Update to 3.4-final.
[linux-flexiantxendom0-3.2.10.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/proc_fs.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/ksm.h>
54 #include <linux/acct.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/freezer.h>
58 #include <linux/delayacct.h>
59 #include <linux/taskstats_kern.h>
60 #include <linux/random.h>
61 #include <linux/tty.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 #include <linux/signalfd.h>
71
72 #include <asm/pgtable.h>
73 #include <asm/pgalloc.h>
74 #include <asm/uaccess.h>
75 #include <asm/mmu_context.h>
76 #include <asm/cacheflush.h>
77 #include <asm/tlbflush.h>
78
79 #include <trace/events/sched.h>
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/task.h>
83
84 /*
85  * Protected counters by write_lock_irq(&tasklist_lock)
86  */
87 unsigned long total_forks;      /* Handle normal Linux uptimes. */
88 int nr_threads;                 /* The idle threads do not count.. */
89
90 int max_threads;                /* tunable limit on nr_threads */
91
92 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
93
94 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
95
96 #ifdef CONFIG_PROVE_RCU
97 int lockdep_tasklist_lock_is_held(void)
98 {
99         return lockdep_is_held(&tasklist_lock);
100 }
101 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
102 #endif /* #ifdef CONFIG_PROVE_RCU */
103
104 int nr_processes(void)
105 {
106         int cpu;
107         int total = 0;
108
109         for_each_possible_cpu(cpu)
110                 total += per_cpu(process_counts, cpu);
111
112         return total;
113 }
114
115 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
116 # define alloc_task_struct_node(node)           \
117                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
118 # define free_task_struct(tsk)                  \
119                 kmem_cache_free(task_struct_cachep, (tsk))
120 static struct kmem_cache *task_struct_cachep;
121 #endif
122
123 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
124 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
125                                                   int node)
126 {
127 #ifdef CONFIG_DEBUG_STACK_USAGE
128         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
129 #else
130         gfp_t mask = GFP_KERNEL;
131 #endif
132         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
133
134         return page ? page_address(page) : NULL;
135 }
136
137 static inline void free_thread_info(struct thread_info *ti)
138 {
139         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
140 }
141 #endif
142
143 /* SLAB cache for signal_struct structures (tsk->signal) */
144 static struct kmem_cache *signal_cachep;
145
146 /* SLAB cache for sighand_struct structures (tsk->sighand) */
147 struct kmem_cache *sighand_cachep;
148
149 /* SLAB cache for files_struct structures (tsk->files) */
150 struct kmem_cache *files_cachep;
151
152 /* SLAB cache for fs_struct structures (tsk->fs) */
153 struct kmem_cache *fs_cachep;
154
155 /* SLAB cache for vm_area_struct structures */
156 struct kmem_cache *vm_area_cachep;
157
158 /* SLAB cache for mm_struct structures (tsk->mm) */
159 static struct kmem_cache *mm_cachep;
160
161 static void account_kernel_stack(struct thread_info *ti, int account)
162 {
163         struct zone *zone = page_zone(virt_to_page(ti));
164
165         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
166 }
167
168 void free_task(struct task_struct *tsk)
169 {
170         account_kernel_stack(tsk->stack, -1);
171         free_thread_info(tsk->stack);
172         rt_mutex_debug_task_free(tsk);
173         ftrace_graph_exit_task(tsk);
174         free_task_struct(tsk);
175 }
176 EXPORT_SYMBOL(free_task);
177
178 static inline void free_signal_struct(struct signal_struct *sig)
179 {
180         taskstats_tgid_free(sig);
181         sched_autogroup_exit(sig);
182         kmem_cache_free(signal_cachep, sig);
183 }
184
185 static inline void put_signal_struct(struct signal_struct *sig)
186 {
187         if (atomic_dec_and_test(&sig->sigcnt))
188                 free_signal_struct(sig);
189 }
190
191 void __put_task_struct(struct task_struct *tsk)
192 {
193         WARN_ON(!tsk->exit_state);
194         WARN_ON(atomic_read(&tsk->usage));
195         WARN_ON(tsk == current);
196
197         security_task_free(tsk);
198         exit_creds(tsk);
199         delayacct_tsk_free(tsk);
200         put_signal_struct(tsk->signal);
201
202         if (!profile_handoff_task(tsk))
203                 free_task(tsk);
204 }
205 EXPORT_SYMBOL_GPL(__put_task_struct);
206
207 /*
208  * macro override instead of weak attribute alias, to workaround
209  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
210  */
211 #ifndef arch_task_cache_init
212 #define arch_task_cache_init()
213 #endif
214
215 void __init fork_init(unsigned long mempages)
216 {
217 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
218 #ifndef ARCH_MIN_TASKALIGN
219 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
220 #endif
221         /* create a slab on which task_structs can be allocated */
222         task_struct_cachep =
223                 kmem_cache_create("task_struct", sizeof(struct task_struct),
224                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
225 #endif
226
227         /* do the arch specific task caches init */
228         arch_task_cache_init();
229
230         /*
231          * The default maximum number of threads is set to a safe
232          * value: the thread structures can take up at most half
233          * of memory.
