b3f5e7dfea51a21a4d2c28ee66518db1336a5023
[linux-flexiantxendom0-3.2.10.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52
53 #include "init_64.h"
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS       32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
74 static int pavail_ents __devinitdata;
75
76 static int cmp_p64(const void *a, const void *b)
77 {
78         const struct linux_prom64_registers *x = a, *y = b;
79
80         if (x->phys_addr > y->phys_addr)
81                 return 1;
82         if (x->phys_addr < y->phys_addr)
83                 return -1;
84         return 0;
85 }
86
87 static void __init read_obp_memory(const char *property,
88                                    struct linux_prom64_registers *regs,
89                                    int *num_ents)
90 {
91         phandle node = prom_finddevice("/memory");
92         int prop_size = prom_getproplen(node, property);
93         int ents, ret, i;
94
95         ents = prop_size / sizeof(struct linux_prom64_registers);
96         if (ents > MAX_BANKS) {
97                 prom_printf("The machine has more %s property entries than "
98                             "this kernel can support (%d).\n",
99                             property, MAX_BANKS);
100                 prom_halt();
101         }
102
103         ret = prom_getproperty(node, property, (char *) regs, prop_size);
104         if (ret == -1) {
105                 prom_printf("Couldn't get %s property from /memory.\n");
106                 prom_halt();
107         }
108
109         /* Sanitize what we got from the firmware, by page aligning
110          * everything.
111          */
112         for (i = 0; i < ents; i++) {
113                 unsigned long base, size;
114
115                 base = regs[i].phys_addr;
116                 size = regs[i].reg_size;
117
118                 size &= PAGE_MASK;
119                 if (base & ~PAGE_MASK) {
120                         unsigned long new_base = PAGE_ALIGN(base);
121
122                         size -= new_base - base;
123                         if ((long) size < 0L)
124                                 size = 0UL;
125                         base = new_base;
126                 }
127                 if (size == 0UL) {
128                         /* If it is empty, simply get rid of it.
129                          * This simplifies the logic of the other
130                          * functions that process these arrays.
131                          */
132                         memmove(&regs[i], &regs[i + 1],
133                                 (ents - i - 1) * sizeof(regs[0]));
134                         i--;
135                         ents--;
136                         continue;
137                 }
138                 regs[i].phys_addr = base;
139                 regs[i].reg_size = size;
140         }
141
142         *num_ents = ents;
143
144         sort(regs, ents, sizeof(struct linux_prom64_registers),
145              cmp_p64, NULL);
146 }
147
148 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
149                                         sizeof(unsigned long)];
150 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
151
152 /* Kernel physical address base and size in bytes.  */
153 unsigned long kern_base __read_mostly;
154 unsigned long kern_size __read_mostly;
155
156 /* Initial ramdisk setup */
157 extern unsigned long sparc_ramdisk_image64;
158 extern unsigned int sparc_ramdisk_image;
159 extern unsigned int sparc_ramdisk_size;
160
161 struct page *mem_map_zero __read_mostly;
162 EXPORT_SYMBOL(mem_map_zero);
163
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169
170 int num_kernel_image_mappings;
171
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178
179 inline void flush_dcache_page_impl(struct page *page)
180 {
181         BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183         atomic_inc(&dcpage_flushes);
184 #endif
185
186 #ifdef DCACHE_ALIASING_POSSIBLE
187         __flush_dcache_page(page_address(page),
188                             ((tlb_type == spitfire) &&
189                              page_mapping(page) != NULL));
190 #else
191         if (page_mapping(page) != NULL &&
192             tlb_type == spitfire)
193                 __flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196
197 #define PG_dcache_dirty         PG_arch_1
198 #define PG_dcache_cpu_shift     32UL
199 #define PG_dcache_cpu_mask      \
200         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201
202 #define dcache_dirty_cpu(page) \
203         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207         unsigned long mask = this_cpu;
208         unsigned long non_cpu_bits;
209
210         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
213         __asm__ __volatile__("1:\n\t"
214                              "ldx       [%2], %%g7\n\t"
215                              "and       %%g7, %1, %%g1\n\t"
216                              "or        %%g1, %0, %%g1\n\t"
217                              "casx      [%2], %%g7, %%g1\n\t"
218                              "cmp       %%g7, %%g1\n\t"
219                              "bne,pn    %%xcc, 1b\n\t"
220                              " nop"
221                              : /* no outputs */
222                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
223                              : "g1", "g7");
224 }
225
226 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
227 {
228         unsigned long mask = (1UL << PG_dcache_dirty);
229
230         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
231                              "1:\n\t"
232                              "ldx       [%2], %%g7\n\t"
233                              "srlx      %%g7, %4, %%g1\n\t"
234                              "and       %%g1, %3, %%g1\n\t"
235                              "cmp       %%g1, %0\n\t"
236                              "bne,pn    %%icc, 2f\n\t"
237                              " andn     %%g7, %1, %%g1\n\t"
238                              "casx      [%2], %%g7, %%g1\n\t"
239                              "cmp       %%g7, %%g1\n\t"
240                              "bne,pn    %%xcc, 1b\n\t"
241                              " nop\n"
242                              "2:"
243                              : /* no outputs */
244                              : "r" (cpu), "r" (mask), "r" (&page->flags),
245                                "i" (PG_dcache_cpu_mask),
246                                "i" (PG_dcache_cpu_shift)
247                              : "g1", "g7");
248 }
249
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 {
252         unsigned long tsb_addr = (unsigned long) ent;
253
254         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255                 tsb_addr = __pa(tsb_addr);
256
257         __tsb_insert(tsb_addr, tag, pte);
258 }
259
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
262
263 static void flush_dcache(unsigned long pfn)
264 {
265         struct page *page;
266
267         page = pfn_to_page(pfn);
268         if (page) {
269                 unsigned long pg_flags;
270
271                 pg_flags = page->flags;
272                 if (pg_flags & (1UL << PG_dcache_dirty)) {
273                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
274                                    PG_dcache_cpu_mask);
275                         int this_cpu = get_cpu();
276
277                         /* This is just to optimize away some function calls
278                          * in the SMP case.
279                          */
280                         if (cpu == this_cpu)
281                                 flush_dcache_page_impl(page);
282                         else
283                                 smp_flush_dcache_page_impl(page, cpu);
284
285                         clear_dcache_dirty_cpu(page, cpu);
286
287                         put_cpu();
288                 }
289         }
290 }
291
292 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
293 {
294         struct mm_struct *mm;
295         struct tsb *tsb;
296         unsigned long tag, flags;
297         unsigned long tsb_index, tsb_hash_shift;
298         pte_t pte = *ptep;
299
300         if (tlb_type != hypervisor) {
301                 unsigned long pfn = pte_pfn(pte);
302
303                 if (pfn_valid(pfn))
304                         flush_dcache(pfn);
305         }
306
307         mm = vma->vm_mm;
308
309         tsb_index = MM_TSB_BASE;
310         tsb_hash_shift = PAGE_SHIFT;
311
312         spin_lock_irqsave(&mm->context.lock, flags);
313
314 #ifdef CONFIG_HUGETLB_PAGE
315         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
316                 if ((tlb_type == hypervisor &&
317                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
318                     (tlb_type != hypervisor &&
319                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
320                         tsb_index = MM_TSB_HUGE;
321                         tsb_hash_shift = HPAGE_SHIFT;
322                 }
323         }
324 #endif
325
326         tsb = mm->context.tsb_block[tsb_index].tsb;
327         tsb += ((address >> tsb_hash_shift) &
328                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
329         tag = (address >> 22UL);
330         tsb_insert(tsb, tag, pte_val(pte));
331
332         spin_unlock_irqrestore(&mm->context.lock, flags);
333 }
334
335 void flush_dcache_page(struct page *page)
336 {
337         struct address_space *mapping;
338         int this_cpu;
339
340         if (tlb_type == hypervisor)
341                 return;
342
343         /* Do not bother with the expensive D-cache flush if it
344          * is merely the zero page.  The 'bigcore' testcase in GDB
345          * causes this case to run millions of times.
346          */
347         if (page == ZERO_PAGE(0))
348                 return;
349
350         this_cpu = get_cpu();
351
352         mapping = page_mapping(page);
353         if (mapping && !mapping_mapped(mapping)) {
354                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
355                 if (dirty) {
356                         int dirty_cpu = dcache_dirty_cpu(page);
357
358                         if (dirty_cpu == this_cpu)
359                                 goto out;
360                         smp_flush_dcache_page_impl(page, dirty_cpu);
361                 }
362                 set_dcache_dirty(page, this_cpu);
363         } else {
364                 /* We could delay the flush for the !page_mapping
365                  * case too.  But that case is for exec env/arg
366                  * pages and those are %99 certainly going to get
367                  * faulted into the tlb (and thus flushed) anyways.
