swap: prevent reuse during hibernation
[linux-flexiantxendom0-3.2.10.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40                                  unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54
55 static struct swap_list_t swap_list = {-1, -1};
56
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58
59 static DEFINE_MUTEX(swapon_mutex);
60
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
64 }
65
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70         swp_entry_t entry = swp_entry(si->type, offset);
71         struct page *page;
72         int ret = 0;
73
74         page = find_get_page(&swapper_space, entry.val);
75         if (!page)
76                 return 0;
77         /*
78          * This function is called from scan_swap_map() and it's called
79          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80          * We have to use trylock for avoiding deadlock. This is a special
81          * case and you should use try_to_free_swap() with explicit lock_page()
82          * in usual operations.
83          */
84         if (trylock_page(page)) {
85                 ret = try_to_free_swap(page);
86                 unlock_page(page);
87         }
88         page_cache_release(page);
89         return ret;
90 }
91
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101         swp_entry_t entry;
102
103         down_read(&swap_unplug_sem);
104         entry.val = page_private(page);
105         if (PageSwapCache(page)) {
106                 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107                 struct backing_dev_info *bdi;
108
109                 /*
110                  * If the page is removed from swapcache from under us (with a
111                  * racy try_to_unuse/swapoff) we need an additional reference
112                  * count to avoid reading garbage from page_private(page) above.
113                  * If the WARN_ON triggers during a swapoff it maybe the race
114                  * condition and it's harmless. However if it triggers without
115                  * swapoff it signals a problem.
116                  */
117                 WARN_ON(page_count(page) <= 1);
118
119                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120                 blk_run_backing_dev(bdi, page);
121         }
122         up_read(&swap_unplug_sem);
123 }
124
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131         struct swap_extent *se;
132         sector_t start_block;
133         sector_t nr_blocks;
134         int err = 0;
135
136         /* Do not discard the swap header page! */
137         se = &si->first_swap_extent;
138         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140         if (nr_blocks) {
141                 err = blkdev_issue_discard(si->bdev, start_block,
142                                 nr_blocks, GFP_KERNEL,
143                                 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
144                 if (err)
145                         return err;
146                 cond_resched();
147         }
148
149         list_for_each_entry(se, &si->first_swap_extent.list, list) {
150                 start_block = se->start_block << (PAGE_SHIFT - 9);
151                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153                 err = blkdev_issue_discard(si->bdev, start_block,
154                                 nr_blocks, GFP_KERNEL,
155                                 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
156                 if (err)
157                         break;
158
159                 cond_resched();
160         }
161         return err;             /* That will often be -EOPNOTSUPP */
162 }
163
164 /*
165  * swap allocation tell device that a cluster of swap can now be discarded,
166  * to allow the swap device to optimize its wear-levelling.
167  */
168 static void discard_swap_cluster(struct swap_info_struct *si,
169                                  pgoff_t start_page, pgoff_t nr_pages)
170 {
171         struct swap_extent *se = si->curr_swap_extent;
172         int found_extent = 0;
173
174         while (nr_pages) {
175                 struct list_head *lh;
176
177                 if (se->start_page <= start_page &&
178                     start_page < se->start_page + se->nr_pages) {
179                         pgoff_t offset = start_page - se->start_page;
180                         sector_t start_block = se->start_block + offset;
181                         sector_t nr_blocks = se->nr_pages - offset;
182
183                         if (nr_blocks > nr_pages)
184                                 nr_blocks = nr_pages;
185                         start_page += nr_blocks;
186                         nr_pages -= nr_blocks;
187
188                         if (!found_extent++)
189                                 si->curr_swap_extent = se;
190
191                         start_block <<= PAGE_SHIFT - 9;
192                         nr_blocks <<= PAGE_SHIFT - 9;
193                         if (blkdev_issue_discard(si->bdev, start_block,
194                                     nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT |
195                                                         BLKDEV_IFL_BARRIER))
196                                 break;
197                 }
198
199                 lh = se->list.next;
200                 se = list_entry(lh, struct swap_extent, list);
201         }
202 }
203
204 static int wait_for_discard(void *word)
205 {
206         schedule();
207         return 0;
208 }
209
210 #define SWAPFILE_CLUSTER        256
211 #define LATENCY_LIMIT           256
212
213 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
214                                           unsigned char usage)
215 {
216         unsigned long offset;
217         unsigned long scan_base;
218         unsigned long last_in_cluster = 0;
219         int latency_ration = LATENCY_LIMIT;
220         int found_free_cluster = 0;
221
222         /*
223          * We try to cluster swap pages by allocating them sequentially
224          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
225          * way, however, we resort to first-free allocation, starting
226          * a new cluster.  This prevents us from scattering swap pages
227          * all over the entire swap partition, so that we reduce
228          * overall disk seek times between swap pages.  -- sct
229          * But we do now try to find an empty cluster.  -Andrea
230          * And we let swap pages go all over an SSD partition.  Hugh
231          */
232
233         si->flags += SWP_SCANNING;
234         scan_base = offset = si->cluster_next;
235
236         if (unlikely(!si->cluster_nr--)) {
237                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
238                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
239                         goto checks;
240                 }
241                 if (si->flags & SWP_DISCARDABLE) {
242                         /*
243                          * Start range check on racing allocations, in case
244                          * they overlap the cluster we eventually decide on
245                          * (we scan without swap_lock to allow preemption).
246                          * It's hardly conceivable that cluster_nr could be
247                          * wrapped during our scan, but don't depend on it.
248                          */
249                         if (si->lowest_alloc)
250                                 goto checks;
251                         si->lowest_alloc = si->max;
252                         si->highest_alloc = 0;
253                 }
254                 spin_unlock(&swap_lock);
255
256                 /*
257                  * If seek is expensive, start searching for new cluster from
258                  * start of partition, to minimize the span of allocated swap.
259                  * But if seek is cheap, search from our current position, so
260                  * that swap is allocated from all over the partition: if the
261                  * Flash Translation Layer only remaps within limited zones,
262                  * we don't want to wear out the first zone too quickly.
263                  */
264                 if (!(si->flags & SWP_SOLIDSTATE))
265                         scan_base = offset = si->lowest_bit;
266                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
267
268                 /* Locate the first empty (unaligned) cluster */
269                 for (; last_in_cluster <= si->highest_bit; offset++) {
270                         if (si->swap_map[offset])
271                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
272                         else if (offset == last_in_cluster) {
273                                 spin_lock(&swap_lock);
274                                 offset -= SWAPFILE_CLUSTER - 1;
275                                 si->cluster_next = offset;
276                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
277                                 found_free_cluster = 1;
278                                 goto checks;
279                         }
280                         if (unlikely(--latency_ration < 0)) {
281                                 cond_resched();
282                                 latency_ration = LATENCY_LIMIT;
283                         }
284                 }
285
286                 offset = si->lowest_bit;
287                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
288
289                 /* Locate the first empty (unaligned) cluster */
290                 for (; last_in_cluster < scan_base; offset++) {
291                         if (si->swap_map[offset])
292                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
293                         else if (offset == last_in_cluster) {
294                                 spin_lock(&swap_lock);
295                                 offset -= SWAPFILE_CLUSTER - 1;
296                                 si->cluster_next = offset;
297                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
298                                 found_free_cluster = 1;
299                                 goto checks;
300                         }
301                         if (unlikely(--latency_ration < 0)) {
302                                 cond_resched();
303                                 latency_ration = LATENCY_LIMIT;
304                         }
305                 }
306
307                 offset = scan_base;
308                 spin_lock(&swap_lock);
309                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
310                 si->lowest_alloc = 0;
311         }
312
313 checks:
314         if (!(si->flags & SWP_WRITEOK))
315                 goto no_page;
316         if (!si->highest_bit)
317                 goto no_page;
318         if (offset > si->highest_bit)
319                 scan_base = offset = si->lowest_bit;
320
321         /* reuse swap entry of cache-only swap if not busy. */
322         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
323                 int swap_was_freed;
324                 spin_unlock(&swap_lock);
325                 swap_was_freed = __try_to_reclaim_swap(si, offset);
326                 spin_lock(&swap_lock);
327                 /* entry was freed successfully, try to use this again */
328                 if (swap_was_freed)
329                         goto checks;
330                 goto scan; /* check next one */
331         }
332
333         if (si->swap_map[offset])
334                 goto scan;
335
336         if (offset == si->lowest_bit)
337                 si->lowest_bit++;
338         if (offset == si->highest_bit)
339                 si->highest_bit--;
340         si->inuse_pages++;
341         if (si->inuse_pages == si->pages) {
342                 si->lowest_bit = si->max;
343                 si->highest_bit = 0;
344         }
345         si->swap_map[offset] = usage;
346         si->cluster_next = offset + 1;
347         si->flags -= SWP_SCANNING;
348
349         if (si->lowest_alloc) {
350                 /*
351                  * Only set when SWP_DISCARDABLE, and there's a scan
352                  * for a free cluster in progress or just completed.
353                  */
354                 if (found_free_cluster) {
355                         /*
356                          * To optimize wear-levelling, discard the
357                          * old data of the cluster, taking care not to
358                          * discard any of its pages that have already
359                          * been allocated by racing tasks (offset has
360                          * already stepped over any at the beginning).
361                          */
362                         if (offset < si->highest_alloc &&
363                             si->lowest_alloc <= last_in_cluster)
364                                 last_in_cluster = si->lowest_alloc - 1;
365                         si->flags |= SWP_DISCARDING;
366                         spin_unlock(&swap_lock);
367
368                         if (offset < last_in_cluster)
369                                 discard_swap_cluster(si, offset,
370                                         last_in_cluster - offset + 1);
371
372                         spin_lock(&swap_lock);
373                         si->lowest_alloc = 0;
374                         si->flags &= ~SWP_DISCARDING;
375
376                         smp_mb();       /* wake_up_bit advises this */
377                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
378
379                 } else if (si->flags & SWP_DISCARDING) {
380                         /*
381                          * Delay using pages allocated by racing tasks
382                          * until the whole discard has been issued. We
383                          * could defer that delay until swap_writepage,
384                          * but it's easier to keep this self-contained.
