- Update to 2.6.25-rc3.
[linux-flexiantxendom0-3.2.10.git] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *      David Mosberger-Tang <davidm@hpl.hp.com>
11  *      Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *      Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
32 #include <linux/mm.h>
33
34 #include <asm/io.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/mca.h>
40
41 #define EFI_DEBUG       0
42
43 extern efi_status_t efi_call_phys (void *, ...);
44
45 struct efi efi;
46 EXPORT_SYMBOL(efi);
47 static efi_runtime_services_t *runtime;
48 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
49
50 #define efi_call_virt(f, args...)       (*(f))(args)
51
52 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
53 static efi_status_t                                                            \
54 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
55 {                                                                              \
56         struct ia64_fpreg fr[6];                                               \
57         efi_time_cap_t *atc = NULL;                                            \
58         efi_status_t ret;                                                      \
59                                                                                \
60         if (tc)                                                                \
61                 atc = adjust_arg(tc);                                          \
62         ia64_save_scratch_fpregs(fr);                                          \
63         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
64                                 adjust_arg(tm), atc);                          \
65         ia64_load_scratch_fpregs(fr);                                          \
66         return ret;                                                            \
67 }
68
69 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
70 static efi_status_t                                                            \
71 prefix##_set_time (efi_time_t *tm)                                             \
72 {                                                                              \
73         struct ia64_fpreg fr[6];                                               \
74         efi_status_t ret;                                                      \
75                                                                                \
76         ia64_save_scratch_fpregs(fr);                                          \
77         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
78                                 adjust_arg(tm));                               \
79         ia64_load_scratch_fpregs(fr);                                          \
80         return ret;                                                            \
81 }
82
83 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
84 static efi_status_t                                                            \
85 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
86                           efi_time_t *tm)                                      \
87 {                                                                              \
88         struct ia64_fpreg fr[6];                                               \
89         efi_status_t ret;                                                      \
90                                                                                \
91         ia64_save_scratch_fpregs(fr);                                          \
92         ret = efi_call_##prefix(                                               \
93                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
94                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
95         ia64_load_scratch_fpregs(fr);                                          \
96         return ret;                                                            \
97 }
98
99 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
100 static efi_status_t                                                            \
101 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
102 {                                                                              \
103         struct ia64_fpreg fr[6];                                               \
104         efi_time_t *atm = NULL;                                                \
105         efi_status_t ret;                                                      \
106                                                                                \
107         if (tm)                                                                \
108                 atm = adjust_arg(tm);                                          \
109         ia64_save_scratch_fpregs(fr);                                          \
110         ret = efi_call_##prefix(                                               \
111                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
112                 enabled, atm);                                                 \
113         ia64_load_scratch_fpregs(fr);                                          \
114         return ret;                                                            \
115 }
116
117 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
118 static efi_status_t                                                            \
119 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
120                        unsigned long *data_size, void *data)                   \
121 {                                                                              \
122         struct ia64_fpreg fr[6];                                               \
123         u32 *aattr = NULL;                                                     \
124         efi_status_t ret;                                                      \
125                                                                                \
126         if (attr)                                                              \
127                 aattr = adjust_arg(attr);                                      \
128         ia64_save_scratch_fpregs(fr);                                          \
129         ret = efi_call_##prefix(                                               \
130                 (efi_get_variable_t *) __va(runtime->get_variable),            \
131                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
132                 adjust_arg(data_size), adjust_arg(data));                      \
133         ia64_load_scratch_fpregs(fr);                                          \
134         return ret;                                                            \
135 }
136
137 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
138 static efi_status_t                                                            \
139 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
140                             efi_guid_t *vendor)                                \
141 {                                                                              \
142         struct ia64_fpreg fr[6];                                               \
143         efi_status_t ret;                                                      \
144                                                                                \
145         ia64_save_scratch_fpregs(fr);                                          \
146         ret = efi_call_##prefix(                                               \
147                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
148                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
149         ia64_load_scratch_fpregs(fr);                                          \
150         return ret;                                                            \
151 }
152
153 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
154 static efi_status_t                                                            \
155 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
156                        unsigned long attr, unsigned long data_size,            \
157                        void *data)                                             \
158 {                                                                              \