368                  */
369                 flush_dcache_page_impl(page);
370         }
371
372 out:
373         put_cpu();
374 }
375 EXPORT_SYMBOL(flush_dcache_page);
376
377 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
378 {
379         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
380         if (tlb_type == spitfire) {
381                 unsigned long kaddr;
382
383                 /* This code only runs on Spitfire cpus so this is
384                  * why we can assume _PAGE_PADDR_4U.
385                  */
386                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
387                         unsigned long paddr, mask = _PAGE_PADDR_4U;
388
389                         if (kaddr >= PAGE_OFFSET)
390                                 paddr = kaddr & mask;
391                         else {
392                                 pgd_t *pgdp = pgd_offset_k(kaddr);
393                                 pud_t *pudp = pud_offset(pgdp, kaddr);
394                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
395                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
396
397                                 paddr = pte_val(*ptep) & mask;
398                         }
399                         __flush_icache_page(paddr);
400                 }
401         }
402 }
403 EXPORT_SYMBOL(flush_icache_range);
404
405 void mmu_info(struct seq_file *m)
406 {
407         if (tlb_type == cheetah)
408                 seq_printf(m, "MMU Type\t: Cheetah\n");
409         else if (tlb_type == cheetah_plus)
410                 seq_printf(m, "MMU Type\t: Cheetah+\n");
411         else if (tlb_type == spitfire)
412                 seq_printf(m, "MMU Type\t: Spitfire\n");
413         else if (tlb_type == hypervisor)
414                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
415         else
416                 seq_printf(m, "MMU Type\t: ???\n");
417
418 #ifdef CONFIG_DEBUG_DCFLUSH
419         seq_printf(m, "DCPageFlushes\t: %d\n",
420                    atomic_read(&dcpage_flushes));
421 #ifdef CONFIG_SMP
422         seq_printf(m, "DCPageFlushesXC\t: %d\n",
423                    atomic_read(&dcpage_flushes_xcall));
424 #endif /* CONFIG_SMP */
425 #endif /* CONFIG_DEBUG_DCFLUSH */
426 }
427
428 struct linux_prom_translation prom_trans[512] __read_mostly;
429 unsigned int prom_trans_ents __read_mostly;
430
431 unsigned long kern_locked_tte_data;
432
433 /* The obp translations are saved based on 8k pagesize, since obp can
434  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
435  * HI_OBP_ADDRESS range are handled in ktlb.S.
436  */
437 static inline int in_obp_range(unsigned long vaddr)
438 {
439         return (vaddr >= LOW_OBP_ADDRESS &&
440                 vaddr < HI_OBP_ADDRESS);
441 }
442
443 static int cmp_ptrans(const void *a, const void *b)
444 {
445         const struct linux_prom_translation *x = a, *y = b;
446
447         if (x->virt > y->virt)
448                 return 1;
449         if (x->virt < y->virt)
450                 return -1;
451         return 0;
452 }
453
454 /* Read OBP translations property into 'prom_trans[]'.  */
455 static void __init read_obp_translations(void)
456 {
457         int n, node, ents, first, last, i;
458
459         node = prom_finddevice("/virtual-memory");
460         n = prom_getproplen(node, "translations");
461         if (unlikely(n == 0 || n == -1)) {
462                 prom_printf("prom_mappings: Couldn't get size.\n");
463                 prom_halt();
464         }
465         if (unlikely(n > sizeof(prom_trans))) {
466                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
467                 prom_halt();
468         }
469
470         if ((n = prom_getproperty(node, "translations",
471                                   (char *)&prom_trans[0],
472                                   sizeof(prom_trans))) == -1) {
473                 prom_printf("prom_mappings: Couldn't get property.\n");
474                 prom_halt();
475         }
476
477         n = n / sizeof(struct linux_prom_translation);
478
479         ents = n;
480
481         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
482              cmp_ptrans, NULL);
483
484         /* Now kick out all the non-OBP entries.  */
485         for (i = 0; i < ents; i++) {
486                 if (in_obp_range(prom_trans[i].virt))
487                         break;
488         }
489         first = i;
490         for (; i < ents; i++) {
491                 if (!in_obp_range(prom_trans[i].virt))
492                         break;
493         }
494         last = i;
495
496         for (i = 0; i < (last - first); i++) {
497                 struct linux_prom_translation *src = &prom_trans[i + first];
498                 struct linux_prom_translation *dest = &prom_trans[i];
499
500                 *dest = *src;
501         }
502         for (; i < ents; i++) {
503                 struct linux_prom_translation *dest = &prom_trans[i];
504                 dest->virt = dest->size = dest->data = 0x0UL;
505         }
506
507         prom_trans_ents = last - first;
508
509         if (tlb_type == spitfire) {
510                 /* Clear diag TTE bits. */
511                 for (i = 0; i < prom_trans_ents; i++)
512                         prom_trans[i].data &= ~0x0003fe0000000000UL;
513         }
514
515         /* Force execute bit on.  */
516         for (i = 0; i < prom_trans_ents; i++)
517                 prom_trans[i].data |= (tlb_type == hypervisor ?
518                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
519 }
520
521 static void __init hypervisor_tlb_lock(unsigned long vaddr,
522                                        unsigned long pte,
523                                        unsigned long mmu)
524 {
525         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
526
527         if (ret != 0) {
528                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
529                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
530                 prom_halt();
531         }
532 }
533
534 static unsigned long kern_large_tte(unsigned long paddr);
535
536 static void __init remap_kernel(void)
537 {
538         unsigned long phys_page, tte_vaddr, tte_data;
539         int i, tlb_ent = sparc64_highest_locked_tlbent();
540
541         tte_vaddr = (unsigned long) KERNBASE;
542         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
543         tte_data = kern_large_tte(phys_page);
544
545         kern_locked_tte_data = tte_data;
546
547         /* Now lock us into the TLBs via Hypervisor or OBP. */
548         if (tlb_type == hypervisor) {
549                 for (i = 0; i < num_kernel_image_mappings; i++) {
550                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
551                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
552                         tte_vaddr += 0x400000;
553                         tte_data += 0x400000;
554                 }
555         } else {
556                 for (i = 0; i < num_kernel_image_mappings; i++) {
557                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
558                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
559                         tte_vaddr += 0x400000;
560                         tte_data += 0x400000;
561                 }
562                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
563         }
564         if (tlb_type == cheetah_plus) {
565                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
566                                             CTX_CHEETAH_PLUS_NUC);
567                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
568                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
569         }
570 }
571
572
573 static void __init inherit_prom_mappings(void)
574 {
575         /* Now fixup OBP's idea about where we really are mapped. */
576         printk("Remapping the kernel... ");
577         remap_kernel();
578         printk("done.\n");
579 }
580
581 void prom_world(int enter)
582 {
583         if (!enter)
584                 set_fs((mm_segment_t) { get_thread_current_ds() });
585
586         __asm__ __volatile__("flushw");
587 }
588
589 void __flush_dcache_range(unsigned long start, unsigned long end)
590 {
591         unsigned long va;
592
593         if (tlb_type == spitfire) {
594                 int n = 0;
595
596                 for (va = start; va < end; va += 32) {
597                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
598                         if (++n >= 512)
599                                 break;
600                 }
601         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
602                 start = __pa(start);
603                 end = __pa(end);
604                 for (va = start; va < end; va += 32)
605                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
606                                              "membar #Sync"
607                                              : /* no outputs */
608                                              : "r" (va),
609                                                "i" (ASI_DCACHE_INVALIDATE));
610         }
611 }
612 EXPORT_SYMBOL(__flush_dcache_range);
613
614 /* get_new_mmu_context() uses "cache + 1".  */
615 DEFINE_SPINLOCK(ctx_alloc_lock);
616 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
617 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
618 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
619 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
620
621 /* Caller does TLB context flushing on local CPU if necessary.
622  * The caller also ensures that CTX_VALID(mm->context) is false.
623  *
624  * We must be careful about boundary cases so that we never
625  * let the user have CTX 0 (nucleus) or we ever use a CTX
626  * version of zero (and thus NO_CONTEXT would not be caught
627  * by version mis-match tests in mmu_context.h).
