_phy - restore link in case the phy was powered down
1957  * @adapter: address of board private structure
1958  *
1959  * The phy may be powered down to save power and turn off link when the
1960  * driver is unloaded and wake on lan is not enabled (among others)
1961  * *** this routine MUST be followed by a call to e1000e_reset ***
1962  **/
1963 void e1000e_power_up_phy(struct e1000_adapter *adapter)
1964 {
1965         u16 mii_reg = 0;
1966
1967         /* Just clear the power down bit to wake the phy back up */
1968         if (adapter->hw.media_type == e1000_media_type_copper) {
1969                 /* according to the manual, the phy will retain its
1970                  * settings across a power-down/up cycle */
1971                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
1972                 mii_reg &= ~MII_CR_POWER_DOWN;
1973                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
1974         }
1975
1976         adapter->hw.mac.ops.setup_link(&adapter->hw);
1977 }
1978
1979 /**
1980  * e1000_power_down_phy - Power down the PHY
1981  *
1982  * Power down the PHY so no link is implied when interface is down
1983  * The PHY cannot be powered down is management or WoL is active
1984  */
1985 static void e1000_power_down_phy(struct e1000_adapter *adapter)
1986 {
1987         struct e1000_hw *hw = &adapter->hw;
1988         u16 mii_reg;
1989
1990         /* WoL is enabled */
1991         if (adapter->wol)
1992                 return;
1993
1994         /* non-copper PHY? */
1995         if (adapter->hw.media_type != e1000_media_type_copper)
1996                 return;
1997
1998         /* reset is blocked because of a SoL/IDER session */
1999         if (e1000e_check_mng_mode(hw) ||
2000             e1000_check_reset_block(hw))
2001                 return;
2002
2003         /* managebility (AMT) is enabled */
2004         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2005                 return;
2006
2007         /* power down the PHY */
2008         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2009         mii_reg |= MII_CR_POWER_DOWN;
2010         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2011         mdelay(1);
2012 }
2013
2014 /**
2015  * e1000e_reset - bring the hardware into a known good state
2016  *
2017  * This function boots the hardware and enables some settings that
2018  * require a configuration cycle of the hardware - those cannot be
2019  * set/changed during runtime. After reset the device needs to be
2020  * properly configured for rx, tx etc.
2021  */
2022 void e1000e_reset(struct e1000_adapter *adapter)
2023 {
2024         struct e1000_mac_info *mac = &adapter->hw.mac;
2025         struct e1000_hw *hw = &adapter->hw;
2026         u32 tx_space, min_tx_space, min_rx_space;
2027         u32 pba;
2028         u16 hwm;
2029
2030         ew32(PBA, adapter->pba);
2031
2032         if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2033                 /* To maintain wire speed transmits, the Tx FIFO should be
2034                  * large enough to accommodate two full transmit packets,
2035                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2036                  * the Rx FIFO should be large enough to accommodate at least
2037                  * one full receive packet and is similarly rounded up and
2038                  * expressed in KB. */
2039                 pba = er32(PBA);
2040                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2041                 tx_space = pba >> 16;
2042                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2043                 pba &= 0xffff;
2044                 /* the tx fifo also stores 16 bytes of information about the tx
2045                  * but don't include ethernet FCS because hardware appends it */
2046                 min_tx_space = (mac->max_frame_size +
2047                                 sizeof(struct e1000_tx_desc) -
2048                                 ETH_FCS_LEN) * 2;
2049                 min_tx_space = ALIGN(min_tx_space, 1024);
2050                 min_tx_space >>= 10;
2051                 /* software strips receive CRC, so leave room for it */
2052                 min_rx_space = mac->max_frame_size;
2053                 min_rx_space = ALIGN(min_rx_space, 1024);
2054                 min_rx_space >>= 10;
2055
2056                 /* If current Tx allocation is less than the min Tx FIFO size,
2057                  * and the min Tx FIFO size is less than the current Rx FIFO
2058                  * allocation, take space away from current Rx allocation */
2059                 if ((tx_space < min_tx_space) &&
2060                     ((min_tx_space - tx_space) < pba)) {
2061                         pba -= min_tx_space - tx_space;
2062
2063                         /* if short on rx space, rx wins and must trump tx
2064                          * adjustment or use Early Receive if available */
2065                         if ((pba < min_rx_space) &&
2066                             (!(adapter->flags & FLAG_HAS_ERT)))
2067                                 /* ERT enabled in e1000_configure_rx */
2068                                 pba = min_rx_space;
2069                 }
2070
2071                 ew32(PBA, pba);
2072         }
2073
2074
2075         /* flow control settings */
2076         /* The high water mark must be low enough to fit one full frame
2077          * (or the size used for early receive) above it in the Rx FIFO.
2078          * Set it to the lower of:
2079          * - 90% of the Rx FIFO size, and
2080          * - the full Rx FIFO size minus the early receive size (for parts
2081          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2082          * - the full Rx FIFO size minus one full frame */
2083         if (adapter->flags & FLAG_HAS_ERT)
2084                 hwm = min(((adapter->pba << 10) * 9 / 10),
2085                           ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2086         else
2087                 hwm = min(((adapter->pba << 10) * 9 / 10),
2088                           ((adapter->pba << 10) - mac->max_frame_size));
2089
2090         mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2091         mac->fc_low_water = mac->fc_high_water - 8;
2092
2093         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2094                 mac->fc_pause_time = 0xFFFF;
2095         else
2096                 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2097         mac->fc = mac->original_fc;
2098
2099         /* Allow time for pending master requests to run */
2100         mac->ops.reset_hw(hw);
2101         ew32(WUC, 0);
2102
2103         if (mac->ops.init_hw(hw))
2104                 ndev_err(adapter->netdev, "Hardware Error\n");
2105
2106         e1000_update_mng_vlan(adapter);
2107
2108         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2109         ew32(VET, ETH_P_8021Q);
2110
2111         e1000e_reset_adaptive(hw);
2112         e1000_get_phy_info(hw);
2113
2114         if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2115                 u16 phy_data = 0;
2116                 /* speed up time to link by disabling smart power down, ignore
2117                  * the return value of this function because there is nothing
2118                  * different we would do if it failed */
2119                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2120                 phy_data &= ~IGP02E1000_PM_SPD;
2121                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2122         }
2123 }
2124
2125 int e1000e_up(struct e1000_adapter *adapter)
2126 {
2127         struct e1000_hw *hw = &adapter->hw;
2128
2129         /* hardware has been reset, we need to reload some things */
2130         e1000_configure(adapter);
2131
2132         clear_bit(__E1000_DOWN, &adapter->state);
2133
2134         napi_enable(&adapter->napi);
2135         e1000_irq_enable(adapter);
2136
2137         /* fire a link change interrupt to start the watchdog */
2138         ew32(ICS, E1000_ICS_LSC);
2139         return 0;
2140 }
2141
2142 void e1000e_down(struct e1000_adapter *adapter)
2143 {
2144         struct net_device *netdev = adapter->netdev;
2145         struct e1000_hw *hw = &adapter->hw;
2146         u32 tctl, rctl;
2147
2148         /* signal that we're down so the interrupt handler does not
2149          * reschedule our watchdog timer */
2150         set_bit(__E1000_DOWN, &adapter->state);
2151
2152         /* disable receives in the hardware */
2153         rctl = er32(RCTL);
2154         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2155         /* flush and sleep below */
2156
2157         netif_stop_queue(netdev);
2158
2159         /* disable transmits in the hardware */
2160         tctl = er32(TCTL);
2161         tctl &= ~E1000_TCTL_EN;
2162         ew32(TCTL, tctl);
2163         /* flush both disables and wait for them to finish */
2164         e1e_flush();
2165         msleep(10);
2166
2167         napi_disable(&adapter->napi);
2168         atomic_set(&adapter->irq_sem, 0);
2169         e1000_irq_disable(adapter);
2170
2171         del_timer_sync(&adapter->watchdog_timer);
2172         del_timer_sync(&adapter->phy_info_timer);
2173
2174         netdev->tx_queue_len = adapter->tx_queue_len;
2175         netif_carrier_off(netdev);
2176         adapter->link_speed = 0;
2177         adapter->link_duplex = 0;
2178
2179         e1000e_reset(adapter);
2180         e1000_clean_tx_ring(adapter);
2181         e1000_clean_rx_ring(adapter);
2182
2183         /*
2184          * TODO: for power management, we could drop the link and
2185          * pci_disable_device here.
2186          */
2187 }
2188
2189 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2190 {
2191         might_sleep();
2192         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2193                 msleep(1);
2194         e1000e_down(adapter);
2195         e1000e_up(adapter);
2196         clear_bit(__E1000_RESETTING, &adapter->state);
2197 }
2198
2199 /**
2200  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2201  * @adapter: board private structure to initialize
2202  *
2203  * e1000_sw_init initializes the Adapter private data structure.
2204  * Fields are initialized based on PCI device information and
2205  * OS network device settings (MTU size).