234          */
235         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
236
237         /*
238          * we need to allow at least 20 threads to boot a system
239          */
240         if (max_threads < 20)
241                 max_threads = 20;
242
243         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
244         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
245         init_task.signal->rlim[RLIMIT_SIGPENDING] =
246                 init_task.signal->rlim[RLIMIT_NPROC];
247 }
248
249 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
250                                                struct task_struct *src)
251 {
252         *dst = *src;
253         return 0;
254 }
255
256 static struct task_struct *dup_task_struct(struct task_struct *orig)
257 {
258         struct task_struct *tsk;
259         struct thread_info *ti;
260         unsigned long *stackend;
261         int node = tsk_fork_get_node(orig);
262         int err;
263
264         prepare_to_copy(orig);
265
266         tsk = alloc_task_struct_node(node);
267         if (!tsk)
268                 return NULL;
269
270         ti = alloc_thread_info_node(tsk, node);
271         if (!ti) {
272                 free_task_struct(tsk);
273                 return NULL;
274         }
275
276         err = arch_dup_task_struct(tsk, orig);
277         if (err)
278                 goto out;
279
280         tsk->stack = ti;
281
282         setup_thread_stack(tsk, orig);
283         clear_user_return_notifier(tsk);
284         clear_tsk_need_resched(tsk);
285         stackend = end_of_stack(tsk);
286         *stackend = STACK_END_MAGIC;    /* for overflow detection */
287
288 #ifdef CONFIG_CC_STACKPROTECTOR
289         tsk->stack_canary = get_random_int();
290 #endif
291
292         /*
293          * One for us, one for whoever does the "release_task()" (usually
294          * parent)
295          */
296         atomic_set(&tsk->usage, 2);
297 #ifdef CONFIG_BLK_DEV_IO_TRACE
298         tsk->btrace_seq = 0;
299 #endif
300         tsk->splice_pipe = NULL;
301
302         account_kernel_stack(ti, 1);
303
304         return tsk;
305
306 out:
307         free_thread_info(ti);
308         free_task_struct(tsk);
309         return NULL;
310 }
311
312 #ifdef CONFIG_MMU
313 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
314 {
315         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
316         struct rb_node **rb_link, *rb_parent;
317         int retval;
318         unsigned long charge;
319         struct mempolicy *pol;
320
321         down_write(&oldmm->mmap_sem);
322         flush_cache_dup_mm(oldmm);
323         /*
324          * Not linked in yet - no deadlock potential:
325          */
326         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
327
328         mm->locked_vm = 0;
329         mm->mmap = NULL;
330         mm->mmap_cache = NULL;
331         mm->free_area_cache = oldmm->mmap_base;
332         mm->cached_hole_size = ~0UL;
333         mm->map_count = 0;
334         cpumask_clear(mm_cpumask(mm));
335         mm->mm_rb = RB_ROOT;
336         rb_link = &mm->mm_rb.rb_node;
337         rb_parent = NULL;
338         pprev = &mm->mmap;
339         retval = ksm_fork(mm, oldmm);
340         if (retval)
341                 goto out;
342         retval = khugepaged_fork(mm, oldmm);
343         if (retval)
344                 goto out;
345
346         prev = NULL;
347         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
348                 struct file *file;
349
350                 if (mpnt->vm_flags & VM_DONTCOPY) {
351                         long pages = vma_pages(mpnt);
352                         mm->total_vm -= pages;
353                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
354                                                                 -pages);
355                         continue;
356                 }
357                 charge = 0;
358                 if (mpnt->vm_flags & VM_ACCOUNT) {
359                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
360                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
361                                 goto fail_nomem;
362                         charge = len;
363                 }
364                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
365                 if (!tmp)
366                         goto fail_nomem;
367                 *tmp = *mpnt;
368                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
369                 pol = mpol_dup(vma_policy(mpnt));
370                 retval = PTR_ERR(pol);
371                 if (IS_ERR(pol))
372                         goto fail_nomem_policy;
373                 vma_set_policy(tmp, pol);
374                 tmp->vm_mm = mm;
375                 if (anon_vma_fork(tmp, mpnt))
376                         goto fail_nomem_anon_vma_fork;
377                 tmp->vm_flags &= ~VM_LOCKED;
378                 tmp->vm_next = tmp->vm_prev = NULL;
379                 file = tmp->vm_file;
380                 if (file) {
381                         struct inode *inode = file->f_path.dentry->d_inode;
382                         struct address_space *mapping = file->f_mapping;
383
384                         get_file(file);
385                         if (tmp->vm_flags & VM_DENYWRITE)
386                                 atomic_dec(&inode->i_writecount);
387                         mutex_lock(&mapping->i_mmap_mutex);
388                         if (tmp->vm_flags & VM_SHARED)
389                                 mapping->i_mmap_writable++;
390                         flush_dcache_mmap_lock(mapping);
391                         /* insert tmp into the share list, just after mpnt */
392                         vma_prio_tree_add(tmp, mpnt);
393                         flush_dcache_mmap_unlock(mapping);
394                         mutex_unlock(&mapping->i_mmap_mutex);
395                 }
396
397                 /*
398                  * Clear hugetlb-related page reserves for children. This only
399                  * affects MAP_PRIVATE mappings. Faults generated by the child
400                  * are not guaranteed to succeed, even if read-only
401                  */
402                 if (is_vm_hugetlb_page(tmp))
403                         reset_vma_resv_huge_pages(tmp);
404
405                 /*
406                  * Link in the new vma and copy the page table entries.
407                  */
408                 *pprev = tmp;
409                 pprev = &tmp->vm_next;
410                 tmp->vm_prev = prev;
411                 prev = tmp;
412
413                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
414                 rb_link = &tmp->vm_rb.rb_right;
415                 rb_parent = &tmp->vm_rb;
416
417                 mm->map_count++;
418                 retval = copy_page_range(mm, oldmm, mpnt);
419
420                 if (tmp->vm_ops && tmp->vm_ops->open)
421                         tmp->vm_ops->open(tmp);
422
423                 if (retval)
424                         goto out;
425         }
426         /* a new mm has just been created */
427         arch_dup_mmap(oldmm, mm);
428         retval = 0;
429 out:
430         up_write(&mm->mmap_sem);
431         flush_tlb_mm(oldmm);
432         up_write(&oldmm->mmap_sem);
433         return retval;
434 fail_nomem_anon_vma_fork:
435         mpol_put(pol);
436 fail_nomem_policy:
437         kmem_cache_free(vm_area_cachep, tmp);
438 fail_nomem:
439         retval = -ENOMEM;
440         vm_unacct_memory(charge);
441         goto out;
442 }
443
444 static inline int mm_alloc_pgd(struct mm_struct *mm)
445 {
446         mm->pgd = pgd_alloc(mm);
447         if (unlikely(!mm->pgd))
448                 return -ENOMEM;
449         return 0;
450 }
451
452 static inline void mm_free_pgd(struct mm_struct *mm)
453 {
454         pgd_free(mm, mm->pgd);
455 }
456 #else
457 #define dup_mmap(mm, oldmm)     (0)
458 #define mm_alloc_pgd(mm)        (0)
459 #define mm_free_pgd(mm)
460 #endif /* CONFIG_MMU */
461
462 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
463
464 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
465 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
466
467 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
468
469 static int __init coredump_filter_setup(char *s)
470 {
471         default_dump_filter =
472                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
473                 MMF_DUMP_FILTER_MASK;
474         return 1;
475 }
476
477 __setup("coredump_filter=", coredump_filter_setup);
478
479 #include <linux/init_task.h>
480
481 static void mm_init_aio(struct mm_struct *mm)
482 {
483 #ifdef CONFIG_AIO
484         spin_lock_init(&mm->ioctx_lock);
485         INIT_HLIST_HEAD(&mm->ioctx_list);
486 #endif
487 }
488
489 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
490 {
491         atomic_set(&mm->mm_users, 1);
492         atomic_set(&mm->mm_count, 1);
493         init_rwsem(&mm->mmap_sem);
494         INIT_LIST_HEAD(&mm->mmlist);
495         mm->flags = (current->mm) ?
496                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
497         mm->core_state = NULL;
498         mm->nr_ptes = 0;
499         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
500         spin_lock_init(&mm->page_table_lock);
501         mm->free_area_cache = TASK_UNMAPPED_BASE;
502         mm->cached_hole_size = ~0UL;
503         mm_init_aio(mm);
504         mm_init_owner(mm, p);
505
506         if (likely(!mm_alloc_pgd(mm))) {
507                 mm->def_flags = 0;
508                 mmu_notifier_mm_init(mm);
509                 return mm;
510         }
511
512         free_mm(mm);
513         return NULL;
514 }
515
516 static void check_mm(struct mm_struct *mm)
517 {
518         int i;
519
520         for (i = 0; i < NR_MM_COUNTERS; i++) {
521                 long x = atomic_long_read(&mm->rss_stat.count[i]);
522
523                 if (unlikely(x))
524                         printk(KERN_ALERT "BUG: Bad rss-counter state "
525                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
526         }
527
528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
529         VM_BUG_ON(mm->pmd_huge_pte);
530 #endif
531 }
532
533 /*
534  * Allocate and initialize an mm_struct.
