Merge branch 'kmap_atomic' of git://github.com/congwang/linux
[linux-flexiantxendom0-3.2.10.git] / drivers / net / ethernet / sun / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targeted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
82 #include <linux/mm.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
86
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
94 #include <linux/ip.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
98
99 #include <net/checksum.h>
100
101 #include <linux/atomic.h>
102 #include <asm/system.h>
103 #include <asm/io.h>
104 #include <asm/byteorder.h>
105 #include <asm/uaccess.h>
106
107 #define cas_page_map(x)      kmap_atomic((x))
108 #define cas_page_unmap(x)    kunmap_atomic((x))
109 #define CAS_NCPUS            num_online_cpus()
110
111 #define cas_skb_release(x)  netif_rx(x)
112
113 /* select which firmware to use */
114 #define USE_HP_WORKAROUND
115 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
116 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
117
118 #include "cassini.h"
119
120 #define USE_TX_COMPWB      /* use completion writeback registers */
121 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
122 #define USE_RX_BLANK       /* hw interrupt mitigation */
123 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
124
125 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
126  * also, we need to make cp->lock finer-grained.
127  */
128 #undef  USE_PCI_INTB
129 #undef  USE_PCI_INTC
130 #undef  USE_PCI_INTD
131 #undef  USE_QOS
132
133 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
134
135 /* rx processing options */
136 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
137 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
138 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
139 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
140 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
141
142 #define DRV_MODULE_NAME         "cassini"
143 #define DRV_MODULE_VERSION      "1.6"
144 #define DRV_MODULE_RELDATE      "21 May 2008"
145
146 #define CAS_DEF_MSG_ENABLE        \
147         (NETIF_MSG_DRV          | \
148          NETIF_MSG_PROBE        | \
149          NETIF_MSG_LINK         | \
150          NETIF_MSG_TIMER        | \
151          NETIF_MSG_IFDOWN       | \
152          NETIF_MSG_IFUP         | \
153          NETIF_MSG_RX_ERR       | \
154          NETIF_MSG_TX_ERR)
155
156 /* length of time before we decide the hardware is borked,
157  * and dev->tx_timeout() should be called to fix the problem
158  */
159 #define CAS_TX_TIMEOUT                  (HZ)
160 #define CAS_LINK_TIMEOUT                (22*HZ/10)
161 #define CAS_LINK_FAST_TIMEOUT           (1)
162
163 /* timeout values for state changing. these specify the number
164  * of 10us delays to be used before giving up.
165  */
166 #define STOP_TRIES_PHY 1000
167 #define STOP_TRIES     5000
168
169 /* specify a minimum frame size to deal with some fifo issues
170  * max mtu == 2 * page size - ethernet header - 64 - swivel =
171  *            2 * page_size - 0x50
172  */
173 #define CAS_MIN_FRAME                   97
174 #define CAS_1000MB_MIN_FRAME            255
175 #define CAS_MIN_MTU                     60
176 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
177
178 #if 1
179 /*
180  * Eliminate these and use separate atomic counters for each, to
181  * avoid a race condition.
182  */
183 #else
184 #define CAS_RESET_MTU                   1
185 #define CAS_RESET_ALL                   2
186 #define CAS_RESET_SPARE                 3
187 #endif
188
189 static char version[] __devinitdata =
190         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
191
192 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
193 static int link_mode;
194
195 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
196 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
197 MODULE_LICENSE("GPL");
198 MODULE_FIRMWARE("sun/cassini.bin");
199 module_param(cassini_debug, int, 0);
200 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
201 module_param(link_mode, int, 0);
202 MODULE_PARM_DESC(link_mode, "default link mode");
203
204 /*
205  * Work around for a PCS bug in which the link goes down due to the chip
206  * being confused and never showing a link status of "up."
207  */
208 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 /*
210  * Value in seconds, for user input.
211  */
212 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
213 module_param(linkdown_timeout, int, 0);
214 MODULE_PARM_DESC(linkdown_timeout,
215 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
216
217 /*
218  * value in 'ticks' (units used by jiffies). Set when we init the
219  * module because 'HZ' in actually a function call on some flavors of
220  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221  */
222 static int link_transition_timeout;
223
224
225
226 static u16 link_modes[] __devinitdata = {
227         BMCR_ANENABLE,                   /* 0 : autoneg */
228         0,                               /* 1 : 10bt half duplex */
229         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
230         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
231         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
232         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
233 };
234
235 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
236         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
237           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
239           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
240         { 0, }
241 };
242
243 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
244
245 static void cas_set_link_modes(struct cas *cp);
246
247 static inline void cas_lock_tx(struct cas *cp)
248 {
249         int i;
250
251         for (i = 0; i < N_TX_RINGS; i++)
252                 spin_lock(&cp->tx_lock[i]);
253 }
254
255 static inline void cas_lock_all(struct cas *cp)
256 {
257         spin_lock_irq(&cp->lock);
258         cas_lock_tx(cp);
259 }
260
261 /* WTZ: QA was finding deadlock problems with the previous
262  * versions after long test runs with multiple cards per machine.
263  * See if replacing cas_lock_all with safer versions helps. The
264  * symptoms QA is reporting match those we'd expect if interrupts
265  * aren't being properly restored, and we fixed a previous deadlock
266  * with similar symptoms by using save/restore versions in other
267  * places.