2206  **/
2207 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2208 {
2209         struct e1000_hw *hw = &adapter->hw;
2210         struct net_device *netdev = adapter->netdev;
2211
2212         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2213         adapter->rx_ps_bsize0 = 128;
2214         hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2215         hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2216
2217         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2218         if (!adapter->tx_ring)
2219                 goto err;
2220
2221         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2222         if (!adapter->rx_ring)
2223                 goto err;
2224
2225         spin_lock_init(&adapter->tx_queue_lock);
2226
2227         /* Explicitly disable IRQ since the NIC can be in any state. */
2228         atomic_set(&adapter->irq_sem, 0);
2229         e1000_irq_disable(adapter);
2230
2231         spin_lock_init(&adapter->stats_lock);
2232
2233         set_bit(__E1000_DOWN, &adapter->state);
2234         return 0;
2235
2236 err:
2237         ndev_err(netdev, "Unable to allocate memory for queues\n");
2238         kfree(adapter->rx_ring);
2239         kfree(adapter->tx_ring);
2240         return -ENOMEM;
2241 }
2242
2243 /**
2244  * e1000_open - Called when a network interface is made active
2245  * @netdev: network interface device structure
2246  *
2247  * Returns 0 on success, negative value on failure
2248  *
2249  * The open entry point is called when a network interface is made
2250  * active by the system (IFF_UP).  At this point all resources needed
2251  * for transmit and receive operations are allocated, the interrupt
2252  * handler is registered with the OS, the watchdog timer is started,
2253  * and the stack is notified that the interface is ready.
2254  **/
2255 static int e1000_open(struct net_device *netdev)
2256 {
2257         struct e1000_adapter *adapter = netdev_priv(netdev);
2258         struct e1000_hw *hw = &adapter->hw;
2259         int err;
2260
2261         /* disallow open during test */
2262         if (test_bit(__E1000_TESTING, &adapter->state))
2263                 return -EBUSY;
2264
2265         /* allocate transmit descriptors */
2266         err = e1000e_setup_tx_resources(adapter);
2267         if (err)
2268                 goto err_setup_tx;
2269
2270         /* allocate receive descriptors */
2271         err = e1000e_setup_rx_resources(adapter);
2272         if (err)
2273                 goto err_setup_rx;
2274
2275         e1000e_power_up_phy(adapter);
2276
2277         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2278         if ((adapter->hw.mng_cookie.status &
2279              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2280                 e1000_update_mng_vlan(adapter);
2281
2282         /* If AMT is enabled, let the firmware know that the network
2283          * interface is now open */
2284         if ((adapter->flags & FLAG_HAS_AMT) &&
2285             e1000e_check_mng_mode(&adapter->hw))
2286                 e1000_get_hw_control(adapter);
2287
2288         /* before we allocate an interrupt, we must be ready to handle it.
2289          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2290          * as soon as we call pci_request_irq, so we have to setup our
2291          * clean_rx handler before we do so.  */
2292         e1000_configure(adapter);
2293
2294         err = e1000_request_irq(adapter);
2295         if (err)
2296                 goto err_req_irq;
2297
2298         /* From here on the code is the same as e1000e_up() */
2299         clear_bit(__E1000_DOWN, &adapter->state);
2300
2301         napi_enable(&adapter->napi);
2302
2303         e1000_irq_enable(adapter);
2304
2305         /* fire a link status change interrupt to start the watchdog */
2306         ew32(ICS, E1000_ICS_LSC);
2307
2308         return 0;
2309
2310 err_req_irq:
2311         e1000_release_hw_control(adapter);
2312         e1000_power_down_phy(adapter);
2313         e1000e_free_rx_resources(adapter);
2314 err_setup_rx:
2315         e1000e_free_tx_resources(adapter);
2316 err_setup_tx:
2317         e1000e_reset(adapter);
2318
2319         return err;
2320 }
2321
2322 /**
2323  * e1000_close - Disables a network interface
2324  * @netdev: network interface device structure
2325  *
2326  * Returns 0, this is not allowed to fail
2327  *
2328  * The close entry point is called when an interface is de-activated
2329  * by the OS.  The hardware is still under the drivers control, but
2330  * needs to be disabled.  A global MAC reset is issued to stop the
2331  * hardware, and all transmit and receive resources are freed.
2332  **/
2333 static int e1000_close(struct net_device *netdev)
2334 {
2335         struct e1000_adapter *adapter = netdev_priv(netdev);
2336
2337         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2338         e1000e_down(adapter);
2339         e1000_power_down_phy(adapter);
2340         e1000_free_irq(adapter);
2341
2342         e1000e_free_tx_resources(adapter);
2343         e1000e_free_rx_resources(adapter);
2344
2345         /* kill manageability vlan ID if supported, but not if a vlan with
2346          * the same ID is registered on the host OS (let 8021q kill it) */
2347         if ((adapter->hw.mng_cookie.status &
2348                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2349              !(adapter->vlgrp &&
2350                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2351                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2352
2353         /* If AMT is enabled, let the firmware know that the network
2354          * interface is now closed */
2355         if ((adapter->flags & FLAG_HAS_AMT) &&
2356             e1000e_check_mng_mode(&adapter->hw))
2357                 e1000_release_hw_control(adapter);
2358
2359         return 0;
2360 }
2361 /**
2362  * e1000_set_mac - Change the Ethernet Address of the NIC
2363  * @netdev: network interface device structure
2364  * @p: pointer to an address structure
2365  *
2366  * Returns 0 on success, negative on failure
2367  **/
2368 static int e1000_set_mac(struct net_device *netdev, void *p)
2369 {
2370         struct e1000_adapter *adapter = netdev_priv(netdev);
2371         struct sockaddr *addr = p;
2372
2373         if (!is_valid_ether_addr(addr->sa_data))
2374                 return -EADDRNOTAVAIL;
2375
2376         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2377         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2378
2379         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2380
2381         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2382                 /* activate the work around */
2383                 e1000e_set_laa_state_82571(&adapter->hw, 1);
2384
2385                 /* Hold a copy of the LAA in RAR[14] This is done so that
2386                  * between the time RAR[0] gets clobbered  and the time it
2387                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2388                  * of the RARs and no incoming packets directed to this port
2389                  * are dropped. Eventually the LAA will be in RAR[0] and
2390                  * RAR[14] */
2391                 e1000e_rar_set(&adapter->hw,
2392                               adapter->hw.mac.addr,
2393                               adapter->hw.mac.rar_entry_count - 1);
2394         }
2395
2396         return 0;
2397 }
2398
2399 /* Need to wait a few seconds after link up to get diagnostic information from
2400  * the phy */
2401 static void e1000_update_phy_info(unsigned long data)
2402 {
2403         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2404         e1000_get_phy_info(&adapter->hw);
2405 }
2406
2407 /**
2408  * e1000e_update_stats - Update the board statistics counters
2409  * @adapter: board private structure
2410  **/
2411 void e1000e_update_stats(struct e1000_adapter *adapter)
2412 {
2413         struct e1000_hw *hw = &adapter->hw;
2414         struct pci_dev *pdev = adapter->pdev;
2415         unsigned long irq_flags;
2416         u16 phy_tmp;
2417
2418 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2419
2420         /*
2421          * Prevent stats update while adapter is being reset, or if the pci
2422          * connection is down.