535  */
536 struct mm_struct *mm_alloc(void)
537 {
538         struct mm_struct *mm;
539
540         mm = allocate_mm();
541         if (!mm)
542                 return NULL;
543
544         memset(mm, 0, sizeof(*mm));
545         mm_init_cpumask(mm);
546         return mm_init(mm, current);
547 }
548
549 /*
550  * Called when the last reference to the mm
551  * is dropped: either by a lazy thread or by
552  * mmput. Free the page directory and the mm.
553  */
554 void __mmdrop(struct mm_struct *mm)
555 {
556         BUG_ON(mm == &init_mm);
557         mm_free_pgd(mm);
558         destroy_context(mm);
559         mmu_notifier_mm_destroy(mm);
560         check_mm(mm);
561         free_mm(mm);
562 }
563 EXPORT_SYMBOL_GPL(__mmdrop);
564
565 /*
566  * Decrement the use count and release all resources for an mm.
567  */
568 void mmput(struct mm_struct *mm)
569 {
570         might_sleep();
571
572         if (atomic_dec_and_test(&mm->mm_users)) {
573                 exit_aio(mm);
574                 ksm_exit(mm);
575                 khugepaged_exit(mm); /* must run before exit_mmap */
576                 exit_mmap(mm);
577                 set_mm_exe_file(mm, NULL);
578                 if (!list_empty(&mm->mmlist)) {
579                         spin_lock(&mmlist_lock);
580                         list_del(&mm->mmlist);
581                         spin_unlock(&mmlist_lock);
582                 }
583                 put_swap_token(mm);
584                 if (mm->binfmt)
585                         module_put(mm->binfmt->module);
586                 mmdrop(mm);
587         }
588 }
589 EXPORT_SYMBOL_GPL(mmput);
590
591 /*
592  * We added or removed a vma mapping the executable. The vmas are only mapped
593  * during exec and are not mapped with the mmap system call.
594  * Callers must hold down_write() on the mm's mmap_sem for these
595  */
596 void added_exe_file_vma(struct mm_struct *mm)
597 {
598         mm->num_exe_file_vmas++;
599 }
600
601 void removed_exe_file_vma(struct mm_struct *mm)
602 {
603         mm->num_exe_file_vmas--;
604         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
605                 fput(mm->exe_file);
606                 mm->exe_file = NULL;
607         }
608
609 }
610
611 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
612 {
613         if (new_exe_file)
614                 get_file(new_exe_file);
615         if (mm->exe_file)
616                 fput(mm->exe_file);
617         mm->exe_file = new_exe_file;
618         mm->num_exe_file_vmas = 0;
619 }
620
621 struct file *get_mm_exe_file(struct mm_struct *mm)
622 {
623         struct file *exe_file;
624
625         /* We need mmap_sem to protect against races with removal of
626          * VM_EXECUTABLE vmas */
627         down_read(&mm->mmap_sem);
628         exe_file = mm->exe_file;
629         if (exe_file)
630                 get_file(exe_file);
631         up_read(&mm->mmap_sem);
632         return exe_file;
633 }
634
635 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
636 {
637         /* It's safe to write the exe_file pointer without exe_file_lock because
638          * this is called during fork when the task is not yet in /proc */
639         newmm->exe_file = get_mm_exe_file(oldmm);
640 }
641
642 /**
643  * get_task_mm - acquire a reference to the task's mm
644  *
645  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
646  * this kernel workthread has transiently adopted a user mm with use_mm,
647  * to do its AIO) is not set and if so returns a reference to it, after
648  * bumping up the use count.  User must release the mm via mmput()
649  * after use.  Typically used by /proc and ptrace.
650  */
651 struct mm_struct *get_task_mm(struct task_struct *task)
652 {
653         struct mm_struct *mm;
654
655         task_lock(task);
656         mm = task->mm;
657         if (mm) {
658                 if (task->flags & PF_KTHREAD)
659                         mm = NULL;
660                 else
661                         atomic_inc(&mm->mm_users);
662         }
663         task_unlock(task);
664         return mm;
665 }
666 EXPORT_SYMBOL_GPL(get_task_mm);
667
668 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
669 {
670         struct mm_struct *mm;
671         int err;
672
673         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
674         if (err)
675                 return ERR_PTR(err);
676
677         mm = get_task_mm(task);
678         if (mm && mm != current->mm &&
679                         !ptrace_may_access(task, mode)) {
680                 mmput(mm);
681                 mm = ERR_PTR(-EACCES);
682         }
683         mutex_unlock(&task->signal->cred_guard_mutex);
684
685         return mm;
686 }
687
688 static void complete_vfork_done(struct task_struct *tsk)
689 {
690         struct completion *vfork;
691
692         task_lock(tsk);
693         vfork = tsk->vfork_done;
694         if (likely(vfork)) {
695                 tsk->vfork_done = NULL;
696                 complete(vfork);
697         }
698         task_unlock(tsk);
699 }
700
701 static int wait_for_vfork_done(struct task_struct *child,
702                                 struct completion *vfork)
703 {
704         int killed;
705
706         freezer_do_not_count();
707         killed = wait_for_completion_killable(vfork);
708         freezer_count();
709
710         if (killed) {
711                 task_lock(child);
712                 child->vfork_done = NULL;
713                 task_unlock(child);
714         }
715
716         put_task_struct(child);
717         return killed;
718 }
719
720 /* Please note the differences between mmput and mm_release.
721  * mmput is called whenever we stop holding onto a mm_struct,
722  * error success whatever.
723  *
724  * mm_release is called after a mm_struct has been removed
725  * from the current process.
726  *
727  * This difference is important for error handling, when we
728  * only half set up a mm_struct for a new process and need to restore
729  * the old one.  Because we mmput the new mm_struct before
730  * restoring the old one. . .
731  * Eric Biederman 10 January 1998
732  */
733 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
734 {
735         /* Get rid of any futexes when releasing the mm */
736 #ifdef CONFIG_FUTEX
737         if (unlikely(tsk->robust_list)) {
738                 exit_robust_list(tsk);
739                 tsk->robust_list = NULL;
740         }
741 #ifdef CONFIG_COMPAT
742         if (unlikely(tsk->compat_robust_list)) {
743                 compat_exit_robust_list(tsk);
744                 tsk->compat_robust_list = NULL;
745         }
746 #endif
747         if (unlikely(!list_empty(&tsk->pi_state_list)))
748                 exit_pi_state_list(tsk);
749 #endif
750
751         /* Get rid of any cached register state */
752         deactivate_mm(tsk, mm);
753
754         if (tsk->vfork_done)
755                 complete_vfork_done(tsk);
756
757         /*
758          * If we're exiting normally, clear a user-space tid field if
759          * requested.  We leave this alone when dying by signal, to leave
760          * the value intact in a core dump, and to save the unnecessary
761          * trouble, say, a killed vfork parent shouldn't touch this mm.