268  */
269 #define cas_lock_all_save(cp, flags) \
270 do { \
271         struct cas *xxxcp = (cp); \
272         spin_lock_irqsave(&xxxcp->lock, flags); \
273         cas_lock_tx(xxxcp); \
274 } while (0)
275
276 static inline void cas_unlock_tx(struct cas *cp)
277 {
278         int i;
279
280         for (i = N_TX_RINGS; i > 0; i--)
281                 spin_unlock(&cp->tx_lock[i - 1]);
282 }
283
284 static inline void cas_unlock_all(struct cas *cp)
285 {
286         cas_unlock_tx(cp);
287         spin_unlock_irq(&cp->lock);
288 }
289
290 #define cas_unlock_all_restore(cp, flags) \
291 do { \
292         struct cas *xxxcp = (cp); \
293         cas_unlock_tx(xxxcp); \
294         spin_unlock_irqrestore(&xxxcp->lock, flags); \
295 } while (0)
296
297 static void cas_disable_irq(struct cas *cp, const int ring)
298 {
299         /* Make sure we won't get any more interrupts */
300         if (ring == 0) {
301                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
302                 return;
303         }
304
305         /* disable completion interrupts and selectively mask */
306         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
307                 switch (ring) {
308 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
309 #ifdef USE_PCI_INTB
310                 case 1:
311 #endif
312 #ifdef USE_PCI_INTC
313                 case 2:
314 #endif
315 #ifdef USE_PCI_INTD
316                 case 3:
317 #endif
318                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
319                                cp->regs + REG_PLUS_INTRN_MASK(ring));
320                         break;
321 #endif
322                 default:
323                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
324                                REG_PLUS_INTRN_MASK(ring));
325                         break;
326                 }
327         }
328 }
329
330 static inline void cas_mask_intr(struct cas *cp)
331 {
332         int i;
333
334         for (i = 0; i < N_RX_COMP_RINGS; i++)
335                 cas_disable_irq(cp, i);
336 }
337
338 static void cas_enable_irq(struct cas *cp, const int ring)
339 {
340         if (ring == 0) { /* all but TX_DONE */
341                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
342                 return;
343         }
344
345         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
346                 switch (ring) {
347 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
348 #ifdef USE_PCI_INTB
349                 case 1:
350 #endif
351 #ifdef USE_PCI_INTC
352                 case 2:
353 #endif
354 #ifdef USE_PCI_INTD
355                 case 3:
356 #endif
357                         writel(INTRN_MASK_RX_EN, cp->regs +
358                                REG_PLUS_INTRN_MASK(ring));
359                         break;
360 #endif
361                 default:
362                         break;
363                 }
364         }
365 }
366
367 static inline void cas_unmask_intr(struct cas *cp)
368 {
369         int i;
370
371         for (i = 0; i < N_RX_COMP_RINGS; i++)
372                 cas_enable_irq(cp, i);
373 }
374
375 static inline void cas_entropy_gather(struct cas *cp)
376 {
377 #ifdef USE_ENTROPY_DEV
378         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
379                 return;
380
381         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
382                             readl(cp->regs + REG_ENTROPY_IV),
383                             sizeof(uint64_t)*8);
384 #endif
385 }
386
387 static inline void cas_entropy_reset(struct cas *cp)
388 {
389 #ifdef USE_ENTROPY_DEV
390         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
391                 return;
392
393         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
394                cp->regs + REG_BIM_LOCAL_DEV_EN);
395         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
396         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
397
398         /* if we read back 0x0, we don't have an entropy device */
399         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
400                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
401 #endif
402 }
403
404 /* access to the phy. the following assumes that we've initialized the MIF to
405  * be in frame rather than bit-bang mode
406  */
407 static u16 cas_phy_read(struct cas *cp, int reg)
408 {
409         u32 cmd;
410         int limit = STOP_TRIES_PHY;
411
412         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
413         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
414         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
415         cmd |= MIF_FRAME_TURN_AROUND_MSB;
416         writel(cmd, cp->regs + REG_MIF_FRAME);
417
418         /* poll for completion */
419         while (limit-- > 0) {
420                 udelay(10);
421                 cmd = readl(cp->regs + REG_MIF_FRAME);
422                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
423                         return cmd & MIF_FRAME_DATA_MASK;
424         }
425         return 0xFFFF; /* -1 */
426 }
427
428 static int cas_phy_write(struct cas *cp, int reg, u16 val)
429 {
430         int limit = STOP_TRIES_PHY;
431         u32 cmd;
432
433         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
434         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
435         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
436         cmd |= MIF_FRAME_TURN_AROUND_MSB;
437         cmd |= val & MIF_FRAME_DATA_MASK;
438         writel(cmd, cp->regs + REG_MIF_FRAME);
439
440         /* poll for completion */
441         while (limit-- > 0) {
442                 udelay(10);
443                 cmd = readl(cp->regs + REG_MIF_FRAME);
444                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
445                         return 0;
446         }
447         return -1;
448 }
449
450 static void cas_phy_powerup(struct cas *cp)
451 {
452         u16 ctl = cas_phy_read(cp, MII_BMCR);
453
454         if ((ctl & BMCR_PDOWN) == 0)
455                 return;
456         ctl &= ~BMCR_PDOWN;
457         cas_phy_write(cp, MII_BMCR, ctl);
458 }
459
460 static void cas_phy_powerdown(struct cas *cp)
461 {
462         u16 ctl = cas_phy_read(cp, MII_BMCR);
463
464         if (ctl & BMCR_PDOWN)
465                 return;
466         ctl |= BMCR_PDOWN;
467         cas_phy_write(cp, MII_BMCR, ctl);
468 }
469
470 /* cp->lock held. note: the last put_page will free the buffer */
471 static int cas_page_free(struct cas *cp, cas_page_t *page)
472 {
473         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
474                        PCI_DMA_FROMDEVICE);
475         __free_pages(page->buffer, cp->page_order);
476         kfree(page);
477         return 0;
478 }
479
480 #ifdef RX_COUNT_BUFFERS
481 #define RX_USED_ADD(x, y)       ((x)->used += (y))
482 #define RX_USED_SET(x, y)       ((x)->used  = (y))
483 #else
484 #define RX_USED_ADD(x, y)
485 #define RX_USED_SET(x, y)
486 #endif
487
488 /* local page allocation routines for the receive buffers. jumbo pages
489  * require at least 8K contiguous and 8K aligned buffers.
490  */
491 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
492 {
493         cas_page_t *page;
494
495         page = kmalloc(sizeof(cas_page_t), flags);
496         if (!page)
497                 return NULL;
498
499         INIT_LIST_HEAD(&page->list);
500         RX_USED_SET(page, 0);
501         page->buffer = alloc_pages(flags, cp->page_order);
502         if (!page->buffer)
503                 goto page_err;
504         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
505                                       cp->page_size, PCI_DMA_FROMDEVICE);
506         return page;
507
508 page_err:
509         kfree(page);
510         return NULL;
511 }
512
513 /* initialize spare pool of rx buffers, but allocate during the open */
514 static void cas_spare_init(struct cas *cp)
515 {
516         spin_lock(&cp->rx_inuse_lock);
517         INIT_LIST_HEAD(&cp->rx_inuse_list);
518         spin_unlock(&cp->rx_inuse_lock);
519
520         spin_lock(&cp->rx_spare_lock);
521         INIT_LIST_HEAD(&cp->rx_spare_list);
522         cp->rx_spares_needed = RX_SPARE_COUNT;
523         spin_unlock(&cp->rx_spare_lock);
524 }
525
526 /* used on close. free all the spare buffers. */
527 static void cas_spare_free(struct cas *cp)
528 {
529         struct list_head list, *elem, *tmp;
530
531         /* free spare buffers */
532         INIT_LIST_HEAD(&list);
533         spin_lock(&cp->rx_spare_lock);
534         list_splice_init(&cp->rx_spare_list, &list);
535         spin_unlock(&cp->rx_spare_lock);
536         list_for_each_safe(elem, tmp, &list) {
537                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
538         }
539
540         INIT_LIST_HEAD(&list);
541 #if 1
542         /*
543          * Looks like Adrian had protected this with a different
544          * lock than used everywhere else to manipulate this list.