2423          */
2424         if (adapter->link_speed == 0)
2425                 return;
2426         if (pci_channel_offline(pdev))
2427                 return;
2428
2429         spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2430
2431         /* these counters are modified from e1000_adjust_tbi_stats,
2432          * called from the interrupt context, so they must only
2433          * be written while holding adapter->stats_lock
2434          */
2435
2436         adapter->stats.crcerrs += er32(CRCERRS);
2437         adapter->stats.gprc += er32(GPRC);
2438         adapter->stats.gorcl += er32(GORCL);
2439         adapter->stats.gorch += er32(GORCH);
2440         adapter->stats.bprc += er32(BPRC);
2441         adapter->stats.mprc += er32(MPRC);
2442         adapter->stats.roc += er32(ROC);
2443
2444         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2445                 adapter->stats.prc64 += er32(PRC64);
2446                 adapter->stats.prc127 += er32(PRC127);
2447                 adapter->stats.prc255 += er32(PRC255);
2448                 adapter->stats.prc511 += er32(PRC511);
2449                 adapter->stats.prc1023 += er32(PRC1023);
2450                 adapter->stats.prc1522 += er32(PRC1522);
2451                 adapter->stats.symerrs += er32(SYMERRS);
2452                 adapter->stats.sec += er32(SEC);
2453         }
2454
2455         adapter->stats.mpc += er32(MPC);
2456         adapter->stats.scc += er32(SCC);
2457         adapter->stats.ecol += er32(ECOL);
2458         adapter->stats.mcc += er32(MCC);
2459         adapter->stats.latecol += er32(LATECOL);
2460         adapter->stats.dc += er32(DC);
2461         adapter->stats.rlec += er32(RLEC);
2462         adapter->stats.xonrxc += er32(XONRXC);
2463         adapter->stats.xontxc += er32(XONTXC);
2464         adapter->stats.xoffrxc += er32(XOFFRXC);
2465         adapter->stats.xofftxc += er32(XOFFTXC);
2466         adapter->stats.fcruc += er32(FCRUC);
2467         adapter->stats.gptc += er32(GPTC);
2468         adapter->stats.gotcl += er32(GOTCL);
2469         adapter->stats.gotch += er32(GOTCH);
2470         adapter->stats.rnbc += er32(RNBC);
2471         adapter->stats.ruc += er32(RUC);
2472         adapter->stats.rfc += er32(RFC);
2473         adapter->stats.rjc += er32(RJC);
2474         adapter->stats.torl += er32(TORL);
2475         adapter->stats.torh += er32(TORH);
2476         adapter->stats.totl += er32(TOTL);
2477         adapter->stats.toth += er32(TOTH);
2478         adapter->stats.tpr += er32(TPR);
2479
2480         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2481                 adapter->stats.ptc64 += er32(PTC64);
2482                 adapter->stats.ptc127 += er32(PTC127);
2483                 adapter->stats.ptc255 += er32(PTC255);
2484                 adapter->stats.ptc511 += er32(PTC511);
2485                 adapter->stats.ptc1023 += er32(PTC1023);
2486                 adapter->stats.ptc1522 += er32(PTC1522);
2487         }
2488
2489         adapter->stats.mptc += er32(MPTC);
2490         adapter->stats.bptc += er32(BPTC);
2491
2492         /* used for adaptive IFS */
2493
2494         hw->mac.tx_packet_delta = er32(TPT);
2495         adapter->stats.tpt += hw->mac.tx_packet_delta;
2496         hw->mac.collision_delta = er32(COLC);
2497         adapter->stats.colc += hw->mac.collision_delta;
2498
2499         adapter->stats.algnerrc += er32(ALGNERRC);
2500         adapter->stats.rxerrc += er32(RXERRC);
2501         adapter->stats.tncrs += er32(TNCRS);
2502         adapter->stats.cexterr += er32(CEXTERR);
2503         adapter->stats.tsctc += er32(TSCTC);
2504         adapter->stats.tsctfc += er32(TSCTFC);
2505
2506         adapter->stats.iac += er32(IAC);
2507
2508         if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2509                 adapter->stats.icrxoc += er32(ICRXOC);
2510                 adapter->stats.icrxptc += er32(ICRXPTC);
2511                 adapter->stats.icrxatc += er32(ICRXATC);
2512                 adapter->stats.ictxptc += er32(ICTXPTC);
2513                 adapter->stats.ictxatc += er32(ICTXATC);
2514                 adapter->stats.ictxqec += er32(ICTXQEC);
2515                 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2516                 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2517         }
2518
2519         /* Fill out the OS statistics structure */
2520         adapter->net_stats.multicast = adapter->stats.mprc;
2521         adapter->net_stats.collisions = adapter->stats.colc;
2522
2523         /* Rx Errors */
2524
2525         /* RLEC on some newer hardware can be incorrect so build
2526         * our own version based on RUC and ROC */
2527         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2528                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2529                 adapter->stats.ruc + adapter->stats.roc +
2530                 adapter->stats.cexterr;
2531         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2532                                               adapter->stats.roc;
2533         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2534         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2535         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2536
2537         /* Tx Errors */
2538         adapter->net_stats.tx_errors = adapter->stats.ecol +
2539                                        adapter->stats.latecol;
2540         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2541         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2542         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2543
2544         /* Tx Dropped needs to be maintained elsewhere */
2545
2546         /* Phy Stats */
2547         if (hw->media_type == e1000_media_type_copper) {
2548                 if ((adapter->link_speed == SPEED_1000) &&
2549                    (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2550                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2551                         adapter->phy_stats.idle_errors += phy_tmp;
2552                 }
2553         }
2554
2555         /* Management Stats */
2556         adapter->stats.mgptc += er32(MGTPTC);
2557         adapter->stats.mgprc += er32(MGTPRC);
2558         adapter->stats.mgpdc += er32(MGTPDC);
2559
2560         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2561 }
2562
2563 static void e1000_print_link_info(struct e1000_adapter *adapter)
2564 {
2565         struct net_device *netdev = adapter->netdev;
2566         struct e1000_hw *hw = &adapter->hw;
2567         u32 ctrl = er32(CTRL);
2568
2569         ndev_info(netdev,
2570                 "Link is Up %d Mbps %s, Flow Control: %s\n",
2571                 adapter->link_speed,
2572                 (adapter->link_duplex == FULL_DUPLEX) ?
2573                                 "Full Duplex" : "Half Duplex",
2574                 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2575                                 "RX/TX" :
2576                 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2577                 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2578 }
2579
2580 /**
2581  * e1000_watchdog - Timer Call-back
2582  * @data: pointer to adapter cast into an unsigned long
2583  **/
2584 static void e1000_watchdog(unsigned long data)
2585 {
2586         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2587
2588         /* Do the rest outside of interrupt context */
2589         schedule_work(&adapter->watchdog_task);
2590
2591         /* TODO: make this use queue_delayed_work() */
2592 }
2593
2594 static void e1000_watchdog_task(struct work_struct *work)
2595 {
2596         struct e1000_adapter *adapter = container_of(work,
2597                                         struct e1000_adapter, watchdog_task);
2598
2599         struct net_device *netdev = adapter->netdev;
2600         struct e1000_mac_info *mac = &adapter->hw.mac;
2601         struct e1000_ring *tx_ring = adapter->tx_ring;
2602         struct e1000_hw *hw = &adapter->hw;
2603         u32 link, tctl;
2604         s32 ret_val;
2605         int tx_pending = 0;
2606
2607         if ((netif_carrier_ok(netdev)) &&
2608             (er32(STATUS) & E1000_STATUS_LU))
2609                 goto link_up;
2610
2611         ret_val = mac->ops.check_for_link(hw);
2612         if ((ret_val == E1000_ERR_PHY) &&
2613             (adapter->hw.phy.type == e1000_phy_igp_3) &&
2614             (er32(CTRL) &
2615              E1000_PHY_CTRL_GBE_DISABLE)) {
2616                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2617                 ndev_info(netdev,
2618                         "Gigabit has been disabled, downgrading speed\n");
2619         }
2620
2621         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2622             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2623                 e1000_update_mng_vlan(adapter);
2624
2625         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2626            !(er32(TXCW) & E1000_TXCW_ANE))
2627                 link = adapter->hw.mac.serdes_has_link;
2628         else
2629                 link = er32(STATUS) & E1000_STATUS_LU;
2630
2631         if (link) {
2632                 if (!netif_carrier_ok(netdev)) {
2633                         bool txb2b = 1;
2634                         mac->ops.get_link_up_info(&adapter->hw,
2635                                                    &adapter->link_speed,
2636                                                    &adapter->link_duplex);
2637                         e1000_print_link_info(adapter);
2638                         /* tweak tx_queue_len according to speed/duplex
2639                          * and adjust the timeout factor */
2640                         netdev->tx_queue_len = adapter->tx_queue_len;
2641                         adapter->tx_timeout_factor = 1;
2642                         switch (adapter->link_speed) {
2643                         case SPEED_10:
2644                                 txb2b = 0;
2645                                 netdev->tx_queue_len = 10;
2646                                 adapter->tx_timeout_factor = 14;
2647                                 break;
2648                         case SPEED_100:
2649                                 txb2b = 0;
2650                                 netdev->tx_queue_len = 100;
2651                                 /* maybe add some timeout factor ? */
2652                                 break;
2653                         }
2654
2655                         /* workaround: re-program speed mode bit after
2656                          * link-up event */
2657                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2658                             !txb2b) {
2659                                 u32 tarc0;
2660                                 tarc0 = er32(TARC0);
2661                                 tarc0 &= ~SPEED_MODE_BIT;
2662                                 ew32(TARC0, tarc0);
2663                         }
2664
2665                         /* disable TSO for pcie and 10/100 speeds, to avoid
2666                          * some hardware issues */
2667                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
2668                                 switch (adapter->link_speed) {
2669                                 case SPEED_10:
2670                                 case SPEED_100:
2671                                         ndev_info(netdev,
2672                                         "10/100 speed: disabling TSO\n");
2673                                         netdev->features &= ~NETIF_F_TSO;
2674                                         netdev->features &= ~NETIF_F_TSO6;
2675                                         break;
2676                                 case SPEED_1000:
2677                                         netdev->features |= NETIF_F_TSO;
2678                                         netdev->features |= NETIF_F_TSO6;
2679                                         break;
2680                                 default:
2681                                         /* oops */
2682                                         break;
2683                                 }
2684                         }
2685
2686                         /* enable transmits in the hardware, need to do this
2687                          * after setting TARC0 */
2688                         tctl = er32(TCTL);
2689                         tctl |= E1000_TCTL_EN;
2690                         ew32(TCTL, tctl);
2691
2692                         netif_carrier_on(netdev);
2693                         netif_wake_queue(netdev);
2694
2695                         if (!test_bit(__E1000_DOWN, &adapter->state))
2696                                 mod_timer(&adapter->phy_info_timer,
2697                                           round_jiffies(jiffies + 2 * HZ));
2698                 } else {
2699                         /* make sure the receive unit is started */
2700                         if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
2701                                 u32 rctl = er32(RCTL);
2702                                 ew32(RCTL, rctl |
2703                                                 E1000_RCTL_EN);
2704                         }
2705                 }
2706         } else {
2707                 if (netif_carrier_ok(netdev)) {
2708                         adapter->link_speed = 0;
2709                         adapter->link_duplex = 0;
2710                         ndev_info(netdev, "Link is Down\n");
2711                         netif_carrier_off(netdev);
2712                         netif_stop_queue(netdev);
2713                         if (!test_bit(__E1000_DOWN, &adapter->state))
2714                                 mod_timer(&adapter->phy_info_timer,
2715                                           round_jiffies(jiffies + 2 * HZ));
2716
2717                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2718                                 schedule_work(&adapter->reset_task);
2719                 }
2720         }
2721
2722 link_up:
2723         e1000e_update_stats(adapter);
2724
2725         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2726         adapter->tpt_old = adapter->stats.tpt;
2727         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2728         adapter->colc_old = adapter->stats.colc;
2729
2730         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2731         adapter->gorcl_old = adapter->stats.gorcl;
2732         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2733         adapter->gotcl_old = adapter->stats.gotcl;
2734
2735         e1000e_update_adaptive(&adapter->hw);
2736
2737         if (!netif_carrier_ok(netdev)) {
2738                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2739                                tx_ring->count);
2740                 if (tx_pending) {
2741                         /* We've lost link, so the controller stops DMA,
2742                          * but we've got queued Tx work that's never going
2743                          * to get done, so reset controller to flush Tx.