628  *
629  * Always invoked with interrupts disabled.
630  */
631 void get_new_mmu_context(struct mm_struct *mm)
632 {
633         unsigned long ctx, new_ctx;
634         unsigned long orig_pgsz_bits;
635         unsigned long flags;
636         int new_version;
637
638         spin_lock_irqsave(&ctx_alloc_lock, flags);
639         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
640         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
641         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
642         new_version = 0;
643         if (new_ctx >= (1 << CTX_NR_BITS)) {
644                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
645                 if (new_ctx >= ctx) {
646                         int i;
647                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
648                                 CTX_FIRST_VERSION;
649                         if (new_ctx == 1)
650                                 new_ctx = CTX_FIRST_VERSION;
651
652                         /* Don't call memset, for 16 entries that's just
653                          * plain silly...
654                          */
655                         mmu_context_bmap[0] = 3;
656                         mmu_context_bmap[1] = 0;
657                         mmu_context_bmap[2] = 0;
658                         mmu_context_bmap[3] = 0;
659                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
660                                 mmu_context_bmap[i + 0] = 0;
661                                 mmu_context_bmap[i + 1] = 0;
662                                 mmu_context_bmap[i + 2] = 0;
663                                 mmu_context_bmap[i + 3] = 0;
664                         }
665                         new_version = 1;
666                         goto out;
667                 }
668         }
669         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
670         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
671 out:
672         tlb_context_cache = new_ctx;
673         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
674         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
675
676         if (unlikely(new_version))
677                 smp_new_mmu_context_version();
678 }
679
680 static int numa_enabled = 1;
681 static int numa_debug;
682
683 static int __init early_numa(char *p)
684 {
685         if (!p)
686                 return 0;
687
688         if (strstr(p, "off"))
689                 numa_enabled = 0;
690
691         if (strstr(p, "debug"))
692                 numa_debug = 1;
693
694         return 0;
695 }
696 early_param("numa", early_numa);
697
698 #define numadbg(f, a...) \
699 do {    if (numa_debug) \
700                 printk(KERN_INFO f, ## a); \
701 } while (0)
702
703 static void __init find_ramdisk(unsigned long phys_base)
704 {
705 #ifdef CONFIG_BLK_DEV_INITRD
706         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
707                 unsigned long ramdisk_image;
708
709                 /* Older versions of the bootloader only supported a
710                  * 32-bit physical address for the ramdisk image
711                  * location, stored at sparc_ramdisk_image.  Newer
712                  * SILO versions set sparc_ramdisk_image to zero and
713                  * provide a full 64-bit physical address at
714                  * sparc_ramdisk_image64.
715                  */
716                 ramdisk_image = sparc_ramdisk_image;
717                 if (!ramdisk_image)
718                         ramdisk_image = sparc_ramdisk_image64;
719
720                 /* Another bootloader quirk.  The bootloader normalizes
721                  * the physical address to KERNBASE, so we have to
722                  * factor that back out and add in the lowest valid
723                  * physical page address to get the true physical address.
724                  */
725                 ramdisk_image -= KERNBASE;
726                 ramdisk_image += phys_base;
727
728                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
729                         ramdisk_image, sparc_ramdisk_size);
730
731                 initrd_start = ramdisk_image;
732                 initrd_end = ramdisk_image + sparc_ramdisk_size;
733
734                 memblock_reserve(initrd_start, sparc_ramdisk_size);
735
736                 initrd_start += PAGE_OFFSET;
737                 initrd_end += PAGE_OFFSET;
738         }
739 #endif
740 }
741
742 struct node_mem_mask {
743         unsigned long mask;
744         unsigned long val;
745         unsigned long bootmem_paddr;
746 };
747 static struct node_mem_mask node_masks[MAX_NUMNODES];
748 static int num_node_masks;
749
750 int numa_cpu_lookup_table[NR_CPUS];
751 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
752
753 #ifdef CONFIG_NEED_MULTIPLE_NODES
754
755 struct mdesc_mblock {
756         u64     base;
757         u64     size;
758         u64     offset; /* RA-to-PA */
759 };
760 static struct mdesc_mblock *mblocks;
761 static int num_mblocks;
762
763 static unsigned long ra_to_pa(unsigned long addr)
764 {
765         int i;
766
767         for (i = 0; i < num_mblocks; i++) {
768                 struct mdesc_mblock *m = &mblocks[i];
769
770                 if (addr >= m->base &&
771                     addr < (m->base + m->size)) {
772                         addr += m->offset;
773                         break;
774                 }
775         }
776         return addr;
777 }
778
779 static int find_node(unsigned long addr)
780 {
781         int i;
782
783         addr = ra_to_pa(addr);
784         for (i = 0; i < num_node_masks; i++) {
785                 struct node_mem_mask *p = &node_masks[i];
786
787                 if ((addr & p->mask) == p->val)
788                         return i;
789         }
790         return -1;
791 }
792
793 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
794 {
795         *nid = find_node(start);
796         start += PAGE_SIZE;
797         while (start < end) {
798                 int n = find_node(start);
799
800                 if (n != *nid)
801                         break;
802                 start += PAGE_SIZE;
803         }
804
805         if (start > end)
806                 start = end;
807
808         return start;
809 }
810 #else
811 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
812 {
813         *nid = 0;
814         return end;
815 }
816 #endif
817
818 /* This must be invoked after performing all of the necessary
819  * memblock_set_node() calls for 'nid'.  We need to be able to get
820  * correct data from get_pfn_range_for_nid().
821  */
822 static void __init allocate_node_data(int nid)
823 {
824         unsigned long paddr, num_pages, start_pfn, end_pfn;
825         struct pglist_data *p;
826
827 #ifdef CONFIG_NEED_MULTIPLE_NODES
828         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
829         if (!paddr) {
830                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
831                 prom_halt();
832         }
833         NODE_DATA(nid) = __va(paddr);
834         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
835
836         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
837 #endif
838
839         p = NODE_DATA(nid);
840
841         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
842         p->node_start_pfn = start_pfn;
843         p->node_spanned_pages = end_pfn - start_pfn;
844
845         if (p->node_spanned_pages) {
846                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
847
848                 paddr = memblock_alloc_try_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid);
849                 if (!paddr) {
850                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
851                                   nid);
852                         prom_halt();
853                 }
854                 node_masks[nid].bootmem_paddr = paddr;
855         }
856 }
857
858 static void init_node_masks_nonnuma(void)
859 {
860         int i;
861
862         numadbg("Initializing tables for non-numa.\n");
863
864         node_masks[0].mask = node_masks[0].val = 0;
865         num_node_masks = 1;
866
867         for (i = 0; i < NR_CPUS; i++)
868                 numa_cpu_lookup_table[i] = 0;
869
870         cpumask_setall(&numa_cpumask_lookup_table[0]);
871 }
872
873 #ifdef CONFIG_NEED_MULTIPLE_NODES
874 struct pglist_data *node_data[MAX_NUMNODES];
875
876 EXPORT_SYMBOL(numa_cpu_lookup_table);
877 EXPORT_SYMBOL(numa_cpumask_lookup_table);
878 EXPORT_SYMBOL(node_data);
879
880 struct mdesc_mlgroup {
881         u64     node;
882         u64     latency;
883         u64     match;
884         u64     mask;
885 };
886 static struct mdesc_mlgroup *mlgroups;
887 static int num_mlgroups;
888
889 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
890                                    u32 cfg_handle)
891 {
892         u64 arc;
893
894         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
895                 u64 target = mdesc_arc_target(md, arc);
896                 const u64 *val;
897
898                 val = mdesc_get_property(md, target,
899                                          "cfg-handle", NULL);
900                 if (val && *val == cfg_handle)
901                         return 0;
902         }
903         return -ENODEV;
904 }
905
906 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
907                                     u32 cfg_handle)
908 {
909         u64 arc, candidate, best_latency = ~(u64)0;
910
911         candidate = MDESC_NODE_NULL;
912         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
913                 u64 target = mdesc_arc_target(md, arc);
914                 const char *name = mdesc_node_name(md, target);
915                 const u64 *val;
916
917                 if (strcmp(name, "pio-latency-group"))
918                         continue;
919
920                 val = mdesc_get_property(md, target, "latency", NULL);
921                 if (!val)
922                         continue;
923
924                 if (*val < best_latency) {
925                         candidate = target;
926                         best_latency = *val;
927                 }
928         }
929
930         if (candidate == MDESC_NODE_NULL)
931                 return -ENODEV;
932
933         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
934 }
935
936 int of_node_to_nid(struct device_node *dp)
937 {
938         const struct linux_prom64_registers *regs;
939         struct mdesc_handle *md;
940         u32 cfg_handle;
941         int count, nid;
942         u64 grp;
943
944         /* This is the right thing to do on currently supported
945          * SUN4U NUMA platforms as well, as the PCI controller does
946          * not sit behind any particular memory controller.