545          */
546         spin_lock(&cp->rx_inuse_lock);
547         list_splice_init(&cp->rx_inuse_list, &list);
548         spin_unlock(&cp->rx_inuse_lock);
549 #else
550         spin_lock(&cp->rx_spare_lock);
551         list_splice_init(&cp->rx_inuse_list, &list);
552         spin_unlock(&cp->rx_spare_lock);
553 #endif
554         list_for_each_safe(elem, tmp, &list) {
555                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
556         }
557 }
558
559 /* replenish spares if needed */
560 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
561 {
562         struct list_head list, *elem, *tmp;
563         int needed, i;
564
565         /* check inuse list. if we don't need any more free buffers,
566          * just free it
567          */
568
569         /* make a local copy of the list */
570         INIT_LIST_HEAD(&list);
571         spin_lock(&cp->rx_inuse_lock);
572         list_splice_init(&cp->rx_inuse_list, &list);
573         spin_unlock(&cp->rx_inuse_lock);
574
575         list_for_each_safe(elem, tmp, &list) {
576                 cas_page_t *page = list_entry(elem, cas_page_t, list);
577
578                 /*
579                  * With the lockless pagecache, cassini buffering scheme gets
580                  * slightly less accurate: we might find that a page has an
581                  * elevated reference count here, due to a speculative ref,
582                  * and skip it as in-use. Ideally we would be able to reclaim
583                  * it. However this would be such a rare case, it doesn't
584                  * matter too much as we should pick it up the next time round.
585                  *
586                  * Importantly, if we find that the page has a refcount of 1
587                  * here (our refcount), then we know it is definitely not inuse
588                  * so we can reuse it.
589                  */
590                 if (page_count(page->buffer) > 1)
591                         continue;
592
593                 list_del(elem);
594                 spin_lock(&cp->rx_spare_lock);
595                 if (cp->rx_spares_needed > 0) {
596                         list_add(elem, &cp->rx_spare_list);
597                         cp->rx_spares_needed--;
598                         spin_unlock(&cp->rx_spare_lock);
599                 } else {
600                         spin_unlock(&cp->rx_spare_lock);
601                         cas_page_free(cp, page);
602                 }
603         }
604
605         /* put any inuse buffers back on the list */
606         if (!list_empty(&list)) {
607                 spin_lock(&cp->rx_inuse_lock);
608                 list_splice(&list, &cp->rx_inuse_list);
609                 spin_unlock(&cp->rx_inuse_lock);
610         }
611
612         spin_lock(&cp->rx_spare_lock);
613         needed = cp->rx_spares_needed;
614         spin_unlock(&cp->rx_spare_lock);
615         if (!needed)
616                 return;
617
618         /* we still need spares, so try to allocate some */
619         INIT_LIST_HEAD(&list);
620         i = 0;
621         while (i < needed) {
622                 cas_page_t *spare = cas_page_alloc(cp, flags);
623                 if (!spare)
624                         break;
625                 list_add(&spare->list, &list);
626                 i++;
627         }
628
629         spin_lock(&cp->rx_spare_lock);
630         list_splice(&list, &cp->rx_spare_list);
631         cp->rx_spares_needed -= i;
632         spin_unlock(&cp->rx_spare_lock);
633 }
634
635 /* pull a page from the list. */
636 static cas_page_t *cas_page_dequeue(struct cas *cp)
637 {
638         struct list_head *entry;
639         int recover;
640
641         spin_lock(&cp->rx_spare_lock);
642         if (list_empty(&cp->rx_spare_list)) {
643                 /* try to do a quick recovery */
644                 spin_unlock(&cp->rx_spare_lock);
645                 cas_spare_recover(cp, GFP_ATOMIC);
646                 spin_lock(&cp->rx_spare_lock);
647                 if (list_empty(&cp->rx_spare_list)) {
648                         netif_err(cp, rx_err, cp->dev,
649                                   "no spare buffers available\n");
650                         spin_unlock(&cp->rx_spare_lock);
651                         return NULL;
652                 }
653         }
654
655         entry = cp->rx_spare_list.next;
656         list_del(entry);
657         recover = ++cp->rx_spares_needed;
658         spin_unlock(&cp->rx_spare_lock);
659
660         /* trigger the timer to do the recovery */
661         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
662 #if 1
663                 atomic_inc(&cp->reset_task_pending);
664                 atomic_inc(&cp->reset_task_pending_spare);
665                 schedule_work(&cp->reset_task);
666 #else
667                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
668                 schedule_work(&cp->reset_task);
669 #endif
670         }
671         return list_entry(entry, cas_page_t, list);
672 }
673
674
675 static void cas_mif_poll(struct cas *cp, const int enable)
676 {
677         u32 cfg;
678
679         cfg  = readl(cp->regs + REG_MIF_CFG);
680         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
681
682         if (cp->phy_type & CAS_PHY_MII_MDIO1)
683                 cfg |= MIF_CFG_PHY_SELECT;
684
685         /* poll and interrupt on link status change. */
686         if (enable) {
687                 cfg |= MIF_CFG_POLL_EN;
688                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
689                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
690         }
691         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
692                cp->regs + REG_MIF_MASK);
693         writel(cfg, cp->regs + REG_MIF_CFG);
694 }
695
696 /* Must be invoked under cp->lock */
697 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
698 {
699         u16 ctl;
700 #if 1
701         int lcntl;
702         int changed = 0;
703         int oldstate = cp->lstate;
704         int link_was_not_down = !(oldstate == link_down);
705 #endif
706         /* Setup link parameters */
707         if (!ep)
708                 goto start_aneg;
709         lcntl = cp->link_cntl;
710         if (ep->autoneg == AUTONEG_ENABLE)
711                 cp->link_cntl = BMCR_ANENABLE;
712         else {
713                 u32 speed = ethtool_cmd_speed(ep);
714                 cp->link_cntl = 0;
715                 if (speed == SPEED_100)
716                         cp->link_cntl |= BMCR_SPEED100;
717                 else if (speed == SPEED_1000)
718                         cp->link_cntl |= CAS_BMCR_SPEED1000;
719                 if (ep->duplex == DUPLEX_FULL)
720                         cp->link_cntl |= BMCR_FULLDPLX;
721         }
722 #if 1
723         changed = (lcntl != cp->link_cntl);
724 #endif
725 start_aneg:
726         if (cp->lstate == link_up) {
727                 netdev_info(cp->dev, "PCS link down\n");
728         } else {
729                 if (changed) {
730                         netdev_info(cp->dev, "link configuration changed\n");
731                 }
732         }
733         cp->lstate = link_down;
734         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
735         if (!cp->hw_running)
736                 return;
737 #if 1
738         /*
739          * WTZ: If the old state was link_up, we turn off the carrier
740          * to replicate everything we do elsewhere on a link-down
741          * event when we were already in a link-up state..