2744                          * (Do the reset outside of interrupt context). */
2745                         adapter->tx_timeout_count++;
2746                         schedule_work(&adapter->reset_task);
2747                 }
2748         }
2749
2750         /* Cause software interrupt to ensure rx ring is cleaned */
2751         ew32(ICS, E1000_ICS_RXDMT0);
2752
2753         /* Force detection of hung controller every watchdog period */
2754         adapter->detect_tx_hung = 1;
2755
2756         /* With 82571 controllers, LAA may be overwritten due to controller
2757          * reset from the other port. Set the appropriate LAA in RAR[0] */
2758         if (e1000e_get_laa_state_82571(hw))
2759                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2760
2761         /* Reset the timer */
2762         if (!test_bit(__E1000_DOWN, &adapter->state))
2763                 mod_timer(&adapter->watchdog_timer,
2764                           round_jiffies(jiffies + 2 * HZ));
2765 }
2766
2767 #define E1000_TX_FLAGS_CSUM             0x00000001
2768 #define E1000_TX_FLAGS_VLAN             0x00000002
2769 #define E1000_TX_FLAGS_TSO              0x00000004
2770 #define E1000_TX_FLAGS_IPV4             0x00000008
2771 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2772 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2773
2774 static int e1000_tso(struct e1000_adapter *adapter,
2775                      struct sk_buff *skb)
2776 {
2777         struct e1000_ring *tx_ring = adapter->tx_ring;
2778         struct e1000_context_desc *context_desc;
2779         struct e1000_buffer *buffer_info;
2780         unsigned int i;
2781         u32 cmd_length = 0;
2782         u16 ipcse = 0, tucse, mss;
2783         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2784         int err;
2785
2786         if (skb_is_gso(skb)) {
2787                 if (skb_header_cloned(skb)) {
2788                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2789                         if (err)
2790                                 return err;
2791                 }
2792
2793                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2794                 mss = skb_shinfo(skb)->gso_size;
2795                 if (skb->protocol == htons(ETH_P_IP)) {
2796                         struct iphdr *iph = ip_hdr(skb);
2797                         iph->tot_len = 0;
2798                         iph->check = 0;
2799                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2800                                                                  iph->daddr, 0,
2801                                                                  IPPROTO_TCP,
2802                                                                  0);
2803                         cmd_length = E1000_TXD_CMD_IP;
2804                         ipcse = skb_transport_offset(skb) - 1;
2805                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2806                         ipv6_hdr(skb)->payload_len = 0;
2807                         tcp_hdr(skb)->check =
2808                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2809                                                  &ipv6_hdr(skb)->daddr,
2810                                                  0, IPPROTO_TCP, 0);
2811                         ipcse = 0;
2812                 }
2813                 ipcss = skb_network_offset(skb);
2814                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2815                 tucss = skb_transport_offset(skb);
2816                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2817                 tucse = 0;
2818
2819                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2820                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2821
2822                 i = tx_ring->next_to_use;
2823                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2824                 buffer_info = &tx_ring->buffer_info[i];
2825
2826                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2827                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2828                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2829                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2830                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2831                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2832                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2833                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2834                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2835
2836                 buffer_info->time_stamp = jiffies;
2837                 buffer_info->next_to_watch = i;
2838
2839                 i++;
2840                 if (i == tx_ring->count)
2841                         i = 0;
2842                 tx_ring->next_to_use = i;
2843
2844                 return 1;
2845         }
2846
2847         return 0;
2848 }
2849
2850 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2851 {
2852         struct e1000_ring *tx_ring = adapter->tx_ring;
2853         struct e1000_context_desc *context_desc;
2854         struct e1000_buffer *buffer_info;
2855         unsigned int i;
2856         u8 css;
2857
2858         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2859                 css = skb_transport_offset(skb);
2860
2861                 i = tx_ring->next_to_use;
2862                 buffer_info = &tx_ring->buffer_info[i];
2863                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2864
2865                 context_desc->lower_setup.ip_config = 0;
2866                 context_desc->upper_setup.tcp_fields.tucss = css;
2867                 context_desc->upper_setup.tcp_fields.tucso =
2868                                         css + skb->csum_offset;
2869                 context_desc->upper_setup.tcp_fields.tucse = 0;
2870                 context_desc->tcp_seg_setup.data = 0;
2871                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2872
2873                 buffer_info->time_stamp = jiffies;
2874                 buffer_info->next_to_watch = i;
2875
2876                 i++;
2877                 if (i == tx_ring->count)
2878                         i = 0;
2879                 tx_ring->next_to_use = i;
2880
2881                 return 1;
2882         }
2883
2884         return 0;
2885 }
2886
2887 #define E1000_MAX_PER_TXD       8192
2888 #define E1000_MAX_TXD_PWR       12
2889
2890 static int e1000_tx_map(struct e1000_adapter *adapter,
2891                         struct sk_buff *skb, unsigned int first,
2892                         unsigned int max_per_txd, unsigned int nr_frags,
2893                         unsigned int mss)
2894 {
2895         struct e1000_ring *tx_ring = adapter->tx_ring;
2896         struct e1000_buffer *buffer_info;
2897         unsigned int len = skb->len - skb->data_len;
2898         unsigned int offset = 0, size, count = 0, i;
2899         unsigned int f;
2900
2901         i = tx_ring->next_to_use;
2902
2903         while (len) {
2904                 buffer_info = &tx_ring->buffer_info[i];
2905                 size = min(len, max_per_txd);
2906
2907                 /* Workaround for premature desc write-backs
2908                  * in TSO mode.  Append 4-byte sentinel desc */
2909                 if (mss && !nr_frags && size == len && size > 8)
2910                         size -= 4;
2911
2912                 buffer_info->length = size;
2913                 /* set time_stamp *before* dma to help avoid a possible race */
2914                 buffer_info->time_stamp = jiffies;
2915                 buffer_info->dma =
2916                         pci_map_single(adapter->pdev,
2917                                 skb->data + offset,
2918                                 size,
2919                                 PCI_DMA_TODEVICE);
2920                 if (pci_dma_mapping_error(buffer_info->dma)) {
2921                         dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2922                         adapter->tx_dma_failed++;
2923                         return -1;
2924                 }
2925                 buffer_info->next_to_watch = i;
2926
2927                 len -= size;
2928                 offset += size;
2929                 count++;
2930                 i++;
2931                 if (i == tx_ring->count)
2932                         i = 0;
2933         }
2934
2935         for (f = 0; f < nr_frags; f++) {
2936                 struct skb_frag_struct *frag;
2937
2938                 frag = &skb_shinfo(skb)->frags[f];
2939                 len = frag->size;
2940                 offset = frag->page_offset;
2941
2942                 while (len) {
2943                         buffer_info = &tx_ring->buffer_info[i];
2944                         size = min(len, max_per_txd);
2945                         /* Workaround for premature desc write-backs
2946                          * in TSO mode.  Append 4-byte sentinel desc */
2947                         if (mss && f == (nr_frags-1) && size == len && size > 8)
2948                                 size -= 4;
2949
2950                         buffer_info->length = size;
2951                         buffer_info->time_stamp = jiffies;
2952                         buffer_info->dma =
2953                                 pci_map_page(adapter->pdev,
2954                                         frag->page,
2955                                         offset,
2956                                         size,
2957                                         PCI_DMA_TODEVICE);
2958                         if (pci_dma_mapping_error(buffer_info->dma)) {
2959                                 dev_err(&adapter->pdev->dev,
2960                                         "TX DMA page map failed\n");
2961                                 adapter->tx_dma_failed++;
2962                                 return -1;
2963                         }
2964
2965                         buffer_info->next_to_watch = i;
2966
2967                         len -= size;
2968                         offset += size;
2969                         count++;
2970
2971                         i++;
2972                         if (i == tx_ring->count)
2973                                 i = 0;
2974                 }
2975         }
2976
2977         if (i == 0)
2978                 i = tx_ring->count - 1;
2979         else
2980                 i--;
2981
2982         tx_ring->buffer_info[i].skb = skb;
2983         tx_ring->buffer_info[first].next_to_watch = i;
2984
2985         return count;
2986 }
2987
2988 static void e1000_tx_queue(struct e1000_adapter *adapter,
2989                            int tx_flags, int count)
2990 {
2991         struct e1000_ring *tx_ring = adapter->tx_ring;
2992         struct e1000_tx_desc *tx_desc = NULL;
2993         struct e1000_buffer *buffer_info;
2994         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2995         unsigned int i;
2996
2997         if (tx_flags & E1000_TX_FLAGS_TSO) {
2998                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2999                              E1000_TXD_CMD_TSE;
3000                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001
3002                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3003                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3004         }
3005
3006         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3007                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3008                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3009         }
3010
3011         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3012                 txd_lower |= E1000_TXD_CMD_VLE;
3013                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3014         }
3015
3016         i = tx_ring->next_to_use;
3017
3018         while (count--) {
3019                 buffer_info = &tx_ring->buffer_info[i];