762          * Userland only wants this done for a sys_exit.
763          */
764         if (tsk->clear_child_tid) {
765                 if (!(tsk->flags & PF_SIGNALED) &&
766                     atomic_read(&mm->mm_users) > 1) {
767                         /*
768                          * We don't check the error code - if userspace has
769                          * not set up a proper pointer then tough luck.
770                          */
771                         put_user(0, tsk->clear_child_tid);
772                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
773                                         1, NULL, NULL, 0);
774                 }
775                 tsk->clear_child_tid = NULL;
776         }
777 }
778
779 /*
780  * Allocate a new mm structure and copy contents from the
781  * mm structure of the passed in task structure.
782  */
783 struct mm_struct *dup_mm(struct task_struct *tsk)
784 {
785         struct mm_struct *mm, *oldmm = current->mm;
786         int err;
787
788         if (!oldmm)
789                 return NULL;
790
791         mm = allocate_mm();
792         if (!mm)
793                 goto fail_nomem;
794
795         memcpy(mm, oldmm, sizeof(*mm));
796         mm_init_cpumask(mm);
797
798         /* Initializing for Swap token stuff */
799         mm->token_priority = 0;
800         mm->last_interval = 0;
801
802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
803         mm->pmd_huge_pte = NULL;
804 #endif
805
806         if (!mm_init(mm, tsk))
807                 goto fail_nomem;
808
809         if (init_new_context(tsk, mm))
810                 goto fail_nocontext;
811
812         dup_mm_exe_file(oldmm, mm);
813
814         err = dup_mmap(mm, oldmm);
815         if (err)
816                 goto free_pt;
817
818         mm->hiwater_rss = get_mm_rss(mm);
819         mm->hiwater_vm = mm->total_vm;
820
821         if (mm->binfmt && !try_module_get(mm->binfmt->module))
822                 goto free_pt;
823
824         return mm;
825
826 free_pt:
827         /* don't put binfmt in mmput, we haven't got module yet */
828         mm->binfmt = NULL;
829         mmput(mm);
830
831 fail_nomem:
832         return NULL;
833
834 fail_nocontext:
835         /*
836          * If init_new_context() failed, we cannot use mmput() to free the mm
837          * because it calls destroy_context()
838          */
839         mm_free_pgd(mm);
840         free_mm(mm);
841         return NULL;
842 }
843
844 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
845 {
846         struct mm_struct *mm, *oldmm;
847         int retval;
848
849         tsk->min_flt = tsk->maj_flt = 0;
850         tsk->nvcsw = tsk->nivcsw = 0;
851 #ifdef CONFIG_DETECT_HUNG_TASK
852         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
853 #endif
854
855         tsk->mm = NULL;
856         tsk->active_mm = NULL;
857
858         /*
859          * Are we cloning a kernel thread?
860          *
861          * We need to steal a active VM for that..
862          */
863         oldmm = current->mm;
864         if (!oldmm)
865                 return 0;
866
867         if (clone_flags & CLONE_VM) {
868                 atomic_inc(&oldmm->mm_users);
869                 mm = oldmm;
870                 goto good_mm;
871         }
872
873         retval = -ENOMEM;
874         mm = dup_mm(tsk);
875         if (!mm)
876                 goto fail_nomem;
877
878 good_mm:
879         /* Initializing for Swap token stuff */
880         mm->token_priority = 0;
881         mm->last_interval = 0;
882
883         tsk->mm = mm;
884         tsk->active_mm = mm;
885         return 0;
886
887 fail_nomem:
888         return retval;
889 }
890
891 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
892 {
893         struct fs_struct *fs = current->fs;
894         if (clone_flags & CLONE_FS) {
895                 /* tsk->fs is already what we want */
896                 spin_lock(&fs->lock);
897                 if (fs->in_exec) {
898                         spin_unlock(&fs->lock);
899                         return -EAGAIN;
900                 }
901                 fs->users++;
902                 spin_unlock(&fs->lock);
903                 return 0;
904         }
905         tsk->fs = copy_fs_struct(fs);
906         if (!tsk->fs)
907                 return -ENOMEM;
908         return 0;
909 }
910
911 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
912 {
913         struct files_struct *oldf, *newf;
914         int error = 0;
915
916         /*
917          * A background process may not have any files ...
918          */
919         oldf = current->files;
920         if (!oldf)
921                 goto out;
922
923         if (clone_flags & CLONE_FILES) {
924                 atomic_inc(&oldf->count);
925                 goto out;
926         }
927
928         newf = dup_fd(oldf, &error);
929         if (!newf)
930                 goto out;
931
932         tsk->files = newf;
933         error = 0;
934 out:
935         return error;
936 }
937
938 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
939 {
940 #ifdef CONFIG_BLOCK
941         struct io_context *ioc = current->io_context;
942         struct io_context *new_ioc;
943
944         if (!ioc)
945                 return 0;
946         /*
947          * Share io context with parent, if CLONE_IO is set
948          */
949         if (clone_flags & CLONE_IO) {
950                 tsk->io_context = ioc_task_link(ioc);
951                 if (unlikely(!tsk->io_context))
952                         return -ENOMEM;
953         } else if (ioprio_valid(ioc->ioprio)) {
954                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
955                 if (unlikely(!new_ioc))
956                         return -ENOMEM;
957
958                 new_ioc->ioprio = ioc->ioprio;
959                 put_io_context(new_ioc);
960         }
961 #endif
962         return 0;
963 }
964
965 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
966 {
967         struct sighand_struct *sig;
968
969         if (clone_flags & CLONE_SIGHAND) {
970                 atomic_inc(&current->sighand->count);
971                 return 0;
972         }
973         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
974         rcu_assign_pointer(tsk->sighand, sig);
975         if (!sig)
976                 return -ENOMEM;
977         atomic_set(&sig->count, 1);
978         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
979         return 0;
980 }
981
982 void __cleanup_sighand(struct sighand_struct *sighand)
983 {
984         if (atomic_dec_and_test(&sighand->count)) {
985                 signalfd_cleanup(sighand);
986                 kmem_cache_free(sighand_cachep, sighand);
987         }
988 }
989
990
991 /*
992  * Initialize POSIX timer handling for a thread group.