385                          */
386                         spin_unlock(&swap_lock);
387                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
388                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
389                         spin_lock(&swap_lock);
390                 } else {
391                         /*
392                          * Note pages allocated by racing tasks while
393                          * scan for a free cluster is in progress, so
394                          * that its final discard can exclude them.
395                          */
396                         if (offset < si->lowest_alloc)
397                                 si->lowest_alloc = offset;
398                         if (offset > si->highest_alloc)
399                                 si->highest_alloc = offset;
400                 }
401         }
402         return offset;
403
404 scan:
405         spin_unlock(&swap_lock);
406         while (++offset <= si->highest_bit) {
407                 if (!si->swap_map[offset]) {
408                         spin_lock(&swap_lock);
409                         goto checks;
410                 }
411                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
412                         spin_lock(&swap_lock);
413                         goto checks;
414                 }
415                 if (unlikely(--latency_ration < 0)) {
416                         cond_resched();
417                         latency_ration = LATENCY_LIMIT;
418                 }
419         }
420         offset = si->lowest_bit;
421         while (++offset < scan_base) {
422                 if (!si->swap_map[offset]) {
423                         spin_lock(&swap_lock);
424                         goto checks;
425                 }
426                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427                         spin_lock(&swap_lock);
428                         goto checks;
429                 }
430                 if (unlikely(--latency_ration < 0)) {
431                         cond_resched();
432                         latency_ration = LATENCY_LIMIT;
433                 }
434         }
435         spin_lock(&swap_lock);
436
437 no_page:
438         si->flags -= SWP_SCANNING;
439         return 0;
440 }
441
442 swp_entry_t get_swap_page(void)
443 {
444         struct swap_info_struct *si;
445         pgoff_t offset;
446         int type, next;
447         int wrapped = 0;
448
449         spin_lock(&swap_lock);
450         if (nr_swap_pages <= 0)
451                 goto noswap;
452         nr_swap_pages--;
453
454         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
455                 si = swap_info[type];
456                 next = si->next;
457                 if (next < 0 ||
458                     (!wrapped && si->prio != swap_info[next]->prio)) {
459                         next = swap_list.head;
460                         wrapped++;
461                 }
462
463                 if (!si->highest_bit)
464                         continue;
465                 if (!(si->flags & SWP_WRITEOK))
466                         continue;
467
468                 swap_list.next = next;
469                 /* This is called for allocating swap entry for cache */
470                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
471                 if (offset) {
472                         spin_unlock(&swap_lock);
473                         return swp_entry(type, offset);
474                 }
475                 next = swap_list.next;
476         }
477
478         nr_swap_pages++;
479 noswap:
480         spin_unlock(&swap_lock);
481         return (swp_entry_t) {0};
482 }
483
484 /* The only caller of this function is now susupend routine */
485 swp_entry_t get_swap_page_of_type(int type)
486 {
487         struct swap_info_struct *si;
488         pgoff_t offset;
489
490         spin_lock(&swap_lock);
491         si = swap_info[type];
492         if (si && (si->flags & SWP_WRITEOK)) {
493                 nr_swap_pages--;
494                 /* This is called for allocating swap entry, not cache */
495                 offset = scan_swap_map(si, 1);
496                 if (offset) {
497                         spin_unlock(&swap_lock);
498                         return swp_entry(type, offset);
499                 }
500                 nr_swap_pages++;
501         }
502         spin_unlock(&swap_lock);
503         return (swp_entry_t) {0};
504 }
505
506 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
507 {
508         struct swap_info_struct *p;
509         unsigned long offset, type;
510
511         if (!entry.val)
512                 goto out;
513         type = swp_type(entry);
514         if (type >= nr_swapfiles)
515                 goto bad_nofile;
516         p = swap_info[type];
517         if (!(p->flags & SWP_USED))
518                 goto bad_device;
519         offset = swp_offset(entry);
520         if (offset >= p->max)
521                 goto bad_offset;
522         if (!p->swap_map[offset])
523                 goto bad_free;
524         spin_lock(&swap_lock);
525         return p;
526
527 bad_free:
528         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
529         goto out;
530 bad_offset:
531         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
532         goto out;
533 bad_device:
534         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
535         goto out;
536 bad_nofile:
537         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
538 out:
539         return NULL;
540 }
541
542 static unsigned char swap_entry_free(struct swap_info_struct *p,
543                                      swp_entry_t entry, unsigned char usage)
544 {
545         unsigned long offset = swp_offset(entry);
546         unsigned char count;
547         unsigned char has_cache;
548
549         count = p->swap_map[offset];
550         has_cache = count & SWAP_HAS_CACHE;
551         count &= ~SWAP_HAS_CACHE;
552
553         if (usage == SWAP_HAS_CACHE) {
554                 VM_BUG_ON(!has_cache);
555                 has_cache = 0;
556         } else if (count == SWAP_MAP_SHMEM) {
557                 /*
558                  * Or we could insist on shmem.c using a special
559                  * swap_shmem_free() and free_shmem_swap_and_cache()...
560                  */
561                 count = 0;
562         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
563                 if (count == COUNT_CONTINUED) {
564                         if (swap_count_continued(p, offset, count))
565                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
566                         else
567                                 count = SWAP_MAP_MAX;
568                 } else
569                         count--;
570         }
571
572         if (!count)
573                 mem_cgroup_uncharge_swap(entry);
574
575         usage = count | has_cache;
576         p->swap_map[offset] = usage;
577
578         /* free if no reference */
579         if (!usage) {
580                 struct gendisk *disk = p->bdev->bd_disk;
581                 if (offset < p->lowest_bit)
582                         p->lowest_bit = offset;
583                 if (offset > p->highest_bit)
584                         p->highest_bit = offset;
585                 if (swap_list.next >= 0 &&
586                     p->prio > swap_info[swap_list.next]->prio)
587                         swap_list.next = p->type;
588                 nr_swap_pages++;
589                 p->inuse_pages--;
590                 if ((p->flags & SWP_BLKDEV) &&
591                                 disk->fops->swap_slot_free_notify)
592                         disk->fops->swap_slot_free_notify(p->bdev, offset);
593         }
594
595         return usage;
596 }
597
598 /*
599  * Caller has made sure that the swapdevice corresponding to entry
600  * is still around or has not been recycled.
601  */
602 void swap_free(swp_entry_t entry)
603 {
604         struct swap_info_struct *p;
605
606         p = swap_info_get(entry);
607         if (p) {
608                 swap_entry_free(p, entry, 1);
609                 spin_unlock(&swap_lock);
610         }
611 }
612
613 /*
614  * Called after dropping swapcache to decrease refcnt to swap entries.
615  */
616 void swapcache_free(swp_entry_t entry, struct page *page)
617 {
618         struct swap_info_struct *p;
619         unsigned char count;
620
621         p = swap_info_get(entry);
622         if (p) {
623                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
624                 if (page)
625                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
626                 spin_unlock(&swap_lock);
627         }
628 }
629
630 /*
631  * How many references to page are currently swapped out?
632  * This does not give an exact answer when swap count is continued,
633  * but does include the high COUNT_CONTINUED flag to allow for that.
634  */
635 static inline int page_swapcount(struct page *page)
636 {
637         int count = 0;
638         struct swap_info_struct *p;
639         swp_entry_t entry;
640
641         entry.val = page_private(page);
642         p = swap_info_get(entry);
643         if (p) {
644                 count = swap_count(p->swap_map[swp_offset(entry)]);
645                 spin_unlock(&swap_lock);
646         }
647         return count;
648 }
649
650 /*
651  * We can write to an anon page without COW if there are no other references
652  * to it.  And as a side-effect, free up its swap: because the old content
653  * on disk will never be read, and seeking back there to write new content
654  * later would only waste time away from clustering.
655  */
656 int reuse_swap_page(struct page *page)
657 {
658         int count;
659
660         VM_BUG_ON(!PageLocked(page));
661         if (unlikely(PageKsm(page)))
662                 return 0;
663         count = page_mapcount(page);
664         if (count <= 1 && PageSwapCache(page)) {
665                 count += page_swapcount(page);
666                 if (count == 1 && !PageWriteback(page)) {
667                         delete_from_swap_cache(page);
668                         SetPageDirty(page);
669                 }
670         }
671         return count <= 1;
672 }
673
674 /*
675  * If swap is getting full, or if there are no more mappings of this page,
676  * then try_to_free_swap is called to free its swap space.
677  */
678 int try_to_free_swap(struct page *page)
679 {
680         VM_BUG_ON(!PageLocked(page));
681
682         if (!PageSwapCache(page))
683                 return 0;
684         if (PageWriteback(page))
685                 return 0;
686         if (page_swapcount(page))
687                 return 0;
688
689         /*
690          * Once hibernation has begun to create its image of memory,
691          * there's a danger that one of the calls to try_to_free_swap()
692          * - most probably a call from __try_to_reclaim_swap() while
693          * hibernation is allocating its own swap pages for the image,
694          * but conceivably even a call from memory reclaim - will free
695          * the swap from a page which has already been recorded in the
696          * image as a clean swapcache page, and then reuse its swap for
697          * another page of the image.  On waking from hibernation, the
698          * original page might be freed under memory pressure, then
699          * later read back in from swap, now with the wrong data.