159         struct ia64_fpreg fr[6];                                               \
160         efi_status_t ret;                                                      \
161                                                                                \
162         ia64_save_scratch_fpregs(fr);                                          \
163         ret = efi_call_##prefix(                                               \
164                 (efi_set_variable_t *) __va(runtime->set_variable),            \
165                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
166                 adjust_arg(data));                                             \
167         ia64_load_scratch_fpregs(fr);                                          \
168         return ret;                                                            \
169 }
170
171 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
172 static efi_status_t                                                            \
173 prefix##_get_next_high_mono_count (u32 *count)                                 \
174 {                                                                              \
175         struct ia64_fpreg fr[6];                                               \
176         efi_status_t ret;                                                      \
177                                                                                \
178         ia64_save_scratch_fpregs(fr);                                          \
179         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
180                                 __va(runtime->get_next_high_mono_count),       \
181                                 adjust_arg(count));                            \
182         ia64_load_scratch_fpregs(fr);                                          \
183         return ret;                                                            \
184 }
185
186 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
187 static void                                                                    \
188 prefix##_reset_system (int reset_type, efi_status_t status,                    \
189                        unsigned long data_size, efi_char16_t *data)            \
190 {                                                                              \
191         struct ia64_fpreg fr[6];                                               \
192         efi_char16_t *adata = NULL;                                            \
193                                                                                \
194         if (data)                                                              \
195                 adata = adjust_arg(data);                                      \
196                                                                                \
197         ia64_save_scratch_fpregs(fr);                                          \
198         efi_call_##prefix(                                                     \
199                 (efi_reset_system_t *) __va(runtime->reset_system),            \
200                 reset_type, status, data_size, adata);                         \
201         /* should not return, but just in case... */                           \
202         ia64_load_scratch_fpregs(fr);                                          \
203 }
204
205 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
206
207 STUB_GET_TIME(phys, phys_ptr)
208 STUB_SET_TIME(phys, phys_ptr)
209 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
210 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
211 STUB_GET_VARIABLE(phys, phys_ptr)
212 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
213 STUB_SET_VARIABLE(phys, phys_ptr)
214 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
215 STUB_RESET_SYSTEM(phys, phys_ptr)
216
217 #define id(arg) arg
218
219 STUB_GET_TIME(virt, id)
220 STUB_SET_TIME(virt, id)
221 STUB_GET_WAKEUP_TIME(virt, id)
222 STUB_SET_WAKEUP_TIME(virt, id)
223 STUB_GET_VARIABLE(virt, id)
224 STUB_GET_NEXT_VARIABLE(virt, id)
225 STUB_SET_VARIABLE(virt, id)
226 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
227 STUB_RESET_SYSTEM(virt, id)
228
229 void
230 efi_gettimeofday (struct timespec *ts)
231 {
232         efi_time_t tm;
233
234         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
235                 memset(ts, 0, sizeof(*ts));
236                 return;
237         }
238
239         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
240                             tm.hour, tm.minute, tm.second);
241         ts->tv_nsec = tm.nanosecond;
242 }
243
244 static int
245 is_memory_available (efi_memory_desc_t *md)
246 {
247         if (!(md->attribute & EFI_MEMORY_WB))
248                 return 0;
249
250         switch (md->type) {
251               case EFI_LOADER_CODE:
252               case EFI_LOADER_DATA:
253               case EFI_BOOT_SERVICES_CODE:
254               case EFI_BOOT_SERVICES_DATA:
255               case EFI_CONVENTIONAL_MEMORY:
256                 return 1;
257         }
258         return 0;
259 }
260
261 typedef struct kern_memdesc {
262         u64 attribute;
263         u64 start;
264         u64 num_pages;
265 } kern_memdesc_t;
266
267 static kern_memdesc_t *kern_memmap;
268
269 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
270
271 static inline u64
272 kmd_end(kern_memdesc_t *kmd)
273 {
274         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
275 }
276
277 static inline u64
278 efi_md_end(efi_memory_desc_t *md)
279 {
280         return (md->phys_addr + efi_md_size(md));
281 }
282
283 static inline int
284 efi_wb(efi_memory_desc_t *md)
285 {
286         return (md->attribute & EFI_MEMORY_WB);
287 }
288
289 static inline int
290 efi_uc(efi_memory_desc_t *md)
291 {
292         return (md->attribute & EFI_MEMORY_UC);
293 }
294
295 static void
296 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
297 {
298         kern_memdesc_t *k;
299         u64 start, end, voff;
300
301         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
302         for (k = kern_memmap; k->start != ~0UL; k++) {
303                 if (k->attribute != attr)
304                         continue;
305                 start = PAGE_ALIGN(k->start);
306                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
307                 if (start < end)
308                         if ((*callback)(start + voff, end + voff, arg) < 0)
309                                 return;
310         }
311 }
312
313 /*
314  * Walk the EFI memory map and call CALLBACK once for each EFI memory
315  * descriptor that has memory that is available for OS use.
316  */
317 void
318 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
319 {
320         walk(callback, arg, EFI_MEMORY_WB);
321 }
322
323 /*
324  * Walk the EFI memory map and call CALLBACK once for each EFI memory
325  * descriptor that has memory that is available for uncached allocator.
326  */
327 void
328 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
329 {
330         walk(callback, arg, EFI_MEMORY_UC);
331 }
332
333 /*
334  * Look for the PAL_CODE region reported by EFI and map it using an
335  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
336  * Abstraction Layer chapter 11 in ADAG
337  */
338 void *
339 efi_get_pal_addr (void)
340 {
341         void *efi_map_start, *efi_map_end, *p;
342         efi_memory_desc_t *md;
343         u64 efi_desc_size;
344         int pal_code_count = 0;
345         u64 vaddr, mask;
346
347         efi_map_start = __va(ia64_boot_param->efi_memmap);
348         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
349         efi_desc_size = ia64_boot_param->efi_memdesc_size;
350
351         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
352                 md = p;
353                 if (md->type != EFI_PAL_CODE)
354                         continue;
355
356                 if (++pal_code_count > 1) {
357                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
358                                "dropped @ %lx\n", md->phys_addr);
359                         continue;
360                 }
361                 /*
362                  * The only ITLB entry in region 7 that is used is the one
363                  * installed by __start().  That entry covers a 64MB range.