947          */
948         if (!mlgroups)
949                 return -1;
950
951         regs = of_get_property(dp, "reg", NULL);
952         if (!regs)
953                 return -1;
954
955         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
956
957         md = mdesc_grab();
958
959         count = 0;
960         nid = -1;
961         mdesc_for_each_node_by_name(md, grp, "group") {
962                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
963                         nid = count;
964                         break;
965                 }
966                 count++;
967         }
968
969         mdesc_release(md);
970
971         return nid;
972 }
973
974 static void __init add_node_ranges(void)
975 {
976         struct memblock_region *reg;
977
978         for_each_memblock(memory, reg) {
979                 unsigned long size = reg->size;
980                 unsigned long start, end;
981
982                 start = reg->base;
983                 end = start + size;
984                 while (start < end) {
985                         unsigned long this_end;
986                         int nid;
987
988                         this_end = memblock_nid_range(start, end, &nid);
989
990                         numadbg("Setting memblock NUMA node nid[%d] "
991                                 "start[%lx] end[%lx]\n",
992                                 nid, start, this_end);
993
994                         memblock_set_node(start, this_end - start, nid);
995                         start = this_end;
996                 }
997         }
998 }
999
1000 static int __init grab_mlgroups(struct mdesc_handle *md)
1001 {
1002         unsigned long paddr;
1003         int count = 0;
1004         u64 node;
1005
1006         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1007                 count++;
1008         if (!count)
1009                 return -ENOENT;
1010
1011         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1012                           SMP_CACHE_BYTES);
1013         if (!paddr)
1014                 return -ENOMEM;
1015
1016         mlgroups = __va(paddr);
1017         num_mlgroups = count;
1018
1019         count = 0;
1020         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1021                 struct mdesc_mlgroup *m = &mlgroups[count++];
1022                 const u64 *val;
1023
1024                 m->node = node;
1025
1026                 val = mdesc_get_property(md, node, "latency", NULL);
1027                 m->latency = *val;
1028                 val = mdesc_get_property(md, node, "address-match", NULL);
1029                 m->match = *val;
1030                 val = mdesc_get_property(md, node, "address-mask", NULL);
1031                 m->mask = *val;
1032
1033                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1034                         "match[%llx] mask[%llx]\n",
1035                         count - 1, m->node, m->latency, m->match, m->mask);
1036         }
1037
1038         return 0;
1039 }
1040
1041 static int __init grab_mblocks(struct mdesc_handle *md)
1042 {
1043         unsigned long paddr;
1044         int count = 0;
1045         u64 node;
1046
1047         mdesc_for_each_node_by_name(md, node, "mblock")
1048                 count++;
1049         if (!count)
1050                 return -ENOENT;
1051
1052         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1053                           SMP_CACHE_BYTES);
1054         if (!paddr)
1055                 return -ENOMEM;
1056
1057         mblocks = __va(paddr);
1058         num_mblocks = count;
1059
1060         count = 0;
1061         mdesc_for_each_node_by_name(md, node, "mblock") {
1062                 struct mdesc_mblock *m = &mblocks[count++];
1063                 const u64 *val;
1064
1065                 val = mdesc_get_property(md, node, "base", NULL);
1066                 m->base = *val;
1067                 val = mdesc_get_property(md, node, "size", NULL);
1068                 m->size = *val;
1069                 val = mdesc_get_property(md, node,
1070                                          "address-congruence-offset", NULL);
1071                 m->offset = *val;
1072
1073                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1074                         count - 1, m->base, m->size, m->offset);
1075         }
1076
1077         return 0;
1078 }
1079
1080 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1081                                                u64 grp, cpumask_t *mask)
1082 {
1083         u64 arc;
1084
1085         cpumask_clear(mask);
1086
1087         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1088                 u64 target = mdesc_arc_target(md, arc);
1089                 const char *name = mdesc_node_name(md, target);
1090                 const u64 *id;
1091
1092                 if (strcmp(name, "cpu"))
1093                         continue;
1094                 id = mdesc_get_property(md, target, "id", NULL);
1095                 if (*id < nr_cpu_ids)
1096                         cpumask_set_cpu(*id, mask);
1097         }
1098 }
1099
1100 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1101 {
1102         int i;
1103
1104         for (i = 0; i < num_mlgroups; i++) {
1105                 struct mdesc_mlgroup *m = &mlgroups[i];
1106                 if (m->node == node)
1107                         return m;
1108         }
1109         return NULL;
1110 }
1111
1112 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1113                                       int index)
1114 {
1115         struct mdesc_mlgroup *candidate = NULL;
1116         u64 arc, best_latency = ~(u64)0;
1117         struct node_mem_mask *n;
1118
1119         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1120                 u64 target = mdesc_arc_target(md, arc);
1121                 struct mdesc_mlgroup *m = find_mlgroup(target);
1122                 if (!m)
1123                         continue;
1124                 if (m->latency < best_latency) {
1125                         candidate = m;
1126                         best_latency = m->latency;
1127                 }
1128         }
1129         if (!candidate)
1130                 return -ENOENT;
1131
1132         if (num_node_masks != index) {
1133                 printk(KERN_ERR "Inconsistent NUMA state, "
1134                        "index[%d] != num_node_masks[%d]\n",
1135                        index, num_node_masks);
1136                 return -EINVAL;
1137         }
1138
1139         n = &node_masks[num_node_masks++];
1140
1141         n->mask = candidate->mask;
1142         n->val = candidate->match;
1143
1144         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1145                 index, n->mask, n->val, candidate->latency);
1146
1147         return 0;
1148 }
1149
1150 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1151                                          int index)
1152 {
1153         cpumask_t mask;
1154         int cpu;
1155
1156         numa_parse_mdesc_group_cpus(md, grp, &mask);
1157
1158         for_each_cpu(cpu, &mask)
1159                 numa_cpu_lookup_table[cpu] = index;
1160         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1161
1162         if (numa_debug) {
1163                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1164                 for_each_cpu(cpu, &mask)
1165                         printk("%d ", cpu);
1166                 printk("]\n");
1167         }
1168
1169         return numa_attach_mlgroup(md, grp, index);
1170 }
1171
1172 static int __init numa_parse_mdesc(void)
1173 {
1174         struct mdesc_handle *md = mdesc_grab();
1175         int i, err, count;
1176         u64 node;
1177
1178         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1179         if (node == MDESC_NODE_NULL) {
1180                 mdesc_release(md);
1181                 return -ENOENT;
1182         }
1183
1184         err = grab_mblocks(md);
1185         if (err < 0)
1186                 goto out;
1187
1188         err = grab_mlgroups(md);
1189         if (err < 0)
1190                 goto out;
1191
1192         count = 0;
1193         mdesc_for_each_node_by_name(md, node, "group") {
1194                 err = numa_parse_mdesc_group(md, node, count);
1195                 if (err < 0)
1196                         break;
1197                 count++;
1198         }
1199
1200         add_node_ranges();
1201
1202         for (i = 0; i < num_node_masks; i++) {
1203                 allocate_node_data(i);
1204                 node_set_online(i);
1205         }
1206
1207         err = 0;
1208 out:
1209         mdesc_release(md);
1210         return err;
1211 }
1212
1213 static int __init numa_parse_jbus(void)
1214 {
1215         unsigned long cpu, index;
1216
1217         /* NUMA node id is encoded in bits 36 and higher, and there is
1218          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1219          */
1220         index = 0;
1221         for_each_present_cpu(cpu) {
1222                 numa_cpu_lookup_table[cpu] = index;
1223                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1224                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1225                 node_masks[index].val = cpu << 36UL;
1226
1227                 index++;
1228         }
1229         num_node_masks = index;
1230
1231         add_node_ranges();
1232
1233         for (index = 0; index < num_node_masks; index++) {
1234                 allocate_node_data(index);
1235                 node_set_online(index);
1236         }
1237
1238         return 0;
1239 }
1240
1241 static int __init numa_parse_sun4u(void)
1242 {
1243         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1244                 unsigned long ver;
1245