742          */
743         if (oldstate == link_up)
744                 netif_carrier_off(cp->dev);
745         if (changed  && link_was_not_down) {
746                 /*
747                  * WTZ: This branch will simply schedule a full reset after
748                  * we explicitly changed link modes in an ioctl. See if this
749                  * fixes the link-problems we were having for forced mode.
750                  */
751                 atomic_inc(&cp->reset_task_pending);
752                 atomic_inc(&cp->reset_task_pending_all);
753                 schedule_work(&cp->reset_task);
754                 cp->timer_ticks = 0;
755                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
756                 return;
757         }
758 #endif
759         if (cp->phy_type & CAS_PHY_SERDES) {
760                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
761
762                 if (cp->link_cntl & BMCR_ANENABLE) {
763                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
764                         cp->lstate = link_aneg;
765                 } else {
766                         if (cp->link_cntl & BMCR_FULLDPLX)
767                                 val |= PCS_MII_CTRL_DUPLEX;
768                         val &= ~PCS_MII_AUTONEG_EN;
769                         cp->lstate = link_force_ok;
770                 }
771                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
772                 writel(val, cp->regs + REG_PCS_MII_CTRL);
773
774         } else {
775                 cas_mif_poll(cp, 0);
776                 ctl = cas_phy_read(cp, MII_BMCR);
777                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
778                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
779                 ctl |= cp->link_cntl;
780                 if (ctl & BMCR_ANENABLE) {
781                         ctl |= BMCR_ANRESTART;
782                         cp->lstate = link_aneg;
783                 } else {
784                         cp->lstate = link_force_ok;
785                 }
786                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
787                 cas_phy_write(cp, MII_BMCR, ctl);
788                 cas_mif_poll(cp, 1);
789         }
790
791         cp->timer_ticks = 0;
792         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
793 }
794
795 /* Must be invoked under cp->lock. */
796 static int cas_reset_mii_phy(struct cas *cp)
797 {
798         int limit = STOP_TRIES_PHY;
799         u16 val;
800
801         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
802         udelay(100);
803         while (--limit) {
804                 val = cas_phy_read(cp, MII_BMCR);
805                 if ((val & BMCR_RESET) == 0)
806                         break;
807                 udelay(10);
808         }
809         return limit <= 0;
810 }
811
812 static int cas_saturn_firmware_init(struct cas *cp)
813 {
814         const struct firmware *fw;
815         const char fw_name[] = "sun/cassini.bin";
816         int err;
817
818         if (PHY_NS_DP83065 != cp->phy_id)
819                 return 0;
820
821         err = request_firmware(&fw, fw_name, &cp->pdev->dev);
822         if (err) {
823                 pr_err("Failed to load firmware \"%s\"\n",
824                        fw_name);
825                 return err;
826         }
827         if (fw->size < 2) {
828                 pr_err("bogus length %zu in \"%s\"\n",
829                        fw->size, fw_name);
830                 err = -EINVAL;
831                 goto out;
832         }
833         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
834         cp->fw_size = fw->size - 2;
835         cp->fw_data = vmalloc(cp->fw_size);
836         if (!cp->fw_data) {
837                 err = -ENOMEM;
838                 goto out;
839         }
840         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
841 out:
842         release_firmware(fw);
843         return err;
844 }
845
846 static void cas_saturn_firmware_load(struct cas *cp)
847 {
848         int i;
849
850         cas_phy_powerdown(cp);
851
852         /* expanded memory access mode */
853         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
854
855         /* pointer configuration for new firmware */
856         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
857         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
858         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
859         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
860         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
861         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
862         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
863         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
864
865         /* download new firmware */
866         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
867         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
868         for (i = 0; i < cp->fw_size; i++)
869                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
870
871         /* enable firmware */
872         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
873         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
874 }
875
876
877 /* phy initialization */
878 static void cas_phy_init(struct cas *cp)
879 {
880         u16 val;
881
882         /* if we're in MII/GMII mode, set up phy */
883         if (CAS_PHY_MII(cp->phy_type)) {
884                 writel(PCS_DATAPATH_MODE_MII,
885                        cp->regs + REG_PCS_DATAPATH_MODE);
886
887                 cas_mif_poll(cp, 0);
888                 cas_reset_mii_phy(cp); /* take out of isolate mode */
889
890                 if (PHY_LUCENT_B0 == cp->phy_id) {
891                         /* workaround link up/down issue with lucent */
892                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
893                         cas_phy_write(cp, MII_BMCR, 0x00f1);
894                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
895
896                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
897                         /* workarounds for broadcom phy */
898                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
899                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
900                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
901                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
902                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
903                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
904                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
905                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
906                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
907                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
908                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
909
910                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
911                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
912                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
913                         if (val & 0x0080) {
914                                 /* link workaround */
915                                 cas_phy_write(cp, BROADCOM_MII_REG4,
916                                               val & ~0x0080);
917                         }
918
919                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
920                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
921                                SATURN_PCFG_FSI : 0x0,
922                                cp->regs + REG_SATURN_PCFG);
923
924                         /* load firmware to address 10Mbps auto-negotiation
925                          * issue. NOTE: this will need to be changed if the
926                          * default firmware gets fixed.