993  */
994 static void posix_cpu_timers_init_group(struct signal_struct *sig)
995 {
996         unsigned long cpu_limit;
997
998         /* Thread group counters. */
999         thread_group_cputime_init(sig);
1000
1001         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1002         if (cpu_limit != RLIM_INFINITY) {
1003                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1004                 sig->cputimer.running = 1;
1005         }
1006
1007         /* The timer lists. */
1008         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1009         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1010         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1011 }
1012
1013 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1014 {
1015         struct signal_struct *sig;
1016
1017         if (clone_flags & CLONE_THREAD)
1018                 return 0;
1019
1020         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1021         tsk->signal = sig;
1022         if (!sig)
1023                 return -ENOMEM;
1024
1025         sig->nr_threads = 1;
1026         atomic_set(&sig->live, 1);
1027         atomic_set(&sig->sigcnt, 1);
1028         init_waitqueue_head(&sig->wait_chldexit);
1029         if (clone_flags & CLONE_NEWPID)
1030                 sig->flags |= SIGNAL_UNKILLABLE;
1031         sig->curr_target = tsk;
1032         init_sigpending(&sig->shared_pending);
1033         INIT_LIST_HEAD(&sig->posix_timers);
1034
1035         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1036         sig->real_timer.function = it_real_fn;
1037
1038         task_lock(current->group_leader);
1039         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1040         task_unlock(current->group_leader);
1041
1042         posix_cpu_timers_init_group(sig);
1043
1044         tty_audit_fork(sig);
1045         sched_autogroup_fork(sig);
1046
1047 #ifdef CONFIG_CGROUPS
1048         init_rwsem(&sig->group_rwsem);
1049 #endif
1050
1051         sig->oom_adj = current->signal->oom_adj;
1052         sig->oom_score_adj = current->signal->oom_score_adj;
1053         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1054
1055         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1056                                    current->signal->is_child_subreaper;
1057
1058         mutex_init(&sig->cred_guard_mutex);
1059
1060         return 0;
1061 }
1062
1063 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1064 {
1065         unsigned long new_flags = p->flags;
1066
1067         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1068         new_flags |= PF_FORKNOEXEC;
1069         p->flags = new_flags;
1070 }
1071
1072 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1073 {
1074         current->clear_child_tid = tidptr;
1075
1076         return task_pid_vnr(current);
1077 }
1078
1079 static void rt_mutex_init_task(struct task_struct *p)
1080 {
1081         raw_spin_lock_init(&p->pi_lock);
1082 #ifdef CONFIG_RT_MUTEXES
1083         plist_head_init(&p->pi_waiters);
1084         p->pi_blocked_on = NULL;
1085 #endif
1086 }
1087
1088 #ifdef CONFIG_MM_OWNER
1089 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1090 {
1091         mm->owner = p;
1092 }
1093 #endif /* CONFIG_MM_OWNER */
1094
1095 /*
1096  * Initialize POSIX timer handling for a single task.
1097  */
1098 static void posix_cpu_timers_init(struct task_struct *tsk)
1099 {
1100         tsk->cputime_expires.prof_exp = 0;
1101         tsk->cputime_expires.virt_exp = 0;
1102         tsk->cputime_expires.sched_exp = 0;
1103         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1104         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1105         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1106 }
1107
1108 /*
1109  * This creates a new process as a copy of the old one,
1110  * but does not actually start it yet.
1111  *
1112  * It copies the registers, and all the appropriate
1113  * parts of the process environment (as per the clone
1114  * flags). The actual kick-off is left to the caller.
1115  */
1116 static struct task_struct *copy_process(unsigned long clone_flags,
1117                                         unsigned long stack_start,
1118                                         struct pt_regs *regs,
1119                                         unsigned long stack_size,
1120                                         int __user *child_tidptr,
1121                                         struct pid *pid,
1122                                         int trace)
1123 {
1124         int retval;
1125         struct task_struct *p;
1126         int cgroup_callbacks_done = 0;
1127
1128         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1129                 return ERR_PTR(-EINVAL);
1130
1131         /*
1132          * Thread groups must share signals as well, and detached threads
1133          * can only be started up within the thread group.
1134          */
1135         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1136                 return ERR_PTR(-EINVAL);
1137
1138         /*
1139          * Shared signal handlers imply shared VM. By way of the above,
1140          * thread groups also imply shared VM. Blocking this case allows
1141          * for various simplifications in other code.
1142          */
1143         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1144                 return ERR_PTR(-EINVAL);
1145
1146         /*
1147          * Siblings of global init remain as zombies on exit since they are
1148          * not reaped by their parent (swapper). To solve this and to avoid
1149          * multi-rooted process trees, prevent global and container-inits
1150          * from creating siblings.
1151          */
1152         if ((clone_flags & CLONE_PARENT) &&
1153                                 current->signal->flags & SIGNAL_UNKILLABLE)
1154                 return ERR_PTR(-EINVAL);
1155
1156         retval = security_task_create(clone_flags);
1157         if (retval)
1158                 goto fork_out;
1159
1160         retval = -ENOMEM;
1161         p = dup_task_struct(current);
1162         if (!p)
1163                 goto fork_out;
1164
1165         ftrace_graph_init_task(p);
1166
1167         rt_mutex_init_task(p);
1168
1169 #ifdef CONFIG_PROVE_LOCKING
1170         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1171         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1172 #endif
1173         retval = -EAGAIN;
1174         if (atomic_read(&p->real_cred->user->processes) >=
1175                         task_rlimit(p, RLIMIT_NPROC)) {
1176                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1177                     p->real_cred->user != INIT_USER)
1178                         goto bad_fork_free;
1179         }
1180         current->flags &= ~PF_NPROC_EXCEEDED;
1181
1182         retval = copy_creds(p, clone_flags);
1183         if (retval < 0)
1184                 goto bad_fork_free;
1185
1186         /*
1187          * If multiple threads are within copy_process(), then this check
1188          * triggers too late. This doesn't hurt, the check is only there
1189          * to stop root fork bombs.