1246                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1247                 if ((ver >> 32UL) == __JALAPENO_ID ||
1248                     (ver >> 32UL) == __SERRANO_ID)
1249                         return numa_parse_jbus();
1250         }
1251         return -1;
1252 }
1253
1254 static int __init bootmem_init_numa(void)
1255 {
1256         int err = -1;
1257
1258         numadbg("bootmem_init_numa()\n");
1259
1260         if (numa_enabled) {
1261                 if (tlb_type == hypervisor)
1262                         err = numa_parse_mdesc();
1263                 else
1264                         err = numa_parse_sun4u();
1265         }
1266         return err;
1267 }
1268
1269 #else
1270
1271 static int bootmem_init_numa(void)
1272 {
1273         return -1;
1274 }
1275
1276 #endif
1277
1278 static void __init bootmem_init_nonnuma(void)
1279 {
1280         unsigned long top_of_ram = memblock_end_of_DRAM();
1281         unsigned long total_ram = memblock_phys_mem_size();
1282
1283         numadbg("bootmem_init_nonnuma()\n");
1284
1285         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1286                top_of_ram, total_ram);
1287         printk(KERN_INFO "Memory hole size: %ldMB\n",
1288                (top_of_ram - total_ram) >> 20);
1289
1290         init_node_masks_nonnuma();
1291         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1292         allocate_node_data(0);
1293         node_set_online(0);
1294 }
1295
1296 static void __init reserve_range_in_node(int nid, unsigned long start,
1297                                          unsigned long end)
1298 {
1299         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1300                 nid, start, end);
1301         while (start < end) {
1302                 unsigned long this_end;
1303                 int n;
1304
1305                 this_end = memblock_nid_range(start, end, &n);
1306                 if (n == nid) {
1307                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1308                                 start, this_end);
1309                         reserve_bootmem_node(NODE_DATA(nid), start,
1310                                              (this_end - start), BOOTMEM_DEFAULT);
1311                 } else
1312                         numadbg("      NO MATCH, advancing start to %lx\n",
1313                                 this_end);
1314
1315                 start = this_end;
1316         }
1317 }
1318
1319 static void __init trim_reserved_in_node(int nid)
1320 {
1321         struct memblock_region *reg;
1322
1323         numadbg("  trim_reserved_in_node(%d)\n", nid);
1324
1325         for_each_memblock(reserved, reg)
1326                 reserve_range_in_node(nid, reg->base, reg->base + reg->size);
1327 }
1328
1329 static void __init bootmem_init_one_node(int nid)
1330 {
1331         struct pglist_data *p;
1332
1333         numadbg("bootmem_init_one_node(%d)\n", nid);
1334
1335         p = NODE_DATA(nid);
1336
1337         if (p->node_spanned_pages) {
1338                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1339                 unsigned long end_pfn;
1340
1341                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1342
1343                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1344                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1345
1346                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1347                                   p->node_start_pfn, end_pfn);
1348
1349                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1350                         nid, end_pfn);
1351                 free_bootmem_with_active_regions(nid, end_pfn);
1352
1353                 trim_reserved_in_node(nid);
1354
1355                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1356                         nid);
1357                 sparse_memory_present_with_active_regions(nid);
1358         }
1359 }
1360
1361 static unsigned long __init bootmem_init(unsigned long phys_base)
1362 {
1363         unsigned long end_pfn;
1364         int nid;
1365
1366         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1367         max_pfn = max_low_pfn = end_pfn;
1368         min_low_pfn = (phys_base >> PAGE_SHIFT);
1369
1370         if (bootmem_init_numa() < 0)
1371                 bootmem_init_nonnuma();
1372
1373         /* XXX cpu notifier XXX */
1374
1375         for_each_online_node(nid)
1376                 bootmem_init_one_node(nid);
1377
1378         sparse_init();
1379
1380         return end_pfn;
1381 }
1382
1383 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1384 static int pall_ents __initdata;
1385
1386 #ifdef CONFIG_DEBUG_PAGEALLOC
1387 static unsigned long __ref kernel_map_range(unsigned long pstart,
1388                                             unsigned long pend, pgprot_t prot)
1389 {
1390         unsigned long vstart = PAGE_OFFSET + pstart;
1391         unsigned long vend = PAGE_OFFSET + pend;
1392         unsigned long alloc_bytes = 0UL;
1393
1394         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1395                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1396                             vstart, vend);
1397                 prom_halt();
1398         }
1399
1400         while (vstart < vend) {
1401                 unsigned long this_end, paddr = __pa(vstart);
1402                 pgd_t *pgd = pgd_offset_k(vstart);
1403                 pud_t *pud;
1404                 pmd_t *pmd;
1405                 pte_t *pte;
1406
1407                 pud = pud_offset(pgd, vstart);
1408                 if (pud_none(*pud)) {
1409                         pmd_t *new;
1410
1411                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1412                         alloc_bytes += PAGE_SIZE;
1413                         pud_populate(&init_mm, pud, new);
1414                 }
1415
1416                 pmd = pmd_offset(pud, vstart);
1417                 if (!pmd_present(*pmd)) {
1418                         pte_t *new;
1419
1420                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1421                         alloc_bytes += PAGE_SIZE;
1422                         pmd_populate_kernel(&init_mm, pmd, new);
1423                 }
1424
1425                 pte = pte_offset_kernel(pmd, vstart);
1426                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1427                 if (this_end > vend)
1428                         this_end = vend;
1429
1430                 while (vstart < this_end) {
1431                         pte_val(*pte) = (paddr | pgprot_val(prot));
1432
1433                         vstart += PAGE_SIZE;
1434                         paddr += PAGE_SIZE;
1435                         pte++;
1436                 }
1437         }
1438
1439         return alloc_bytes;
1440 }
1441
1442 extern unsigned int kvmap_linear_patch[1];
1443 #endif /* CONFIG_DEBUG_PAGEALLOC */
1444
1445 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1446 {
1447         const unsigned long shift_256MB = 28;
1448         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1449         const unsigned long size_256MB = (1UL << shift_256MB);
1450
1451         while (start < end) {
1452                 long remains;
1453
1454                 remains = end - start;
1455                 if (remains < size_256MB)
1456                         break;
1457
1458                 if (start & mask_256MB) {
1459                         start = (start + size_256MB) & ~mask_256MB;
1460                         continue;
1461                 }
1462
1463                 while (remains >= size_256MB) {
1464                         unsigned long index = start >> shift_256MB;
1465
1466                         __set_bit(index, kpte_linear_bitmap);
1467
1468                         start += size_256MB;
1469                         remains -= size_256MB;
1470                 }
1471         }
1472 }
1473
1474 static void __init init_kpte_bitmap(void)
1475 {
1476         unsigned long i;
1477
1478         for (i = 0; i < pall_ents; i++) {
1479                 unsigned long phys_start, phys_end;
1480
1481                 phys_start = pall[i].phys_addr;
1482                 phys_end = phys_start + pall[i].reg_size;
1483
1484                 mark_kpte_bitmap(phys_start, phys_end);
1485         }
1486 }
1487
1488 static void __init kernel_physical_mapping_init(void)
1489 {
1490 #ifdef CONFIG_DEBUG_PAGEALLOC
1491         unsigned long i, mem_alloced = 0UL;
1492
1493         for (i = 0; i < pall_ents; i++) {
1494                 unsigned long phys_start, phys_end;
1495
1496                 phys_start = pall[i].phys_addr;
1497                 phys_end = phys_start + pall[i].reg_size;
1498
1499                 mem_alloced += kernel_map_range(phys_start, phys_end,
1500                                                 PAGE_KERNEL);
1501         }
1502
1503         printk("Allocated %ld bytes for kernel page tables.\n",
1504                mem_alloced);
1505
1506         kvmap_linear_patch[0] = 0x01000000; /* nop */
1507         flushi(&kvmap_linear_patch[0]);
1508
1509         __flush_tlb_all();
1510 #endif
1511 }
1512
1513 #ifdef CONFIG_DEBUG_PAGEALLOC
1514 void kernel_map_pages(struct page *page, int numpages, int enable)
1515 {
1516         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1517         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1518
1519         kernel_map_range(phys_start, phys_end,
1520                          (enable ? PAGE_KERNEL : __pgprot(0)));
1521
1522         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1523                                PAGE_OFFSET + phys_end);
1524
1525         /* we should perform an IPI and flush all tlbs,
1526          * but that can deadlock->flush only current cpu.