700          *
701          * Hibernation clears bits from gfp_allowed_mask to prevent
702          * memory reclaim from writing to disk, so check that here.
703          */
704         if (!(gfp_allowed_mask & __GFP_IO))
705                 return 0;
706
707         delete_from_swap_cache(page);
708         SetPageDirty(page);
709         return 1;
710 }
711
712 /*
713  * Free the swap entry like above, but also try to
714  * free the page cache entry if it is the last user.
715  */
716 int free_swap_and_cache(swp_entry_t entry)
717 {
718         struct swap_info_struct *p;
719         struct page *page = NULL;
720
721         if (non_swap_entry(entry))
722                 return 1;
723
724         p = swap_info_get(entry);
725         if (p) {
726                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
727                         page = find_get_page(&swapper_space, entry.val);
728                         if (page && !trylock_page(page)) {
729                                 page_cache_release(page);
730                                 page = NULL;
731                         }
732                 }
733                 spin_unlock(&swap_lock);
734         }
735         if (page) {
736                 /*
737                  * Not mapped elsewhere, or swap space full? Free it!
738                  * Also recheck PageSwapCache now page is locked (above).
739                  */
740                 if (PageSwapCache(page) && !PageWriteback(page) &&
741                                 (!page_mapped(page) || vm_swap_full())) {
742                         delete_from_swap_cache(page);
743                         SetPageDirty(page);
744                 }
745                 unlock_page(page);
746                 page_cache_release(page);
747         }
748         return p != NULL;
749 }
750
751 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
752 /**
753  * mem_cgroup_count_swap_user - count the user of a swap entry
754  * @ent: the swap entry to be checked
755  * @pagep: the pointer for the swap cache page of the entry to be stored
756  *
757  * Returns the number of the user of the swap entry. The number is valid only
758  * for swaps of anonymous pages.
759  * If the entry is found on swap cache, the page is stored to pagep with
760  * refcount of it being incremented.
761  */
762 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
763 {
764         struct page *page;
765         struct swap_info_struct *p;
766         int count = 0;
767
768         page = find_get_page(&swapper_space, ent.val);
769         if (page)
770                 count += page_mapcount(page);
771         p = swap_info_get(ent);
772         if (p) {
773                 count += swap_count(p->swap_map[swp_offset(ent)]);
774                 spin_unlock(&swap_lock);
775         }
776
777         *pagep = page;
778         return count;
779 }
780 #endif
781
782 #ifdef CONFIG_HIBERNATION
783 /*
784  * Find the swap type that corresponds to given device (if any).
785  *
786  * @offset - number of the PAGE_SIZE-sized block of the device, starting
787  * from 0, in which the swap header is expected to be located.
788  *
789  * This is needed for the suspend to disk (aka swsusp).
790  */
791 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
792 {
793         struct block_device *bdev = NULL;
794         int type;
795
796         if (device)
797                 bdev = bdget(device);
798
799         spin_lock(&swap_lock);
800         for (type = 0; type < nr_swapfiles; type++) {
801                 struct swap_info_struct *sis = swap_info[type];
802
803                 if (!(sis->flags & SWP_WRITEOK))
804                         continue;
805
806                 if (!bdev) {
807                         if (bdev_p)
808                                 *bdev_p = bdgrab(sis->bdev);
809
810                         spin_unlock(&swap_lock);
811                         return type;
812                 }
813                 if (bdev == sis->bdev) {
814                         struct swap_extent *se = &sis->first_swap_extent;
815
816                         if (se->start_block == offset) {
817                                 if (bdev_p)
818                                         *bdev_p = bdgrab(sis->bdev);
819
820                                 spin_unlock(&swap_lock);
821                                 bdput(bdev);
822                                 return type;
823                         }
824                 }
825         }
826         spin_unlock(&swap_lock);
827         if (bdev)
828                 bdput(bdev);
829
830         return -ENODEV;
831 }
832
833 /*
834  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
835  * corresponding to given index in swap_info (swap type).
836  */
837 sector_t swapdev_block(int type, pgoff_t offset)
838 {
839         struct block_device *bdev;
840
841         if ((unsigned int)type >= nr_swapfiles)
842                 return 0;
843         if (!(swap_info[type]->flags & SWP_WRITEOK))
844                 return 0;
845         return map_swap_entry(swp_entry(type, offset), &bdev);
846 }
847
848 /*
849  * Return either the total number of swap pages of given type, or the number
850  * of free pages of that type (depending on @free)
851  *
852  * This is needed for software suspend
853  */
854 unsigned int count_swap_pages(int type, int free)
855 {
856         unsigned int n = 0;
857
858         spin_lock(&swap_lock);
859         if ((unsigned int)type < nr_swapfiles) {
860                 struct swap_info_struct *sis = swap_info[type];
861
862                 if (sis->flags & SWP_WRITEOK) {
863                         n = sis->pages;
864                         if (free)
865                                 n -= sis->inuse_pages;
866                 }
867         }
868         spin_unlock(&swap_lock);
869         return n;
870 }
871 #endif /* CONFIG_HIBERNATION */
872
873 /*
874  * No need to decide whether this PTE shares the swap entry with others,
875  * just let do_wp_page work it out if a write is requested later - to
876  * force COW, vm_page_prot omits write permission from any private vma.
877  */
878 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
879                 unsigned long addr, swp_entry_t entry, struct page *page)
880 {
881         struct mem_cgroup *ptr = NULL;
882         spinlock_t *ptl;
883         pte_t *pte;
884         int ret = 1;
885
886         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
887                 ret = -ENOMEM;
888                 goto out_nolock;
889         }
890
891         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
892         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
893                 if (ret > 0)
894                         mem_cgroup_cancel_charge_swapin(ptr);
895                 ret = 0;
896                 goto out;
897         }
898
899         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
900         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
901         get_page(page);
902         set_pte_at(vma->vm_mm, addr, pte,
903                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
904         page_add_anon_rmap(page, vma, addr);
905         mem_cgroup_commit_charge_swapin(page, ptr);
906         swap_free(entry);
907         /*
908          * Move the page to the active list so it is not
909          * immediately swapped out again after swapon.
910          */
911         activate_page(page);
912 out:
913         pte_unmap_unlock(pte, ptl);
914 out_nolock:
915         return ret;
916 }
917
918 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
919                                 unsigned long addr, unsigned long end,
920                                 swp_entry_t entry, struct page *page)
921 {
922         pte_t swp_pte = swp_entry_to_pte(entry);
923         pte_t *pte;
924         int ret = 0;
925
926         /*
927          * We don't actually need pte lock while scanning for swp_pte: since
928          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
929          * page table while we're scanning; though it could get zapped, and on
930          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
931          * of unmatched parts which look like swp_pte, so unuse_pte must
932          * recheck under pte lock.  Scanning without pte lock lets it be
933          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
934          */
935         pte = pte_offset_map(pmd, addr);
936         do {
937                 /*
938                  * swapoff spends a _lot_ of time in this loop!
939                  * Test inline before going to call unuse_pte.
940                  */
941                 if (unlikely(pte_same(*pte, swp_pte))) {
942                         pte_unmap(pte);
943                         ret = unuse_pte(vma, pmd, addr, entry, page);
944                         if (ret)
945                                 goto out;
946                         pte = pte_offset_map(pmd, addr);
947                 }
948         } while (pte++, addr += PAGE_SIZE, addr != end);
949         pte_unmap(pte - 1);
950 out:
951         return ret;
952 }
953
954 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
955                                 unsigned long addr, unsigned long end,
956                                 swp_entry_t entry, struct page *page)
957 {
958         pmd_t *pmd;
959         unsigned long next;
960         int ret;
961
962         pmd = pmd_offset(pud, addr);
963         do {
964                 next = pmd_addr_end(addr, end);
965                 if (pmd_none_or_clear_bad(pmd))
966                         continue;
967                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
968                 if (ret)
969                         return ret;
970         } while (pmd++, addr = next, addr != end);
971         return 0;
972 }
973
974 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
975                                 unsigned long addr, unsigned long end,
976                                 swp_entry_t entry, struct page *page)
977 {
978         pud_t *pud;
979         unsigned long next;
980         int ret;
981
982         pud = pud_offset(pgd, addr);
983         do {
984                 next = pud_addr_end(addr, end);
985                 if (pud_none_or_clear_bad(pud))
986                         continue;
987                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
988                 if (ret)
989                         return ret;
990         } while (pud++, addr = next, addr != end);
991         return 0;
992 }
993
994 static int unuse_vma(struct vm_area_struct *vma,
995                                 swp_entry_t entry, struct page *page)
996 {
997         pgd_t *pgd;
998         unsigned long addr, end, next;
999         int ret;
1000
1001         if (page_anon_vma(page)) {
1002                 addr = page_address_in_vma(page, vma);
1003                 if (addr == -EFAULT)
1004                         return 0;
1005                 else
1006                         end = addr + PAGE_SIZE;
1007         } else {
1008                 addr = vma->vm_start;
1009                 end = vma->vm_end;
1010         }
1011
1012         pgd = pgd_offset(vma->vm_mm, addr);
1013         do {
1014                 next = pgd_addr_end(addr, end);
1015                 if (pgd_none_or_clear_bad(pgd))
1016                         continue;
1017                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1018                 if (ret)
1019                         return ret;
1020         } while (pgd++, addr = next, addr != end);
1021         return 0;
1022 }
1023
1024 static int unuse_mm(struct mm_struct *mm,
1025                                 swp_entry_t entry, struct page *page)
1026 {
1027         struct vm_area_struct *vma;
1028         int ret = 0;
1029
1030         if (!down_read_trylock(&mm->mmap_sem)) {
1031                 /*
1032                  * Activate page so shrink_inactive_list is unlikely to unmap
1033                  * its ptes while lock is dropped, so swapoff can make progress.
