a6733612d64a66fb5f083699254d792da867bacf
[linux-flexiantxendom0-3.2.10.git] / drivers / net / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5   Copyright (C) 2007-2009  STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/interrupt.h>
35 #include <linux/etherdevice.h>
36 #include <linux/platform_device.h>
37 #include <linux/ip.h>
38 #include <linux/tcp.h>
39 #include <linux/skbuff.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_ether.h>
42 #include <linux/crc32.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/if_vlan.h>
46 #include <linux/dma-mapping.h>
47 #include "stmmac.h"
48
49 #define STMMAC_RESOURCE_NAME    "stmmaceth"
50 #define PHY_RESOURCE_NAME       "stmmacphy"
51
52 #undef STMMAC_DEBUG
53 /*#define STMMAC_DEBUG*/
54 #ifdef STMMAC_DEBUG
55 #define DBG(nlevel, klevel, fmt, args...) \
56                 ((void)(netif_msg_##nlevel(priv) && \
57                 printk(KERN_##klevel fmt, ## args)))
58 #else
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
60 #endif
61
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
66 #else
67 #define RX_DBG(fmt, args...)  do { } while (0)
68 #endif
69
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_TX_DEBUG
73 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
74 #else
75 #define TX_DBG(fmt, args...)  do { } while (0)
76 #endif
77
78 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN       9000
80
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog = TX_TIMEO;
84 module_param(watchdog, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
86
87 static int debug = -1;          /* -1: default, 0: no output, 16:  all */
88 module_param(debug, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
90
91 static int phyaddr = -1;
92 module_param(phyaddr, int, S_IRUGO);
93 MODULE_PARM_DESC(phyaddr, "Physical device address");
94
95 #define DMA_TX_SIZE 256
96 static int dma_txsize = DMA_TX_SIZE;
97 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
99
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize = DMA_RX_SIZE;
102 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
104
105 static int flow_ctrl = FLOW_OFF;
106 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
108
109 static int pause = PAUSE_TIME;
110 module_param(pause, int, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
112
113 #define TC_DEFAULT 64
114 static int tc = TC_DEFAULT;
115 module_param(tc, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(tc, "DMA threshold control value");
117
118 #define RX_NO_COALESCE  1       /* Always interrupt on completion */
119 #define TX_NO_COALESCE  -1      /* No moderation by default */
120
121 /* Pay attention to tune this parameter; take care of both
122  * hardware capability and network stabitily/performance impact.
123  * Many tests showed that ~4ms latency seems to be good enough. */
124 #ifdef CONFIG_STMMAC_TIMER
125 #define DEFAULT_PERIODIC_RATE   256
126 static int tmrate = DEFAULT_PERIODIC_RATE;
127 module_param(tmrate, int, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
129 #endif
130
131 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
132 static int buf_sz = DMA_BUFFER_SIZE;
133 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
134 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
135
136 /* In case of Giga ETH, we can enable/disable the COE for the
137  * transmit HW checksum computation.
138  * Note that, if tx csum is off in HW, SG will be still supported. */
139 static int tx_coe = HW_CSUM;
140 module_param(tx_coe, int, S_IRUGO | S_IWUSR);
141 MODULE_PARM_DESC(tx_coe, "GMAC COE type 2 [on/off]");
142
143 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
144                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
145                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
146
147 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
148 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
149
150 /**
151  * stmmac_verify_args - verify the driver parameters.
152  * Description: it verifies if some wrong parameter is passed to the driver.
153  * Note that wrong parameters are replaced with the default values.
154  */
155 static void stmmac_verify_args(void)
156 {
157         if (unlikely(watchdog < 0))
158                 watchdog = TX_TIMEO;
159         if (unlikely(dma_rxsize < 0))
160                 dma_rxsize = DMA_RX_SIZE;
161         if (unlikely(dma_txsize < 0))
162                 dma_txsize = DMA_TX_SIZE;
163         if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
164                 buf_sz = DMA_BUFFER_SIZE;
165         if (unlikely(flow_ctrl > 1))
166                 flow_ctrl = FLOW_AUTO;
167         else if (likely(flow_ctrl < 0))
168                 flow_ctrl = FLOW_OFF;
169         if (unlikely((pause < 0) || (pause > 0xffff)))
170                 pause = PAUSE_TIME;
171
172         return;
173 }
174
175 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
176 static void print_pkt(unsigned char *buf, int len)
177 {
178         int j;
179         pr_info("len = %d byte, buf addr: 0x%p", len, buf);
180         for (j = 0; j < len; j++) {
181                 if ((j % 16) == 0)
182                         pr_info("\n %03x:", j);
183                 pr_info(" %02x", buf[j]);
184         }
185         pr_info("\n");
186         return;
187 }
188 #endif
189
190 /* minimum number of free TX descriptors required to wake up TX process */
191 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
192
193 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
194 {
195         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
196 }
197
198 /**
199  * stmmac_adjust_link
200  * @dev: net device structure
201  * Description: it adjusts the link parameters.
202  */
203 static void stmmac_adjust_link(struct net_device *dev)
204 {
205         struct stmmac_priv *priv = netdev_priv(dev);
206         struct phy_device *phydev = priv->phydev;
207         unsigned long ioaddr = dev->base_addr;
208         unsigned long flags;
209         int new_state = 0;
210         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
211
212         if (phydev == NULL)
213                 return;
214
215         DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
216             phydev->addr, phydev->link);
217
218         spin_lock_irqsave(&priv->lock, flags);
219         if (phydev->link) {
220                 u32 ctrl = readl(ioaddr + MAC_CTRL_REG);
221
222                 /* Now we make sure that we can be in full duplex mode.
223                  * If not, we operate in half-duplex mode. */
224                 if (phydev->duplex != priv->oldduplex) {
225                         new_state = 1;
226                         if (!(phydev->duplex))
227                                 ctrl &= ~priv->hw->link.duplex;
228                         else
229                                 ctrl |= priv->hw->link.duplex;
230                         priv->oldduplex = phydev->duplex;
231                 }
232                 /* Flow Control operation */
233                 if (phydev->pause)
234                         priv->hw->mac->flow_ctrl(ioaddr, phydev->duplex,
235                                                  fc, pause_time);
236
237                 if (phydev->speed != priv->speed) {
238                         new_state = 1;
239                         switch (phydev->speed) {
240                         case 1000:
241                                 if (likely(priv->is_gmac))
242                                         ctrl &= ~priv->hw->link.port;
243                                 break;
244                         case 100:
245                         case 10:
246                                 if (priv->is_gmac) {
247                                         ctrl |= priv->hw->link.port;
248                                         if (phydev->speed == SPEED_100) {
249                                                 ctrl |= priv->hw->link.speed;
250                                         } else {
251                                                 ctrl &= ~(priv->hw->link.speed);
252                                         }
253                                 } else {
254                                         ctrl &= ~priv->hw->link.port;
255                                 }
256                                 if (likely(priv->fix_mac_speed))
257                                         priv->fix_mac_speed(priv->bsp_priv,
258                                                             phydev->speed);
259                                 break;
260                         default:
261                                 if (netif_msg_link(priv))
262                                         pr_warning("%s: Speed (%d) is not 10"
263                                        " or 100!\n", dev->name, phydev->speed);
264                                 break;
265                         }
266
267                         priv->speed = phydev->speed;
268                 }
269
270                 writel(ctrl, ioaddr + MAC_CTRL_REG);
271
272                 if (!priv->oldlink) {
273                         new_state = 1;
274                         priv->oldlink = 1;
275                 }
276         } else if (priv->oldlink) {
277                 new_state = 1;
278                 priv->oldlink = 0;
279                 priv->speed = 0;
280                 priv->oldduplex = -1;
281         }
282
283         if (new_state && netif_msg_link(priv))
284                 phy_print_status(phydev);
285
286         spin_unlock_irqrestore(&priv->lock, flags);
287
288         DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
289 }
290
291 /**
292  * stmmac_init_phy - PHY initialization
293  * @dev: net device structure
294  * Description: it initializes the driver's PHY state, and attaches the PHY
295  * to the mac driver.