364                  */
365                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
366                 vaddr = PAGE_OFFSET + md->phys_addr;
367
368                 /*
369                  * We must check that the PAL mapping won't overlap with the
370                  * kernel mapping.
371                  *
372                  * PAL code is guaranteed to be aligned on a power of 2 between
373                  * 4k and 256KB and that only one ITR is needed to map it. This
374                  * implies that the PAL code is always aligned on its size,
375                  * i.e., the closest matching page size supported by the TLB.
376                  * Therefore PAL code is guaranteed never to cross a 64MB unless
377                  * it is bigger than 64MB (very unlikely!).  So for now the
378                  * following test is enough to determine whether or not we need
379                  * a dedicated ITR for the PAL code.
380                  */
381                 if ((vaddr & mask) == (KERNEL_START & mask)) {
382                         printk(KERN_INFO "%s: no need to install ITR for "
383                                "PAL code\n", __FUNCTION__);
384                         continue;
385                 }
386
387                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
388                         panic("Whoa!  PAL code size bigger than a granule!");
389
390 #if EFI_DEBUG
391                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
392
393                 printk(KERN_INFO "CPU %d: mapping PAL code "
394                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
395                        smp_processor_id(), md->phys_addr,
396                        md->phys_addr + efi_md_size(md),
397                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
398 #endif
399                 return __va(md->phys_addr);
400         }
401         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
402                __FUNCTION__);
403         return NULL;
404 }
405
406 void
407 efi_map_pal_code (void)
408 {
409         void *pal_vaddr = efi_get_pal_addr ();
410         u64 psr;
411
412         if (!pal_vaddr)
413                 return;
414
415         /*
416          * Cannot write to CRx with PSR.ic=1
417          */
418         psr = ia64_clear_ic();
419         ia64_itr(0x1, IA64_TR_PALCODE,
420                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
421                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
422                  IA64_GRANULE_SHIFT);
423         ia64_set_psr(psr);              /* restore psr */
424 }
425
426 void __init
427 efi_init (void)
428 {
429         void *efi_map_start, *efi_map_end;
430         efi_config_table_t *config_tables;
431         efi_char16_t *c16;
432         u64 efi_desc_size;
433         char *cp, vendor[100] = "unknown";
434         int i;
435
436         /*
437          * It's too early to be able to use the standard kernel command line
438          * support...
439          */
440         for (cp = boot_command_line; *cp; ) {
441                 if (memcmp(cp, "mem=", 4) == 0) {
442                         mem_limit = memparse(cp + 4, &cp);
443                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
444                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
445                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
446                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
447                 } else {
448                         while (*cp != ' ' && *cp)
449                                 ++cp;
450                         while (*cp == ' ')
451                                 ++cp;
452                 }
453         }
454         if (min_addr != 0UL)
455                 printk(KERN_INFO "Ignoring memory below %luMB\n",
456                        min_addr >> 20);
457         if (max_addr != ~0UL)
458                 printk(KERN_INFO "Ignoring memory above %luMB\n",
459                        max_addr >> 20);
460
461         efi.systab = __va(ia64_boot_param->efi_systab);
462
463         /*
464          * Verify the EFI Table
465          */
466         if (efi.systab == NULL)
467                 panic("Whoa! Can't find EFI system table.\n");
468         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
469                 panic("Whoa! EFI system table signature incorrect\n");
470         if ((efi.systab->hdr.revision >> 16) == 0)
471                 printk(KERN_WARNING "Warning: EFI system table version "
472                        "%d.%02d, expected 1.00 or greater\n",
473                        efi.systab->hdr.revision >> 16,
474                        efi.systab->hdr.revision & 0xffff);
475
476         config_tables = __va(efi.systab->tables);
477
478         /* Show what we know for posterity */
479         c16 = __va(efi.systab->fw_vendor);
480         if (c16) {
481                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
482                         vendor[i] = *c16++;
483                 vendor[i] = '\0';
484         }
485
486         printk(KERN_INFO "EFI v%u.%.02u by %s:",
487                efi.systab->hdr.revision >> 16,
488                efi.systab->hdr.revision & 0xffff, vendor);
489
490         efi.mps        = EFI_INVALID_TABLE_ADDR;
491         efi.acpi       = EFI_INVALID_TABLE_ADDR;
492         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
493         efi.smbios     = EFI_INVALID_TABLE_ADDR;
494         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
495         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
496         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
497         efi.uga        = EFI_INVALID_TABLE_ADDR;
498
499         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
500                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
501                         efi.mps = config_tables[i].table;
502                         printk(" MPS=0x%lx", config_tables[i].table);
503                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
504                         efi.acpi20 = config_tables[i].table;
505                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
506                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
507                         efi.acpi = config_tables[i].table;