1034                  */
1035                 activate_page(page);
1036                 unlock_page(page);
1037                 down_read(&mm->mmap_sem);
1038                 lock_page(page);
1039         }
1040         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1041                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1042                         break;
1043         }
1044         up_read(&mm->mmap_sem);
1045         return (ret < 0)? ret: 0;
1046 }
1047
1048 /*
1049  * Scan swap_map from current position to next entry still in use.
1050  * Recycle to start on reaching the end, returning 0 when empty.
1051  */
1052 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1053                                         unsigned int prev)
1054 {
1055         unsigned int max = si->max;
1056         unsigned int i = prev;
1057         unsigned char count;
1058
1059         /*
1060          * No need for swap_lock here: we're just looking
1061          * for whether an entry is in use, not modifying it; false
1062          * hits are okay, and sys_swapoff() has already prevented new
1063          * allocations from this area (while holding swap_lock).
1064          */
1065         for (;;) {
1066                 if (++i >= max) {
1067                         if (!prev) {
1068                                 i = 0;
1069                                 break;
1070                         }
1071                         /*
1072                          * No entries in use at top of swap_map,
1073                          * loop back to start and recheck there.
1074                          */
1075                         max = prev + 1;
1076                         prev = 0;
1077                         i = 1;
1078                 }
1079                 count = si->swap_map[i];
1080                 if (count && swap_count(count) != SWAP_MAP_BAD)
1081                         break;
1082         }
1083         return i;
1084 }
1085
1086 /*
1087  * We completely avoid races by reading each swap page in advance,
1088  * and then search for the process using it.  All the necessary
1089  * page table adjustments can then be made atomically.
1090  */
1091 static int try_to_unuse(unsigned int type)
1092 {
1093         struct swap_info_struct *si = swap_info[type];
1094         struct mm_struct *start_mm;
1095         unsigned char *swap_map;
1096         unsigned char swcount;
1097         struct page *page;
1098         swp_entry_t entry;
1099         unsigned int i = 0;
1100         int retval = 0;
1101
1102         /*
1103          * When searching mms for an entry, a good strategy is to
1104          * start at the first mm we freed the previous entry from
1105          * (though actually we don't notice whether we or coincidence
1106          * freed the entry).  Initialize this start_mm with a hold.
1107          *
1108          * A simpler strategy would be to start at the last mm we
1109          * freed the previous entry from; but that would take less
1110          * advantage of mmlist ordering, which clusters forked mms
1111          * together, child after parent.  If we race with dup_mmap(), we
1112          * prefer to resolve parent before child, lest we miss entries
1113          * duplicated after we scanned child: using last mm would invert
1114          * that.
1115          */
1116         start_mm = &init_mm;
1117         atomic_inc(&init_mm.mm_users);
1118
1119         /*
1120          * Keep on scanning until all entries have gone.  Usually,
1121          * one pass through swap_map is enough, but not necessarily:
1122          * there are races when an instance of an entry might be missed.
1123          */
1124         while ((i = find_next_to_unuse(si, i)) != 0) {
1125                 if (signal_pending(current)) {
1126                         retval = -EINTR;
1127                         break;
1128                 }
1129
1130                 /*
1131                  * Get a page for the entry, using the existing swap
1132                  * cache page if there is one.  Otherwise, get a clean
1133                  * page and read the swap into it.
1134                  */
1135                 swap_map = &si->swap_map[i];
1136                 entry = swp_entry(type, i);
1137                 page = read_swap_cache_async(entry,
1138                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1139                 if (!page) {
1140                         /*
1141                          * Either swap_duplicate() failed because entry
1142                          * has been freed independently, and will not be
1143                          * reused since sys_swapoff() already disabled
1144                          * allocation from here, or alloc_page() failed.
1145                          */
1146                         if (!*swap_map)
1147                                 continue;
1148                         retval = -ENOMEM;
1149                         break;
1150                 }
1151
1152                 /*
1153                  * Don't hold on to start_mm if it looks like exiting.
1154                  */
1155                 if (atomic_read(&start_mm->mm_users) == 1) {
1156                         mmput(start_mm);
1157                         start_mm = &init_mm;
1158                         atomic_inc(&init_mm.mm_users);
1159                 }
1160
1161                 /*
1162                  * Wait for and lock page.  When do_swap_page races with
1163                  * try_to_unuse, do_swap_page can handle the fault much
1164                  * faster than try_to_unuse can locate the entry.  This
1165                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1166                  * defer to do_swap_page in such a case - in some tests,
1167                  * do_swap_page and try_to_unuse repeatedly compete.
1168                  */
1169                 wait_on_page_locked(page);
1170                 wait_on_page_writeback(page);
1171                 lock_page(page);
1172                 wait_on_page_writeback(page);
1173
1174                 /*
1175                  * Remove all references to entry.
1176                  */
1177                 swcount = *swap_map;
1178                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1179                         retval = shmem_unuse(entry, page);
1180                         /* page has already been unlocked and released */
1181                         if (retval < 0)
1182                                 break;
1183                         continue;
1184                 }
1185                 if (swap_count(swcount) && start_mm != &init_mm)
1186                         retval = unuse_mm(start_mm, entry, page);
1187
1188                 if (swap_count(*swap_map)) {
1189                         int set_start_mm = (*swap_map >= swcount);
1190                         struct list_head *p = &start_mm->mmlist;
1191                         struct mm_struct *new_start_mm = start_mm;
1192                         struct mm_struct *prev_mm = start_mm;
1193                         struct mm_struct *mm;
1194
1195                         atomic_inc(&new_start_mm->mm_users);
1196                         atomic_inc(&prev_mm->mm_users);
1197                         spin_lock(&mmlist_lock);
1198                         while (swap_count(*swap_map) && !retval &&
1199                                         (p = p->next) != &start_mm->mmlist) {
1200                                 mm = list_entry(p, struct mm_struct, mmlist);
1201                                 if (!atomic_inc_not_zero(&mm->mm_users))
1202                                         continue;
1203                                 spin_unlock(&mmlist_lock);
1204                                 mmput(prev_mm);
1205                                 prev_mm = mm;
1206
1207                                 cond_resched();
1208
1209                                 swcount = *swap_map;
1210                                 if (!swap_count(swcount)) /* any usage ? */
1211                                         ;
1212                                 else if (mm == &init_mm)
1213                                         set_start_mm = 1;
1214                                 else
1215                                         retval = unuse_mm(mm, entry, page);
1216
1217                                 if (set_start_mm && *swap_map < swcount) {
1218                                         mmput(new_start_mm);
1219                                         atomic_inc(&mm->mm_users);
1220                                         new_start_mm = mm;
1221                                         set_start_mm = 0;
1222                                 }
1223                                 spin_lock(&mmlist_lock);
1224                         }
1225                         spin_unlock(&mmlist_lock);
1226                         mmput(prev_mm);
1227                         mmput(start_mm);
1228                         start_mm = new_start_mm;
1229                 }
1230                 if (retval) {
1231                         unlock_page(page);
1232                         page_cache_release(page);
1233                         break;
1234                 }
1235
1236                 /*
1237                  * If a reference remains (rare), we would like to leave
1238                  * the page in the swap cache; but try_to_unmap could
1239                  * then re-duplicate the entry once we drop page lock,
1240                  * so we might loop indefinitely; also, that page could
1241                  * not be swapped out to other storage meanwhile.  So:
1242                  * delete from cache even if there's another reference,
1243                  * after ensuring that the data has been saved to disk -
1244                  * since if the reference remains (rarer), it will be
1245                  * read from disk into another page.  Splitting into two
1246                  * pages would be incorrect if swap supported "shared
1247                  * private" pages, but they are handled by tmpfs files.
1248                  *
1249                  * Given how unuse_vma() targets one particular offset
1250                  * in an anon_vma, once the anon_vma has been determined,
1251                  * this splitting happens to be just what is needed to
1252                  * handle where KSM pages have been swapped out: re-reading
1253                  * is unnecessarily slow, but we can fix that later on.
1254                  */
1255                 if (swap_count(*swap_map) &&
1256                      PageDirty(page) && PageSwapCache(page)) {
1257                         struct writeback_control wbc = {
1258                                 .sync_mode = WB_SYNC_NONE,
1259                         };
1260
1261                         swap_writepage(page, &wbc);
1262                         lock_page(page);
1263                         wait_on_page_writeback(page);
1264                 }
1265
1266                 /*
1267                  * It is conceivable that a racing task removed this page from
1268                  * swap cache just before we acquired the page lock at the top,
1269                  * or while we dropped it in unuse_mm().  The page might even
1270                  * be back in swap cache on another swap area: that we must not
1271                  * delete, since it may not have been written out to swap yet.
1272                  */
1273                 if (PageSwapCache(page) &&
1274                     likely(page_private(page) == entry.val))
1275                         delete_from_swap_cache(page);
1276
1277                 /*
1278                  * So we could skip searching mms once swap count went
1279                  * to 1, we did not mark any present ptes as dirty: must
1280                  * mark page dirty so shrink_page_list will preserve it.
1281                  */
1282                 SetPageDirty(page);
1283                 unlock_page(page);
1284                 page_cache_release(page);
1285
1286                 /*
1287                  * Make sure that we aren't completely killing
1288                  * interactive performance.
1289                  */
1290                 cond_resched();
1291         }
1292
1293         mmput(start_mm);
1294         return retval;
1295 }
1296
1297 /*
1298  * After a successful try_to_unuse, if no swap is now in use, we know
1299  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1300  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1301  * added to the mmlist just after page_duplicate - before would be racy.