296  *  Return value:
297  *  0 on success
298  */
299 static int stmmac_init_phy(struct net_device *dev)
300 {
301         struct stmmac_priv *priv = netdev_priv(dev);
302         struct phy_device *phydev;
303         char phy_id[MII_BUS_ID_SIZE + 3];
304         char bus_id[MII_BUS_ID_SIZE];
305
306         priv->oldlink = 0;
307         priv->speed = 0;
308         priv->oldduplex = -1;
309
310         if (priv->phy_addr == -1) {
311                 /* We don't have a PHY, so do nothing */
312                 return 0;
313         }
314
315         snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->bus_id);
316         snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
317                  priv->phy_addr);
318         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);
319
320         phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
321                         priv->phy_interface);
322
323         if (IS_ERR(phydev)) {
324                 pr_err("%s: Could not attach to PHY\n", dev->name);
325                 return PTR_ERR(phydev);
326         }
327
328         /*
329          * Broken HW is sometimes missing the pull-up resistor on the
330          * MDIO line, which results in reads to non-existent devices returning
331          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
332          * device as well.
333          * Note: phydev->phy_id is the result of reading the UID PHY registers.
334          */
335         if (phydev->phy_id == 0) {
336                 phy_disconnect(phydev);
337                 return -ENODEV;
338         }
339         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
340                " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
341
342         priv->phydev = phydev;
343
344         return 0;
345 }
346
347 static inline void stmmac_mac_enable_rx(unsigned long ioaddr)
348 {
349         u32 value = readl(ioaddr + MAC_CTRL_REG);
350         value |= MAC_RNABLE_RX;
351         /* Set the RE (receive enable bit into the MAC CTRL register).  */
352         writel(value, ioaddr + MAC_CTRL_REG);
353 }
354
355 static inline void stmmac_mac_enable_tx(unsigned long ioaddr)
356 {
357         u32 value = readl(ioaddr + MAC_CTRL_REG);
358         value |= MAC_ENABLE_TX;
359         /* Set the TE (transmit enable bit into the MAC CTRL register).  */
360         writel(value, ioaddr + MAC_CTRL_REG);
361 }
362
363 static inline void stmmac_mac_disable_rx(unsigned long ioaddr)
364 {
365         u32 value = readl(ioaddr + MAC_CTRL_REG);
366         value &= ~MAC_RNABLE_RX;
367         writel(value, ioaddr + MAC_CTRL_REG);
368 }
369
370 static inline void stmmac_mac_disable_tx(unsigned long ioaddr)
371 {
372         u32 value = readl(ioaddr + MAC_CTRL_REG);
373         value &= ~MAC_ENABLE_TX;
374         writel(value, ioaddr + MAC_CTRL_REG);
375 }
376
377 /**
378  * display_ring
379  * @p: pointer to the ring.
380  * @size: size of the ring.
381  * Description: display all the descriptors within the ring.
382  */
383 static void display_ring(struct dma_desc *p, int size)
384 {
385         struct tmp_s {
386                 u64 a;
387                 unsigned int b;
388                 unsigned int c;
389         };
390         int i;
391         for (i = 0; i < size; i++) {
392                 struct tmp_s *x = (struct tmp_s *)(p + i);
393                 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
394                        i, (unsigned int)virt_to_phys(&p[i]),
395                        (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
396                        x->b, x->c);
397                 pr_info("\n");
398         }
399 }
400
401 /**
402  * init_dma_desc_rings - init the RX/TX descriptor rings
403  * @dev: net device structure
404  * Description:  this function initializes the DMA RX/TX descriptors
405  * and allocates the socket buffers.
406  */
407 static void init_dma_desc_rings(struct net_device *dev)
408 {
409         int i;
410         struct stmmac_priv *priv = netdev_priv(dev);
411         struct sk_buff *skb;
412         unsigned int txsize = priv->dma_tx_size;
413         unsigned int rxsize = priv->dma_rx_size;
414         unsigned int bfsize = priv->dma_buf_sz;
415         int buff2_needed = 0, dis_ic = 0;
416
417         /* Set the Buffer size according to the MTU;
418          * indeed, in case of jumbo we need to bump-up the buffer sizes.
419          */
420         if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
421                 bfsize = BUF_SIZE_16KiB;
422         else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
423                 bfsize = BUF_SIZE_8KiB;
424         else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
425                 bfsize = BUF_SIZE_4KiB;
426         else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
427                 bfsize = BUF_SIZE_2KiB;
428         else
429                 bfsize = DMA_BUFFER_SIZE;
430
431 #ifdef CONFIG_STMMAC_TIMER
432         /* Disable interrupts on completion for the reception if timer is on */
433         if (likely(priv->tm->enable))
434                 dis_ic = 1;
435 #endif
436         /* If the MTU exceeds 8k so use the second buffer in the chain */
437         if (bfsize >= BUF_SIZE_8KiB)
438                 buff2_needed = 1;
439
440         DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
441             txsize, rxsize, bfsize);
442
443         priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
444         priv->rx_skbuff =
445             kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
446         priv->dma_rx =
447             (struct dma_desc *)dma_alloc_coherent(priv->device,
448                                                   rxsize *
449                                                   sizeof(struct dma_desc),
450                                                   &priv->dma_rx_phy,
451                                                   GFP_KERNEL);
452         priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
453                                        GFP_KERNEL);
454         priv->dma_tx =
455             (struct dma_desc *)dma_alloc_coherent(priv->device,
456                                                   txsize *
457                                                   sizeof(struct dma_desc),
458                                                   &priv->dma_tx_phy,
459                                                   GFP_KERNEL);
460
461         if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
462                 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
463                 return;
464         }
465
466         DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
467             "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
468             dev->name, priv->dma_rx, priv->dma_tx,
469             (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
470
471         /* RX INITIALIZATION */
472         DBG(probe, INFO, "stmmac: SKB addresses:\n"
473                          "skb\t\tskb data\tdma data\n");
474
475         for (i = 0; i < rxsize; i++) {
476                 struct dma_desc *p = priv->dma_rx + i;
477
478                 skb = netdev_alloc_skb_ip_align(dev, bfsize);
479                 if (unlikely(skb == NULL)) {
480                         pr_err("%s: Rx init fails; skb is NULL\n", __func__);
481                         break;
482                 }
483                 priv->rx_skbuff[i] = skb;
484                 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
485                                                 bfsize, DMA_FROM_DEVICE);
486
487                 p->des2 = priv->rx_skbuff_dma[i];
488                 if (unlikely(buff2_needed))
489                         p->des3 = p->des2 + BUF_SIZE_8KiB;
490                 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
491                         priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
492         }
493         priv->cur_rx = 0;
494         priv->dirty_rx = (unsigned int)(i - rxsize);
495         priv->dma_buf_sz = bfsize;
496         buf_sz = bfsize;
497
498         /* TX INITIALIZATION */
499         for (i = 0; i < txsize; i++) {
500                 priv->tx_skbuff[i] = NULL;
501                 priv->dma_tx[i].des2 = 0;
502         }
503         priv->dirty_tx = 0;
504         priv->cur_tx = 0;
505
506         /* Clear the Rx/Tx descriptors */
507         priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
508         priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
509
510         if (netif_msg_hw(priv)) {
511                 pr_info("RX descriptor ring:\n");
512                 display_ring(priv->dma_rx, rxsize);
513                 pr_info("TX descriptor ring:\n");
514                 display_ring(priv->dma_tx, txsize);
515         }
516         return;
517 }
518
519 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
520 {
521         int i;
522
523         for (i = 0; i < priv->dma_rx_size; i++) {
524                 if (priv->rx_skbuff[i]) {
525                         dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
526                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
527                         dev_kfree_skb_any(priv->rx_skbuff[i]);
528                 }
529                 priv->rx_skbuff[i] = NULL;
530         }
531         return;
532 }
533
534 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
535 {
536         int i;
537
538         for (i = 0; i < priv->dma_tx_size; i++) {
539                 if (priv->tx_skbuff[i] != NULL) {
540                         struct dma_desc *p = priv->dma_tx + i;
541                         if (p->des2)
542                                 dma_unmap_single(priv->device, p->des2,
543                                                  priv->hw->desc->get_tx_len(p),
544                                                  DMA_TO_DEVICE);
545                         dev_kfree_skb_any(priv->tx_skbuff[i]);
546                         priv->tx_skbuff[i] = NULL;
547                 }
548         }
549         return;
550 }
551
552 static void free_dma_desc_resources(struct stmmac_priv *priv)
553 {
554         /* Release the DMA TX/RX socket buffers */
555         dma_free_rx_skbufs(priv);
556         dma_free_tx_skbufs(priv);
557
558         /* Free the region of consistent memory previously allocated for
559          * the DMA */
560         dma_free_coherent(priv->device,
561                           priv->dma_tx_size * sizeof(struct dma_desc),
562                           priv->dma_tx, priv->dma_tx_phy);
563         dma_free_coherent(priv->device,
564                           priv->dma_rx_size * sizeof(struct dma_desc),
565                           priv->dma_rx, priv->dma_rx_phy);
566         kfree(priv->rx_skbuff_dma);
567         kfree(priv->rx_skbuff);
568         kfree(priv->tx_skbuff);
569
570         return;
571 }
572
573 /**
574  *  stmmac_dma_operation_mode - HW DMA operation mode
575  *  @priv : pointer to the private device structure.