508                         printk(" ACPI=0x%lx", config_tables[i].table);
509                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
510                         efi.smbios = config_tables[i].table;
511                         printk(" SMBIOS=0x%lx", config_tables[i].table);
512                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
513                         efi.sal_systab = config_tables[i].table;
514                         printk(" SALsystab=0x%lx", config_tables[i].table);
515                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
516                         efi.hcdp = config_tables[i].table;
517                         printk(" HCDP=0x%lx", config_tables[i].table);
518                 }
519         }
520         printk("\n");
521
522         runtime = __va(efi.systab->runtime);
523         efi.get_time = phys_get_time;
524         efi.set_time = phys_set_time;
525         efi.get_wakeup_time = phys_get_wakeup_time;
526         efi.set_wakeup_time = phys_set_wakeup_time;
527         efi.get_variable = phys_get_variable;
528         efi.get_next_variable = phys_get_next_variable;
529         efi.set_variable = phys_set_variable;
530         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
531         efi.reset_system = phys_reset_system;
532
533         efi_map_start = __va(ia64_boot_param->efi_memmap);
534         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
535         efi_desc_size = ia64_boot_param->efi_memdesc_size;
536
537 #if EFI_DEBUG
538         /* print EFI memory map: */
539         {
540                 efi_memory_desc_t *md;
541                 void *p;
542
543                 for (i = 0, p = efi_map_start; p < efi_map_end;
544                      ++i, p += efi_desc_size)
545                 {
546                         md = p;
547                         printk("mem%02u: type=%u, attr=0x%lx, "
548                                "range=[0x%016lx-0x%016lx) (%luMB)\n",
549                                i, md->type, md->attribute, md->phys_addr,
550                                md->phys_addr + efi_md_size(md),
551                                md->num_pages >> (20 - EFI_PAGE_SHIFT));
552                 }
553         }
554 #endif
555
556         efi_map_pal_code();
557         efi_enter_virtual_mode();
558 }
559
560 void
561 efi_enter_virtual_mode (void)
562 {
563         void *efi_map_start, *efi_map_end, *p;
564         efi_memory_desc_t *md;
565         efi_status_t status;
566         u64 efi_desc_size;
567
568         efi_map_start = __va(ia64_boot_param->efi_memmap);
569         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
570         efi_desc_size = ia64_boot_param->efi_memdesc_size;
571
572         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
573                 md = p;
574                 if (md->attribute & EFI_MEMORY_RUNTIME) {
575                         /*
576                          * Some descriptors have multiple bits set, so the
577                          * order of the tests is relevant.
578                          */
579                         if (md->attribute & EFI_MEMORY_WB) {
580                                 md->virt_addr = (u64) __va(md->phys_addr);
581                         } else if (md->attribute & EFI_MEMORY_UC) {
582                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
583                         } else if (md->attribute & EFI_MEMORY_WC) {
584 #if 0
585                                 md->virt_addr = ia64_remap(md->phys_addr,
586                                                            (_PAGE_A |
587                                                             _PAGE_P |
588                                                             _PAGE_D |
589                                                             _PAGE_MA_WC |
590                                                             _PAGE_PL_0 |
591                                                             _PAGE_AR_RW));
592 #else
593                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
594                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
595 #endif
596                         } else if (md->attribute & EFI_MEMORY_WT) {
597 #if 0
598                                 md->virt_addr = ia64_remap(md->phys_addr,
599                                                            (_PAGE_A |
600                                                             _PAGE_P |
601                                                             _PAGE_D |
602                                                             _PAGE_MA_WT |
603                                                             _PAGE_PL_0 |
604                                                             _PAGE_AR_RW));
605 #else
606                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
607                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
608 #endif
609                         }
610                 }
611         }
612
613         status = efi_call_phys(__va(runtime->set_virtual_address_map),
614                                ia64_boot_param->efi_memmap_size,
615                                efi_desc_size,
616                                ia64_boot_param->efi_memdesc_version,
617                                ia64_boot_param->efi_memmap);
618         if (status != EFI_SUCCESS) {
619                 printk(KERN_WARNING "warning: unable to switch EFI into "
620                        "virtual mode (status=%lu)\n", status);
621                 return;
622         }
623
624         /*
625          * Now that EFI is in virtual mode, we call the EFI functions more
626          * efficiently:
627          */
628         efi.get_time = virt_get_time;
629         efi.set_time = virt_set_time;
630         efi.get_wakeup_time = virt_get_wakeup_time;
631         efi.set_wakeup_time = virt_set_wakeup_time;
632         efi.get_variable = virt_get_variable;
633         efi.get_next_variable = virt_get_next_variable;
634         efi.set_variable = virt_set_variable;
635         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
636         efi.reset_system = virt_reset_system;
637 }
638
639 /*
640  * Walk the EFI memory map looking for the I/O port range.  There can only be
641  * one entry of this type, other I/O port ranges should be described via ACPI.