1302  */
1303 static void drain_mmlist(void)
1304 {
1305         struct list_head *p, *next;
1306         unsigned int type;
1307
1308         for (type = 0; type < nr_swapfiles; type++)
1309                 if (swap_info[type]->inuse_pages)
1310                         return;
1311         spin_lock(&mmlist_lock);
1312         list_for_each_safe(p, next, &init_mm.mmlist)
1313                 list_del_init(p);
1314         spin_unlock(&mmlist_lock);
1315 }
1316
1317 /*
1318  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1319  * corresponds to page offset for the specified swap entry.
1320  * Note that the type of this function is sector_t, but it returns page offset
1321  * into the bdev, not sector offset.
1322  */
1323 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1324 {
1325         struct swap_info_struct *sis;
1326         struct swap_extent *start_se;
1327         struct swap_extent *se;
1328         pgoff_t offset;
1329
1330         sis = swap_info[swp_type(entry)];
1331         *bdev = sis->bdev;
1332
1333         offset = swp_offset(entry);
1334         start_se = sis->curr_swap_extent;
1335         se = start_se;
1336
1337         for ( ; ; ) {
1338                 struct list_head *lh;
1339
1340                 if (se->start_page <= offset &&
1341                                 offset < (se->start_page + se->nr_pages)) {
1342                         return se->start_block + (offset - se->start_page);
1343                 }
1344                 lh = se->list.next;
1345                 se = list_entry(lh, struct swap_extent, list);
1346                 sis->curr_swap_extent = se;
1347                 BUG_ON(se == start_se);         /* It *must* be present */
1348         }
1349 }
1350
1351 /*
1352  * Returns the page offset into bdev for the specified page's swap entry.
1353  */
1354 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1355 {
1356         swp_entry_t entry;
1357         entry.val = page_private(page);
1358         return map_swap_entry(entry, bdev);
1359 }
1360
1361 /*
1362  * Free all of a swapdev's extent information
1363  */
1364 static void destroy_swap_extents(struct swap_info_struct *sis)
1365 {
1366         while (!list_empty(&sis->first_swap_extent.list)) {
1367                 struct swap_extent *se;
1368
1369                 se = list_entry(sis->first_swap_extent.list.next,
1370                                 struct swap_extent, list);
1371                 list_del(&se->list);
1372                 kfree(se);
1373         }
1374 }
1375
1376 /*
1377  * Add a block range (and the corresponding page range) into this swapdev's
1378  * extent list.  The extent list is kept sorted in page order.
1379  *
1380  * This function rather assumes that it is called in ascending page order.
1381  */
1382 static int
1383 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1384                 unsigned long nr_pages, sector_t start_block)
1385 {
1386         struct swap_extent *se;
1387         struct swap_extent *new_se;
1388         struct list_head *lh;
1389
1390         if (start_page == 0) {
1391                 se = &sis->first_swap_extent;
1392                 sis->curr_swap_extent = se;
1393                 se->start_page = 0;
1394                 se->nr_pages = nr_pages;
1395                 se->start_block = start_block;
1396                 return 1;
1397         } else {
1398                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1399                 se = list_entry(lh, struct swap_extent, list);
1400                 BUG_ON(se->start_page + se->nr_pages != start_page);
1401                 if (se->start_block + se->nr_pages == start_block) {
1402                         /* Merge it */
1403                         se->nr_pages += nr_pages;
1404                         return 0;
1405                 }
1406         }
1407
1408         /*
1409          * No merge.  Insert a new extent, preserving ordering.
1410          */
1411         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1412         if (new_se == NULL)
1413                 return -ENOMEM;
1414         new_se->start_page = start_page;
1415         new_se->nr_pages = nr_pages;
1416         new_se->start_block = start_block;
1417
1418         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1419         return 1;
1420 }
1421
1422 /*
1423  * A `swap extent' is a simple thing which maps a contiguous range of pages
1424  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1425  * is built at swapon time and is then used at swap_writepage/swap_readpage
1426  * time for locating where on disk a page belongs.
1427  *
1428  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1429  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1430  * swap files identically.
1431  *
1432  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1433  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1434  * swapfiles are handled *identically* after swapon time.
1435  *
1436  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1437  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1438  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1439  * requirements, they are simply tossed out - we will never use those blocks
1440  * for swapping.
1441  *
1442  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1443  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1444  * which will scribble on the fs.
1445  *
1446  * The amount of disk space which a single swap extent represents varies.
1447  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1448  * extents in the list.  To avoid much list walking, we cache the previous
1449  * search location in `curr_swap_extent', and start new searches from there.
1450  * This is extremely effective.  The average number of iterations in
1451  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1452  */
1453 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1454 {
1455         struct inode *inode;
1456         unsigned blocks_per_page;
1457         unsigned long page_no;
1458         unsigned blkbits;
1459         sector_t probe_block;
1460         sector_t last_block;
1461         sector_t lowest_block = -1;
1462         sector_t highest_block = 0;
1463         int nr_extents = 0;
1464         int ret;
1465
1466         inode = sis->swap_file->f_mapping->host;
1467         if (S_ISBLK(inode->i_mode)) {
1468                 ret = add_swap_extent(sis, 0, sis->max, 0);
1469                 *span = sis->pages;
1470                 goto out;
1471         }
1472
1473         blkbits = inode->i_blkbits;
1474         blocks_per_page = PAGE_SIZE >> blkbits;
1475
1476         /*
1477          * Map all the blocks into the extent list.  This code doesn't try
1478          * to be very smart.
1479          */
1480         probe_block = 0;
1481         page_no = 0;
1482         last_block = i_size_read(inode) >> blkbits;
1483         while ((probe_block + blocks_per_page) <= last_block &&
1484                         page_no < sis->max) {
1485                 unsigned block_in_page;
1486                 sector_t first_block;
1487
1488                 first_block = bmap(inode, probe_block);
1489                 if (first_block == 0)
1490                         goto bad_bmap;
1491
1492                 /*
1493                  * It must be PAGE_SIZE aligned on-disk
1494                  */
1495                 if (first_block & (blocks_per_page - 1)) {
1496                         probe_block++;
1497                         goto reprobe;
1498                 }
1499
1500                 for (block_in_page = 1; block_in_page < blocks_per_page;
1501                                         block_in_page++) {
1502                         sector_t block;
1503
1504                         block = bmap(inode, probe_block + block_in_page);
1505                         if (block == 0)
1506                                 goto bad_bmap;
1507                         if (block != first_block + block_in_page) {
1508                                 /* Discontiguity */
1509                                 probe_block++;
1510                                 goto reprobe;
1511                         }
1512                 }
1513
1514                 first_block >>= (PAGE_SHIFT - blkbits);
1515                 if (page_no) {  /* exclude the header page */
1516                         if (first_block < lowest_block)
1517                                 lowest_block = first_block;
1518                         if (first_block > highest_block)
1519                                 highest_block = first_block;
1520                 }
1521
1522                 /*
1523                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1524                  */
1525                 ret = add_swap_extent(sis, page_no, 1, first_block);
1526                 if (ret < 0)
1527                         goto out;
1528                 nr_extents += ret;
1529                 page_no++;
1530                 probe_block += blocks_per_page;
1531 reprobe:
1532                 continue;
1533         }
1534         ret = nr_extents;
1535         *span = 1 + highest_block - lowest_block;
1536         if (page_no == 0)
1537                 page_no = 1;    /* force Empty message */
1538         sis->max = page_no;
1539         sis->pages = page_no - 1;
1540         sis->highest_bit = page_no - 1;
1541 out:
1542         return ret;
1543 bad_bmap:
1544         printk(KERN_ERR "swapon: swapfile has holes\n");
1545         ret = -EINVAL;
1546         goto out;
1547 }
1548
1549 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1550 {
1551         struct swap_info_struct *p = NULL;
1552         unsigned char *swap_map;
1553         struct file *swap_file, *victim;
1554         struct address_space *mapping;
1555         struct inode *inode;
1556         char *pathname;
1557         int i, type, prev;
1558         int err;
1559
1560         if (!capable(CAP_SYS_ADMIN))
1561                 return -EPERM;
1562
1563         pathname = getname(specialfile);
1564         err = PTR_ERR(pathname);
1565         if (IS_ERR(pathname))
1566                 goto out;
1567
1568         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1569         putname(pathname);
1570         err = PTR_ERR(victim);
1571         if (IS_ERR(victim))
1572                 goto out;
1573
1574         mapping = victim->f_mapping;
1575         prev = -1;
1576         spin_lock(&swap_lock);
1577         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1578                 p = swap_info[type];
1579                 if (p->flags & SWP_WRITEOK) {
1580                         if (p->swap_file->f_mapping == mapping)
1581                                 break;
1582                 }
1583                 prev = type;
1584         }
1585         if (type < 0) {
1586                 err = -EINVAL;
1587                 spin_unlock(&swap_lock);
1588                 goto out_dput;
1589         }
1590         if (!security_vm_enough_memory(p->pages))
1591                 vm_unacct_memory(p->pages);
1592         else {
1593                 err = -ENOMEM;
1594                 spin_unlock(&swap_lock);
1595                 goto out_dput;
1596         }
1597         if (prev < 0)
1598                 swap_list.head = p->next;
1599         else
1600                 swap_info[prev]->next = p->next;
1601         if (type == swap_list.next) {