576  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
577  *  or Store-And-Forward capability. It also verifies the COE for the
578  *  transmission in case of Giga ETH.
579  */
580 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
581 {
582         if (!priv->is_gmac) {
583                 /* MAC 10/100 */
584                 priv->hw->dma->dma_mode(priv->dev->base_addr, tc, 0);
585                 priv->tx_coe = NO_HW_CSUM;
586         } else {
587                 if ((priv->dev->mtu <= ETH_DATA_LEN) && (tx_coe)) {
588                         priv->hw->dma->dma_mode(priv->dev->base_addr,
589                                                 SF_DMA_MODE, SF_DMA_MODE);
590                         tc = SF_DMA_MODE;
591                         priv->tx_coe = HW_CSUM;
592                 } else {
593                         /* Checksum computation is performed in software. */
594                         priv->hw->dma->dma_mode(priv->dev->base_addr, tc,
595                                                 SF_DMA_MODE);
596                         priv->tx_coe = NO_HW_CSUM;
597                 }
598         }
599         tx_coe = priv->tx_coe;
600
601         return;
602 }
603
604 /**
605  * stmmac_tx:
606  * @priv: private driver structure
607  * Description: it reclaims resources after transmission completes.
608  */
609 static void stmmac_tx(struct stmmac_priv *priv)
610 {
611         unsigned int txsize = priv->dma_tx_size;
612         unsigned long ioaddr = priv->dev->base_addr;
613
614         while (priv->dirty_tx != priv->cur_tx) {
615                 int last;
616                 unsigned int entry = priv->dirty_tx % txsize;
617                 struct sk_buff *skb = priv->tx_skbuff[entry];
618                 struct dma_desc *p = priv->dma_tx + entry;
619
620                 /* Check if the descriptor is owned by the DMA. */
621                 if (priv->hw->desc->get_tx_owner(p))
622                         break;
623
624                 /* Verify tx error by looking at the last segment */
625                 last = priv->hw->desc->get_tx_ls(p);
626                 if (likely(last)) {
627                         int tx_error =
628                                 priv->hw->desc->tx_status(&priv->dev->stats,
629                                                           &priv->xstats, p,
630                                                           ioaddr);
631                         if (likely(tx_error == 0)) {
632                                 priv->dev->stats.tx_packets++;
633                                 priv->xstats.tx_pkt_n++;
634                         } else
635                                 priv->dev->stats.tx_errors++;
636                 }
637                 TX_DBG("%s: curr %d, dirty %d\n", __func__,
638                         priv->cur_tx, priv->dirty_tx);
639
640                 if (likely(p->des2))
641                         dma_unmap_single(priv->device, p->des2,
642                                          priv->hw->desc->get_tx_len(p),
643                                          DMA_TO_DEVICE);
644                 if (unlikely(p->des3))
645                         p->des3 = 0;
646
647                 if (likely(skb != NULL)) {
648                         /*
649                          * If there's room in the queue (limit it to size)
650                          * we add this skb back into the pool,
651                          * if it's the right size.
652                          */
653                         if ((skb_queue_len(&priv->rx_recycle) <
654                                 priv->dma_rx_size) &&
655                                 skb_recycle_check(skb, priv->dma_buf_sz))
656                                 __skb_queue_head(&priv->rx_recycle, skb);
657                         else
658                                 dev_kfree_skb(skb);
659
660                         priv->tx_skbuff[entry] = NULL;
661                 }
662
663                 priv->hw->desc->release_tx_desc(p);
664
665                 entry = (++priv->dirty_tx) % txsize;
666         }
667         if (unlikely(netif_queue_stopped(priv->dev) &&
668                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
669                 netif_tx_lock(priv->dev);
670                 if (netif_queue_stopped(priv->dev) &&
671                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
672                         TX_DBG("%s: restart transmit\n", __func__);
673                         netif_wake_queue(priv->dev);
674                 }
675                 netif_tx_unlock(priv->dev);
676         }
677         return;
678 }
679
680 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
681 {
682 #ifdef CONFIG_STMMAC_TIMER
683         if (likely(priv->tm->enable))
684                 priv->tm->timer_start(tmrate);
685         else
686 #endif
687                 priv->hw->dma->enable_dma_irq(priv->dev->base_addr);
688 }
689
690 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
691 {
692 #ifdef CONFIG_STMMAC_TIMER
693         if (likely(priv->tm->enable))
694                 priv->tm->timer_stop();
695         else
696 #endif
697                 priv->hw->dma->disable_dma_irq(priv->dev->base_addr);
698 }
699
700 static int stmmac_has_work(struct stmmac_priv *priv)
701 {
702         unsigned int has_work = 0;
703         int rxret, tx_work = 0;
704
705         rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
706                 (priv->cur_rx % priv->dma_rx_size));
707
708         if (priv->dirty_tx != priv->cur_tx)
709                 tx_work = 1;
710
711         if (likely(!rxret || tx_work))
712                 has_work = 1;
713
714         return has_work;
715 }
716
717 static inline void _stmmac_schedule(struct stmmac_priv *priv)
718 {
719         if (likely(stmmac_has_work(priv))) {
720                 stmmac_disable_irq(priv);
721                 napi_schedule(&priv->napi);
722         }
723 }
724
725 #ifdef CONFIG_STMMAC_TIMER
726 void stmmac_schedule(struct net_device *dev)
727 {
728         struct stmmac_priv *priv = netdev_priv(dev);
729
730         priv->xstats.sched_timer_n++;
731
732         _stmmac_schedule(priv);
733
734         return;
735 }
736
737 static void stmmac_no_timer_started(unsigned int x)
738 {;
739 };
740
741 static void stmmac_no_timer_stopped(void)
742 {;
743 };
744 #endif
745
746 /**
747  * stmmac_tx_err:
748  * @priv: pointer to the private device structure
749  * Description: it cleans the descriptors and restarts the transmission
750  * in case of errors.
751  */
752 static void stmmac_tx_err(struct stmmac_priv *priv)
753 {
754         netif_stop_queue(priv->dev);
755
756         priv->hw->dma->stop_tx(priv->dev->base_addr);
757         dma_free_tx_skbufs(priv);
758         priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
759         priv->dirty_tx = 0;
760         priv->cur_tx = 0;
761         priv->hw->dma->start_tx(priv->dev->base_addr);
762
763         priv->dev->stats.tx_errors++;
764         netif_wake_queue(priv->dev);
765
766         return;
767 }
768
769
770 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
771 {
772         unsigned long ioaddr = priv->dev->base_addr;
773         int status;
774
775         status = priv->hw->dma->dma_interrupt(priv->dev->base_addr,
776                                               &priv->xstats);
777         if (likely(status == handle_tx_rx))
778                 _stmmac_schedule(priv);
779
780         else if (unlikely(status == tx_hard_error_bump_tc)) {
781                 /* Try to bump up the dma threshold on this failure */
782                 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
783                         tc += 64;
784                         priv->hw->dma->dma_mode(ioaddr, tc, SF_DMA_MODE);
785                         priv->xstats.threshold = tc;
786                 }
787                 stmmac_tx_err(priv);
788         } else if (unlikely(status == tx_hard_error))
789                 stmmac_tx_err(priv);
790
791         return;
792 }
793
794 /**
795  *  stmmac_open - open entry point of the driver
796  *  @dev : pointer to the device structure.
797  *  Description:
798  *  This function is the open entry point of the driver.
799  *  Return value:
800  *  0 on success and an appropriate (-)ve integer as defined in errno.h
801  *  file on failure.