642  */
643 u64
644 efi_get_iobase (void)
645 {
646         void *efi_map_start, *efi_map_end, *p;
647         efi_memory_desc_t *md;
648         u64 efi_desc_size;
649
650         efi_map_start = __va(ia64_boot_param->efi_memmap);
651         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
652         efi_desc_size = ia64_boot_param->efi_memdesc_size;
653
654         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
655                 md = p;
656                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
657                         if (md->attribute & EFI_MEMORY_UC)
658                                 return md->phys_addr;
659                 }
660         }
661         return 0;
662 }
663
664 static struct kern_memdesc *
665 kern_memory_descriptor (unsigned long phys_addr)
666 {
667         struct kern_memdesc *md;
668
669         for (md = kern_memmap; md->start != ~0UL; md++) {
670                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
671                          return md;
672         }
673         return NULL;
674 }
675
676 static efi_memory_desc_t *
677 efi_memory_descriptor (unsigned long phys_addr)
678 {
679         void *efi_map_start, *efi_map_end, *p;
680         efi_memory_desc_t *md;
681         u64 efi_desc_size;
682
683         efi_map_start = __va(ia64_boot_param->efi_memmap);
684         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
685         efi_desc_size = ia64_boot_param->efi_memdesc_size;
686
687         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
688                 md = p;
689
690                 if (phys_addr - md->phys_addr < efi_md_size(md))
691                          return md;
692         }
693         return NULL;
694 }
695
696 static int
697 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
698 {
699         void *efi_map_start, *efi_map_end, *p;
700         efi_memory_desc_t *md;
701         u64 efi_desc_size;
702         unsigned long end;
703
704         efi_map_start = __va(ia64_boot_param->efi_memmap);
705         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
706         efi_desc_size = ia64_boot_param->efi_memdesc_size;
707
708         end = phys_addr + size;
709
710         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
711                 md = p;
712                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
713                         return 1;
714         }
715         return 0;
716 }
717
718 u32
719 efi_mem_type (unsigned long phys_addr)
720 {
721         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
722
723         if (md)
724                 return md->type;
725         return 0;
726 }
727
728 u64
729 efi_mem_attributes (unsigned long phys_addr)
730 {
731         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
732
733         if (md)
734                 return md->attribute;
735         return 0;
736 }
737 EXPORT_SYMBOL(efi_mem_attributes);
738
739 u64
740 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
741 {
742         unsigned long end = phys_addr + size;
743         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
744         u64 attr;
745
746         if (!md)
747                 return 0;
748
749         /*
750          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
751          * the kernel that firmware needs this region mapped.
752          */
753         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
754         do {
755                 unsigned long md_end = efi_md_end(md);
756
757                 if (end <= md_end)
758                         return attr;
759
760                 md = efi_memory_descriptor(md_end);
761                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
762                         return 0;
763         } while (md);
764         return 0;       /* never reached */
765 }
766
767 u64
768 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
769 {
770         unsigned long end = phys_addr + size;
771         struct kern_memdesc *md;
772         u64 attr;
773
774         /*
775          * This is a hack for ioremap calls before we set up kern_memmap.
776          * Maybe we should do efi_memmap_init() earlier instead.
777          */
778         if (!kern_memmap) {
779                 attr = efi_mem_attribute(phys_addr, size);
780                 if (attr & EFI_MEMORY_WB)
781                         return EFI_MEMORY_WB;
782                 return 0;
783         }
784
785         md = kern_memory_descriptor(phys_addr);
786         if (!md)
787                 return 0;
788
789         attr = md->attribute;
790         do {
791                 unsigned long md_end = kmd_end(md);
792
793                 if (end <= md_end)
794                         return attr;
795
796                 md = kern_memory_descriptor(md_end);
797                 if (!md || md->attribute != attr)
798                         return 0;
799         } while (md);
800         return 0;       /* never reached */
801 }
802 EXPORT_SYMBOL(kern_mem_attribute);
803
804 int
805 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
806 {
807         u64 attr;
808
809         /*
810          * /dev/mem reads and writes use copy_to_user(), which implicitly
811          * uses a granule-sized kernel identity mapping.  It's really
812          * only safe to do this for regions in kern_memmap.  For more
813          * details, see Documentation/ia64/aliasing.txt.
814          */
815         attr = kern_mem_attribute(phys_addr, size);
816         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
817                 return 1;
818         return 0;
819 }
820
821 int
822 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
823 {
824         unsigned long phys_addr = pfn << PAGE_SHIFT;
825         u64 attr;
826
827         attr = efi_mem_attribute(phys_addr, size);
828
829         /*
830          * /dev/mem mmap uses normal user pages, so we don't need the entire
831          * granule, but the entire region we're mapping must support the same
832          * attribute.
833          */
834         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
835                 return 1;
836
837         /*
838          * Intel firmware doesn't tell us about all the MMIO regions, so
839          * in general we have to allow mmap requests.  But if EFI *does*
840          * tell us about anything inside this region, we should deny it.
841          * The user can always map a smaller region to avoid the overlap.