3020                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3021                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3022                 tx_desc->lower.data =
3023                         cpu_to_le32(txd_lower | buffer_info->length);
3024                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3025
3026                 i++;
3027                 if (i == tx_ring->count)
3028                         i = 0;
3029         }
3030
3031         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3032
3033         /* Force memory writes to complete before letting h/w
3034          * know there are new descriptors to fetch.  (Only
3035          * applicable for weak-ordered memory model archs,
3036          * such as IA-64). */
3037         wmb();
3038
3039         tx_ring->next_to_use = i;
3040         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3041         /* we need this if more than one processor can write to our tail
3042          * at a time, it synchronizes IO on IA64/Altix systems */
3043         mmiowb();
3044 }
3045
3046 #define MINIMUM_DHCP_PACKET_SIZE 282
3047 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3048                                     struct sk_buff *skb)
3049 {
3050         struct e1000_hw *hw =  &adapter->hw;
3051         u16 length, offset;
3052
3053         if (vlan_tx_tag_present(skb)) {
3054                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3055                     && (adapter->hw.mng_cookie.status &
3056                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3057                         return 0;
3058         }
3059
3060         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3061                 return 0;
3062
3063         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3064                 return 0;
3065
3066         {
3067                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3068                 struct udphdr *udp;
3069
3070                 if (ip->protocol != IPPROTO_UDP)
3071                         return 0;
3072
3073                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3074                 if (ntohs(udp->dest) != 67)
3075                         return 0;
3076
3077                 offset = (u8 *)udp + 8 - skb->data;
3078                 length = skb->len - offset;
3079                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3080         }
3081
3082         return 0;
3083 }
3084
3085 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3086 {
3087         struct e1000_adapter *adapter = netdev_priv(netdev);
3088
3089         netif_stop_queue(netdev);
3090         /* Herbert's original patch had:
3091          *  smp_mb__after_netif_stop_queue();
3092          * but since that doesn't exist yet, just open code it. */
3093         smp_mb();
3094
3095         /* We need to check again in a case another CPU has just
3096          * made room available. */
3097         if (e1000_desc_unused(adapter->tx_ring) < size)
3098                 return -EBUSY;
3099
3100         /* A reprieve! */
3101         netif_start_queue(netdev);
3102         ++adapter->restart_queue;
3103         return 0;
3104 }
3105
3106 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3107 {
3108         struct e1000_adapter *adapter = netdev_priv(netdev);
3109
3110         if (e1000_desc_unused(adapter->tx_ring) >= size)
3111                 return 0;
3112         return __e1000_maybe_stop_tx(netdev, size);
3113 }
3114
3115 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3116 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3117 {
3118         struct e1000_adapter *adapter = netdev_priv(netdev);
3119         struct e1000_ring *tx_ring = adapter->tx_ring;
3120         unsigned int first;
3121         unsigned int max_per_txd = E1000_MAX_PER_TXD;
3122         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3123         unsigned int tx_flags = 0;
3124         unsigned int len = skb->len - skb->data_len;
3125         unsigned long irq_flags;
3126         unsigned int nr_frags;
3127         unsigned int mss;
3128         int count = 0;
3129         int tso;
3130         unsigned int f;
3131
3132         if (test_bit(__E1000_DOWN, &adapter->state)) {
3133                 dev_kfree_skb_any(skb);
3134                 return NETDEV_TX_OK;
3135         }
3136
3137         if (skb->len <= 0) {
3138                 dev_kfree_skb_any(skb);
3139                 return NETDEV_TX_OK;
3140         }
3141
3142         mss = skb_shinfo(skb)->gso_size;
3143         /* The controller does a simple calculation to
3144          * make sure there is enough room in the FIFO before
3145          * initiating the DMA for each buffer.  The calc is:
3146          * 4 = ceil(buffer len/mss).  To make sure we don't
3147          * overrun the FIFO, adjust the max buffer len if mss
3148          * drops. */
3149         if (mss) {
3150                 u8 hdr_len;
3151                 max_per_txd = min(mss << 2, max_per_txd);
3152                 max_txd_pwr = fls(max_per_txd) - 1;
3153
3154                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3155                 * points to just header, pull a few bytes of payload from
3156                 * frags into skb->data */
3157                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3158                 if (skb->data_len && (hdr_len == len)) {
3159                         unsigned int pull_size;
3160
3161                         pull_size = min((unsigned int)4, skb->data_len);
3162                         if (!__pskb_pull_tail(skb, pull_size)) {
3163                                 ndev_err(netdev,
3164                                          "__pskb_pull_tail failed.\n");
3165                                 dev_kfree_skb_any(skb);
3166                                 return NETDEV_TX_OK;
3167                         }
3168                         len = skb->len - skb->data_len;
3169                 }
3170         }
3171
3172         /* reserve a descriptor for the offload context */
3173         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3174                 count++;
3175         count++;
3176
3177         count += TXD_USE_COUNT(len, max_txd_pwr);
3178
3179         nr_frags = skb_shinfo(skb)->nr_frags;
3180         for (f = 0; f < nr_frags; f++)
3181                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3182                                        max_txd_pwr);
3183
3184         if (adapter->hw.mac.tx_pkt_filtering)
3185                 e1000_transfer_dhcp_info(adapter, skb);
3186
3187         if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3188                 /* Collision - tell upper layer to requeue */
3189                 return NETDEV_TX_LOCKED;
3190
3191         /* need: count + 2 desc gap to keep tail from touching
3192          * head, otherwise try next time */
3193         if (e1000_maybe_stop_tx(netdev, count + 2)) {
3194                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3195                 return NETDEV_TX_BUSY;
3196         }
3197
3198         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3199                 tx_flags |= E1000_TX_FLAGS_VLAN;
3200                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3201         }
3202
3203         first = tx_ring->next_to_use;
3204
3205         tso = e1000_tso(adapter, skb);
3206         if (tso < 0) {
3207                 dev_kfree_skb_any(skb);
3208                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3209                 return NETDEV_TX_OK;
3210         }
3211
3212         if (tso)
3213                 tx_flags |= E1000_TX_FLAGS_TSO;
3214         else if (e1000_tx_csum(adapter, skb))
3215                 tx_flags |= E1000_TX_FLAGS_CSUM;
3216
3217         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3218          * 82571 hardware supports TSO capabilities for IPv6 as well...
3219          * no longer assume, we must. */
3220         if (skb->protocol == htons(ETH_P_IP))
3221                 tx_flags |= E1000_TX_FLAGS_IPV4;
3222
3223         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3224         if (count < 0) {
3225                 /* handle pci_map_single() error in e1000_tx_map */
3226                 dev_kfree_skb_any(skb);
3227                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3228                 return NETDEV_TX_OK;
3229         }
3230
3231         e1000_tx_queue(adapter, tx_flags, count);
3232
3233         netdev->trans_start = jiffies;
3234
3235         /* Make sure there is space in the ring for the next send. */
3236         e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3237
3238         spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3239         return NETDEV_TX_OK;
3240 }
3241
3242 /**
3243  * e1000_tx_timeout - Respond to a Tx Hang
3244  * @netdev: network interface device structure
3245  **/
3246 static void e1000_tx_timeout(struct net_device *netdev)
3247 {
3248         struct e1000_adapter *adapter = netdev_priv(netdev);
3249
3250         /* Do the reset outside of interrupt context */
3251         adapter->tx_timeout_count++;
3252         schedule_work(&adapter->reset_task);
3253 }
3254
3255 static void e1000_reset_task(struct work_struct *work)
3256 {
3257         struct e1000_adapter *adapter;
3258         adapter = container_of(work, struct e1000_adapter, reset_task);
3259
3260         e1000e_reinit_locked(adapter);
3261 }
3262
3263 /**
3264  * e1000_get_stats - Get System Network Statistics
3265  * @netdev: network interface device structure
3266  *
3267  * Returns the address of the device statistics structure.
3268  * The statistics are actually updated from the timer callback.
3269  **/
3270 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3271 {
3272         struct e1000_adapter *adapter = netdev_priv(netdev);
3273
3274         /* only return the current stats */
3275         return &adapter->net_stats;
3276 }
3277
3278 /**
3279  * e1000_change_mtu - Change the Maximum Transfer Unit
3280  * @netdev: network interface device structure
3281  * @new_mtu: new value for maximum frame size
3282  *
3283  * Returns 0 on success, negative on failure
3284  **/
3285 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3286 {
3287         struct e1000_adapter *adapter = netdev_priv(netdev);
3288         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3289
3290         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3291             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3292                 ndev_err(netdev, "Invalid MTU setting\n");
3293                 return -EINVAL;
3294         }
3295
3296         /* Jumbo frame size limits */
3297         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3298                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3299                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3300                         return -EINVAL;
3301                 }
3302                 if (adapter->hw.phy.type == e1000_phy_ife) {
3303                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3304                         return -EINVAL;
3305                 }
3306         }
3307
3308 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3309         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3310                 ndev_err(netdev, "MTU > 9216 not supported.\n");
3311                 return -EINVAL;
3312         }
3313
3314         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3315                 msleep(1);
3316         /* e1000e_down has a dependency on max_frame_size */
3317         adapter->hw.mac.max_frame_size = max_frame;
3318         if (netif_running(netdev))
3319                 e1000e_down(adapter);
3320
3321         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3322          * means we reserve 2 more, this pushes us to allocate from the next
3323          * larger slab size.