802  */
803 static int stmmac_open(struct net_device *dev)
804 {
805         struct stmmac_priv *priv = netdev_priv(dev);
806         unsigned long ioaddr = dev->base_addr;
807         int ret;
808
809         /* Check that the MAC address is valid.  If its not, refuse
810          * to bring the device up. The user must specify an
811          * address using the following linux command:
812          *      ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx  */
813         if (!is_valid_ether_addr(dev->dev_addr)) {
814                 random_ether_addr(dev->dev_addr);
815                 pr_warning("%s: generated random MAC address %pM\n", dev->name,
816                         dev->dev_addr);
817         }
818
819         stmmac_verify_args();
820
821         ret = stmmac_init_phy(dev);
822         if (unlikely(ret)) {
823                 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
824                 return ret;
825         }
826
827         /* Request the IRQ lines */
828         ret = request_irq(dev->irq, stmmac_interrupt,
829                           IRQF_SHARED, dev->name, dev);
830         if (unlikely(ret < 0)) {
831                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
832                        __func__, dev->irq, ret);
833                 return ret;
834         }
835
836 #ifdef CONFIG_STMMAC_TIMER
837         priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
838         if (unlikely(priv->tm == NULL)) {
839                 pr_err("%s: ERROR: timer memory alloc failed \n", __func__);
840                 return -ENOMEM;
841         }
842         priv->tm->freq = tmrate;
843
844         /* Test if the external timer can be actually used.
845          * In case of failure continue without timer. */
846         if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
847                 pr_warning("stmmaceth: cannot attach the external timer.\n");
848                 tmrate = 0;
849                 priv->tm->freq = 0;
850                 priv->tm->timer_start = stmmac_no_timer_started;
851                 priv->tm->timer_stop = stmmac_no_timer_stopped;
852         } else
853                 priv->tm->enable = 1;
854 #endif
855
856         /* Create and initialize the TX/RX descriptors chains. */
857         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
858         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
859         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
860         init_dma_desc_rings(dev);
861
862         /* DMA initialization and SW reset */
863         if (unlikely(priv->hw->dma->init(ioaddr, priv->pbl, priv->dma_tx_phy,
864                                          priv->dma_rx_phy) < 0)) {
865
866                 pr_err("%s: DMA initialization failed\n", __func__);
867                 return -1;
868         }
869
870         /* Copy the MAC addr into the HW  */
871         priv->hw->mac->set_umac_addr(ioaddr, dev->dev_addr, 0);
872         /* If required, perform hw setup of the bus. */
873         if (priv->bus_setup)
874                 priv->bus_setup(ioaddr);
875         /* Initialize the MAC Core */
876         priv->hw->mac->core_init(ioaddr);
877
878         priv->shutdown = 0;
879
880         /* Initialise the MMC (if present) to disable all interrupts. */
881         writel(0xffffffff, ioaddr + MMC_HIGH_INTR_MASK);
882         writel(0xffffffff, ioaddr + MMC_LOW_INTR_MASK);
883
884         /* Enable the MAC Rx/Tx */
885         stmmac_mac_enable_rx(ioaddr);
886         stmmac_mac_enable_tx(ioaddr);
887
888         /* Set the HW DMA mode and the COE */
889         stmmac_dma_operation_mode(priv);
890
891         /* Extra statistics */
892         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
893         priv->xstats.threshold = tc;
894
895         /* Start the ball rolling... */
896         DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
897         priv->hw->dma->start_tx(ioaddr);
898         priv->hw->dma->start_rx(ioaddr);
899
900 #ifdef CONFIG_STMMAC_TIMER
901         priv->tm->timer_start(tmrate);
902 #endif
903         /* Dump DMA/MAC registers */
904         if (netif_msg_hw(priv)) {
905                 priv->hw->mac->dump_regs(ioaddr);
906                 priv->hw->dma->dump_regs(ioaddr);
907         }
908
909         if (priv->phydev)
910                 phy_start(priv->phydev);
911
912         napi_enable(&priv->napi);
913         skb_queue_head_init(&priv->rx_recycle);
914         netif_start_queue(dev);
915         return 0;
916 }
917
918 /**
919  *  stmmac_release - close entry point of the driver
920  *  @dev : device pointer.
921  *  Description:
922  *  This is the stop entry point of the driver.
923  */
924 static int stmmac_release(struct net_device *dev)
925 {
926         struct stmmac_priv *priv = netdev_priv(dev);
927
928         /* Stop and disconnect the PHY */
929         if (priv->phydev) {
930                 phy_stop(priv->phydev);
931                 phy_disconnect(priv->phydev);
932                 priv->phydev = NULL;
933         }
934
935         netif_stop_queue(dev);
936
937 #ifdef CONFIG_STMMAC_TIMER
938         /* Stop and release the timer */
939         stmmac_close_ext_timer();
940         if (priv->tm != NULL)
941                 kfree(priv->tm);
942 #endif
943         napi_disable(&priv->napi);
944         skb_queue_purge(&priv->rx_recycle);
945
946         /* Free the IRQ lines */
947         free_irq(dev->irq, dev);
948
949         /* Stop TX/RX DMA and clear the descriptors */
950         priv->hw->dma->stop_tx(dev->base_addr);
951         priv->hw->dma->stop_rx(dev->base_addr);
952
953         /* Release and free the Rx/Tx resources */
954         free_dma_desc_resources(priv);
955
956         /* Disable the MAC core */
957         stmmac_mac_disable_tx(dev->base_addr);
958         stmmac_mac_disable_rx(dev->base_addr);
959
960         netif_carrier_off(dev);
961
962         return 0;
963 }
964
965 /*
966  * To perform emulated hardware segmentation on skb.
967  */
968 static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
969 {
970         struct sk_buff *segs, *curr_skb;
971         int gso_segs = skb_shinfo(skb)->gso_segs;
972
973         /* Estimate the number of fragments in the worst case */
974         if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
975                 netif_stop_queue(priv->dev);
976                 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
977                        __func__);
978                 if (stmmac_tx_avail(priv) < gso_segs)
979                         return NETDEV_TX_BUSY;
980
981                 netif_wake_queue(priv->dev);
982         }
983         TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
984                skb, skb->len);
985
986         segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
987         if (unlikely(IS_ERR(segs)))
988                 goto sw_tso_end;
989
990         do {
991                 curr_skb = segs;
992                 segs = segs->next;
993                 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
994                        "*next %p\n", curr_skb->len, curr_skb, segs);
995                 curr_skb->next = NULL;
996                 stmmac_xmit(curr_skb, priv->dev);
997         } while (segs);
998
999 sw_tso_end:
1000         dev_kfree_skb(skb);
1001
1002         return NETDEV_TX_OK;
1003 }
1004
1005 static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
1006                                                struct net_device *dev,
1007                                                int csum_insertion)
1008 {
1009         struct stmmac_priv *priv = netdev_priv(dev);
1010         unsigned int nopaged_len = skb_headlen(skb);
1011         unsigned int txsize = priv->dma_tx_size;
1012         unsigned int entry = priv->cur_tx % txsize;
1013         struct dma_desc *desc = priv->dma_tx + entry;
1014
1015         if (nopaged_len > BUF_SIZE_8KiB) {
1016
1017                 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
1018
1019                 desc->des2 = dma_map_single(priv->device, skb->data,
1020                                             BUF_SIZE_8KiB, DMA_TO_DEVICE);
1021                 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1022                 priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
1023                                                 csum_insertion);
1024
1025                 entry = (++priv->cur_tx) % txsize;
1026                 desc = priv->dma_tx + entry;
1027
1028                 desc->des2 = dma_map_single(priv->device,
1029                                         skb->data + BUF_SIZE_8KiB,
1030                                         buf2_size, DMA_TO_DEVICE);
1031                 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1032                 priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
1033                                                 csum_insertion);
1034                 priv->hw->desc->set_tx_owner(desc);
1035                 priv->tx_skbuff[entry] = NULL;
1036         } else {
1037                 desc->des2 = dma_map_single(priv->device, skb->data,
1038                                         nopaged_len, DMA_TO_DEVICE);
1039                 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1040                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1041                                                 csum_insertion);
1042         }
1043         return entry;
1044 }
1045
1046 /**
1047  *  stmmac_xmit:
1048  *  @skb : the socket buffer
1049  *  @dev : device pointer
1050  *  Description : Tx entry point of the driver.