1190          */
1191         retval = -EAGAIN;
1192         if (nr_threads >= max_threads)
1193                 goto bad_fork_cleanup_count;
1194
1195         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1196                 goto bad_fork_cleanup_count;
1197
1198         p->did_exec = 0;
1199         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1200         copy_flags(clone_flags, p);
1201         INIT_LIST_HEAD(&p->children);
1202         INIT_LIST_HEAD(&p->sibling);
1203         rcu_copy_process(p);
1204         p->vfork_done = NULL;
1205         spin_lock_init(&p->alloc_lock);
1206
1207         init_sigpending(&p->pending);
1208
1209         p->utime = p->stime = p->gtime = 0;
1210         p->utimescaled = p->stimescaled = 0;
1211 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1212         p->prev_utime = p->prev_stime = 0;
1213 #endif
1214 #if defined(SPLIT_RSS_COUNTING)
1215         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1216 #endif
1217
1218         p->default_timer_slack_ns = current->timer_slack_ns;
1219
1220         task_io_accounting_init(&p->ioac);
1221         acct_clear_integrals(p);
1222
1223         posix_cpu_timers_init(p);
1224
1225         do_posix_clock_monotonic_gettime(&p->start_time);
1226         p->real_start_time = p->start_time;
1227         monotonic_to_bootbased(&p->real_start_time);
1228         p->io_context = NULL;
1229         p->audit_context = NULL;
1230         if (clone_flags & CLONE_THREAD)
1231                 threadgroup_change_begin(current);
1232         cgroup_fork(p);
1233 #ifdef CONFIG_NUMA
1234         p->mempolicy = mpol_dup(p->mempolicy);
1235         if (IS_ERR(p->mempolicy)) {
1236                 retval = PTR_ERR(p->mempolicy);
1237                 p->mempolicy = NULL;
1238                 goto bad_fork_cleanup_cgroup;
1239         }
1240         mpol_fix_fork_child_flag(p);
1241 #endif
1242 #ifdef CONFIG_CPUSETS
1243         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1244         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1245         seqcount_init(&p->mems_allowed_seq);
1246 #endif
1247 #ifdef CONFIG_TRACE_IRQFLAGS
1248         p->irq_events = 0;
1249 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1250         p->hardirqs_enabled = 1;
1251 #else
1252         p->hardirqs_enabled = 0;
1253 #endif
1254         p->hardirq_enable_ip = 0;
1255         p->hardirq_enable_event = 0;
1256         p->hardirq_disable_ip = _THIS_IP_;
1257         p->hardirq_disable_event = 0;
1258         p->softirqs_enabled = 1;
1259         p->softirq_enable_ip = _THIS_IP_;
1260         p->softirq_enable_event = 0;
1261         p->softirq_disable_ip = 0;
1262         p->softirq_disable_event = 0;
1263         p->hardirq_context = 0;
1264         p->softirq_context = 0;
1265 #endif
1266 #ifdef CONFIG_LOCKDEP
1267         p->lockdep_depth = 0; /* no locks held yet */
1268         p->curr_chain_key = 0;
1269         p->lockdep_recursion = 0;
1270 #endif
1271
1272 #ifdef CONFIG_DEBUG_MUTEXES
1273         p->blocked_on = NULL; /* not blocked yet */
1274 #endif
1275 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1276         p->memcg_batch.do_batch = 0;
1277         p->memcg_batch.memcg = NULL;
1278 #endif
1279
1280         /* Perform scheduler related setup. Assign this task to a CPU. */
1281         sched_fork(p);
1282
1283         retval = perf_event_init_task(p);
1284         if (retval)
1285                 goto bad_fork_cleanup_policy;
1286         retval = audit_alloc(p);
1287         if (retval)
1288                 goto bad_fork_cleanup_policy;
1289         /* copy all the process information */
1290         retval = copy_semundo(clone_flags, p);
1291         if (retval)
1292                 goto bad_fork_cleanup_audit;
1293         retval = copy_files(clone_flags, p);
1294         if (retval)
1295                 goto bad_fork_cleanup_semundo;
1296         retval = copy_fs(clone_flags, p);
1297         if (retval)
1298                 goto bad_fork_cleanup_files;
1299         retval = copy_sighand(clone_flags, p);
1300         if (retval)
1301                 goto bad_fork_cleanup_fs;
1302         retval = copy_signal(clone_flags, p);
1303         if (retval)
1304                 goto bad_fork_cleanup_sighand;
1305         retval = copy_mm(clone_flags, p);
1306         if (retval)
1307                 goto bad_fork_cleanup_signal;
1308         retval = copy_namespaces(clone_flags, p);
1309         if (retval)
1310                 goto bad_fork_cleanup_mm;
1311         retval = copy_io(clone_flags, p);
1312         if (retval)
1313                 goto bad_fork_cleanup_namespaces;
1314         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1315         if (retval)
1316                 goto bad_fork_cleanup_io;
1317
1318         if (pid != &init_struct_pid) {
1319                 retval = -ENOMEM;
1320                 pid = alloc_pid(p->nsproxy->pid_ns);
1321                 if (!pid)
1322                         goto bad_fork_cleanup_io;
1323         }
1324
1325         p->pid = pid_nr(pid);
1326         p->tgid = p->pid;
1327         if (clone_flags & CLONE_THREAD)
1328                 p->tgid = current->tgid;
1329
1330         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1331         /*
1332          * Clear TID on mm_release()?
1333          */
1334         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1335 #ifdef CONFIG_BLOCK
1336         p->plug = NULL;
1337 #endif
1338 #ifdef CONFIG_FUTEX
1339         p->robust_list = NULL;
1340 #ifdef CONFIG_COMPAT
1341         p->compat_robust_list = NULL;
1342 #endif
1343         INIT_LIST_HEAD(&p->pi_state_list);
1344         p->pi_state_cache = NULL;
1345 #endif
1346         /*
1347          * sigaltstack should be cleared when sharing the same VM
1348          */
1349         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1350                 p->sas_ss_sp = p->sas_ss_size = 0;
1351
1352         /*
1353          * Syscall tracing and stepping should be turned off in the
1354          * child regardless of CLONE_PTRACE.
1355          */
1356         user_disable_single_step(p);
1357         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1358 #ifdef TIF_SYSCALL_EMU
1359         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1360 #endif
1361         clear_all_latency_tracing(p);
1362
1363         /* ok, now we should be set up.. */
1364         if (clone_flags & CLONE_THREAD)
1365                 p->exit_signal = -1;
1366         else if (clone_flags & CLONE_PARENT)
1367                 p->exit_signal = current->group_leader->exit_signal;
1368         else
1369                 p->exit_signal = (clone_flags & CSIGNAL);
1370
1371         p->pdeath_signal = 0;
1372         p->exit_state = 0;
1373
1374         p->nr_dirtied = 0;
1375         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1376         p->dirty_paused_when = 0;
1377
1378         /*
1379          * Ok, make it visible to the rest of the system.
1380          * We dont wake it up yet.
1381          */
1382         p->group_leader = p;
1383         INIT_LIST_HEAD(&p->thread_group);
1384
1385         /* Now that the task is set up, run cgroup callbacks if
1386          * necessary. We need to run them before the task is visible
1387          * on the tasklist. */
1388         cgroup_fork_callbacks(p);
1389         cgroup_callbacks_done = 1;
1390
1391         /* Need tasklist lock for parent etc handling! */
1392         write_lock_irq(&tasklist_lock);
1393
1394         /* CLONE_PARENT re-uses the old parent */
1395         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1396                 p->real_parent = current->real_parent;
1397                 p->parent_exec_id = current->parent_exec_id;
1398         } else {
1399                 p->real_parent = current;
1400                 p->parent_exec_id = current->self_exec_id;
1401         }
1402
1403         spin_lock(&current->sighand->siglock);
1404
1405         /*
1406          * Process group and session signals need to be delivered to just the
1407          * parent before the fork or both the parent and the child after the
1408          * fork. Restart if a signal comes in before we add the new process to
1409          * it's process group.
1410          * A fatal signal pending means that current will exit, so the new
1411          * thread can't slip out of an OOM kill (or normal SIGKILL).