927                          */
928                         if (PHY_NS_DP83065 == cp->phy_id) {
929                                 cas_saturn_firmware_load(cp);
930                         }
931                         cas_phy_powerup(cp);
932                 }
933
934                 /* advertise capabilities */
935                 val = cas_phy_read(cp, MII_BMCR);
936                 val &= ~BMCR_ANENABLE;
937                 cas_phy_write(cp, MII_BMCR, val);
938                 udelay(10);
939
940                 cas_phy_write(cp, MII_ADVERTISE,
941                               cas_phy_read(cp, MII_ADVERTISE) |
942                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
943                                ADVERTISE_100HALF | ADVERTISE_100FULL |
944                                CAS_ADVERTISE_PAUSE |
945                                CAS_ADVERTISE_ASYM_PAUSE));
946
947                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
948                         /* make sure that we don't advertise half
949                          * duplex to avoid a chip issue
950                          */
951                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
952                         val &= ~CAS_ADVERTISE_1000HALF;
953                         val |= CAS_ADVERTISE_1000FULL;
954                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
955                 }
956
957         } else {
958                 /* reset pcs for serdes */
959                 u32 val;
960                 int limit;
961
962                 writel(PCS_DATAPATH_MODE_SERDES,
963                        cp->regs + REG_PCS_DATAPATH_MODE);
964
965                 /* enable serdes pins on saturn */
966                 if (cp->cas_flags & CAS_FLAG_SATURN)
967                         writel(0, cp->regs + REG_SATURN_PCFG);
968
969                 /* Reset PCS unit. */
970                 val = readl(cp->regs + REG_PCS_MII_CTRL);
971                 val |= PCS_MII_RESET;
972                 writel(val, cp->regs + REG_PCS_MII_CTRL);
973
974                 limit = STOP_TRIES;
975                 while (--limit > 0) {
976                         udelay(10);
977                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
978                              PCS_MII_RESET) == 0)
979                                 break;
980                 }
981                 if (limit <= 0)
982                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
983                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
984
985                 /* Make sure PCS is disabled while changing advertisement
986                  * configuration.
987                  */
988                 writel(0x0, cp->regs + REG_PCS_CFG);
989
990                 /* Advertise all capabilities except half-duplex. */
991                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
992                 val &= ~PCS_MII_ADVERT_HD;
993                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
994                         PCS_MII_ADVERT_ASYM_PAUSE);
995                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
996
997                 /* enable PCS */
998                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
999
1000                 /* pcs workaround: enable sync detect */
1001                 writel(PCS_SERDES_CTRL_SYNCD_EN,
1002                        cp->regs + REG_PCS_SERDES_CTRL);
1003         }
1004 }
1005
1006
1007 static int cas_pcs_link_check(struct cas *cp)
1008 {
1009         u32 stat, state_machine;
1010         int retval = 0;
1011
1012         /* The link status bit latches on zero, so you must
1013          * read it twice in such a case to see a transition
1014          * to the link being up.
1015          */
1016         stat = readl(cp->regs + REG_PCS_MII_STATUS);
1017         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1018                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1019
1020         /* The remote-fault indication is only valid
1021          * when autoneg has completed.
1022          */
1023         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1024                      PCS_MII_STATUS_REMOTE_FAULT)) ==
1025             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1026                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1027
1028         /* work around link detection issue by querying the PCS state
1029          * machine directly.
1030          */
1031         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1032         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1033                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1034         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1035                 stat |= PCS_MII_STATUS_LINK_STATUS;
1036         }
1037
1038         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1039                 if (cp->lstate != link_up) {
1040                         if (cp->opened) {
1041                                 cp->lstate = link_up;
1042                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1043
1044                                 cas_set_link_modes(cp);
1045                                 netif_carrier_on(cp->dev);
1046                         }
1047                 }
1048         } else if (cp->lstate == link_up) {
1049                 cp->lstate = link_down;
1050                 if (link_transition_timeout != 0 &&
1051                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1052                     !cp->link_transition_jiffies_valid) {
1053                         /*
1054                          * force a reset, as a workaround for the
1055                          * link-failure problem. May want to move this to a
1056                          * point a bit earlier in the sequence. If we had
1057                          * generated a reset a short time ago, we'll wait for
1058                          * the link timer to check the status until a
1059                          * timer expires (link_transistion_jiffies_valid is
1060                          * true when the timer is running.)  Instead of using
1061                          * a system timer, we just do a check whenever the
1062                          * link timer is running - this clears the flag after
1063                          * a suitable delay.
1064                          */
1065                         retval = 1;
1066                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1067                         cp->link_transition_jiffies = jiffies;
1068                         cp->link_transition_jiffies_valid = 1;
1069                 } else {
1070                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1071                 }
1072                 netif_carrier_off(cp->dev);
1073                 if (cp->opened)
1074                         netif_info(cp, link, cp->dev, "PCS link down\n");
1075
1076                 /* Cassini only: if you force a mode, there can be
1077                  * sync problems on link down. to fix that, the following
1078                  * things need to be checked:
1079                  * 1) read serialink state register
1080                  * 2) read pcs status register to verify link down.
1081                  * 3) if link down and serial link == 0x03, then you need
1082                  *    to global reset the chip.
1083                  */
1084                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1085                         /* should check to see if we're in a forced mode */
1086                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1087                         if (stat == 0x03)
1088                                 return 1;
1089                 }
1090         } else if (cp->lstate == link_down) {
1091                 if (link_transition_timeout != 0 &&
1092                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1093                     !cp->link_transition_jiffies_valid) {
1094                         /* force a reset, as a workaround for the
1095                          * link-failure problem.  May want to move
1096                          * this to a point a bit earlier in the
1097                          * sequence.
1098                          */
1099                         retval = 1;
1100                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1101                         cp->link_transition_jiffies = jiffies;
1102                         cp->link_transition_jiffies_valid = 1;
1103                 } else {
1104                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1105                 }
1106         }
1107
1108         return retval;
1109 }
1110
1111 static int cas_pcs_interrupt(struct net_device *dev,
1112                              struct cas *cp, u32 status)
1113 {
1114         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1115
1116         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1117                 return 0;
1118         return cas_pcs_link_check(cp);
1119 }
1120
1121 static int cas_txmac_interrupt(struct net_device *dev,
1122                                struct cas *cp, u32 status)
1123 {
1124         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1125
1126         if (!txmac_stat)
1127                 return 0;
1128
1129         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1130                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1131
1132         /* Defer timer expiration is quite normal,
1133          * don't even log the event.
1134          */
1135         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1136             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1137                 return 0;
1138
1139         spin_lock(&cp->stat_lock[0]);
1140         if (txmac_stat & MAC_TX_UNDERRUN) {
1141                 netdev_err(dev, "TX MAC xmit underrun\n");
1142                 cp->net_stats[0].tx_fifo_errors++;
1143         }
1144
1145         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1146                 netdev_err(dev, "TX MAC max packet size error\n");
1147                 cp->net_stats[0].tx_errors++;
1148         }
1149
1150         /* The rest are all cases of one of the 16-bit TX
1151          * counters expiring.