1051  */
1052 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1053 {
1054         struct stmmac_priv *priv = netdev_priv(dev);
1055         unsigned int txsize = priv->dma_tx_size;
1056         unsigned int entry;
1057         int i, csum_insertion = 0;
1058         int nfrags = skb_shinfo(skb)->nr_frags;
1059         struct dma_desc *desc, *first;
1060
1061         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1062                 if (!netif_queue_stopped(dev)) {
1063                         netif_stop_queue(dev);
1064                         /* This is a hard error, log it. */
1065                         pr_err("%s: BUG! Tx Ring full when queue awake\n",
1066                                 __func__);
1067                 }
1068                 return NETDEV_TX_BUSY;
1069         }
1070
1071         entry = priv->cur_tx % txsize;
1072
1073 #ifdef STMMAC_XMIT_DEBUG
1074         if ((skb->len > ETH_FRAME_LEN) || nfrags)
1075                 pr_info("stmmac xmit:\n"
1076                        "\tskb addr %p - len: %d - nopaged_len: %d\n"
1077                        "\tn_frags: %d - ip_summed: %d - %s gso\n",
1078                        skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1079                        !skb_is_gso(skb) ? "isn't" : "is");
1080 #endif
1081
1082         if (unlikely(skb_is_gso(skb)))
1083                 return stmmac_sw_tso(priv, skb);
1084
1085         if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
1086                 if (likely(priv->tx_coe == NO_HW_CSUM))
1087                         skb_checksum_help(skb);
1088                 else
1089                         csum_insertion = 1;
1090         }
1091
1092         desc = priv->dma_tx + entry;
1093         first = desc;
1094
1095 #ifdef STMMAC_XMIT_DEBUG
1096         if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1097                 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1098                        "\t\tn_frags: %d, ip_summed: %d\n",
1099                        skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1100 #endif
1101         priv->tx_skbuff[entry] = skb;
1102         if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1103                 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1104                 desc = priv->dma_tx + entry;
1105         } else {
1106                 unsigned int nopaged_len = skb_headlen(skb);
1107                 desc->des2 = dma_map_single(priv->device, skb->data,
1108                                         nopaged_len, DMA_TO_DEVICE);
1109                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1110                                                 csum_insertion);
1111         }
1112
1113         for (i = 0; i < nfrags; i++) {
1114                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1115                 int len = frag->size;
1116
1117                 entry = (++priv->cur_tx) % txsize;
1118                 desc = priv->dma_tx + entry;
1119
1120                 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1121                 desc->des2 = dma_map_page(priv->device, frag->page,
1122                                           frag->page_offset,
1123                                           len, DMA_TO_DEVICE);
1124                 priv->tx_skbuff[entry] = NULL;
1125                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1126                 priv->hw->desc->set_tx_owner(desc);
1127         }
1128
1129         /* Interrupt on completition only for the latest segment */
1130         priv->hw->desc->close_tx_desc(desc);
1131
1132 #ifdef CONFIG_STMMAC_TIMER
1133         /* Clean IC while using timer */
1134         if (likely(priv->tm->enable))
1135                 priv->hw->desc->clear_tx_ic(desc);
1136 #endif
1137         /* To avoid raise condition */
1138         priv->hw->desc->set_tx_owner(first);
1139
1140         priv->cur_tx++;
1141
1142 #ifdef STMMAC_XMIT_DEBUG
1143         if (netif_msg_pktdata(priv)) {
1144                 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1145                        "first=%p, nfrags=%d\n",
1146                        (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1147                        entry, first, nfrags);
1148                 display_ring(priv->dma_tx, txsize);
1149                 pr_info(">>> frame to be transmitted: ");
1150                 print_pkt(skb->data, skb->len);
1151         }
1152 #endif
1153         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1154                 TX_DBG("%s: stop transmitted packets\n", __func__);
1155                 netif_stop_queue(dev);
1156         }
1157
1158         dev->stats.tx_bytes += skb->len;
1159
1160         priv->hw->dma->enable_dma_transmission(dev->base_addr);
1161
1162         return NETDEV_TX_OK;
1163 }
1164
1165 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1166 {
1167         unsigned int rxsize = priv->dma_rx_size;
1168         int bfsize = priv->dma_buf_sz;
1169         struct dma_desc *p = priv->dma_rx;
1170
1171         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1172                 unsigned int entry = priv->dirty_rx % rxsize;
1173                 if (likely(priv->rx_skbuff[entry] == NULL)) {
1174                         struct sk_buff *skb;
1175
1176                         skb = __skb_dequeue(&priv->rx_recycle);
1177                         if (skb == NULL)
1178                                 skb = netdev_alloc_skb_ip_align(priv->dev,
1179                                                                 bfsize);
1180
1181                         if (unlikely(skb == NULL))
1182                                 break;
1183
1184                         priv->rx_skbuff[entry] = skb;
1185                         priv->rx_skbuff_dma[entry] =
1186                             dma_map_single(priv->device, skb->data, bfsize,
1187                                            DMA_FROM_DEVICE);
1188
1189                         (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1190                         if (unlikely(priv->is_gmac)) {
1191                                 if (bfsize >= BUF_SIZE_8KiB)
1192                                         (p + entry)->des3 =
1193                                             (p + entry)->des2 + BUF_SIZE_8KiB;
1194                         }
1195                         RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1196                 }
1197                 priv->hw->desc->set_rx_owner(p + entry);
1198         }
1199         return;
1200 }
1201
1202 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1203 {
1204         unsigned int rxsize = priv->dma_rx_size;
1205         unsigned int entry = priv->cur_rx % rxsize;
1206         unsigned int next_entry;
1207         unsigned int count = 0;
1208         struct dma_desc *p = priv->dma_rx + entry;
1209         struct dma_desc *p_next;
1210
1211 #ifdef STMMAC_RX_DEBUG
1212         if (netif_msg_hw(priv)) {
1213                 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1214                 display_ring(priv->dma_rx, rxsize);
1215         }
1216 #endif
1217         count = 0;
1218         while (!priv->hw->desc->get_rx_owner(p)) {
1219                 int status;
1220
1221                 if (count >= limit)
1222                         break;
1223
1224                 count++;
1225
1226                 next_entry = (++priv->cur_rx) % rxsize;
1227                 p_next = priv->dma_rx + next_entry;
1228                 prefetch(p_next);
1229
1230                 /* read the status of the incoming frame */
1231                 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1232                                                     &priv->xstats, p));
1233                 if (unlikely(status == discard_frame))
1234                         priv->dev->stats.rx_errors++;
1235                 else {
1236                         struct sk_buff *skb;
1237                         /* Length should omit the CRC */
1238                         int frame_len = priv->hw->desc->get_rx_frame_len(p) - 4;
1239
1240 #ifdef STMMAC_RX_DEBUG
1241                         if (frame_len > ETH_FRAME_LEN)
1242                                 pr_debug("\tRX frame size %d, COE status: %d\n",
1243                                         frame_len, status);
1244
1245                         if (netif_msg_hw(priv))
1246                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1247                                         p, entry, p->des2);
1248 #endif
1249                         skb = priv->rx_skbuff[entry];
1250                         if (unlikely(!skb)) {
1251                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
1252                                         priv->dev->name);
1253                                 priv->dev->stats.rx_dropped++;
1254                                 break;
1255                         }
1256                         prefetch(skb->data - NET_IP_ALIGN);
1257                         priv->rx_skbuff[entry] = NULL;
1258
1259                         skb_put(skb, frame_len);
1260                         dma_unmap_single(priv->device,
1261                                          priv->rx_skbuff_dma[entry],
1262                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
1263 #ifdef STMMAC_RX_DEBUG
1264                         if (netif_msg_pktdata(priv)) {
1265                                 pr_info(" frame received (%dbytes)", frame_len);
1266                                 print_pkt(skb->data, frame_len);
1267                         }
1268 #endif
1269                         skb->protocol = eth_type_trans(skb, priv->dev);
1270
1271                         if (unlikely(status == csum_none)) {
1272                                 /* always for the old mac 10/100 */
1273                                 skb->ip_summed = CHECKSUM_NONE;
1274                                 netif_receive_skb(skb);
1275                         } else {
1276                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1277                                 napi_gro_receive(&priv->napi, skb);
1278                         }
1279
1280                         priv->dev->stats.rx_packets++;
1281                         priv->dev->stats.rx_bytes += frame_len;
1282                         priv->dev->last_rx = jiffies;
1283                 }
1284                 entry = next_entry;
1285                 p = p_next;     /* use prefetched values */
1286         }
1287
1288         stmmac_rx_refill(priv);
1289
1290         priv->xstats.rx_pkt_n += count;
1291
1292         return count;
1293 }
1294
1295 /**
1296  *  stmmac_poll - stmmac poll method (NAPI)
1297  *  @napi : pointer to the napi structure.