3324          * i.e. RXBUFFER_2048 --> size-4096 slab */
3325
3326         if (max_frame <= 256)
3327                 adapter->rx_buffer_len = 256;
3328         else if (max_frame <= 512)
3329                 adapter->rx_buffer_len = 512;
3330         else if (max_frame <= 1024)
3331                 adapter->rx_buffer_len = 1024;
3332         else if (max_frame <= 2048)
3333                 adapter->rx_buffer_len = 2048;
3334         else
3335                 adapter->rx_buffer_len = 4096;
3336
3337         /* adjust allocation if LPE protects us, and we aren't using SBP */
3338         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3339              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3340                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3341                                          + ETH_FCS_LEN ;
3342
3343         ndev_info(netdev, "changing MTU from %d to %d\n",
3344                 netdev->mtu, new_mtu);
3345         netdev->mtu = new_mtu;
3346
3347         if (netif_running(netdev))
3348                 e1000e_up(adapter);
3349         else
3350                 e1000e_reset(adapter);
3351
3352         clear_bit(__E1000_RESETTING, &adapter->state);
3353
3354         return 0;
3355 }
3356
3357 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3358                            int cmd)
3359 {
3360         struct e1000_adapter *adapter = netdev_priv(netdev);
3361         struct mii_ioctl_data *data = if_mii(ifr);
3362         unsigned long irq_flags;
3363
3364         if (adapter->hw.media_type != e1000_media_type_copper)
3365                 return -EOPNOTSUPP;
3366
3367         switch (cmd) {
3368         case SIOCGMIIPHY:
3369                 data->phy_id = adapter->hw.phy.addr;
3370                 break;
3371         case SIOCGMIIREG:
3372                 if (!capable(CAP_NET_ADMIN))
3373                         return -EPERM;
3374                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3375                 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3376                                    &data->val_out)) {
3377                         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3378                         return -EIO;
3379                 }
3380                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3381                 break;
3382         case SIOCSMIIREG:
3383         default:
3384                 return -EOPNOTSUPP;
3385         }
3386         return 0;
3387 }
3388
3389 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3390 {
3391         switch (cmd) {
3392         case SIOCGMIIPHY:
3393         case SIOCGMIIREG:
3394         case SIOCSMIIREG:
3395                 return e1000_mii_ioctl(netdev, ifr, cmd);
3396         default:
3397                 return -EOPNOTSUPP;
3398         }
3399 }
3400
3401 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3402 {
3403         struct net_device *netdev = pci_get_drvdata(pdev);
3404         struct e1000_adapter *adapter = netdev_priv(netdev);
3405         struct e1000_hw *hw = &adapter->hw;
3406         u32 ctrl, ctrl_ext, rctl, status;
3407         u32 wufc = adapter->wol;
3408         int retval = 0;
3409
3410         netif_device_detach(netdev);
3411
3412         if (netif_running(netdev)) {
3413                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3414                 e1000e_down(adapter);
3415                 e1000_free_irq(adapter);
3416         }
3417
3418         retval = pci_save_state(pdev);
3419         if (retval)
3420                 return retval;
3421
3422         status = er32(STATUS);
3423         if (status & E1000_STATUS_LU)
3424                 wufc &= ~E1000_WUFC_LNKC;
3425
3426         if (wufc) {
3427                 e1000_setup_rctl(adapter);
3428                 e1000_set_multi(netdev);
3429
3430                 /* turn on all-multi mode if wake on multicast is enabled */
3431                 if (wufc & E1000_WUFC_MC) {
3432                         rctl = er32(RCTL);
3433                         rctl |= E1000_RCTL_MPE;
3434                         ew32(RCTL, rctl);
3435                 }
3436
3437                 ctrl = er32(CTRL);
3438                 /* advertise wake from D3Cold */
3439                 #define E1000_CTRL_ADVD3WUC 0x00100000
3440                 /* phy power management enable */
3441                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3442                 ctrl |= E1000_CTRL_ADVD3WUC |
3443                         E1000_CTRL_EN_PHY_PWR_MGMT;
3444                 ew32(CTRL, ctrl);
3445
3446                 if (adapter->hw.media_type == e1000_media_type_fiber ||
3447                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
3448                         /* keep the laser running in D3 */
3449                         ctrl_ext = er32(CTRL_EXT);
3450                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3451                         ew32(CTRL_EXT, ctrl_ext);
3452                 }
3453
3454                 /* Allow time for pending master requests to run */
3455                 e1000e_disable_pcie_master(&adapter->hw);
3456
3457                 ew32(WUC, E1000_WUC_PME_EN);
3458                 ew32(WUFC, wufc);
3459                 pci_enable_wake(pdev, PCI_D3hot, 1);
3460                 pci_enable_wake(pdev, PCI_D3cold, 1);
3461         } else {
3462                 ew32(WUC, 0);
3463                 ew32(WUFC, 0);
3464                 pci_enable_wake(pdev, PCI_D3hot, 0);
3465                 pci_enable_wake(pdev, PCI_D3cold, 0);
3466         }
3467
3468         /* make sure adapter isn't asleep if manageability is enabled */
3469         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3470                 pci_enable_wake(pdev, PCI_D3hot, 1);
3471                 pci_enable_wake(pdev, PCI_D3cold, 1);
3472         }
3473
3474         if (adapter->hw.phy.type == e1000_phy_igp_3)
3475                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3476
3477         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3478          * would have already happened in close and is redundant. */
3479         e1000_release_hw_control(adapter);
3480
3481         pci_disable_device(pdev);
3482
3483         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3484
3485         return 0;
3486 }
3487
3488 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3489 {
3490         int pos;
3491         u32 cap;
3492         u16 val;
3493
3494         /*
3495          * 82573 workaround - disable L1 ASPM on mobile chipsets
3496          *
3497          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3498          * resulting in lost data or garbage information on the pci-e link
3499          * level. This could result in (false) bad EEPROM checksum errors,
3500          * long ping times (up to 2s) or even a system freeze/hang.
3501          *
3502          * Unfortunately this feature saves about 1W power consumption when
3503          * active.
3504          */
3505         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3506         pci_read_config_dword(pdev, pos + PCI_EXP_LNKCAP, &cap);
3507         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3508         if (val & 0x2) {
3509                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3510                 val &= ~0x2;
3511                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3512         }
3513 }
3514
3515 #ifdef CONFIG_PM
3516 static int e1000_resume(struct pci_dev *pdev)
3517 {
3518         struct net_device *netdev = pci_get_drvdata(pdev);
3519         struct e1000_adapter *adapter = netdev_priv(netdev);
3520         struct e1000_hw *hw = &adapter->hw;
3521         u32 err;
3522
3523         pci_set_power_state(pdev, PCI_D0);
3524         pci_restore_state(pdev);
3525         e1000e_disable_l1aspm(pdev);
3526         err = pci_enable_device(pdev);
3527         if (err) {
3528                 dev_err(&pdev->dev,
3529                         "Cannot enable PCI device from suspend\n");
3530                 return err;
3531         }
3532
3533         pci_set_master(pdev);
3534
3535         pci_enable_wake(pdev, PCI_D3hot, 0);
3536         pci_enable_wake(pdev, PCI_D3cold, 0);
3537
3538         if (netif_running(netdev)) {
3539                 err = e1000_request_irq(adapter);
3540                 if (err)
3541                         return err;
3542         }
3543
3544         e1000e_power_up_phy(adapter);
3545         e1000e_reset(adapter);
3546         ew32(WUS, ~0);
3547
3548         e1000_init_manageability(adapter);
3549
3550         if (netif_running(netdev))
3551                 e1000e_up(adapter);
3552
3553         netif_device_attach(netdev);
3554
3555         /* If the controller has AMT, do not set DRV_LOAD until the interface
3556          * is up.  For all other cases, let the f/w know that the h/w is now
3557          * under the control of the driver. */
3558         if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3559                 e1000_get_hw_control(adapter);
3560
3561         return 0;
3562 }
3563 #endif
3564
3565 static void e1000_shutdown(struct pci_dev *pdev)
3566 {
3567         e1000_suspend(pdev, PMSG_SUSPEND);
3568 }
3569
3570 #ifdef CONFIG_NET_POLL_CONTROLLER
3571 /*
3572  * Polling 'interrupt' - used by things like netconsole to send skbs
3573  * without having to re-enable interrupts. It's not called while
3574  * the interrupt routine is executing.
3575  */
3576 static void e1000_netpoll(struct net_device *netdev)
3577 {
3578         struct e1000_adapter *adapter = netdev_priv(netdev);
3579
3580         disable_irq(adapter->pdev->irq);
3581         e1000_intr(adapter->pdev->irq, netdev);
3582
3583         e1000_clean_tx_irq(adapter);
3584
3585         enable_irq(adapter->pdev->irq);
3586 }
3587 #endif
3588
3589 /**
3590  * e1000_io_error_detected - called when PCI error is detected
3591  * @pdev: Pointer to PCI device
3592  * @state: The current pci connection state
3593  *
3594  * This function is called after a PCI bus error affecting
3595  * this device has been detected.
3596  */
3597 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3598                                                 pci_channel_state_t state)
3599 {
3600         struct net_device *netdev = pci_get_drvdata(pdev);
3601         struct e1000_adapter *adapter = netdev_priv(netdev);
3602
3603         netif_device_detach(netdev);
3604
3605         if (netif_running(netdev))
3606                 e1000e_down(adapter);
3607         pci_disable_device(pdev);
3608
3609         /* Request a slot slot reset. */
3610         return PCI_ERS_RESULT_NEED_RESET;
3611 }
3612
3613 /**
3614  * e1000_io_slot_reset - called after the pci bus has been reset.