842          */
843         if (efi_memmap_intersects(phys_addr, size))
844                 return 0;
845
846         return 1;
847 }
848
849 pgprot_t
850 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
851                      pgprot_t vma_prot)
852 {
853         unsigned long phys_addr = pfn << PAGE_SHIFT;
854         u64 attr;
855
856         /*
857          * For /dev/mem mmap, we use user mappings, but if the region is
858          * in kern_memmap (and hence may be covered by a kernel mapping),
859          * we must use the same attribute as the kernel mapping.
860          */
861         attr = kern_mem_attribute(phys_addr, size);
862         if (attr & EFI_MEMORY_WB)
863                 return pgprot_cacheable(vma_prot);
864         else if (attr & EFI_MEMORY_UC)
865                 return pgprot_noncached(vma_prot);
866
867         /*
868          * Some chipsets don't support UC access to memory.  If
869          * WB is supported, we prefer that.
870          */
871         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
872                 return pgprot_cacheable(vma_prot);
873
874         return pgprot_noncached(vma_prot);
875 }
876
877 int __init
878 efi_uart_console_only(void)
879 {
880         efi_status_t status;
881         char *s, name[] = "ConOut";
882         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
883         efi_char16_t *utf16, name_utf16[32];
884         unsigned char data[1024];
885         unsigned long size = sizeof(data);
886         struct efi_generic_dev_path *hdr, *end_addr;
887         int uart = 0;
888
889         /* Convert to UTF-16 */
890         utf16 = name_utf16;
891         s = name;
892         while (*s)
893                 *utf16++ = *s++ & 0x7f;
894         *utf16 = 0;
895
896         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
897         if (status != EFI_SUCCESS) {
898                 printk(KERN_ERR "No EFI %s variable?\n", name);
899                 return 0;
900         }
901
902         hdr = (struct efi_generic_dev_path *) data;
903         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
904         while (hdr < end_addr) {
905                 if (hdr->type == EFI_DEV_MSG &&
906                     hdr->sub_type == EFI_DEV_MSG_UART)
907                         uart = 1;
908                 else if (hdr->type == EFI_DEV_END_PATH ||
909                           hdr->type == EFI_DEV_END_PATH2) {
910                         if (!uart)
911                                 return 0;
912                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
913                                 return 1;
914                         uart = 0;
915                 }
916                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
917         }
918         printk(KERN_ERR "Malformed %s value\n", name);
919         return 0;
920 }
921
922 /*
923  * Look for the first granule aligned memory descriptor memory
924  * that is big enough to hold EFI memory map. Make sure this
925  * descriptor is atleast granule sized so it does not get trimmed
926  */
927 struct kern_memdesc *
928 find_memmap_space (void)
929 {
930         u64     contig_low=0, contig_high=0;
931         u64     as = 0, ae;
932         void *efi_map_start, *efi_map_end, *p, *q;
933         efi_memory_desc_t *md, *pmd = NULL, *check_md;
934         u64     space_needed, efi_desc_size;
935         unsigned long total_mem = 0;
936
937         efi_map_start = __va(ia64_boot_param->efi_memmap);
938         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
939         efi_desc_size = ia64_boot_param->efi_memdesc_size;
940
941         /*
942          * Worst case: we need 3 kernel descriptors for each efi descriptor
943          * (if every entry has a WB part in the middle, and UC head and tail),
944          * plus one for the end marker.
945          */
946         space_needed = sizeof(kern_memdesc_t) *
947                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
948
949         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
950                 md = p;
951                 if (!efi_wb(md)) {
952                         continue;
953                 }
954                 if (pmd == NULL || !efi_wb(pmd) ||
955                     efi_md_end(pmd) != md->phys_addr) {
956                         contig_low = GRANULEROUNDUP(md->phys_addr);
957                         contig_high = efi_md_end(md);
958                         for (q = p + efi_desc_size; q < efi_map_end;
959                              q += efi_desc_size) {
960                                 check_md = q;
961                                 if (!efi_wb(check_md))
962                                         break;
963                                 if (contig_high != check_md->phys_addr)
964                                         break;
965                                 contig_high = efi_md_end(check_md);
966                         }
967                         contig_high = GRANULEROUNDDOWN(contig_high);
968                 }
969                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
970                         continue;
971
972                 /* Round ends inward to granule boundaries */
973                 as = max(contig_low, md->phys_addr);
974                 ae = min(contig_high, efi_md_end(md));
975
976                 /* keep within max_addr= and min_addr= command line arg */
977                 as = max(as, min_addr);
978                 ae = min(ae, max_addr);
979                 if (ae <= as)
980                         continue;
981
982                 /* avoid going over mem= command line arg */
983                 if (total_mem + (ae - as) > mem_limit)
984                         ae -= total_mem + (ae - as) - mem_limit;
985
986                 if (ae <= as)
987                         continue;
988
989                 if (ae - as > space_needed)
990                         break;
991         }
992         if (p >= efi_map_end)
993                 panic("Can't allocate space for kernel memory descriptors");
994
995         return __va(as);
996 }
997
998 /*
999  * Walk the EFI memory map and gather all memory available for kernel
1000  * to use.  We can allocate partial granules only if the unavailable
1001  * parts exist, and are WB.