1527          */
1528         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1529                                  PAGE_OFFSET + phys_end);
1530 }
1531 #endif
1532
1533 unsigned long __init find_ecache_flush_span(unsigned long size)
1534 {
1535         int i;
1536
1537         for (i = 0; i < pavail_ents; i++) {
1538                 if (pavail[i].reg_size >= size)
1539                         return pavail[i].phys_addr;
1540         }
1541
1542         return ~0UL;
1543 }
1544
1545 static void __init tsb_phys_patch(void)
1546 {
1547         struct tsb_ldquad_phys_patch_entry *pquad;
1548         struct tsb_phys_patch_entry *p;
1549
1550         pquad = &__tsb_ldquad_phys_patch;
1551         while (pquad < &__tsb_ldquad_phys_patch_end) {
1552                 unsigned long addr = pquad->addr;
1553
1554                 if (tlb_type == hypervisor)
1555                         *(unsigned int *) addr = pquad->sun4v_insn;
1556                 else
1557                         *(unsigned int *) addr = pquad->sun4u_insn;
1558                 wmb();
1559                 __asm__ __volatile__("flush     %0"
1560                                      : /* no outputs */
1561                                      : "r" (addr));
1562
1563                 pquad++;
1564         }
1565
1566         p = &__tsb_phys_patch;
1567         while (p < &__tsb_phys_patch_end) {
1568                 unsigned long addr = p->addr;
1569
1570                 *(unsigned int *) addr = p->insn;
1571                 wmb();
1572                 __asm__ __volatile__("flush     %0"
1573                                      : /* no outputs */
1574                                      : "r" (addr));
1575
1576                 p++;
1577         }
1578 }
1579
1580 /* Don't mark as init, we give this to the Hypervisor.  */
1581 #ifndef CONFIG_DEBUG_PAGEALLOC
1582 #define NUM_KTSB_DESCR  2
1583 #else
1584 #define NUM_KTSB_DESCR  1
1585 #endif
1586 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1587 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1588
1589 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1590 {
1591         pa >>= KTSB_PHYS_SHIFT;
1592
1593         while (start < end) {
1594                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1595
1596                 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1597                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1598
1599                 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1600                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1601
1602                 start++;
1603         }
1604 }
1605
1606 static void ktsb_phys_patch(void)
1607 {
1608         extern unsigned int __swapper_tsb_phys_patch;
1609         extern unsigned int __swapper_tsb_phys_patch_end;
1610         unsigned long ktsb_pa;
1611
1612         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1613         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1614                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1615 #ifndef CONFIG_DEBUG_PAGEALLOC
1616         {
1617         extern unsigned int __swapper_4m_tsb_phys_patch;
1618         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1619         ktsb_pa = (kern_base +
1620                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1621         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1622                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1623         }
1624 #endif
1625 }
1626
1627 static void __init sun4v_ktsb_init(void)
1628 {
1629         unsigned long ktsb_pa;
1630
1631         /* First KTSB for PAGE_SIZE mappings.  */
1632         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1633
1634         switch (PAGE_SIZE) {
1635         case 8 * 1024:
1636         default:
1637                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1638                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1639                 break;
1640
1641         case 64 * 1024:
1642                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1643                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1644                 break;
1645
1646         case 512 * 1024:
1647                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1648                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1649                 break;
1650
1651         case 4 * 1024 * 1024:
1652                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1653                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1654                 break;
1655         }
1656
1657         ktsb_descr[0].assoc = 1;
1658         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1659         ktsb_descr[0].ctx_idx = 0;
1660         ktsb_descr[0].tsb_base = ktsb_pa;
1661         ktsb_descr[0].resv = 0;
1662
1663 #ifndef CONFIG_DEBUG_PAGEALLOC
1664         /* Second KTSB for 4MB/256MB mappings.  */
1665         ktsb_pa = (kern_base +
1666                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1667
1668         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1669         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1670                                    HV_PGSZ_MASK_256MB);
1671         ktsb_descr[1].assoc = 1;
1672         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1673         ktsb_descr[1].ctx_idx = 0;
1674         ktsb_descr[1].tsb_base = ktsb_pa;
1675         ktsb_descr[1].resv = 0;
1676 #endif
1677 }
1678
1679 void __cpuinit sun4v_ktsb_register(void)
1680 {
1681         unsigned long pa, ret;
1682
1683         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1684
1685         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1686         if (ret != 0) {
1687                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1688                             "errors with %lx\n", pa, ret);
1689                 prom_halt();
1690         }
1691 }
1692
1693 /* paging_init() sets up the page tables */
1694
1695 static unsigned long last_valid_pfn;
1696 pgd_t swapper_pg_dir[2048];
1697
1698 static void sun4u_pgprot_init(void);
1699 static void sun4v_pgprot_init(void);
1700
1701 void __init paging_init(void)
1702 {
1703         unsigned long end_pfn, shift, phys_base;
1704         unsigned long real_end, i;
1705
1706         /* These build time checkes make sure that the dcache_dirty_cpu()
1707          * page->flags usage will work.
1708          *
1709          * When a page gets marked as dcache-dirty, we store the
1710          * cpu number starting at bit 32 in the page->flags.  Also,
1711          * functions like clear_dcache_dirty_cpu use the cpu mask
1712          * in 13-bit signed-immediate instruction fields.
1713          */
1714
1715         /*
1716          * Page flags must not reach into upper 32 bits that are used
1717          * for the cpu number
1718          */
1719         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1720
1721         /*
1722          * The bit fields placed in the high range must not reach below
1723          * the 32 bit boundary. Otherwise we cannot place the cpu field
1724          * at the 32 bit boundary.
1725          */
1726         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1727                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1728
1729         BUILD_BUG_ON(NR_CPUS > 4096);
1730
1731         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1732         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1733
1734         /* Invalidate both kernel TSBs.  */
1735         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1736 #ifndef CONFIG_DEBUG_PAGEALLOC
1737         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1738 #endif
1739
1740         if (tlb_type == hypervisor)
1741                 sun4v_pgprot_init();
1742         else
1743                 sun4u_pgprot_init();
1744
1745         if (tlb_type == cheetah_plus ||
1746             tlb_type == hypervisor) {
1747                 tsb_phys_patch();
1748                 ktsb_phys_patch();
1749         }
1750
1751         if (tlb_type == hypervisor) {
1752                 sun4v_patch_tlb_handlers();
1753                 sun4v_ktsb_init();
1754         }
1755
1756         /* Find available physical memory...
1757          *
1758          * Read it twice in order to work around a bug in openfirmware.
1759          * The call to grab this table itself can cause openfirmware to
1760          * allocate memory, which in turn can take away some space from
1761          * the list of available memory.  Reading it twice makes sure
1762          * we really do get the final value.
1763          */
1764         read_obp_translations();
1765         read_obp_memory("reg", &pall[0], &pall_ents);
1766         read_obp_memory("available", &pavail[0], &pavail_ents);
1767         read_obp_memory("available", &pavail[0], &pavail_ents);
1768
1769         phys_base = 0xffffffffffffffffUL;
1770         for (i = 0; i < pavail_ents; i++) {
1771                 phys_base = min(phys_base, pavail[i].phys_addr);
1772                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1773         }
1774
1775         memblock_reserve(kern_base, kern_size);
1776
1777         find_ramdisk(phys_base);
1778
1779         memblock_enforce_memory_limit(cmdline_memory_size);
1780
1781         memblock_allow_resize();
1782         memblock_dump_all();
1783
1784         set_bit(0, mmu_context_bmap);
1785
1786         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1787
1788         real_end = (unsigned long)_end;
1789         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1790         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1791                num_kernel_image_mappings);
1792
1793         /* Set kernel pgd to upper alias so physical page computations
1794          * work.
1795          */
1796         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1797         
1798         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1799
1800         /* Now can init the kernel/bad page tables. */
1801         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1802                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1803         
1804         inherit_prom_mappings();
1805         
1806         init_kpte_bitmap();
1807
1808         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1809         setup_tba();
1810
1811         __flush_tlb_all();
1812
1813         if (tlb_type == hypervisor)
1814                 sun4v_ktsb_register();
1815
1816         prom_build_devicetree();
1817         of_populate_present_mask();
1818 #ifndef CONFIG_SMP
1819         of_fill_in_cpu_data();
1820 #endif
1821
1822         if (tlb_type == hypervisor) {
1823                 sun4v_mdesc_init();
1824                 mdesc_populate_present_mask(cpu_all_mask);
1825 #ifndef CONFIG_SMP
1826                 mdesc_fill_in_cpu_data(cpu_all_mask);
1827 #endif
1828         }
1829
1830         /* Once the OF device tree and MDESC have been setup, we know
1831          * the list of possible cpus.  Therefore we can allocate the
1832          * IRQ stacks.