1602                 /* just pick something that's safe... */
1603                 swap_list.next = swap_list.head;
1604         }
1605         if (p->prio < 0) {
1606                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1607                         swap_info[i]->prio = p->prio--;
1608                 least_priority++;
1609         }
1610         nr_swap_pages -= p->pages;
1611         total_swap_pages -= p->pages;
1612         p->flags &= ~SWP_WRITEOK;
1613         spin_unlock(&swap_lock);
1614
1615         current->flags |= PF_OOM_ORIGIN;
1616         err = try_to_unuse(type);
1617         current->flags &= ~PF_OOM_ORIGIN;
1618
1619         if (err) {
1620                 /* re-insert swap space back into swap_list */
1621                 spin_lock(&swap_lock);
1622                 if (p->prio < 0)
1623                         p->prio = --least_priority;
1624                 prev = -1;
1625                 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1626                         if (p->prio >= swap_info[i]->prio)
1627                                 break;
1628                         prev = i;
1629                 }
1630                 p->next = i;
1631                 if (prev < 0)
1632                         swap_list.head = swap_list.next = type;
1633                 else
1634                         swap_info[prev]->next = type;
1635                 nr_swap_pages += p->pages;
1636                 total_swap_pages += p->pages;
1637                 p->flags |= SWP_WRITEOK;
1638                 spin_unlock(&swap_lock);
1639                 goto out_dput;
1640         }
1641
1642         /* wait for any unplug function to finish */
1643         down_write(&swap_unplug_sem);
1644         up_write(&swap_unplug_sem);
1645
1646         destroy_swap_extents(p);
1647         if (p->flags & SWP_CONTINUED)
1648                 free_swap_count_continuations(p);
1649
1650         mutex_lock(&swapon_mutex);
1651         spin_lock(&swap_lock);
1652         drain_mmlist();
1653
1654         /* wait for anyone still in scan_swap_map */
1655         p->highest_bit = 0;             /* cuts scans short */
1656         while (p->flags >= SWP_SCANNING) {
1657                 spin_unlock(&swap_lock);
1658                 schedule_timeout_uninterruptible(1);
1659                 spin_lock(&swap_lock);
1660         }
1661
1662         swap_file = p->swap_file;
1663         p->swap_file = NULL;
1664         p->max = 0;
1665         swap_map = p->swap_map;
1666         p->swap_map = NULL;
1667         p->flags = 0;
1668         spin_unlock(&swap_lock);
1669         mutex_unlock(&swapon_mutex);
1670         vfree(swap_map);
1671         /* Destroy swap account informatin */
1672         swap_cgroup_swapoff(type);
1673
1674         inode = mapping->host;
1675         if (S_ISBLK(inode->i_mode)) {
1676                 struct block_device *bdev = I_BDEV(inode);
1677                 set_blocksize(bdev, p->old_block_size);
1678                 bd_release(bdev);
1679         } else {
1680                 mutex_lock(&inode->i_mutex);
1681                 inode->i_flags &= ~S_SWAPFILE;
1682                 mutex_unlock(&inode->i_mutex);
1683         }
1684         filp_close(swap_file, NULL);
1685         err = 0;
1686
1687 out_dput:
1688         filp_close(victim, NULL);
1689 out:
1690         return err;
1691 }
1692
1693 #ifdef CONFIG_PROC_FS
1694 /* iterator */
1695 static void *swap_start(struct seq_file *swap, loff_t *pos)
1696 {
1697         struct swap_info_struct *si;
1698         int type;
1699         loff_t l = *pos;
1700
1701         mutex_lock(&swapon_mutex);
1702
1703         if (!l)
1704                 return SEQ_START_TOKEN;
1705
1706         for (type = 0; type < nr_swapfiles; type++) {
1707                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1708                 si = swap_info[type];
1709                 if (!(si->flags & SWP_USED) || !si->swap_map)
1710                         continue;
1711                 if (!--l)
1712                         return si;
1713         }
1714
1715         return NULL;
1716 }
1717
1718 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1719 {
1720         struct swap_info_struct *si = v;
1721         int type;
1722
1723         if (v == SEQ_START_TOKEN)
1724                 type = 0;
1725         else
1726                 type = si->type + 1;
1727
1728         for (; type < nr_swapfiles; type++) {
1729                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1730                 si = swap_info[type];
1731                 if (!(si->flags & SWP_USED) || !si->swap_map)
1732                         continue;
1733                 ++*pos;
1734                 return si;
1735         }
1736
1737         return NULL;
1738 }
1739
1740 static void swap_stop(struct seq_file *swap, void *v)
1741 {
1742         mutex_unlock(&swapon_mutex);
1743 }
1744
1745 static int swap_show(struct seq_file *swap, void *v)
1746 {
1747         struct swap_info_struct *si = v;
1748         struct file *file;
1749         int len;
1750
1751         if (si == SEQ_START_TOKEN) {
1752                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1753                 return 0;
1754         }
1755
1756         file = si->swap_file;
1757         len = seq_path(swap, &file->f_path, " \t\n\\");
1758         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1759                         len < 40 ? 40 - len : 1, " ",
1760                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1761                                 "partition" : "file\t",
1762                         si->pages << (PAGE_SHIFT - 10),
1763                         si->inuse_pages << (PAGE_SHIFT - 10),
1764                         si->prio);
1765         return 0;
1766 }
1767
1768 static const struct seq_operations swaps_op = {
1769         .start =        swap_start,
1770         .next =         swap_next,
1771         .stop =         swap_stop,
1772         .show =         swap_show
1773 };
1774
1775 static int swaps_open(struct inode *inode, struct file *file)
1776 {
1777         return seq_open(file, &swaps_op);
1778 }
1779
1780 static const struct file_operations proc_swaps_operations = {
1781         .open           = swaps_open,
1782         .read           = seq_read,
1783         .llseek         = seq_lseek,
1784         .release        = seq_release,
1785 };
1786
1787 static int __init procswaps_init(void)
1788 {
1789         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1790         return 0;
1791 }
1792 __initcall(procswaps_init);
1793 #endif /* CONFIG_PROC_FS */
1794
1795 #ifdef MAX_SWAPFILES_CHECK
1796 static int __init max_swapfiles_check(void)
1797 {
1798         MAX_SWAPFILES_CHECK();
1799         return 0;
1800 }
1801 late_initcall(max_swapfiles_check);
1802 #endif
1803
1804 /*
1805  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1806  *
1807  * The swapon system call
1808  */
1809 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1810 {
1811         struct swap_info_struct *p;
1812         char *name = NULL;
1813         struct block_device *bdev = NULL;
1814         struct file *swap_file = NULL;
1815         struct address_space *mapping;
1816         unsigned int type;
1817         int i, prev;
1818         int error;
1819         union swap_header *swap_header;
1820         unsigned int nr_good_pages;
1821         int nr_extents = 0;
1822         sector_t span;
1823         unsigned long maxpages;
1824         unsigned long swapfilepages;
1825         unsigned char *swap_map = NULL;
1826         struct page *page = NULL;
1827         struct inode *inode = NULL;
1828         int did_down = 0;
1829
1830         if (!capable(CAP_SYS_ADMIN))
1831                 return -EPERM;
1832
1833         p = kzalloc(sizeof(*p), GFP_KERNEL);
1834         if (!p)
1835                 return -ENOMEM;
1836
1837         spin_lock(&swap_lock);
1838         for (type = 0; type < nr_swapfiles; type++) {
1839                 if (!(swap_info[type]->flags & SWP_USED))
1840                         break;
1841         }
1842         error = -EPERM;
1843         if (type >= MAX_SWAPFILES) {
1844                 spin_unlock(&swap_lock);
1845                 kfree(p);
1846                 goto out;
1847         }
1848         if (type >= nr_swapfiles) {
1849                 p->type = type;
1850                 swap_info[type] = p;
1851                 /*
1852                  * Write swap_info[type] before nr_swapfiles, in case a
1853                  * racing procfs swap_start() or swap_next() is reading them.
1854                  * (We never shrink nr_swapfiles, we never free this entry.)
1855                  */
1856                 smp_wmb();
1857                 nr_swapfiles++;
1858         } else {
1859                 kfree(p);
1860                 p = swap_info[type];
1861                 /*
1862                  * Do not memset this entry: a racing procfs swap_next()
1863                  * would be relying on p->type to remain valid.
1864                  */
1865         }
1866         INIT_LIST_HEAD(&p->first_swap_extent.list);
1867         p->flags = SWP_USED;
1868         p->next = -1;
1869         spin_unlock(&swap_lock);
1870
1871         name = getname(specialfile);
1872         error = PTR_ERR(name);
1873         if (IS_ERR(name)) {
1874                 name = NULL;
1875                 goto bad_swap_2;
1876         }
1877         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1878         error = PTR_ERR(swap_file);
1879         if (IS_ERR(swap_file)) {
1880                 swap_file = NULL;
1881                 goto bad_swap_2;
1882         }
1883
1884         p->swap_file = swap_file;
1885         mapping = swap_file->f_mapping;
1886         inode = mapping->host;
1887
1888         error = -EBUSY;
1889         for (i = 0; i < nr_swapfiles; i++) {
1890                 struct swap_info_struct *q = swap_info[i];
1891
1892                 if (i == type || !q->swap_file)
1893                         continue;
1894                 if (mapping == q->swap_file->f_mapping)
1895                         goto bad_swap;
1896         }
1897
1898         error = -EINVAL;
1899         if (S_ISBLK(inode->i_mode)) {
1900                 bdev = I_BDEV(inode);
1901                 error = bd_claim(bdev, sys_swapon);
1902                 if (error < 0) {
1903                         bdev = NULL;
1904                         error = -EINVAL;
1905                         goto bad_swap;
1906                 }
1907                 p->old_block_size = block_size(bdev);
1908                 error = set_blocksize(bdev, PAGE_SIZE);
1909                 if (error < 0)
1910                         goto bad_swap;
1911                 p->bdev = bdev;
1912                 p->flags |= SWP_BLKDEV;
1913         } else if (S_ISREG(inode->i_mode)) {
1914                 p->bdev = inode->i_sb->s_bdev;
1915                 mutex_lock(&inode->i_mutex);
1916                 did_down = 1;
1917                 if (IS_SWAPFILE(inode)) {
1918                         error = -EBUSY;
1919                         goto bad_swap;
1920                 }
1921         } else {
1922                 goto bad_swap;
1923         }
1924
1925         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1926
1927         /*
1928          * Read the swap header.