1002  */
1003 unsigned long
1004 efi_memmap_init(unsigned long *s, unsigned long *e)
1005 {
1006         struct kern_memdesc *k, *prev = NULL;
1007         u64     contig_low=0, contig_high=0;
1008         u64     as, ae, lim;
1009         void *efi_map_start, *efi_map_end, *p, *q;
1010         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1011         u64     efi_desc_size;
1012         unsigned long total_mem = 0;
1013
1014         k = kern_memmap = find_memmap_space();
1015
1016         efi_map_start = __va(ia64_boot_param->efi_memmap);
1017         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1018         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1019
1020         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1021                 md = p;
1022                 if (!efi_wb(md)) {
1023                         if (efi_uc(md) &&
1024                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1025                              md->type == EFI_BOOT_SERVICES_DATA)) {
1026                                 k->attribute = EFI_MEMORY_UC;
1027                                 k->start = md->phys_addr;
1028                                 k->num_pages = md->num_pages;
1029                                 k++;
1030                         }
1031                         continue;
1032                 }
1033                 if (pmd == NULL || !efi_wb(pmd) ||
1034                     efi_md_end(pmd) != md->phys_addr) {
1035                         contig_low = GRANULEROUNDUP(md->phys_addr);
1036                         contig_high = efi_md_end(md);
1037                         for (q = p + efi_desc_size; q < efi_map_end;
1038                              q += efi_desc_size) {
1039                                 check_md = q;
1040                                 if (!efi_wb(check_md))
1041                                         break;
1042                                 if (contig_high != check_md->phys_addr)
1043                                         break;
1044                                 contig_high = efi_md_end(check_md);
1045                         }
1046                         contig_high = GRANULEROUNDDOWN(contig_high);
1047                 }
1048                 if (!is_memory_available(md))
1049                         continue;
1050
1051 #ifdef CONFIG_CRASH_DUMP
1052                 /* saved_max_pfn should ignore max_addr= command line arg */
1053                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1054                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1055 #endif
1056                 /*
1057                  * Round ends inward to granule boundaries
1058                  * Give trimmings to uncached allocator
1059                  */
1060                 if (md->phys_addr < contig_low) {
1061                         lim = min(efi_md_end(md), contig_low);
1062                         if (efi_uc(md)) {
1063                                 if (k > kern_memmap &&
1064                                     (k-1)->attribute == EFI_MEMORY_UC &&
1065                                     kmd_end(k-1) == md->phys_addr) {
1066                                         (k-1)->num_pages +=
1067                                                 (lim - md->phys_addr)
1068                                                 >> EFI_PAGE_SHIFT;
1069                                 } else {
1070                                         k->attribute = EFI_MEMORY_UC;
1071                                         k->start = md->phys_addr;
1072                                         k->num_pages = (lim - md->phys_addr)
1073                                                 >> EFI_PAGE_SHIFT;
1074                                         k++;
1075                                 }
1076                         }
1077                         as = contig_low;
1078                 } else
1079                         as = md->phys_addr;
1080
1081                 if (efi_md_end(md) > contig_high) {
1082                         lim = max(md->phys_addr, contig_high);
1083                         if (efi_uc(md)) {
1084                                 if (lim == md->phys_addr && k > kern_memmap &&
1085                                     (k-1)->attribute == EFI_MEMORY_UC &&
1086                                     kmd_end(k-1) == md->phys_addr) {
1087                                         (k-1)->num_pages += md->num_pages;
1088                                 } else {
1089                                         k->attribute = EFI_MEMORY_UC;
1090                                         k->start = lim;
1091                                         k->num_pages = (efi_md_end(md) - lim)
1092                                                 >> EFI_PAGE_SHIFT;
1093                                         k++;
1094                                 }
1095                         }
1096                         ae = contig_high;
1097                 } else
1098                         ae = efi_md_end(md);
1099
1100                 /* keep within max_addr= and min_addr= command line arg */
1101                 as = max(as, min_addr);
1102                 ae = min(ae, max_addr);
1103                 if (ae <= as)
1104                         continue;
1105
1106                 /* avoid going over mem= command line arg */
1107                 if (total_mem + (ae - as) > mem_limit)
1108                         ae -= total_mem + (ae - as) - mem_limit;
1109
1110                 if (ae <= as)
1111                         continue;
1112                 if (prev && kmd_end(prev) == md->phys_addr) {
1113                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1114                         total_mem += ae - as;
1115                         continue;
1116                 }
1117                 k->attribute = EFI_MEMORY_WB;
1118                 k->start = as;
1119                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1120                 total_mem += ae - as;
1121                 prev = k++;
1122         }
1123         k->start = ~0L; /* end-marker */
1124
1125         /* reserve the memory we are using for kern_memmap */
1126         *s = (u64)kern_memmap;
1127         *e = (u64)++k;
1128
1129         return total_mem;
1130 }
1131
1132 void
1133 efi_initialize_iomem_resources(struct resource *code_resource,
1134                                struct resource *data_resource,
1135                                struct resource *bss_resource)
1136 {
1137         struct resource *res;
1138         void *efi_map_start, *efi_map_end, *p;
1139         efi_memory_desc_t *md;
1140         u64 efi_desc_size;
1141         char *name;