1152          */
1153         if (txmac_stat & MAC_TX_COLL_NORMAL)
1154                 cp->net_stats[0].collisions += 0x10000;
1155
1156         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1157                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1158                 cp->net_stats[0].collisions += 0x10000;
1159         }
1160
1161         if (txmac_stat & MAC_TX_COLL_LATE) {
1162                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1163                 cp->net_stats[0].collisions += 0x10000;
1164         }
1165         spin_unlock(&cp->stat_lock[0]);
1166
1167         /* We do not keep track of MAC_TX_COLL_FIRST and
1168          * MAC_TX_PEAK_ATTEMPTS events.
1169          */
1170         return 0;
1171 }
1172
1173 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1174 {
1175         cas_hp_inst_t *inst;
1176         u32 val;
1177         int i;
1178
1179         i = 0;
1180         while ((inst = firmware) && inst->note) {
1181                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1182
1183                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1184                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1185                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1186
1187                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1188                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1189                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1190                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1191                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1192                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1193                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1194                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1195
1196                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1197                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1198                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1199                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1200                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1201                 ++firmware;
1202                 ++i;
1203         }
1204 }
1205
1206 static void cas_init_rx_dma(struct cas *cp)
1207 {
1208         u64 desc_dma = cp->block_dvma;
1209         u32 val;
1210         int i, size;
1211
1212         /* rx free descriptors */
1213         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1214         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1215         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1216         if ((N_RX_DESC_RINGS > 1) &&
1217             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1218                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1219         writel(val, cp->regs + REG_RX_CFG);
1220
1221         val = (unsigned long) cp->init_rxds[0] -
1222                 (unsigned long) cp->init_block;
1223         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1224         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1225         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1226
1227         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1228                 /* rx desc 2 is for IPSEC packets. however,
1229                  * we don't it that for that purpose.
1230                  */
1231                 val = (unsigned long) cp->init_rxds[1] -
1232                         (unsigned long) cp->init_block;
1233                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1234                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1235                        REG_PLUS_RX_DB1_LOW);
1236                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1237                        REG_PLUS_RX_KICK1);
1238         }
1239
1240         /* rx completion registers */
1241         val = (unsigned long) cp->init_rxcs[0] -
1242                 (unsigned long) cp->init_block;
1243         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1244         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1245
1246         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1247                 /* rx comp 2-4 */
1248                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1249                         val = (unsigned long) cp->init_rxcs[i] -
1250                                 (unsigned long) cp->init_block;
1251                         writel((desc_dma + val) >> 32, cp->regs +
1252                                REG_PLUS_RX_CBN_HI(i));
1253                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1254                                REG_PLUS_RX_CBN_LOW(i));
1255                 }
1256         }
1257
1258         /* read selective clear regs to prevent spurious interrupts
1259          * on reset because complete == kick.
1260          * selective clear set up to prevent interrupts on resets
1261          */
1262         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1263         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1264         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1265                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1266                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1267
1268                 /* 2 is different from 3 and 4 */
1269                 if (N_RX_COMP_RINGS > 1)
1270                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1271                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1272
1273                 for (i = 2; i < N_RX_COMP_RINGS; i++)
1274                         writel(INTR_RX_DONE_ALT,
1275                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1276         }
1277
1278         /* set up pause thresholds */
1279         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1280                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1281         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1282                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1283         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1284
1285         /* zero out dma reassembly buffers */
1286         for (i = 0; i < 64; i++) {
1287                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1288                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1289                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1290                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1291         }
1292
1293         /* make sure address register is 0 for normal operation */
1294         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1295         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1296
1297         /* interrupt mitigation */
1298 #ifdef USE_RX_BLANK
1299         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1300         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1301         writel(val, cp->regs + REG_RX_BLANK);
1302 #else
1303         writel(0x0, cp->regs + REG_RX_BLANK);
1304 #endif
1305
1306         /* interrupt generation as a function of low water marks for
1307          * free desc and completion entries. these are used to trigger
1308          * housekeeping for rx descs. we don't use the free interrupt
1309          * as it's not very useful
1310          */
1311         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1312         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1313         writel(val, cp->regs + REG_RX_AE_THRESH);
1314         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1315                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1316                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1317         }
1318
1319         /* Random early detect registers. useful for congestion avoidance.
1320          * this should be tunable.
1321          */
1322         writel(0x0, cp->regs + REG_RX_RED);
1323
1324         /* receive page sizes. default == 2K (0x800) */
1325         val = 0;
1326         if (cp->page_size == 0x1000)
1327                 val = 0x1;
1328         else if (cp->page_size == 0x2000)
1329                 val = 0x2;
1330         else if (cp->page_size == 0x4000)
1331                 val = 0x3;
1332
1333         /* round mtu + offset. constrain to page size. */
1334         size = cp->dev->mtu + 64;
1335         if (size > cp->page_size)
1336                 size = cp->page_size;
1337
1338         if (size <= 0x400)
1339                 i = 0x0;
1340         else if (size <= 0x800)
1341                 i = 0x1;
1342         else if (size <= 0x1000)
1343                 i = 0x2;
1344         else
1345                 i = 0x3;
1346
1347         cp->mtu_stride = 1 << (i + 10);
1348         val  = CAS_BASE(RX_PAGE_SIZE, val);
1349         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1350         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1351         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1352         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1353
1354         /* enable the header parser if desired */
1355         if (CAS_HP_FIRMWARE == cas_prog_null)
1356                 return;
1357
1358         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1359         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1360         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1361         writel(val, cp->regs + REG_HP_CFG);
1362 }
1363
1364 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1365 {
1366         memset(rxc, 0, sizeof(*rxc));
1367         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1368 }
1369
1370 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1371  * flipping is protected by the fact that the chip will not
1372  * hand back the same page index while it's being processed.