1298  *  @budget : maximum number of packets that the current CPU can receive from
1299  *            all interfaces.
1300  *  Description :
1301  *   This function implements the the reception process.
1302  *   Also it runs the TX completion thread
1303  */
1304 static int stmmac_poll(struct napi_struct *napi, int budget)
1305 {
1306         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1307         int work_done = 0;
1308
1309         priv->xstats.poll_n++;
1310         stmmac_tx(priv);
1311         work_done = stmmac_rx(priv, budget);
1312
1313         if (work_done < budget) {
1314                 napi_complete(napi);
1315                 stmmac_enable_irq(priv);
1316         }
1317         return work_done;
1318 }
1319
1320 /**
1321  *  stmmac_tx_timeout
1322  *  @dev : Pointer to net device structure
1323  *  Description: this function is called when a packet transmission fails to
1324  *   complete within a reasonable tmrate. The driver will mark the error in the
1325  *   netdev structure and arrange for the device to be reset to a sane state
1326  *   in order to transmit a new packet.
1327  */
1328 static void stmmac_tx_timeout(struct net_device *dev)
1329 {
1330         struct stmmac_priv *priv = netdev_priv(dev);
1331
1332         /* Clear Tx resources and restart transmitting again */
1333         stmmac_tx_err(priv);
1334         return;
1335 }
1336
1337 /* Configuration changes (passed on by ifconfig) */
1338 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1339 {
1340         if (dev->flags & IFF_UP)        /* can't act on a running interface */
1341                 return -EBUSY;
1342
1343         /* Don't allow changing the I/O address */
1344         if (map->base_addr != dev->base_addr) {
1345                 pr_warning("%s: can't change I/O address\n", dev->name);
1346                 return -EOPNOTSUPP;
1347         }
1348
1349         /* Don't allow changing the IRQ */
1350         if (map->irq != dev->irq) {
1351                 pr_warning("%s: can't change IRQ number %d\n",
1352                        dev->name, dev->irq);
1353                 return -EOPNOTSUPP;
1354         }
1355
1356         /* ignore other fields */
1357         return 0;
1358 }
1359
1360 /**
1361  *  stmmac_multicast_list - entry point for multicast addressing
1362  *  @dev : pointer to the device structure
1363  *  Description:
1364  *  This function is a driver entry point which gets called by the kernel
1365  *  whenever multicast addresses must be enabled/disabled.
1366  *  Return value:
1367  *  void.
1368  */
1369 static void stmmac_multicast_list(struct net_device *dev)
1370 {
1371         struct stmmac_priv *priv = netdev_priv(dev);
1372
1373         spin_lock(&priv->lock);
1374         priv->hw->mac->set_filter(dev);
1375         spin_unlock(&priv->lock);
1376         return;
1377 }
1378
1379 /**
1380  *  stmmac_change_mtu - entry point to change MTU size for the device.
1381  *  @dev : device pointer.
1382  *  @new_mtu : the new MTU size for the device.
1383  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1384  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1385  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1386  *  Return value:
1387  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1388  *  file on failure.
1389  */
1390 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1391 {
1392         struct stmmac_priv *priv = netdev_priv(dev);
1393         int max_mtu;
1394
1395         if (netif_running(dev)) {
1396                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1397                 return -EBUSY;
1398         }
1399
1400         if (priv->is_gmac)
1401                 max_mtu = JUMBO_LEN;
1402         else
1403                 max_mtu = ETH_DATA_LEN;
1404
1405         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1406                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1407                 return -EINVAL;
1408         }
1409
1410         dev->mtu = new_mtu;
1411
1412         return 0;
1413 }
1414
1415 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1416 {
1417         struct net_device *dev = (struct net_device *)dev_id;
1418         struct stmmac_priv *priv = netdev_priv(dev);
1419
1420         if (unlikely(!dev)) {
1421                 pr_err("%s: invalid dev pointer\n", __func__);
1422                 return IRQ_NONE;
1423         }
1424
1425         if (priv->is_gmac) {
1426                 unsigned long ioaddr = dev->base_addr;
1427                 /* To handle GMAC own interrupts */
1428                 priv->hw->mac->host_irq_status(ioaddr);
1429         }
1430
1431         stmmac_dma_interrupt(priv);
1432
1433         return IRQ_HANDLED;
1434 }
1435
1436 #ifdef CONFIG_NET_POLL_CONTROLLER
1437 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1438  * to allow network I/O with interrupts disabled. */
1439 static void stmmac_poll_controller(struct net_device *dev)
1440 {
1441         disable_irq(dev->irq);
1442         stmmac_interrupt(dev->irq, dev);
1443         enable_irq(dev->irq);
1444 }
1445 #endif
1446
1447 /**
1448  *  stmmac_ioctl - Entry point for the Ioctl
1449  *  @dev: Device pointer.
1450  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1451  *  a proprietary structure used to pass information to the driver.
1452  *  @cmd: IOCTL command
1453  *  Description:
1454  *  Currently there are no special functionality supported in IOCTL, just the
1455  *  phy_mii_ioctl(...) can be invoked.
1456  */
1457 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1458 {
1459         struct stmmac_priv *priv = netdev_priv(dev);
1460         int ret = -EOPNOTSUPP;
1461
1462         if (!netif_running(dev))
1463                 return -EINVAL;
1464
1465         switch (cmd) {
1466         case SIOCGMIIPHY:
1467         case SIOCGMIIREG:
1468         case SIOCSMIIREG:
1469                 if (!priv->phydev)
1470                         return -EINVAL;
1471
1472                 spin_lock(&priv->lock);
1473                 ret = phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1474                 spin_unlock(&priv->lock);
1475         default:
1476                 break;
1477         }
1478         return ret;
1479 }
1480
1481 #ifdef STMMAC_VLAN_TAG_USED
1482 static void stmmac_vlan_rx_register(struct net_device *dev,
1483                                     struct vlan_group *grp)
1484 {
1485         struct stmmac_priv *priv = netdev_priv(dev);
1486
1487         DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1488
1489         spin_lock(&priv->lock);
1490         priv->vlgrp = grp;
1491         spin_unlock(&priv->lock);
1492
1493         return;
1494 }
1495 #endif
1496
1497 static const struct net_device_ops stmmac_netdev_ops = {
1498         .ndo_open = stmmac_open,
1499         .ndo_start_xmit = stmmac_xmit,
1500         .ndo_stop = stmmac_release,
1501         .ndo_change_mtu = stmmac_change_mtu,
1502         .ndo_set_multicast_list = stmmac_multicast_list,
1503         .ndo_tx_timeout = stmmac_tx_timeout,
1504         .ndo_do_ioctl = stmmac_ioctl,
1505         .ndo_set_config = stmmac_config,
1506 #ifdef STMMAC_VLAN_TAG_USED
1507         .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1508 #endif
1509 #ifdef CONFIG_NET_POLL_CONTROLLER
1510         .ndo_poll_controller = stmmac_poll_controller,
1511 #endif
1512         .ndo_set_mac_address = eth_mac_addr,
1513 };
1514
1515 /**
1516  * stmmac_probe - Initialization of the adapter .
1517  * @dev : device pointer
1518  * Description: The function initializes the network device structure for
1519  * the STMMAC driver. It also calls the low level routines
1520  * in order to init the HW (i.e. the DMA engine)
1521  */
1522 static int stmmac_probe(struct net_device *dev)
1523 {
1524         int ret = 0;
1525         struct stmmac_priv *priv = netdev_priv(dev);
1526
1527         ether_setup(dev);
1528
1529         dev->netdev_ops = &stmmac_netdev_ops;
1530         stmmac_set_ethtool_ops(dev);
1531
1532         dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
1533         dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1534 #ifdef STMMAC_VLAN_TAG_USED
1535         /* Both mac100 and gmac support receive VLAN tag detection */
1536         dev->features |= NETIF_F_HW_VLAN_RX;
1537 #endif
1538         priv->msg_enable = netif_msg_init(debug, default_msg_level);
1539
1540         if (priv->is_gmac)
1541                 priv->rx_csum = 1;
1542
1543         if (flow_ctrl)
1544                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
1545
1546         priv->pause = pause;
1547         netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1548
1549         /* Get the MAC address */
1550         priv->hw->mac->get_umac_addr(dev->base_addr, dev->dev_addr, 0);
1551
1552         if (!is_valid_ether_addr(dev->dev_addr))
1553                 pr_warning("\tno valid MAC address;"
1554                         "please, use ifconfig or nwhwconfig!\n");
1555
1556         ret = register_netdev(dev);
1557         if (ret) {
1558                 pr_err("%s: ERROR %i registering the device\n",
1559                        __func__, ret);
1560                 return -ENODEV;
1561         }
1562
1563         DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1564             dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1565             (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");
1566
1567         spin_lock_init(&priv->lock);
1568
1569         return ret;
1570 }
1571
1572 /**
1573  * stmmac_mac_device_setup
1574  * @dev : device pointer
1575  * Description: select and initialise the mac device (mac100 or Gmac).