3615  * @pdev: Pointer to PCI device
3616  *
3617  * Restart the card from scratch, as if from a cold-boot. Implementation
3618  * resembles the first-half of the e1000_resume routine.
3619  */
3620 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3621 {
3622         struct net_device *netdev = pci_get_drvdata(pdev);
3623         struct e1000_adapter *adapter = netdev_priv(netdev);
3624         struct e1000_hw *hw = &adapter->hw;
3625
3626         e1000e_disable_l1aspm(pdev);
3627         if (pci_enable_device(pdev)) {
3628                 dev_err(&pdev->dev,
3629                         "Cannot re-enable PCI device after reset.\n");
3630                 return PCI_ERS_RESULT_DISCONNECT;
3631         }
3632         pci_set_master(pdev);
3633
3634         pci_enable_wake(pdev, PCI_D3hot, 0);
3635         pci_enable_wake(pdev, PCI_D3cold, 0);
3636
3637         e1000e_reset(adapter);
3638         ew32(WUS, ~0);
3639
3640         return PCI_ERS_RESULT_RECOVERED;
3641 }
3642
3643 /**
3644  * e1000_io_resume - called when traffic can start flowing again.
3645  * @pdev: Pointer to PCI device
3646  *
3647  * This callback is called when the error recovery driver tells us that
3648  * its OK to resume normal operation. Implementation resembles the
3649  * second-half of the e1000_resume routine.
3650  */
3651 static void e1000_io_resume(struct pci_dev *pdev)
3652 {
3653         struct net_device *netdev = pci_get_drvdata(pdev);
3654         struct e1000_adapter *adapter = netdev_priv(netdev);
3655
3656         e1000_init_manageability(adapter);
3657
3658         if (netif_running(netdev)) {
3659                 if (e1000e_up(adapter)) {
3660                         dev_err(&pdev->dev,
3661                                 "can't bring device back up after reset\n");
3662                         return;
3663                 }
3664         }
3665
3666         netif_device_attach(netdev);
3667
3668         /* If the controller has AMT, do not set DRV_LOAD until the interface
3669          * is up.  For all other cases, let the f/w know that the h/w is now
3670          * under the control of the driver. */
3671         if (!(adapter->flags & FLAG_HAS_AMT) ||
3672             !e1000e_check_mng_mode(&adapter->hw))
3673                 e1000_get_hw_control(adapter);
3674
3675 }
3676
3677 static void e1000_print_device_info(struct e1000_adapter *adapter)
3678 {
3679         struct e1000_hw *hw = &adapter->hw;
3680         struct net_device *netdev = adapter->netdev;
3681         u32 part_num;
3682
3683         /* print bus type/speed/width info */
3684         ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3685                   "%02x:%02x:%02x:%02x:%02x:%02x\n",
3686                   /* bus width */
3687                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3688                   "Width x1"),
3689                   /* MAC address */
3690                   netdev->dev_addr[0], netdev->dev_addr[1],
3691                   netdev->dev_addr[2], netdev->dev_addr[3],
3692                   netdev->dev_addr[4], netdev->dev_addr[5]);
3693         ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3694                   (hw->phy.type == e1000_phy_ife)
3695                    ? "10/100" : "1000");
3696         e1000e_read_part_num(hw, &part_num);
3697         ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3698                   hw->mac.type, hw->phy.type,
3699                   (part_num >> 8), (part_num & 0xff));
3700 }
3701
3702 /**
3703  * e1000_probe - Device Initialization Routine
3704  * @pdev: PCI device information struct
3705  * @ent: entry in e1000_pci_tbl
3706  *
3707  * Returns 0 on success, negative on failure
3708  *
3709  * e1000_probe initializes an adapter identified by a pci_dev structure.
3710  * The OS initialization, configuring of the adapter private structure,
3711  * and a hardware reset occur.
3712  **/
3713 static int __devinit e1000_probe(struct pci_dev *pdev,
3714                                  const struct pci_device_id *ent)
3715 {
3716         struct net_device *netdev;
3717         struct e1000_adapter *adapter;
3718         struct e1000_hw *hw;
3719         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3720         unsigned long mmio_start, mmio_len;
3721         unsigned long flash_start, flash_len;
3722
3723         static int cards_found;
3724         int i, err, pci_using_dac;
3725         u16 eeprom_data = 0;
3726         u16 eeprom_apme_mask = E1000_EEPROM_APME;
3727
3728         e1000e_disable_l1aspm(pdev);
3729         err = pci_enable_device(pdev);
3730         if (err)
3731                 return err;
3732
3733         pci_using_dac = 0;
3734         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3735         if (!err) {
3736                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3737                 if (!err)
3738                         pci_using_dac = 1;
3739         } else {
3740                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3741                 if (err) {
3742                         err = pci_set_consistent_dma_mask(pdev,
3743                                                           DMA_32BIT_MASK);
3744                         if (err) {
3745                                 dev_err(&pdev->dev, "No usable DMA "
3746                                         "configuration, aborting\n");
3747                                 goto err_dma;
3748                         }
3749                 }
3750         }
3751
3752         err = pci_request_regions(pdev, e1000e_driver_name);
3753         if (err)
3754                 goto err_pci_reg;
3755
3756         pci_set_master(pdev);
3757
3758         err = -ENOMEM;
3759         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3760         if (!netdev)
3761                 goto err_alloc_etherdev;
3762
3763         SET_NETDEV_DEV(netdev, &pdev->dev);
3764
3765         pci_set_drvdata(pdev, netdev);
3766         adapter = netdev_priv(netdev);
3767         hw = &adapter->hw;
3768         adapter->netdev = netdev;
3769         adapter->pdev = pdev;
3770         adapter->ei = ei;
3771         adapter->pba = ei->pba;
3772         adapter->flags = ei->flags;
3773         adapter->hw.adapter = adapter;
3774         adapter->hw.mac.type = ei->mac;
3775         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3776
3777         mmio_start = pci_resource_start(pdev, 0);
3778         mmio_len = pci_resource_len(pdev, 0);
3779
3780         err = -EIO;
3781         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3782         if (!adapter->hw.hw_addr)
3783                 goto err_ioremap;
3784
3785         if ((adapter->flags & FLAG_HAS_FLASH) &&
3786             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3787                 flash_start = pci_resource_start(pdev, 1);
3788                 flash_len = pci_resource_len(pdev, 1);
3789                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3790                 if (!adapter->hw.flash_address)
3791                         goto err_flashmap;
3792         }
3793
3794         /* construct the net_device struct */
3795         netdev->open                    = &e1000_open;
3796         netdev->stop                    = &e1000_close;
3797         netdev->hard_start_xmit         = &e1000_xmit_frame;
3798         netdev->get_stats               = &e1000_get_stats;
3799         netdev->set_multicast_list      = &e1000_set_multi;
3800         netdev->set_mac_address         = &e1000_set_mac;
3801         netdev->change_mtu              = &e1000_change_mtu;
3802         netdev->do_ioctl                = &e1000_ioctl;
3803         e1000e_set_ethtool_ops(netdev);
3804         netdev->tx_timeout              = &e1000_tx_timeout;
3805         netdev->watchdog_timeo          = 5 * HZ;
3806         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3807         netdev->vlan_rx_register        = e1000_vlan_rx_register;
3808         netdev->vlan_rx_add_vid         = e1000_vlan_rx_add_vid;
3809         netdev->vlan_rx_kill_vid        = e1000_vlan_rx_kill_vid;
3810 #ifdef CONFIG_NET_POLL_CONTROLLER
3811         netdev->poll_controller         = e1000_netpoll;
3812 #endif
3813         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3814
3815         netdev->mem_start = mmio_start;
3816         netdev->mem_end = mmio_start + mmio_len;
3817
3818         adapter->bd_number = cards_found++;
3819
3820         /* setup adapter struct */
3821         err = e1000_sw_init(adapter);
3822         if (err)
3823                 goto err_sw_init;
3824
3825         err = -EIO;
3826
3827         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3828         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3829         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3830
3831         err = ei->get_invariants(adapter);
3832         if (err)
3833                 goto err_hw_init;
3834
3835         hw->mac.ops.get_bus_info(&adapter->hw);
3836
3837         adapter->hw.phy.wait_for_link = 0;
3838
3839         /* Copper options */
3840         if (adapter->hw.media_type == e1000_media_type_copper) {
3841                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3842                 adapter->hw.phy.disable_polarity_correction = 0;
3843                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3844         }
3845
3846         if (e1000_check_reset_block(&adapter->hw))
3847                 ndev_info(netdev,
3848                           "PHY reset is blocked due to SOL/IDER session.\n");
3849
3850         netdev->features = NETIF_F_SG |
3851                            NETIF_F_HW_CSUM |
3852                            NETIF_F_HW_VLAN_TX |
3853                            NETIF_F_HW_VLAN_RX;
3854
3855         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3856                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
3857
3858         netdev->features |= NETIF_F_TSO;
3859         netdev->features |= NETIF_F_TSO6;
3860
3861         if (pci_using_dac)
3862                 netdev->features |= NETIF_F_HIGHDMA;
3863
3864         /* We should not be using LLTX anymore, but we are still TX faster with
3865          * it. */
3866         netdev->features |= NETIF_F_LLTX;
3867
3868         if (e1000e_enable_mng_pass_thru(&adapter->hw))
3869                 adapter->flags |= FLAG_MNG_PT_ENABLED;
3870
3871         /* before reading the NVM, reset the controller to
3872          * put the device in a known good starting state */
3873         adapter->hw.mac.ops.reset_hw(&adapter->hw);
3874
3875         /*
3876          * systems with ASPM and others may see the checksum fail on the first
3877          * attempt. Let's give it a few tries
3878          */
3879         for (i = 0;; i++) {
3880                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
3881                         break;
3882                 if (i == 2) {