1929          */
1930         if (!mapping->a_ops->readpage) {
1931                 error = -EINVAL;
1932                 goto bad_swap;
1933         }
1934         page = read_mapping_page(mapping, 0, swap_file);
1935         if (IS_ERR(page)) {
1936                 error = PTR_ERR(page);
1937                 goto bad_swap;
1938         }
1939         swap_header = kmap(page);
1940
1941         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1942                 printk(KERN_ERR "Unable to find swap-space signature\n");
1943                 error = -EINVAL;
1944                 goto bad_swap;
1945         }
1946
1947         /* swap partition endianess hack... */
1948         if (swab32(swap_header->info.version) == 1) {
1949                 swab32s(&swap_header->info.version);
1950                 swab32s(&swap_header->info.last_page);
1951                 swab32s(&swap_header->info.nr_badpages);
1952                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1953                         swab32s(&swap_header->info.badpages[i]);
1954         }
1955         /* Check the swap header's sub-version */
1956         if (swap_header->info.version != 1) {
1957                 printk(KERN_WARNING
1958                        "Unable to handle swap header version %d\n",
1959                        swap_header->info.version);
1960                 error = -EINVAL;
1961                 goto bad_swap;
1962         }
1963
1964         p->lowest_bit  = 1;
1965         p->cluster_next = 1;
1966         p->cluster_nr = 0;
1967
1968         /*
1969          * Find out how many pages are allowed for a single swap
1970          * device. There are two limiting factors: 1) the number of
1971          * bits for the swap offset in the swp_entry_t type and
1972          * 2) the number of bits in the a swap pte as defined by
1973          * the different architectures. In order to find the
1974          * largest possible bit mask a swap entry with swap type 0
1975          * and swap offset ~0UL is created, encoded to a swap pte,
1976          * decoded to a swp_entry_t again and finally the swap
1977          * offset is extracted. This will mask all the bits from
1978          * the initial ~0UL mask that can't be encoded in either
1979          * the swp_entry_t or the architecture definition of a
1980          * swap pte.
1981          */
1982         maxpages = swp_offset(pte_to_swp_entry(
1983                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1984         if (maxpages > swap_header->info.last_page) {
1985                 maxpages = swap_header->info.last_page + 1;
1986                 /* p->max is an unsigned int: don't overflow it */
1987                 if ((unsigned int)maxpages == 0)
1988                         maxpages = UINT_MAX;
1989         }
1990         p->highest_bit = maxpages - 1;
1991
1992         error = -EINVAL;
1993         if (!maxpages)
1994                 goto bad_swap;
1995         if (swapfilepages && maxpages > swapfilepages) {
1996                 printk(KERN_WARNING
1997                        "Swap area shorter than signature indicates\n");
1998                 goto bad_swap;
1999         }
2000         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2001                 goto bad_swap;
2002         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2003                 goto bad_swap;
2004
2005         /* OK, set up the swap map and apply the bad block list */
2006         swap_map = vmalloc(maxpages);
2007         if (!swap_map) {
2008                 error = -ENOMEM;
2009                 goto bad_swap;
2010         }
2011
2012         memset(swap_map, 0, maxpages);
2013         nr_good_pages = maxpages - 1;   /* omit header page */
2014
2015         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2016                 unsigned int page_nr = swap_header->info.badpages[i];
2017                 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2018                         error = -EINVAL;
2019                         goto bad_swap;
2020                 }
2021                 if (page_nr < maxpages) {
2022                         swap_map[page_nr] = SWAP_MAP_BAD;
2023                         nr_good_pages--;
2024                 }
2025         }
2026
2027         error = swap_cgroup_swapon(type, maxpages);
2028         if (error)
2029                 goto bad_swap;
2030
2031         if (nr_good_pages) {
2032                 swap_map[0] = SWAP_MAP_BAD;
2033                 p->max = maxpages;
2034                 p->pages = nr_good_pages;
2035                 nr_extents = setup_swap_extents(p, &span);
2036                 if (nr_extents < 0) {
2037                         error = nr_extents;
2038                         goto bad_swap;
2039                 }
2040                 nr_good_pages = p->pages;
2041         }
2042         if (!nr_good_pages) {
2043                 printk(KERN_WARNING "Empty swap-file\n");
2044                 error = -EINVAL;
2045                 goto bad_swap;
2046         }
2047
2048         if (p->bdev) {
2049                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2050                         p->flags |= SWP_SOLIDSTATE;
2051                         p->cluster_next = 1 + (random32() % p->highest_bit);
2052                 }
2053                 if (discard_swap(p) == 0)
2054                         p->flags |= SWP_DISCARDABLE;
2055         }
2056
2057         mutex_lock(&swapon_mutex);
2058         spin_lock(&swap_lock);
2059         if (swap_flags & SWAP_FLAG_PREFER)
2060                 p->prio =
2061                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2062         else
2063                 p->prio = --least_priority;
2064         p->swap_map = swap_map;
2065         p->flags |= SWP_WRITEOK;
2066         nr_swap_pages += nr_good_pages;
2067         total_swap_pages += nr_good_pages;
2068
2069         printk(KERN_INFO "Adding %uk swap on %s.  "
2070                         "Priority:%d extents:%d across:%lluk %s%s\n",
2071                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2072                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2073                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2074                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2075
2076         /* insert swap space into swap_list: */
2077         prev = -1;
2078         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2079                 if (p->prio >= swap_info[i]->prio)
2080                         break;
2081                 prev = i;
2082         }
2083         p->next = i;
2084         if (prev < 0)
2085                 swap_list.head = swap_list.next = type;
2086         else
2087                 swap_info[prev]->next = type;
2088         spin_unlock(&swap_lock);
2089         mutex_unlock(&swapon_mutex);
2090         error = 0;
2091         goto out;
2092 bad_swap:
2093         if (bdev) {
2094                 set_blocksize(bdev, p->old_block_size);
2095                 bd_release(bdev);
2096         }
2097         destroy_swap_extents(p);
2098         swap_cgroup_swapoff(type);
2099 bad_swap_2:
2100         spin_lock(&swap_lock);
2101         p->swap_file = NULL;
2102         p->flags = 0;
2103         spin_unlock(&swap_lock);
2104         vfree(swap_map);
2105         if (swap_file)
2106                 filp_close(swap_file, NULL);
2107 out:
2108         if (page && !IS_ERR(page)) {
2109                 kunmap(page);
2110                 page_cache_release(page);
2111         }
2112         if (name)
2113                 putname(name);
2114         if (did_down) {
2115                 if (!error)
2116                         inode->i_flags |= S_SWAPFILE;
2117                 mutex_unlock(&inode->i_mutex);
2118         }
2119         return error;
2120 }
2121
2122 void si_swapinfo(struct sysinfo *val)
2123 {
2124         unsigned int type;
2125         unsigned long nr_to_be_unused = 0;
2126
2127         spin_lock(&swap_lock);
2128         for (type = 0; type < nr_swapfiles; type++) {
2129                 struct swap_info_struct *si = swap_info[type];
2130
2131                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2132                         nr_to_be_unused += si->inuse_pages;
2133         }
2134         val->freeswap = nr_swap_pages + nr_to_be_unused;
2135         val->totalswap = total_swap_pages + nr_to_be_unused;
2136         spin_unlock(&swap_lock);
2137 }
2138
2139 /*
2140  * Verify that a swap entry is valid and increment its swap map count.
2141  *
2142  * Returns error code in following case.
2143  * - success -> 0
2144  * - swp_entry is invalid -> EINVAL
2145  * - swp_entry is migration entry -> EINVAL
2146  * - swap-cache reference is requested but there is already one. -> EEXIST
2147  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2148  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2149  */
2150 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2151 {
2152         struct swap_info_struct *p;
2153         unsigned long offset, type;
2154         unsigned char count;
2155         unsigned char has_cache;
2156         int err = -EINVAL;
2157
2158         if (non_swap_entry(entry))
2159                 goto out;
2160
2161         type = swp_type(entry);
2162         if (type >= nr_swapfiles)
2163                 goto bad_file;
2164         p = swap_info[type];
2165         offset = swp_offset(entry);
2166
2167         spin_lock(&swap_lock);
2168         if (unlikely(offset >= p->max))
2169                 goto unlock_out;
2170
2171         count = p->swap_map[offset];
2172         has_cache = count & SWAP_HAS_CACHE;
2173         count &= ~SWAP_HAS_CACHE;
2174         err = 0;
2175
2176         if (usage == SWAP_HAS_CACHE) {
2177
2178                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2179                 if (!has_cache && count)
2180                         has_cache = SWAP_HAS_CACHE;
2181                 else if (has_cache)             /* someone else added cache */
2182                         err = -EEXIST;
2183                 else                            /* no users remaining */
2184                         err = -ENOENT;
2185
2186         } else if (count || has_cache) {
2187
2188                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2189                         count += usage;
2190                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2191                         err = -EINVAL;
2192                 else if (swap_count_continued(p, offset, count))
2193                         count = COUNT_CONTINUED;
2194                 else
2195                         err = -ENOMEM;
2196         } else
2197                 err = -ENOENT;                  /* unused swap entry */
2198
2199         p->swap_map[offset] = count | has_cache;
2200
2201 unlock_out:
2202         spin_unlock(&swap_lock);
2203 out:
2204         return err;
2205
2206 bad_file:
2207         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2208         goto out;
2209 }
2210
2211 /*
2212  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2213  * (in which case its reference count is never incremented).