1576  */
1577 static int stmmac_mac_device_setup(struct net_device *dev)
1578 {
1579         struct stmmac_priv *priv = netdev_priv(dev);
1580         unsigned long ioaddr = dev->base_addr;
1581
1582         struct mac_device_info *device;
1583
1584         if (priv->is_gmac)
1585                 device = dwmac1000_setup(ioaddr);
1586         else
1587                 device = dwmac100_setup(ioaddr);
1588
1589         if (!device)
1590                 return -ENOMEM;
1591
1592         priv->hw = device;
1593
1594         priv->wolenabled = priv->hw->pmt;       /* PMT supported */
1595         if (priv->wolenabled == PMT_SUPPORTED)
1596                 priv->wolopts = WAKE_MAGIC;             /* Magic Frame */
1597
1598         return 0;
1599 }
1600
1601 static int stmmacphy_dvr_probe(struct platform_device *pdev)
1602 {
1603         struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
1604
1605         pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1606                plat_dat->bus_id);
1607
1608         return 0;
1609 }
1610
1611 static int stmmacphy_dvr_remove(struct platform_device *pdev)
1612 {
1613         return 0;
1614 }
1615
1616 static struct platform_driver stmmacphy_driver = {
1617         .driver = {
1618                    .name = PHY_RESOURCE_NAME,
1619                    },
1620         .probe = stmmacphy_dvr_probe,
1621         .remove = stmmacphy_dvr_remove,
1622 };
1623
1624 /**
1625  * stmmac_associate_phy
1626  * @dev: pointer to device structure
1627  * @data: points to the private structure.
1628  * Description: Scans through all the PHYs we have registered and checks if
1629  * any are associated with our MAC.  If so, then just fill in
1630  * the blanks in our local context structure
1631  */
1632 static int stmmac_associate_phy(struct device *dev, void *data)
1633 {
1634         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1635         struct plat_stmmacphy_data *plat_dat = dev->platform_data;
1636
1637         DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1638                 plat_dat->bus_id);
1639
1640         /* Check that this phy is for the MAC being initialised */
1641         if (priv->bus_id != plat_dat->bus_id)
1642                 return 0;
1643
1644         /* OK, this PHY is connected to the MAC.
1645            Go ahead and get the parameters */
1646         DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1647         priv->phy_irq =
1648             platform_get_irq_byname(to_platform_device(dev), "phyirq");
1649         DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1650             plat_dat->bus_id, priv->phy_irq);
1651
1652         /* Override with kernel parameters if supplied XXX CRS XXX
1653          * this needs to have multiple instances */
1654         if ((phyaddr >= 0) && (phyaddr <= 31))
1655                 plat_dat->phy_addr = phyaddr;
1656
1657         priv->phy_addr = plat_dat->phy_addr;
1658         priv->phy_mask = plat_dat->phy_mask;
1659         priv->phy_interface = plat_dat->interface;
1660         priv->phy_reset = plat_dat->phy_reset;
1661
1662         DBG(probe, DEBUG, "%s: exiting\n", __func__);
1663         return 1;       /* forces exit of driver_for_each_device() */
1664 }
1665
1666 /**
1667  * stmmac_dvr_probe
1668  * @pdev: platform device pointer
1669  * Description: the driver is initialized through platform_device.
1670  */
1671 static int stmmac_dvr_probe(struct platform_device *pdev)
1672 {
1673         int ret = 0;
1674         struct resource *res;
1675         unsigned int *addr = NULL;
1676         struct net_device *ndev = NULL;
1677         struct stmmac_priv *priv;
1678         struct plat_stmmacenet_data *plat_dat;
1679
1680         pr_info("STMMAC driver:\n\tplatform registration... ");
1681         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1682         if (!res) {
1683                 ret = -ENODEV;
1684                 goto out;
1685         }
1686         pr_info("done!\n");
1687
1688         if (!request_mem_region(res->start, (res->end - res->start),
1689                                 pdev->name)) {
1690                 pr_err("%s: ERROR: memory allocation failed"
1691                        "cannot get the I/O addr 0x%x\n",
1692                        __func__, (unsigned int)res->start);
1693                 ret = -EBUSY;
1694                 goto out;
1695         }
1696
1697         addr = ioremap(res->start, (res->end - res->start));
1698         if (!addr) {
1699                 pr_err("%s: ERROR: memory mapping failed \n", __func__);
1700                 ret = -ENOMEM;
1701                 goto out;
1702         }
1703
1704         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1705         if (!ndev) {
1706                 pr_err("%s: ERROR: allocating the device\n", __func__);
1707                 ret = -ENOMEM;
1708                 goto out;
1709         }
1710
1711         SET_NETDEV_DEV(ndev, &pdev->dev);
1712
1713         /* Get the MAC information */
1714         ndev->irq = platform_get_irq_byname(pdev, "macirq");
1715         if (ndev->irq == -ENXIO) {
1716                 pr_err("%s: ERROR: MAC IRQ configuration "
1717                        "information not found\n", __func__);
1718                 ret = -ENODEV;
1719                 goto out;
1720         }
1721
1722         priv = netdev_priv(ndev);
1723         priv->device = &(pdev->dev);
1724         priv->dev = ndev;
1725         plat_dat = pdev->dev.platform_data;
1726         priv->bus_id = plat_dat->bus_id;
1727         priv->pbl = plat_dat->pbl;      /* TLI */
1728         priv->is_gmac = plat_dat->has_gmac;     /* GMAC is on board */
1729
1730         platform_set_drvdata(pdev, ndev);
1731
1732         /* Set the I/O base addr */
1733         ndev->base_addr = (unsigned long)addr;
1734
1735         /* Verify embedded resource for the platform */
1736         ret = stmmac_claim_resource(pdev);
1737         if (ret < 0)
1738                 goto out;
1739
1740         /* MAC HW revice detection */
1741         ret = stmmac_mac_device_setup(ndev);
1742         if (ret < 0)
1743                 goto out;
1744
1745         /* Network Device Registration */
1746         ret = stmmac_probe(ndev);
1747         if (ret < 0)
1748                 goto out;
1749
1750         /* associate a PHY - it is provided by another platform bus */
1751         if (!driver_for_each_device
1752             (&(stmmacphy_driver.driver), NULL, (void *)priv,
1753              stmmac_associate_phy)) {
1754                 pr_err("No PHY device is associated with this MAC!\n");
1755                 ret = -ENODEV;
1756                 goto out;
1757         }
1758
1759         priv->fix_mac_speed = plat_dat->fix_mac_speed;
1760         priv->bus_setup = plat_dat->bus_setup;
1761         priv->bsp_priv = plat_dat->bsp_priv;
1762
1763         pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1764                "\tIO base addr: 0x%08x)\n", ndev->name, pdev->name,
1765                pdev->id, ndev->irq, (unsigned int)addr);
1766
1767         /* MDIO bus Registration */
1768         pr_debug("\tMDIO bus (id: %d)...", priv->bus_id);
1769         ret = stmmac_mdio_register(ndev);
1770         if (ret < 0)
1771                 goto out;
1772         pr_debug("registered!\n");
1773
1774 out:
1775         if (ret < 0) {
1776                 platform_set_drvdata(pdev, NULL);
1777                 release_mem_region(res->start, (res->end - res->start));
1778                 if (addr != NULL)
1779                         iounmap(addr);
1780         }
1781
1782         return ret;
1783 }
1784
1785 /**
1786  * stmmac_dvr_remove
1787  * @pdev: platform device pointer
1788  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1789  * changes the link status, releases the DMA descriptor rings,
1790  * unregisters the MDIO bus and unmaps the allocated memory.