1833          */
1834         for_each_possible_cpu(i) {
1835                 /* XXX Use node local allocations... XXX */
1836                 softirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1837                 hardirq_stack[i] = __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE));
1838         }
1839
1840         /* Setup bootmem... */
1841         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1842
1843 #ifndef CONFIG_NEED_MULTIPLE_NODES
1844         max_mapnr = last_valid_pfn;
1845 #endif
1846         kernel_physical_mapping_init();
1847
1848         {
1849                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1850
1851                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1852
1853                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1854
1855                 free_area_init_nodes(max_zone_pfns);
1856         }
1857
1858         printk("Booting Linux...\n");
1859 }
1860
1861 int __devinit page_in_phys_avail(unsigned long paddr)
1862 {
1863         int i;
1864
1865         paddr &= PAGE_MASK;
1866
1867         for (i = 0; i < pavail_ents; i++) {
1868                 unsigned long start, end;
1869
1870                 start = pavail[i].phys_addr;
1871                 end = start + pavail[i].reg_size;
1872
1873                 if (paddr >= start && paddr < end)
1874                         return 1;
1875         }
1876         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1877                 return 1;
1878 #ifdef CONFIG_BLK_DEV_INITRD
1879         if (paddr >= __pa(initrd_start) &&
1880             paddr < __pa(PAGE_ALIGN(initrd_end)))
1881                 return 1;
1882 #endif
1883
1884         return 0;
1885 }
1886
1887 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1888 static int pavail_rescan_ents __initdata;
1889
1890 /* Certain OBP calls, such as fetching "available" properties, can
1891  * claim physical memory.  So, along with initializing the valid
1892  * address bitmap, what we do here is refetch the physical available
1893  * memory list again, and make sure it provides at least as much
1894  * memory as 'pavail' does.
1895  */
1896 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1897 {
1898         int i;
1899
1900         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1901
1902         for (i = 0; i < pavail_ents; i++) {
1903                 unsigned long old_start, old_end;
1904
1905                 old_start = pavail[i].phys_addr;
1906                 old_end = old_start + pavail[i].reg_size;
1907                 while (old_start < old_end) {
1908                         int n;
1909
1910                         for (n = 0; n < pavail_rescan_ents; n++) {
1911                                 unsigned long new_start, new_end;
1912
1913                                 new_start = pavail_rescan[n].phys_addr;
1914                                 new_end = new_start +
1915                                         pavail_rescan[n].reg_size;
1916
1917                                 if (new_start <= old_start &&
1918                                     new_end >= (old_start + PAGE_SIZE)) {
1919                                         set_bit(old_start >> 22, bitmap);
1920                                         goto do_next_page;
1921                                 }
1922                         }
1923
1924                         prom_printf("mem_init: Lost memory in pavail\n");
1925                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1926                                     pavail[i].phys_addr,
1927                                     pavail[i].reg_size);
1928                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1929                                     pavail_rescan[i].phys_addr,
1930                                     pavail_rescan[i].reg_size);
1931                         prom_printf("mem_init: Cannot continue, aborting.\n");
1932                         prom_halt();
1933
1934                 do_next_page:
1935                         old_start += PAGE_SIZE;
1936                 }
1937         }
1938 }
1939
1940 static void __init patch_tlb_miss_handler_bitmap(void)
1941 {
1942         extern unsigned int valid_addr_bitmap_insn[];
1943         extern unsigned int valid_addr_bitmap_patch[];
1944
1945         valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1946         mb();
1947         valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1948         flushi(&valid_addr_bitmap_insn[0]);
1949 }
1950
1951 void __init mem_init(void)
1952 {
1953         unsigned long codepages, datapages, initpages;
1954         unsigned long addr, last;
1955
1956         addr = PAGE_OFFSET + kern_base;
1957         last = PAGE_ALIGN(kern_size) + addr;
1958         while (addr < last) {
1959                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1960                 addr += PAGE_SIZE;
1961         }
1962
1963         setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1964         patch_tlb_miss_handler_bitmap();
1965
1966         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1967
1968 #ifdef CONFIG_NEED_MULTIPLE_NODES
1969         {
1970                 int i;
1971                 for_each_online_node(i) {
1972                         if (NODE_DATA(i)->node_spanned_pages != 0) {
1973                                 totalram_pages +=
1974                                         free_all_bootmem_node(NODE_DATA(i));
1975                         }
1976                 }
1977         }
1978 #else
1979         totalram_pages = free_all_bootmem();
1980 #endif
1981
1982         /* We subtract one to account for the mem_map_zero page
1983          * allocated below.
1984          */
1985         totalram_pages -= 1;
1986         num_physpages = totalram_pages;
1987
1988         /*
1989          * Set up the zero page, mark it reserved, so that page count
1990          * is not manipulated when freeing the page from user ptes.
1991          */
1992         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1993         if (mem_map_zero == NULL) {
1994                 prom_printf("paging_init: Cannot alloc zero page.\n");
1995                 prom_halt();
1996         }
1997         SetPageReserved(mem_map_zero);
1998
1999         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2000         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2001         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2002         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2003         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2004         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2005
2006         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2007                nr_free_pages() << (PAGE_SHIFT-10),
2008                codepages << (PAGE_SHIFT-10),
2009                datapages << (PAGE_SHIFT-10), 
2010                initpages << (PAGE_SHIFT-10), 
2011                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2012
2013         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2014                 cheetah_ecache_flush_init();
2015 }
2016
2017 void free_initmem(void)
2018 {
2019         unsigned long addr, initend;
2020         int do_free = 1;
2021
2022         /* If the physical memory maps were trimmed by kernel command
2023          * line options, don't even try freeing this initmem stuff up.
2024          * The kernel image could have been in the trimmed out region
2025          * and if so the freeing below will free invalid page structs.