2214  */
2215 void swap_shmem_alloc(swp_entry_t entry)
2216 {
2217         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2218 }
2219
2220 /*
2221  * Increase reference count of swap entry by 1.
2222  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2223  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2224  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2225  * might occur if a page table entry has got corrupted.
2226  */
2227 int swap_duplicate(swp_entry_t entry)
2228 {
2229         int err = 0;
2230
2231         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2232                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2233         return err;
2234 }
2235
2236 /*
2237  * @entry: swap entry for which we allocate swap cache.
2238  *
2239  * Called when allocating swap cache for existing swap entry,
2240  * This can return error codes. Returns 0 at success.
2241  * -EBUSY means there is a swap cache.
2242  * Note: return code is different from swap_duplicate().
2243  */
2244 int swapcache_prepare(swp_entry_t entry)
2245 {
2246         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2247 }
2248
2249 /*
2250  * swap_lock prevents swap_map being freed. Don't grab an extra
2251  * reference on the swaphandle, it doesn't matter if it becomes unused.
2252  */
2253 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2254 {
2255         struct swap_info_struct *si;
2256         int our_page_cluster = page_cluster;
2257         pgoff_t target, toff;
2258         pgoff_t base, end;
2259         int nr_pages = 0;
2260
2261         if (!our_page_cluster)  /* no readahead */
2262                 return 0;
2263
2264         si = swap_info[swp_type(entry)];
2265         target = swp_offset(entry);
2266         base = (target >> our_page_cluster) << our_page_cluster;
2267         end = base + (1 << our_page_cluster);
2268         if (!base)              /* first page is swap header */
2269                 base++;
2270
2271         spin_lock(&swap_lock);
2272         if (end > si->max)      /* don't go beyond end of map */
2273                 end = si->max;
2274
2275         /* Count contiguous allocated slots above our target */
2276         for (toff = target; ++toff < end; nr_pages++) {
2277                 /* Don't read in free or bad pages */
2278                 if (!si->swap_map[toff])
2279                         break;
2280                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2281                         break;
2282         }
2283         /* Count contiguous allocated slots below our target */
2284         for (toff = target; --toff >= base; nr_pages++) {
2285                 /* Don't read in free or bad pages */
2286                 if (!si->swap_map[toff])
2287                         break;
2288                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2289                         break;
2290         }
2291         spin_unlock(&swap_lock);
2292
2293         /*
2294          * Indicate starting offset, and return number of pages to get:
2295          * if only 1, say 0, since there's then no readahead to be done.
2296          */
2297         *offset = ++toff;
2298         return nr_pages? ++nr_pages: 0;
2299 }
2300
2301 /*
2302  * add_swap_count_continuation - called when a swap count is duplicated
2303  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2304  * page of the original vmalloc'ed swap_map, to hold the continuation count
2305  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2306  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2307  *
2308  * These continuation pages are seldom referenced: the common paths all work
2309  * on the original swap_map, only referring to a continuation page when the
2310  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2311  *
2312  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2313  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2314  * can be called after dropping locks.
2315  */
2316 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2317 {
2318         struct swap_info_struct *si;
2319         struct page *head;
2320         struct page *page;
2321         struct page *list_page;
2322         pgoff_t offset;
2323         unsigned char count;
2324
2325         /*
2326          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2327          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2328          */
2329         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2330
2331         si = swap_info_get(entry);
2332         if (!si) {
2333                 /*
2334                  * An acceptable race has occurred since the failing
2335                  * __swap_duplicate(): the swap entry has been freed,
2336                  * perhaps even the whole swap_map cleared for swapoff.
2337                  */
2338                 goto outer;
2339         }
2340
2341         offset = swp_offset(entry);
2342         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2343
2344         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2345                 /*
2346                  * The higher the swap count, the more likely it is that tasks
2347                  * will race to add swap count continuation: we need to avoid
2348                  * over-provisioning.
2349                  */
2350                 goto out;
2351         }
2352
2353         if (!page) {
2354                 spin_unlock(&swap_lock);
2355                 return -ENOMEM;
2356         }
2357
2358         /*
2359          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2360          * no architecture is using highmem pages for kernel pagetables: so it
2361          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2362          */
2363         head = vmalloc_to_page(si->swap_map + offset);
2364         offset &= ~PAGE_MASK;
2365
2366         /*
2367          * Page allocation does not initialize the page's lru field,
2368          * but it does always reset its private field.
2369          */
2370         if (!page_private(head)) {
2371                 BUG_ON(count & COUNT_CONTINUED);
2372                 INIT_LIST_HEAD(&head->lru);
2373                 set_page_private(head, SWP_CONTINUED);
2374                 si->flags |= SWP_CONTINUED;
2375         }
2376
2377         list_for_each_entry(list_page, &head->lru, lru) {
2378                 unsigned char *map;
2379
2380                 /*
2381                  * If the previous map said no continuation, but we've found
2382                  * a continuation page, free our allocation and use this one.
2383                  */
2384                 if (!(count & COUNT_CONTINUED))
2385                         goto out;
2386
2387                 map = kmap_atomic(list_page, KM_USER0) + offset;
2388                 count = *map;
2389                 kunmap_atomic(map, KM_USER0);
2390
2391                 /*
2392                  * If this continuation count now has some space in it,
2393                  * free our allocation and use this one.
2394                  */
2395                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2396                         goto out;
2397         }
2398
2399         list_add_tail(&page->lru, &head->lru);
2400         page = NULL;                    /* now it's attached, don't free it */
2401 out:
2402         spin_unlock(&swap_lock);
2403 outer:
2404         if (page)
2405                 __free_page(page);
2406         return 0;
2407 }
2408
2409 /*
2410  * swap_count_continued - when the original swap_map count is incremented
2411  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2412  * into, carry if so, or else fail until a new continuation page is allocated;
2413  * when the original swap_map count is decremented from 0 with continuation,
2414  * borrow from the continuation and report whether it still holds more.
2415  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2416  */
2417 static bool swap_count_continued(struct swap_info_struct *si,
2418                                  pgoff_t offset, unsigned char count)
2419 {
2420         struct page *head;
2421         struct page *page;
2422         unsigned char *map;
2423
2424         head = vmalloc_to_page(si->swap_map + offset);
2425         if (page_private(head) != SWP_CONTINUED) {
2426                 BUG_ON(count & COUNT_CONTINUED);
2427                 return false;           /* need to add count continuation */
2428         }
2429
2430         offset &= ~PAGE_MASK;
2431         page = list_entry(head->lru.next, struct page, lru);
2432         map = kmap_atomic(page, KM_USER0) + offset;
2433
2434         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2435                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2436
2437         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2438                 /*
2439                  * Think of how you add 1 to 999
2440                  */
2441                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2442                         kunmap_atomic(map, KM_USER0);
2443                         page = list_entry(page->lru.next, struct page, lru);
2444                         BUG_ON(page == head);
2445                         map = kmap_atomic(page, KM_USER0) + offset;
2446                 }
2447                 if (*map == SWAP_CONT_MAX) {
2448                         kunmap_atomic(map, KM_USER0);
2449                         page = list_entry(page->lru.next, struct page, lru);
2450                         if (page == head)
2451                                 return false;   /* add count continuation */
2452                         map = kmap_atomic(page, KM_USER0) + offset;
2453 init_map:               *map = 0;               /* we didn't zero the page */
2454                 }
2455                 *map += 1;
2456                 kunmap_atomic(map, KM_USER0);
2457                 page = list_entry(page->lru.prev, struct page, lru);
2458                 while (page != head) {
2459                         map = kmap_atomic(page, KM_USER0) + offset;
2460                         *map = COUNT_CONTINUED;
2461                         kunmap_atomic(map, KM_USER0);
2462                         page = list_entry(page->lru.prev, struct page, lru);
2463                 }
2464                 return true;                    /* incremented */
2465
2466         } else {                                /* decrementing */
2467                 /*
2468                  * Think of how you subtract 1 from 1000
2469                  */
2470                 BUG_ON(count != COUNT_CONTINUED);
2471                 while (*map == COUNT_CONTINUED) {
2472                         kunmap_atomic(map, KM_USER0);
2473                         page = list_entry(page->lru.next, struct page, lru);
2474                         BUG_ON(page == head);
2475                         map = kmap_atomic(page, KM_USER0) + offset;
2476                 }
2477                 BUG_ON(*map == 0);
2478                 *map -= 1;
2479                 if (*map == 0)
2480                         count = 0;
2481                 kunmap_atomic(map, KM_USER0);
2482                 page = list_entry(page->lru.prev, struct page, lru);
2483                 while (page != head) {
2484                         map = kmap_atomic(page, KM_USER0) + offset;
2485                         *map = SWAP_CONT_MAX | count;
2486                         count = COUNT_CONTINUED;
2487                         kunmap_atomic(map, KM_USER0);
2488                         page = list_entry(page->lru.prev, struct page, lru);
2489                 }
2490                 return count == COUNT_CONTINUED;
2491         }
2492 }
2493
2494 /*
2495  * free_swap_count_continuations - swapoff free all the continuation pages
2496  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2497  */
2498 static void free_swap_count_continuations(struct swap_info_struct *si)
2499 {
2500         pgoff_t offset;
2501
2502         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2503                 struct page *head;
2504                 head = vmalloc_to_page(si->swap_map + offset);
2505                 if (page_private(head)) {
2506                         struct list_head *this, *next;
2507                         list_for_each_safe(this, next, &head->lru) {
2508                                 struct page *page;
2509                                 page = list_entry(this, struct page, lru);
2510                                 list_del(this);
2511                                 __free_page(page);
2512                         }
2513                 }
2514         }
2515 }