1791  */
1792 static int stmmac_dvr_remove(struct platform_device *pdev)
1793 {
1794         struct net_device *ndev = platform_get_drvdata(pdev);
1795         struct stmmac_priv *priv = netdev_priv(ndev);
1796         struct resource *res;
1797
1798         pr_info("%s:\n\tremoving driver", __func__);
1799
1800         priv->hw->dma->stop_rx(ndev->base_addr);
1801         priv->hw->dma->stop_tx(ndev->base_addr);
1802
1803         stmmac_mac_disable_rx(ndev->base_addr);
1804         stmmac_mac_disable_tx(ndev->base_addr);
1805
1806         netif_carrier_off(ndev);
1807
1808         stmmac_mdio_unregister(ndev);
1809
1810         platform_set_drvdata(pdev, NULL);
1811         unregister_netdev(ndev);
1812
1813         iounmap((void *)ndev->base_addr);
1814         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1815         release_mem_region(res->start, (res->end - res->start));
1816
1817         free_netdev(ndev);
1818
1819         return 0;
1820 }
1821
1822 #ifdef CONFIG_PM
1823 static int stmmac_suspend(struct platform_device *pdev, pm_message_t state)
1824 {
1825         struct net_device *dev = platform_get_drvdata(pdev);
1826         struct stmmac_priv *priv = netdev_priv(dev);
1827         int dis_ic = 0;
1828
1829         if (!dev || !netif_running(dev))
1830                 return 0;
1831
1832         spin_lock(&priv->lock);
1833
1834         if (state.event == PM_EVENT_SUSPEND) {
1835                 netif_device_detach(dev);
1836                 netif_stop_queue(dev);
1837                 if (priv->phydev)
1838                         phy_stop(priv->phydev);
1839
1840 #ifdef CONFIG_STMMAC_TIMER
1841                 priv->tm->timer_stop();
1842                 if (likely(priv->tm->enable))
1843                         dis_ic = 1;
1844 #endif
1845                 napi_disable(&priv->napi);
1846
1847                 /* Stop TX/RX DMA */
1848                 priv->hw->dma->stop_tx(dev->base_addr);
1849                 priv->hw->dma->stop_rx(dev->base_addr);
1850                 /* Clear the Rx/Tx descriptors */
1851                 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1852                                              dis_ic);
1853                 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1854
1855                 stmmac_mac_disable_tx(dev->base_addr);
1856
1857                 if (device_may_wakeup(&(pdev->dev))) {
1858                         /* Enable Power down mode by programming the PMT regs */
1859                         if (priv->wolenabled == PMT_SUPPORTED)
1860                                 priv->hw->mac->pmt(dev->base_addr,
1861                                                    priv->wolopts);
1862                 } else {
1863                         stmmac_mac_disable_rx(dev->base_addr);
1864                 }
1865         } else {
1866                 priv->shutdown = 1;
1867                 /* Although this can appear slightly redundant it actually
1868                  * makes fast the standby operation and guarantees the driver
1869                  * working if hibernation is on media. */
1870                 stmmac_release(dev);
1871         }
1872
1873         spin_unlock(&priv->lock);
1874         return 0;
1875 }
1876
1877 static int stmmac_resume(struct platform_device *pdev)
1878 {
1879         struct net_device *dev = platform_get_drvdata(pdev);
1880         struct stmmac_priv *priv = netdev_priv(dev);
1881         unsigned long ioaddr = dev->base_addr;
1882
1883         if (!netif_running(dev))
1884                 return 0;
1885
1886         spin_lock(&priv->lock);
1887
1888         if (priv->shutdown) {
1889                 /* Re-open the interface and re-init the MAC/DMA
1890                    and the rings. */
1891                 stmmac_open(dev);
1892                 goto out_resume;
1893         }
1894
1895         /* Power Down bit, into the PM register, is cleared
1896          * automatically as soon as a magic packet or a Wake-up frame
1897          * is received. Anyway, it's better to manually clear
1898          * this bit because it can generate problems while resuming
1899          * from another devices (e.g. serial console). */
1900         if (device_may_wakeup(&(pdev->dev)))
1901                 if (priv->wolenabled == PMT_SUPPORTED)
1902                         priv->hw->mac->pmt(dev->base_addr, 0);
1903
1904         netif_device_attach(dev);
1905
1906         /* Enable the MAC and DMA */
1907         stmmac_mac_enable_rx(ioaddr);
1908         stmmac_mac_enable_tx(ioaddr);
1909         priv->hw->dma->start_tx(ioaddr);
1910         priv->hw->dma->start_rx(ioaddr);
1911
1912 #ifdef CONFIG_STMMAC_TIMER
1913         priv->tm->timer_start(tmrate);
1914 #endif
1915         napi_enable(&priv->napi);
1916
1917         if (priv->phydev)
1918                 phy_start(priv->phydev);
1919
1920         netif_start_queue(dev);
1921
1922 out_resume:
1923         spin_unlock(&priv->lock);
1924         return 0;
1925 }
1926 #endif
1927
1928 static struct platform_driver stmmac_driver = {
1929         .driver = {
1930                    .name = STMMAC_RESOURCE_NAME,
1931                    },
1932         .probe = stmmac_dvr_probe,
1933         .remove = stmmac_dvr_remove,
1934 #ifdef CONFIG_PM
1935         .suspend = stmmac_suspend,
1936         .resume = stmmac_resume,
1937 #endif
1938
1939 };
1940
1941 /**
1942  * stmmac_init_module - Entry point for the driver
1943  * Description: This function is the entry point for the driver.
1944  */
1945 static int __init stmmac_init_module(void)
1946 {
1947         int ret;
1948
1949         if (platform_driver_register(&stmmacphy_driver)) {
1950                 pr_err("No PHY devices registered!\n");
1951                 return -ENODEV;
1952         }
1953
1954         ret = platform_driver_register(&stmmac_driver);
1955         return ret;
1956 }
1957
1958 /**
1959  * stmmac_cleanup_module - Cleanup routine for the driver
1960  * Description: This function is the cleanup routine for the driver.
1961  */
1962 static void __exit stmmac_cleanup_module(void)
1963 {
1964         platform_driver_unregister(&stmmacphy_driver);
1965         platform_driver_unregister(&stmmac_driver);
1966 }
1967
1968 #ifndef MODULE
1969 static int __init stmmac_cmdline_opt(char *str)
1970 {
1971         char *opt;
1972
1973         if (!str || !*str)
1974                 return -EINVAL;
1975         while ((opt = strsep(&str, ",")) != NULL) {
1976                 if (!strncmp(opt, "debug:", 6))
1977                         strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
1978                 else if (!strncmp(opt, "phyaddr:", 8))
1979                         strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
1980                 else if (!strncmp(opt, "dma_txsize:", 11))
1981                         strict_strtoul(opt + 11, 0,
1982                                        (unsigned long *)&dma_txsize);
1983                 else if (!strncmp(opt, "dma_rxsize:", 11))
1984                         strict_strtoul(opt + 11, 0,
1985                                        (unsigned long *)&dma_rxsize);
1986                 else if (!strncmp(opt, "buf_sz:", 7))
1987                         strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
1988                 else if (!strncmp(opt, "tc:", 3))
1989                         strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
1990                 else if (!strncmp(opt, "tx_coe:", 7))
1991                         strict_strtoul(opt + 7, 0, (unsigned long *)&tx_coe);
1992                 else if (!strncmp(opt, "watchdog:", 9))
1993                         strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
1994                 else if (!strncmp(opt, "flow_ctrl:", 10))
1995                         strict_strtoul(opt + 10, 0,
1996                                        (unsigned long *)&flow_ctrl);
1997                 else if (!strncmp(opt, "pause:", 6))
1998                         strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
1999 #ifdef CONFIG_STMMAC_TIMER
2000                 else if (!strncmp(opt, "tmrate:", 7))
2001                         strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
2002 #endif
2003         }
2004         return 0;
2005 }
2006
2007 __setup("stmmaceth=", stmmac_cmdline_opt);
2008 #endif
2009
2010 module_init(stmmac_init_module);
2011 module_exit(stmmac_cleanup_module);
2012
2013 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
2014 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2015 MODULE_LICENSE("GPL");