1373  */
1374 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1375 {
1376         cas_page_t *page = cp->rx_pages[1][index];
1377         cas_page_t *new;
1378
1379         if (page_count(page->buffer) == 1)
1380                 return page;
1381
1382         new = cas_page_dequeue(cp);
1383         if (new) {
1384                 spin_lock(&cp->rx_inuse_lock);
1385                 list_add(&page->list, &cp->rx_inuse_list);
1386                 spin_unlock(&cp->rx_inuse_lock);
1387         }
1388         return new;
1389 }
1390
1391 /* this needs to be changed if we actually use the ENC RX DESC ring */
1392 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1393                                  const int index)
1394 {
1395         cas_page_t **page0 = cp->rx_pages[0];
1396         cas_page_t **page1 = cp->rx_pages[1];
1397
1398         /* swap if buffer is in use */
1399         if (page_count(page0[index]->buffer) > 1) {
1400                 cas_page_t *new = cas_page_spare(cp, index);
1401                 if (new) {
1402                         page1[index] = page0[index];
1403                         page0[index] = new;
1404                 }
1405         }
1406         RX_USED_SET(page0[index], 0);
1407         return page0[index];
1408 }
1409
1410 static void cas_clean_rxds(struct cas *cp)
1411 {
1412         /* only clean ring 0 as ring 1 is used for spare buffers */
1413         struct cas_rx_desc *rxd = cp->init_rxds[0];
1414         int i, size;
1415
1416         /* release all rx flows */
1417         for (i = 0; i < N_RX_FLOWS; i++) {
1418                 struct sk_buff *skb;
1419                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1420                         cas_skb_release(skb);
1421                 }
1422         }
1423
1424         /* initialize descriptors */
1425         size = RX_DESC_RINGN_SIZE(0);
1426         for (i = 0; i < size; i++) {
1427                 cas_page_t *page = cas_page_swap(cp, 0, i);
1428                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1429                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1430                                             CAS_BASE(RX_INDEX_RING, 0));
1431         }
1432
1433         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1434         cp->rx_last[0] = 0;
1435         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1436 }
1437
1438 static void cas_clean_rxcs(struct cas *cp)
1439 {
1440         int i, j;
1441
1442         /* take ownership of rx comp descriptors */
1443         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1444         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1445         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1446                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1447                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1448                         cas_rxc_init(rxc + j);
1449                 }
1450         }
1451 }
1452
1453 #if 0
1454 /* When we get a RX fifo overflow, the RX unit is probably hung
1455  * so we do the following.
1456  *
1457  * If any part of the reset goes wrong, we return 1 and that causes the
1458  * whole chip to be reset.
1459  */
1460 static int cas_rxmac_reset(struct cas *cp)
1461 {
1462         struct net_device *dev = cp->dev;
1463         int limit;
1464         u32 val;
1465
1466         /* First, reset MAC RX. */
1467         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1468         for (limit = 0; limit < STOP_TRIES; limit++) {
1469                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1470                         break;
1471                 udelay(10);
1472         }
1473         if (limit == STOP_TRIES) {
1474                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1475                 return 1;
1476         }
1477
1478         /* Second, disable RX DMA. */
1479         writel(0, cp->regs + REG_RX_CFG);
1480         for (limit = 0; limit < STOP_TRIES; limit++) {
1481                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1482                         break;
1483                 udelay(10);
1484         }
1485         if (limit == STOP_TRIES) {
1486                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1487                 return 1;
1488         }
1489
1490         mdelay(5);
1491
1492         /* Execute RX reset command. */
1493         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1494         for (limit = 0; limit < STOP_TRIES; limit++) {
1495                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1496                         break;
1497                 udelay(10);
1498         }
1499         if (limit == STOP_TRIES) {
1500                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1501                 return 1;
1502         }
1503
1504         /* reset driver rx state */
1505         cas_clean_rxds(cp);
1506         cas_clean_rxcs(cp);
1507
1508         /* Now, reprogram the rest of RX unit. */
1509         cas_init_rx_dma(cp);
1510
1511         /* re-enable */
1512         val = readl(cp->regs + REG_RX_CFG);
1513         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1514         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1515         val = readl(cp->regs + REG_MAC_RX_CFG);
1516         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1517         return 0;
1518 }
1519 #endif
1520
1521 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1522                                u32 status)
1523 {
1524         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1525
1526         if (!stat)
1527                 return 0;
1528
1529         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1530
1531         /* these are all rollovers */
1532         spin_lock(&cp->stat_lock[0]);
1533         if (stat & MAC_RX_ALIGN_ERR)
1534                 cp->net_stats[0].rx_frame_errors += 0x10000;
1535
1536         if (stat & MAC_RX_CRC_ERR)
1537                 cp->net_stats[0].rx_crc_errors += 0x10000;
1538
1539         if (stat & MAC_RX_LEN_ERR)
1540                 cp->net_stats[0].rx_length_errors += 0x10000;
1541
1542         if (stat & MAC_RX_OVERFLOW) {
1543                 cp->net_stats[0].rx_over_errors++;
1544                 cp->net_stats[0].rx_fifo_errors++;
1545         }
1546
1547         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1548          * events.
1549          */
1550         spin_unlock(&cp->stat_lock[0]);
1551         return 0;
1552 }
1553
1554 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1555                              u32 status)
1556 {
1557         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1558
1559         if (!stat)
1560                 return 0;
1561
1562         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1563                      "mac interrupt, stat: 0x%x\n", stat);
1564
1565         /* This interrupt is just for pause frame and pause
1566          * tracking.  It is useful for diagnostics and debug
1567          * but probably by default we will mask these events.