1412         */
1413         recalc_sigpending();
1414         if (signal_pending(current)) {
1415                 spin_unlock(&current->sighand->siglock);
1416                 write_unlock_irq(&tasklist_lock);
1417                 retval = -ERESTARTNOINTR;
1418                 goto bad_fork_free_pid;
1419         }
1420
1421         if (clone_flags & CLONE_THREAD) {
1422                 current->signal->nr_threads++;
1423                 atomic_inc(&current->signal->live);
1424                 atomic_inc(&current->signal->sigcnt);
1425                 p->group_leader = current->group_leader;
1426                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1427         }
1428
1429         if (likely(p->pid)) {
1430                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1431
1432                 if (thread_group_leader(p)) {
1433                         if (is_child_reaper(pid))
1434                                 p->nsproxy->pid_ns->child_reaper = p;
1435
1436                         p->signal->leader_pid = pid;
1437                         p->signal->tty = tty_kref_get(current->signal->tty);
1438                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1439                         attach_pid(p, PIDTYPE_SID, task_session(current));
1440                         list_add_tail(&p->sibling, &p->real_parent->children);
1441                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1442                         __this_cpu_inc(process_counts);
1443                 }
1444                 attach_pid(p, PIDTYPE_PID, pid);
1445                 nr_threads++;
1446         }
1447
1448         total_forks++;
1449         spin_unlock(&current->sighand->siglock);
1450         write_unlock_irq(&tasklist_lock);
1451         proc_fork_connector(p);
1452         cgroup_post_fork(p);
1453         if (clone_flags & CLONE_THREAD)
1454                 threadgroup_change_end(current);
1455         perf_event_fork(p);
1456
1457         trace_task_newtask(p, clone_flags);
1458
1459         return p;
1460
1461 bad_fork_free_pid:
1462         if (pid != &init_struct_pid)
1463                 free_pid(pid);
1464 bad_fork_cleanup_io:
1465         if (p->io_context)
1466                 exit_io_context(p);
1467 bad_fork_cleanup_namespaces:
1468         if (unlikely(clone_flags & CLONE_NEWPID))
1469                 pid_ns_release_proc(p->nsproxy->pid_ns);
1470         exit_task_namespaces(p);
1471 bad_fork_cleanup_mm:
1472         if (p->mm)
1473                 mmput(p->mm);
1474 bad_fork_cleanup_signal:
1475         if (!(clone_flags & CLONE_THREAD))
1476                 free_signal_struct(p->signal);
1477 bad_fork_cleanup_sighand:
1478         __cleanup_sighand(p->sighand);
1479 bad_fork_cleanup_fs:
1480         exit_fs(p); /* blocking */
1481 bad_fork_cleanup_files:
1482         exit_files(p); /* blocking */
1483 bad_fork_cleanup_semundo:
1484         exit_sem(p);
1485 bad_fork_cleanup_audit:
1486         audit_free(p);
1487 bad_fork_cleanup_policy:
1488         perf_event_free_task(p);
1489 #ifdef CONFIG_NUMA
1490         mpol_put(p->mempolicy);
1491 bad_fork_cleanup_cgroup:
1492 #endif
1493         if (clone_flags & CLONE_THREAD)
1494                 threadgroup_change_end(current);
1495         cgroup_exit(p, cgroup_callbacks_done);
1496         delayacct_tsk_free(p);
1497         module_put(task_thread_info(p)->exec_domain->module);
1498 bad_fork_cleanup_count:
1499         atomic_dec(&p->cred->user->processes);
1500         exit_creds(p);
1501 bad_fork_free:
1502         free_task(p);
1503 fork_out:
1504         return ERR_PTR(retval);
1505 }
1506
1507 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1508 {
1509         memset(regs, 0, sizeof(struct pt_regs));
1510         return regs;
1511 }
1512
1513 static inline void init_idle_pids(struct pid_link *links)
1514 {
1515         enum pid_type type;
1516
1517         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1518                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1519                 links[type].pid = &init_struct_pid;
1520         }
1521 }
1522
1523 struct task_struct * __cpuinit fork_idle(int cpu)
1524 {
1525         struct task_struct *task;
1526         struct pt_regs regs;
1527
1528         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1529                             &init_struct_pid, 0);
1530         if (!IS_ERR(task)) {
1531                 init_idle_pids(task->pids);
1532                 init_idle(task, cpu);
1533         }
1534
1535         return task;
1536 }
1537
1538 /*
1539  *  Ok, this is the main fork-routine.
1540  *
1541  * It copies the process, and if successful kick-starts
1542  * it and waits for it to finish using the VM if required.
1543  */
1544 long do_fork(unsigned long clone_flags,
1545               unsigned long stack_start,
1546               struct pt_regs *regs,
1547               unsigned long stack_size,
1548               int __user *parent_tidptr,
1549               int __user *child_tidptr)
1550 {
1551         struct task_struct *p;
1552         int trace = 0;
1553         long nr;
1554
1555         /*
1556          * Do some preliminary argument and permissions checking before we
1557          * actually start allocating stuff
1558          */
1559         if (clone_flags & CLONE_NEWUSER) {
1560                 if (clone_flags & CLONE_THREAD)
1561                         return -EINVAL;
1562                 /* hopefully this check will go away when userns support is
1563                  * complete
1564                  */
1565                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1566                                 !capable(CAP_SETGID))
1567                         return -EPERM;
1568         }
1569
1570         /*
1571          * Determine whether and which event to report to ptracer.  When
1572          * called from kernel_thread or CLONE_UNTRACED is explicitly
1573          * requested, no event is reported; otherwise, report if the event
1574          * for the type of forking is enabled.
1575          */
1576         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1577                 if (clone_flags & CLONE_VFORK)
1578                         trace = PTRACE_EVENT_VFORK;
1579                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1580                         trace = PTRACE_EVENT_CLONE;
1581                 else
1582                         trace = PTRACE_EVENT_FORK;
1583
1584                 if (likely(!ptrace_event_enabled(current, trace)))
1585                         trace = 0;
1586         }
1587
1588         p = copy_process(clone_flags, stack_start, regs, stack_size,
1589                          child_tidptr, NULL, trace);
1590         /*
1591          * Do this prior waking up the new thread - the thread pointer
1592          * might get invalid after that point, if the thread exits quickly.