1142         unsigned long flags;
1143
1144         efi_map_start = __va(ia64_boot_param->efi_memmap);
1145         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1146         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1147
1148         res = NULL;
1149
1150         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1151                 md = p;
1152
1153                 if (md->num_pages == 0) /* should not happen */
1154                         continue;
1155
1156                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1157                 switch (md->type) {
1158
1159                         case EFI_MEMORY_MAPPED_IO:
1160                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1161                                 continue;
1162
1163                         case EFI_LOADER_CODE:
1164                         case EFI_LOADER_DATA:
1165                         case EFI_BOOT_SERVICES_DATA:
1166                         case EFI_BOOT_SERVICES_CODE:
1167                         case EFI_CONVENTIONAL_MEMORY:
1168                                 if (md->attribute & EFI_MEMORY_WP) {
1169                                         name = "System ROM";
1170                                         flags |= IORESOURCE_READONLY;
1171                                 } else {
1172                                         name = "System RAM";
1173                                 }
1174                                 break;
1175
1176                         case EFI_ACPI_MEMORY_NVS:
1177                                 name = "ACPI Non-volatile Storage";
1178                                 break;
1179
1180                         case EFI_UNUSABLE_MEMORY:
1181                                 name = "reserved";
1182                                 flags |= IORESOURCE_DISABLED;
1183                                 break;
1184
1185                         case EFI_RESERVED_TYPE:
1186                         case EFI_RUNTIME_SERVICES_CODE:
1187                         case EFI_RUNTIME_SERVICES_DATA:
1188                         case EFI_ACPI_RECLAIM_MEMORY:
1189                         default:
1190                                 name = "reserved";
1191                                 break;
1192                 }
1193
1194                 if ((res = kzalloc(sizeof(struct resource),
1195                                    GFP_KERNEL)) == NULL) {
1196                         printk(KERN_ERR
1197                                "failed to allocate resource for iomem\n");
1198                         return;
1199                 }
1200
1201                 res->name = name;
1202                 res->start = md->phys_addr;
1203                 res->end = md->phys_addr + efi_md_size(md) - 1;
1204                 res->flags = flags;
1205
1206                 if (insert_resource(&iomem_resource, res) < 0)
1207                         kfree(res);
1208                 else {
1209                         /*
1210                          * We don't know which region contains
1211                          * kernel data so we try it repeatedly and
1212                          * let the resource manager test it.
1213                          */
1214                         insert_resource(res, code_resource);
1215                         insert_resource(res, data_resource);
1216                         insert_resource(res, bss_resource);
1217 #ifdef CONFIG_KEXEC
1218                         insert_resource(res, &efi_memmap_res);
1219                         insert_resource(res, &boot_param_res);
1220                         if (crashk_res.end > crashk_res.start)
1221                                 insert_resource(res, &crashk_res);
1222 #endif
1223                 }
1224         }
1225 }
1226
1227 #ifdef CONFIG_KEXEC
1228 /* find a block of memory aligned to 64M exclude reserved regions
1229    rsvd_regions are sorted
1230  */
1231 unsigned long __init
1232 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1233 {
1234         int i;
1235         u64 start, end;
1236         u64 alignment = 1UL << _PAGE_SIZE_64M;
1237         void *efi_map_start, *efi_map_end, *p;
1238         efi_memory_desc_t *md;
1239         u64 efi_desc_size;
1240
1241         efi_map_start = __va(ia64_boot_param->efi_memmap);
1242         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1243         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1244
1245         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1246                 md = p;
1247                 if (!efi_wb(md))
1248                         continue;
1249                 start = ALIGN(md->phys_addr, alignment);
1250                 end = efi_md_end(md);
1251                 for (i = 0; i < n; i++) {
1252                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1253                                 if (__pa(r[i].start) > start + size)
1254                                         return start;
1255                                 start = ALIGN(__pa(r[i].end), alignment);
1256                                 if (i < n-1 &&
1257                                     __pa(r[i+1].start) < start + size)
1258                                         continue;
1259                                 else
1260                                         break;
1261                         }
1262                 }
1263                 if (end > start + size)
1264                         return start;
1265         }
1266
1267         printk(KERN_WARNING
1268                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1269         return ~0UL;
1270 }
1271 #endif
1272
1273 #ifdef CONFIG_PROC_VMCORE
1274 /* locate the size find a the descriptor at a certain address */
1275 unsigned long __init
1276 vmcore_find_descriptor_size (unsigned long address)
1277 {
1278         void *efi_map_start, *efi_map_end, *p;
1279         efi_memory_desc_t *md;
1280         u64 efi_desc_size;
1281         unsigned long ret = 0;
1282
1283         efi_map_start = __va(ia64_boot_param->efi_memmap);
1284         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1285         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1286
1287         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1288                 md = p;
1289                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1290                     && md->phys_addr == address) {
1291                         ret = efi_md_size(md);
1292                         break;
1293                 }
1294         }
1295
1296         if (ret == 0)
1297                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1298
1299         return ret;
1300 }
1301 #endif