2026          */
2027         if (cmdline_memory_size)
2028                 do_free = 0;
2029
2030         /*
2031          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2032          */
2033         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2034         initend = (unsigned long)(__init_end) & PAGE_MASK;
2035         for (; addr < initend; addr += PAGE_SIZE) {
2036                 unsigned long page;
2037                 struct page *p;
2038
2039                 page = (addr +
2040                         ((unsigned long) __va(kern_base)) -
2041                         ((unsigned long) KERNBASE));
2042                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2043
2044                 if (do_free) {
2045                         p = virt_to_page(page);
2046
2047                         ClearPageReserved(p);
2048                         init_page_count(p);
2049                         __free_page(p);
2050                         num_physpages++;
2051                         totalram_pages++;
2052                 }
2053         }
2054 }
2055
2056 #ifdef CONFIG_BLK_DEV_INITRD
2057 void free_initrd_mem(unsigned long start, unsigned long end)
2058 {
2059         if (start < end)
2060                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2061         for (; start < end; start += PAGE_SIZE) {
2062                 struct page *p = virt_to_page(start);
2063
2064                 ClearPageReserved(p);
2065                 init_page_count(p);
2066                 __free_page(p);
2067                 num_physpages++;
2068                 totalram_pages++;
2069         }
2070 }
2071 #endif
2072
2073 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2074 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2075 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2076 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2077 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2078 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2079
2080 pgprot_t PAGE_KERNEL __read_mostly;
2081 EXPORT_SYMBOL(PAGE_KERNEL);
2082
2083 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2084 pgprot_t PAGE_COPY __read_mostly;
2085
2086 pgprot_t PAGE_SHARED __read_mostly;
2087 EXPORT_SYMBOL(PAGE_SHARED);
2088
2089 unsigned long pg_iobits __read_mostly;
2090
2091 unsigned long _PAGE_IE __read_mostly;
2092 EXPORT_SYMBOL(_PAGE_IE);
2093
2094 unsigned long _PAGE_E __read_mostly;
2095 EXPORT_SYMBOL(_PAGE_E);
2096
2097 unsigned long _PAGE_CACHE __read_mostly;
2098 EXPORT_SYMBOL(_PAGE_CACHE);
2099
2100 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2101 unsigned long vmemmap_table[VMEMMAP_SIZE];
2102
2103 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2104 {
2105         unsigned long vstart = (unsigned long) start;
2106         unsigned long vend = (unsigned long) (start + nr);
2107         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2108         unsigned long phys_end = (vend - VMEMMAP_BASE);
2109         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2110         unsigned long end = VMEMMAP_ALIGN(phys_end);
2111         unsigned long pte_base;
2112
2113         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2114                     _PAGE_CP_4U | _PAGE_CV_4U |
2115                     _PAGE_P_4U | _PAGE_W_4U);
2116         if (tlb_type == hypervisor)
2117                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2118                             _PAGE_CP_4V | _PAGE_CV_4V |
2119                             _PAGE_P_4V | _PAGE_W_4V);
2120
2121         for (; addr < end; addr += VMEMMAP_CHUNK) {
2122                 unsigned long *vmem_pp =
2123                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2124                 void *block;
2125
2126                 if (!(*vmem_pp & _PAGE_VALID)) {
2127                         block = vmemmap_alloc_block(1UL << 22, node);
2128                         if (!block)
2129                                 return -ENOMEM;
2130
2131                         *vmem_pp = pte_base | __pa(block);
2132
2133                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2134                                "node=%d entry=%lu/%lu\n", start, block, nr,
2135                                node,
2136                                addr >> VMEMMAP_CHUNK_SHIFT,
2137                                VMEMMAP_SIZE);
2138                 }
2139         }
2140         return 0;
2141 }
2142 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2143
2144 static void prot_init_common(unsigned long page_none,
2145                              unsigned long page_shared,
2146                              unsigned long page_copy,
2147                              unsigned long page_readonly,
2148                              unsigned long page_exec_bit)
2149 {
2150         PAGE_COPY = __pgprot(page_copy);
2151         PAGE_SHARED = __pgprot(page_shared);
2152
2153         protection_map[0x0] = __pgprot(page_none);
2154         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2155         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2156         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2157         protection_map[0x4] = __pgprot(page_readonly);
2158         protection_map[0x5] = __pgprot(page_readonly);
2159         protection_map[0x6] = __pgprot(page_copy);
2160         protection_map[0x7] = __pgprot(page_copy);
2161         protection_map[0x8] = __pgprot(page_none);
2162         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2163         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2164         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2165         protection_map[0xc] = __pgprot(page_readonly);
2166         protection_map[0xd] = __pgprot(page_readonly);
2167         protection_map[0xe] = __pgprot(page_shared);
2168         protection_map[0xf] = __pgprot(page_shared);
2169 }
2170
2171 static void __init sun4u_pgprot_init(void)
2172 {
2173         unsigned long page_none, page_shared, page_copy, page_readonly;
2174         unsigned long page_exec_bit;
2175
2176         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2177                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2178                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2179                                 _PAGE_EXEC_4U);
2180         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2181                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2182                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2183                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2184
2185         _PAGE_IE = _PAGE_IE_4U;
2186         _PAGE_E = _PAGE_E_4U;
2187         _PAGE_CACHE = _PAGE_CACHE_4U;
2188
2189         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2190                      __ACCESS_BITS_4U | _PAGE_E_4U);
2191
2192 #ifdef CONFIG_DEBUG_PAGEALLOC
2193         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2194                 0xfffff80000000000UL;
2195 #else
2196         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2197                 0xfffff80000000000UL;
2198 #endif
2199         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2200                                    _PAGE_P_4U | _PAGE_W_4U);
2201
2202         /* XXX Should use 256MB on Panther. XXX */
2203         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2204
2205         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2206         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2207                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2208                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2209
2210
2211         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2212         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2213                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2214         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2215                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2216         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2217                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2218
2219         page_exec_bit = _PAGE_EXEC_4U;
2220
2221         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2222                          page_exec_bit);
2223 }
2224
2225 static void __init sun4v_pgprot_init(void)
2226 {
2227         unsigned long page_none, page_shared, page_copy, page_readonly;
2228         unsigned long page_exec_bit;
2229
2230         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2231                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2232                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2233                                 _PAGE_EXEC_4V);
2234         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2235
2236         _PAGE_IE = _PAGE_IE_4V;
2237         _PAGE_E = _PAGE_E_4V;
2238         _PAGE_CACHE = _PAGE_CACHE_4V;
2239
2240 #ifdef CONFIG_DEBUG_PAGEALLOC
2241         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2242                 0xfffff80000000000UL;
2243 #else
2244         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2245                 0xfffff80000000000UL;
2246 #endif
2247         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2248                                    _PAGE_P_4V | _PAGE_W_4V);
2249
2250 #ifdef CONFIG_DEBUG_PAGEALLOC
2251         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2252                 0xfffff80000000000UL;
2253 #else
2254         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2255                 0xfffff80000000000UL;
2256 #endif
2257         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2258                                    _PAGE_P_4V | _PAGE_W_4V);
2259
2260         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2261                      __ACCESS_BITS_4V | _PAGE_E_4V);
2262
2263         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2264         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2265                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2266                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2267                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2268
2269         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2270         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2271                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2272         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2273                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2274         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2275                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2276
2277         page_exec_bit = _PAGE_EXEC_4V;
2278
2279         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2280                          page_exec_bit);
2281 }
2282
2283 unsigned long pte_sz_bits(unsigned long sz)
2284 {
2285         if (tlb_type == hypervisor) {
2286                 switch (sz) {
2287                 case 8 * 1024:
2288                 default:
2289                         return _PAGE_SZ8K_4V;
2290                 case 64 * 1024:
2291                         return _PAGE_SZ64K_4V;
2292                 case 512 * 1024:
2293                         return _PAGE_SZ512K_4V;
2294                 case 4 * 1024 * 1024:
2295                         return _PAGE_SZ4MB_4V;
2296                 }
2297         } else {
2298                 switch (sz) {
2299                 case 8 * 1024:
2300                 default:
2301                         return _PAGE_SZ8K_4U;
2302                 case 64 * 1024:
2303                         return _PAGE_SZ64K_4U;
2304                 case 512 * 1024:
2305                         return _PAGE_SZ512K_4U;
2306                 case 4 * 1024 * 1024:
2307                         return _PAGE_SZ4MB_4U;
2308                 }
2309         }
2310 }
2311
2312 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2313 {
2314         pte_t pte;
2315
2316         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2317         pte_val(pte) |= (((unsigned long)space) << 32);
2318         pte_val(pte) |= pte_sz_bits(page_size);
2319
2320         return pte;
2321 }
2322
2323 static unsigned long kern_large_tte(unsigned long paddr)
2324 {
2325         unsigned long val;
2326
2327         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2328                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2329                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2330         if (tlb_type == hypervisor)
2331                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2332                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2333                        _PAGE_EXEC_4V | _PAGE_W_4V);
2334
2335         return val | paddr;
2336 }
2337
2338 /* If not locked, zap it. */
2339 void __flush_tlb_all(void)
2340 {
2341         unsigned long pstate;
2342         int i;
2343
2344         __asm__ __volatile__("flushw\n\t"
2345                              "rdpr      %%pstate, %0\n\t"
2346                              "wrpr      %0, %1, %%pstate"
2347                              : "=r" (pstate)
2348                              : "i" (PSTATE_IE));
2349         if (tlb_type == hypervisor) {
2350                 sun4v_mmu_demap_all();
2351         } else if (tlb_type == spitfire) {
2352                 for (i = 0; i < 64; i++) {
2353                         /* Spitfire Errata #32 workaround */
2354                         /* NOTE: Always runs on spitfire, so no
2355                          *       cheetah+ page size encodings.
2356                          */
2357                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2358                                              "flush     %%g6"
2359                                              : /* No outputs */
2360                                              : "r" (0),
2361                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2362
2363                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2364                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2365                                                      "membar #Sync"
2366                                                      : /* no outputs */
2367                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2368                                 spitfire_put_dtlb_data(i, 0x0UL);
2369                         }
2370
2371                         /* Spitfire Errata #32 workaround */
2372                         /* NOTE: Always runs on spitfire, so no
2373                          *       cheetah+ page size encodings.
2374                          */
2375                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2376                                              "flush     %%g6"
2377                                              : /* No outputs */
2378                                              : "r" (0),
2379                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2380
2381                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2382                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2383                                                      "membar #Sync"
2384                                                      : /* no outputs */
2385                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2386                                 spitfire_put_itlb_data(i, 0x0UL);
2387                         }
2388                 }
2389         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2390                 cheetah_flush_dtlb_all();
2391                 cheetah_flush_itlb_all();
2392         }
2393         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2394                              : : "r" (pstate));
2395 }