1593          */
1594         if (!IS_ERR(p)) {
1595                 struct completion vfork;
1596
1597                 trace_sched_process_fork(current, p);
1598
1599                 nr = task_pid_vnr(p);
1600
1601                 if (clone_flags & CLONE_PARENT_SETTID)
1602                         put_user(nr, parent_tidptr);
1603
1604                 if (clone_flags & CLONE_VFORK) {
1605                         p->vfork_done = &vfork;
1606                         init_completion(&vfork);
1607                         get_task_struct(p);
1608                 }
1609
1610                 wake_up_new_task(p);
1611
1612                 /* forking complete and child started to run, tell ptracer */
1613                 if (unlikely(trace))
1614                         ptrace_event(trace, nr);
1615
1616                 if (clone_flags & CLONE_VFORK) {
1617                         if (!wait_for_vfork_done(p, &vfork))
1618                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1619                 }
1620         } else {
1621                 nr = PTR_ERR(p);
1622         }
1623         return nr;
1624 }
1625
1626 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1627 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1628 #endif
1629
1630 static void sighand_ctor(void *data)
1631 {
1632         struct sighand_struct *sighand = data;
1633
1634         spin_lock_init(&sighand->siglock);
1635         init_waitqueue_head(&sighand->signalfd_wqh);
1636 }
1637
1638 void __init proc_caches_init(void)
1639 {
1640         sighand_cachep = kmem_cache_create("sighand_cache",
1641                         sizeof(struct sighand_struct), 0,
1642                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1643                         SLAB_NOTRACK, sighand_ctor);
1644         signal_cachep = kmem_cache_create("signal_cache",
1645                         sizeof(struct signal_struct), 0,
1646                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1647         files_cachep = kmem_cache_create("files_cache",
1648                         sizeof(struct files_struct), 0,
1649                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1650         fs_cachep = kmem_cache_create("fs_cache",
1651                         sizeof(struct fs_struct), 0,
1652                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1653         /*
1654          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1655          * whole struct cpumask for the OFFSTACK case. We could change
1656          * this to *only* allocate as much of it as required by the
1657          * maximum number of CPU's we can ever have.  The cpumask_allocation
1658          * is at the end of the structure, exactly for that reason.
1659          */
1660         mm_cachep = kmem_cache_create("mm_struct",
1661                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1662                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1663         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1664         mmap_init();
1665         nsproxy_cache_init();
1666 }
1667
1668 /*
1669  * Check constraints on flags passed to the unshare system call.
1670  */
1671 static int check_unshare_flags(unsigned long unshare_flags)
1672 {
1673         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1674                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1675                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1676                 return -EINVAL;
1677         /*
1678          * Not implemented, but pretend it works if there is nothing to
1679          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1680          * needs to unshare vm.
1681          */
1682         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1683                 /* FIXME: get_task_mm() increments ->mm_users */
1684                 if (atomic_read(&current->mm->mm_users) > 1)
1685                         return -EINVAL;
1686         }
1687
1688         return 0;
1689 }
1690
1691 /*
1692  * Unshare the filesystem structure if it is being shared
1693  */
1694 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1695 {
1696         struct fs_struct *fs = current->fs;
1697
1698         if (!(unshare_flags & CLONE_FS) || !fs)
1699                 return 0;
1700
1701         /* don't need lock here; in the worst case we'll do useless copy */
1702         if (fs->users == 1)
1703                 return 0;
1704
1705         *new_fsp = copy_fs_struct(fs);
1706         if (!*new_fsp)
1707                 return -ENOMEM;
1708
1709         return 0;
1710 }
1711
1712 /*
1713  * Unshare file descriptor table if it is being shared
1714  */
1715 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1716 {
1717         struct files_struct *fd = current->files;
1718         int error = 0;
1719
1720         if ((unshare_flags & CLONE_FILES) &&
1721             (fd && atomic_read(&fd->count) > 1)) {
1722                 *new_fdp = dup_fd(fd, &error);
1723                 if (!*new_fdp)
1724                         return error;
1725         }
1726
1727         return 0;
1728 }
1729
1730 /*
1731  * unshare allows a process to 'unshare' part of the process
1732  * context which was originally shared using clone.  copy_*
1733  * functions used by do_fork() cannot be used here directly
1734  * because they modify an inactive task_struct that is being
1735  * constructed. Here we are modifying the current, active,
1736  * task_struct.
1737  */
1738 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1739 {
1740         struct fs_struct *fs, *new_fs = NULL;
1741         struct files_struct *fd, *new_fd = NULL;
1742         struct nsproxy *new_nsproxy = NULL;
1743         int do_sysvsem = 0;
1744         int err;
1745
1746         err = check_unshare_flags(unshare_flags);
1747         if (err)
1748                 goto bad_unshare_out;
1749
1750         /*
1751          * If unsharing namespace, must also unshare filesystem information.
1752          */
1753         if (unshare_flags & CLONE_NEWNS)
1754                 unshare_flags |= CLONE_FS;
1755         /*
1756          * CLONE_NEWIPC must also detach from the undolist: after switching
1757          * to a new ipc namespace, the semaphore arrays from the old
1758          * namespace are unreachable.
1759          */
1760         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1761                 do_sysvsem = 1;
1762         err = unshare_fs(unshare_flags, &new_fs);
1763         if (err)
1764                 goto bad_unshare_out;
1765         err = unshare_fd(unshare_flags, &new_fd);
1766         if (err)
1767                 goto bad_unshare_cleanup_fs;
1768         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1769         if (err)
1770                 goto bad_unshare_cleanup_fd;
1771
1772         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1773                 if (do_sysvsem) {
1774                         /*
1775                          * CLONE_SYSVSEM is equivalent to sys_exit().
1776                          */
1777                         exit_sem(current);
1778                 }
1779
1780                 if (new_nsproxy) {
1781                         switch_task_namespaces(current, new_nsproxy);
1782                         new_nsproxy = NULL;
1783                 }
1784
1785                 task_lock(current);
1786
1787                 if (new_fs) {
1788                         fs = current->fs;
1789                         spin_lock(&fs->lock);
1790                         current->fs = new_fs;
1791                         if (--fs->users)
1792                                 new_fs = NULL;
1793                         else
1794                                 new_fs = fs;
1795                         spin_unlock(&fs->lock);
1796                 }
1797
1798                 if (new_fd) {
1799                         fd = current->files;
1800                         current->files = new_fd;
1801                         new_fd = fd;
1802                 }
1803
1804                 task_unlock(current);
1805         }
1806
1807         if (new_nsproxy)
1808                 put_nsproxy(new_nsproxy);
1809
1810 bad_unshare_cleanup_fd:
1811         if (new_fd)
1812                 put_files_struct(new_fd);
1813
1814 bad_unshare_cleanup_fs:
1815         if (new_fs)
1816                 free_fs_struct(new_fs);
1817
1818 bad_unshare_out:
1819         return err;
1820 }
1821
1822 /*
1823  *      Helper to unshare the files of the current task.
1824  *      We don't want to expose copy_files internals to
1825  *      the exec layer of the kernel.
1826  */
1827
1828 int unshare_files(struct files_struct **displaced)
1829 {
1830         struct task_struct *task = current;
1831         struct files_struct *copy = NULL;
1832         int error;
1833
1834         error = unshare_fd(CLONE_FILES, &copy);
1835         if (error || !copy) {
1836                 *displaced = NULL;
1837                 return error;
1838         }
1839         *displaced = task->files;
1840         task_lock(task);
1841         task->files = copy;
1842         task_unlock(task);
1843         return 0;
1844 }