3883                         ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
3884                         err = -EIO;
3885                         goto err_eeprom;
3886                 }
3887         }
3888
3889         /* copy the MAC address out of the NVM */
3890         if (e1000e_read_mac_addr(&adapter->hw))
3891                 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
3892
3893         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3894         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3895
3896         if (!is_valid_ether_addr(netdev->perm_addr)) {
3897                 ndev_err(netdev, "Invalid MAC Address: "
3898                          "%02x:%02x:%02x:%02x:%02x:%02x\n",
3899                          netdev->perm_addr[0], netdev->perm_addr[1],
3900                          netdev->perm_addr[2], netdev->perm_addr[3],
3901                          netdev->perm_addr[4], netdev->perm_addr[5]);
3902                 err = -EIO;
3903                 goto err_eeprom;
3904         }
3905
3906         init_timer(&adapter->watchdog_timer);
3907         adapter->watchdog_timer.function = &e1000_watchdog;
3908         adapter->watchdog_timer.data = (unsigned long) adapter;
3909
3910         init_timer(&adapter->phy_info_timer);
3911         adapter->phy_info_timer.function = &e1000_update_phy_info;
3912         adapter->phy_info_timer.data = (unsigned long) adapter;
3913
3914         INIT_WORK(&adapter->reset_task, e1000_reset_task);
3915         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
3916
3917         e1000e_check_options(adapter);
3918
3919         /* Initialize link parameters. User can change them with ethtool */
3920         adapter->hw.mac.autoneg = 1;
3921         adapter->fc_autoneg = 1;
3922         adapter->hw.mac.original_fc = e1000_fc_default;
3923         adapter->hw.mac.fc = e1000_fc_default;
3924         adapter->hw.phy.autoneg_advertised = 0x2f;
3925
3926         /* ring size defaults */
3927         adapter->rx_ring->count = 256;
3928         adapter->tx_ring->count = 256;
3929
3930         /*
3931          * Initial Wake on LAN setting - If APM wake is enabled in
3932          * the EEPROM, enable the ACPI Magic Packet filter
3933          */
3934         if (adapter->flags & FLAG_APME_IN_WUC) {
3935                 /* APME bit in EEPROM is mapped to WUC.APME */
3936                 eeprom_data = er32(WUC);
3937                 eeprom_apme_mask = E1000_WUC_APME;
3938         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
3939                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
3940                     (adapter->hw.bus.func == 1))
3941                         e1000_read_nvm(&adapter->hw,
3942                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3943                 else
3944                         e1000_read_nvm(&adapter->hw,
3945                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3946         }
3947
3948         /* fetch WoL from EEPROM */
3949         if (eeprom_data & eeprom_apme_mask)
3950                 adapter->eeprom_wol |= E1000_WUFC_MAG;
3951
3952         /*
3953          * now that we have the eeprom settings, apply the special cases
3954          * where the eeprom may be wrong or the board simply won't support
3955          * wake on lan on a particular port
3956          */
3957         if (!(adapter->flags & FLAG_HAS_WOL))
3958                 adapter->eeprom_wol = 0;
3959
3960         /* initialize the wol settings based on the eeprom settings */
3961         adapter->wol = adapter->eeprom_wol;
3962
3963         /* reset the hardware with the new settings */
3964         e1000e_reset(adapter);
3965
3966         /* If the controller has AMT, do not set DRV_LOAD until the interface
3967          * is up.  For all other cases, let the f/w know that the h/w is now
3968          * under the control of the driver. */
3969         if (!(adapter->flags & FLAG_HAS_AMT) ||
3970             !e1000e_check_mng_mode(&adapter->hw))
3971                 e1000_get_hw_control(adapter);
3972
3973         /* tell the stack to leave us alone until e1000_open() is called */
3974         netif_carrier_off(netdev);
3975         netif_stop_queue(netdev);
3976
3977         strcpy(netdev->name, "eth%d");
3978         err = register_netdev(netdev);
3979         if (err)
3980                 goto err_register;
3981
3982         e1000_print_device_info(adapter);
3983
3984         return 0;
3985
3986 err_register:
3987 err_hw_init:
3988         e1000_release_hw_control(adapter);
3989 err_eeprom:
3990         if (!e1000_check_reset_block(&adapter->hw))
3991                 e1000_phy_hw_reset(&adapter->hw);
3992
3993         if (adapter->hw.flash_address)
3994                 iounmap(adapter->hw.flash_address);
3995
3996 err_flashmap:
3997         kfree(adapter->tx_ring);
3998         kfree(adapter->rx_ring);
3999 err_sw_init:
4000         iounmap(adapter->hw.hw_addr);
4001 err_ioremap:
4002         free_netdev(netdev);
4003 err_alloc_etherdev:
4004         pci_release_regions(pdev);
4005 err_pci_reg:
4006 err_dma:
4007         pci_disable_device(pdev);
4008         return err;
4009 }
4010
4011 /**
4012  * e1000_remove - Device Removal Routine
4013  * @pdev: PCI device information struct
4014  *
4015  * e1000_remove is called by the PCI subsystem to alert the driver
4016  * that it should release a PCI device.  The could be caused by a
4017  * Hot-Plug event, or because the driver is going to be removed from
4018  * memory.
4019  **/
4020 static void __devexit e1000_remove(struct pci_dev *pdev)
4021 {
4022         struct net_device *netdev = pci_get_drvdata(pdev);
4023         struct e1000_adapter *adapter = netdev_priv(netdev);
4024
4025         /* flush_scheduled work may reschedule our watchdog task, so
4026          * explicitly disable watchdog tasks from being rescheduled  */
4027         set_bit(__E1000_DOWN, &adapter->state);
4028         del_timer_sync(&adapter->watchdog_timer);
4029         del_timer_sync(&adapter->phy_info_timer);
4030
4031         flush_scheduled_work();
4032
4033         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4034          * would have already happened in close and is redundant. */
4035         e1000_release_hw_control(adapter);
4036
4037         unregister_netdev(netdev);
4038
4039         if (!e1000_check_reset_block(&adapter->hw))
4040                 e1000_phy_hw_reset(&adapter->hw);
4041
4042         kfree(adapter->tx_ring);
4043         kfree(adapter->rx_ring);
4044
4045         iounmap(adapter->hw.hw_addr);
4046         if (adapter->hw.flash_address)
4047                 iounmap(adapter->hw.flash_address);
4048         pci_release_regions(pdev);
4049
4050         free_netdev(netdev);
4051
4052         pci_disable_device(pdev);
4053 }
4054
4055 /* PCI Error Recovery (ERS) */
4056 static struct pci_error_handlers e1000_err_handler = {
4057         .error_detected = e1000_io_error_detected,
4058         .slot_reset = e1000_io_slot_reset,
4059         .resume = e1000_io_resume,
4060 };
4061
4062 static struct pci_device_id e1000_pci_tbl[] = {
4063         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4064         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4065         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4066         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4067         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4068         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4069         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4070         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4071         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4072         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4073         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4074         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4075         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4076         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4077         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4078         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4079         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4080           board_80003es2lan },
4081         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4082           board_80003es2lan },
4083         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4084           board_80003es2lan },
4085         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4086           board_80003es2lan },
4087         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4088         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4089         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4090         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4093         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4094         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4095         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4097         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4098         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4099
4100         { }     /* terminate list */
4101 };
4102 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4103
4104 /* PCI Device API Driver */
4105 static struct pci_driver e1000_driver = {
4106         .name     = e1000e_driver_name,
4107         .id_table = e1000_pci_tbl,
4108         .probe    = e1000_probe,
4109         .remove   = __devexit_p(e1000_remove),
4110 #ifdef CONFIG_PM
4111         /* Power Managment Hooks */
4112         .suspend  = e1000_suspend,
4113         .resume   = e1000_resume,
4114 #endif
4115         .shutdown = e1000_shutdown,
4116         .err_handler = &e1000_err_handler
4117 };
4118
4119 /**
4120  * e1000_init_module - Driver Registration Routine
4121  *
4122  * e1000_init_module is the first routine called when the driver is
4123  * loaded. All it does is register with the PCI subsystem.
4124  **/
4125 static int __init e1000_init_module(void)
4126 {
4127         int ret;
4128         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4129                e1000e_driver_name, e1000e_driver_version);
4130         printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4131                e1000e_driver_name);
4132         ret = pci_register_driver(&e1000_driver);
4133
4134         return ret;
4135 }
4136 module_init(e1000_init_module);
4137
4138 /**
4139  * e1000_exit_module - Driver Exit Cleanup Routine
4140  *
4141  * e1000_exit_module is called just before the driver is removed
4142  * from memory.
4143  **/
4144 static void __exit e1000_exit_module(void)
4145 {
4146         pci_unregister_driver(&e1000_driver);
4147 }
4148 module_exit(e1000_exit_module);
4149
4150
4151 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4152 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4153 MODULE_LICENSE("GPL");
4154 MODULE_VERSION(DRV_VERSION);
4155
4156 /* e1000_main.c */