1568          */
1569         if (stat & MAC_CTRL_PAUSE_STATE)
1570                 cp->pause_entered++;
1571
1572         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1573                 cp->pause_last_time_recvd = (stat >> 16);
1574
1575         return 0;
1576 }
1577
1578
1579 /* Must be invoked under cp->lock. */
1580 static inline int cas_mdio_link_not_up(struct cas *cp)
1581 {
1582         u16 val;
1583
1584         switch (cp->lstate) {
1585         case link_force_ret:
1586                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1587                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1588                 cp->timer_ticks = 5;
1589                 cp->lstate = link_force_ok;
1590                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1591                 break;
1592
1593         case link_aneg:
1594                 val = cas_phy_read(cp, MII_BMCR);
1595
1596                 /* Try forced modes. we try things in the following order:
1597                  * 1000 full -> 100 full/half -> 10 half
1598                  */
1599                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1600                 val |= BMCR_FULLDPLX;
1601                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1602                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1603                 cas_phy_write(cp, MII_BMCR, val);
1604                 cp->timer_ticks = 5;
1605                 cp->lstate = link_force_try;
1606                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1607                 break;
1608
1609         case link_force_try:
1610                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1611                 val = cas_phy_read(cp, MII_BMCR);
1612                 cp->timer_ticks = 5;
1613                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1614                         val &= ~CAS_BMCR_SPEED1000;
1615                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1616                         cas_phy_write(cp, MII_BMCR, val);
1617                         break;
1618                 }
1619
1620                 if (val & BMCR_SPEED100) {
1621                         if (val & BMCR_FULLDPLX) /* fd failed */
1622                                 val &= ~BMCR_FULLDPLX;
1623                         else { /* 100Mbps failed */
1624                                 val &= ~BMCR_SPEED100;
1625                         }
1626                         cas_phy_write(cp, MII_BMCR, val);
1627                         break;
1628                 }
1629         default:
1630                 break;
1631         }
1632         return 0;
1633 }
1634
1635
1636 /* must be invoked with cp->lock held */
1637 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1638 {
1639         int restart;
1640
1641         if (bmsr & BMSR_LSTATUS) {
1642                 /* Ok, here we got a link. If we had it due to a forced
1643                  * fallback, and we were configured for autoneg, we
1644                  * retry a short autoneg pass. If you know your hub is
1645                  * broken, use ethtool ;)
1646                  */
1647                 if ((cp->lstate == link_force_try) &&
1648                     (cp->link_cntl & BMCR_ANENABLE)) {
1649                         cp->lstate = link_force_ret;
1650                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1651                         cas_mif_poll(cp, 0);
1652                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1653                         cp->timer_ticks = 5;
1654                         if (cp->opened)
1655                                 netif_info(cp, link, cp->dev,
1656                                            "Got link after fallback, retrying autoneg once...\n");
1657                         cas_phy_write(cp, MII_BMCR,
1658                                       cp->link_fcntl | BMCR_ANENABLE |
1659                                       BMCR_ANRESTART);
1660                         cas_mif_poll(cp, 1);
1661
1662                 } else if (cp->lstate != link_up) {
1663                         cp->lstate = link_up;
1664                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1665
1666                         if (cp->opened) {
1667                                 cas_set_link_modes(cp);
1668                                 netif_carrier_on(cp->dev);
1669                         }
1670                 }
1671                 return 0;
1672         }
1673
1674         /* link not up. if the link was previously up, we restart the
1675          * whole process
1676          */
1677         restart = 0;
1678         if (cp->lstate == link_up) {
1679                 cp->lstate = link_down;
1680                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1681
1682                 netif_carrier_off(cp->dev);
1683                 if (cp->opened)
1684                         netif_info(cp, link, cp->dev, "Link down\n");
1685                 restart = 1;
1686
1687         } else if (++cp->timer_ticks > 10)
1688                 cas_mdio_link_not_up(cp);
1689
1690         return restart;
1691 }
1692
1693 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1694                              u32 status)
1695 {
1696         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1697         u16 bmsr;
1698
1699         /* check for a link change */
1700         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1701                 return 0;
1702
1703         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1704         return cas_mii_link_check(cp, bmsr);
1705 }
1706
1707 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1708                              u32 status)
1709 {
1710         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1711
1712         if (!stat)
1713                 return 0;
1714
1715         netdev_err(dev, "PCI error [%04x:%04x]",
1716                    stat, readl(cp->regs + REG_BIM_DIAG));
1717
1718         /* cassini+ has this reserved */
1719         if ((stat & PCI_ERR_BADACK) &&
1720             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1721                 pr_cont(" <No ACK64# during ABS64 cycle>");
1722
1723         if (stat & PCI_ERR_DTRTO)
1724                 pr_cont(" <Delayed transaction timeout>");
1725         if (stat & PCI_ERR_OTHER)
1726                 pr_cont(" <other>");
1727         if (stat & PCI_ERR_BIM_DMA_WRITE)
1728                 pr_cont(" <BIM DMA 0 write req>");
1729         if (stat & PCI_ERR_BIM_DMA_READ)
1730                 pr_cont(" <BIM DMA 0 read req>");
1731         pr_cont("\n");
1732
1733         if (stat & PCI_ERR_OTHER) {
1734                 u16 cfg;
1735
1736                 /* Interrogate PCI config space for the
1737                  * true cause.
1738                  */
1739                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1740                 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1741                 if (cfg & PCI_STATUS_PARITY)
1742                         netdev_err(dev, "PCI parity error detected\n");
1743                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1744                         netdev_err(dev, "PCI target abort\n");
1745                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1746                         netdev_err(dev, "PCI master acks target abort\n");
1747                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1748                         netdev_err(dev, "PCI master abort\n");
1749                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1750                         netdev_err(dev, "PCI system error SERR#\n");
1751                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1752                         netdev_err(dev, "PCI parity error\n");
1753
1754                 /* Write the error bits back to clear them. */
1755                 cfg &= (PCI_STATUS_PARITY |
1756                         PCI_STATUS_SIG_TARGET_ABORT |
1757                         PCI_STATUS_REC_TARGET_ABORT |
1758                         PCI_STATUS_REC_MASTER_ABORT |
1759                         PCI_STATUS_SIG_SYSTEM_ERROR |
1760                         PCI_STATUS_DETECTED_PARITY);
1761                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1762         }
1763
1764         /* For all PCI errors, we should reset the chip. */
1765         return 1;
1766 }
1767
1768 /* All non-normal interrupt conditions get serviced here.
1769  * Returns non-zero if we should just exit the interrupt
1770  * handler right now (ie. if we reset the card which invalidates
1771  * all of the other original irq status bits).
1772  */
1773 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1774                             u32 status)
1775 {
1776         if (status & INTR_RX_TAG_ERROR) {
1777                 /* corrupt RX tag framing */
1778                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1779                              "corrupt rx tag framing\n");
1780                 spin_lock(&cp->stat_lock[0]);
1781                 cp->net_stats[0].rx_errors++;
1782                 spin_unlock(&cp->stat_lock[0]);
1783                 goto do_reset;
1784         }
1785
1786         if (status & INTR_RX_LEN_MISMATCH) {
1787                 /* length mismatch. */
1788                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1789                              "length mismatch for rx frame\n");
1790                 spin_lock(&cp->stat_lock[0]);
1791                 cp->net_stats[0].rx_errors++;
1792                 spin_unlock(&cp->stat_lock[0]);
1793                 goto do_reset;
1794         }
1795
1796         if (status & INTR_PCS_STATUS) {
1797                 if (cas_pcs_interrupt(dev, cp, status))
1798                         goto do_reset;
1799         }
1800
1801         if (status & INTR_TX_MAC_STATUS) {
1802                 if (cas_txmac_interrupt(dev, cp, status))
1803                         goto do_reset;
1804         }
1805
1806         if (status & INTR_RX_MAC_STATUS) {
1807                 if (cas_rxmac_interrupt(dev, cp, status))
1808                         goto do_reset;
1809         }
1810
1811         if (status & INTR_MAC_CTRL_STATUS) {
1812                 if (cas_mac_interrupt(dev, cp, status))
1813                         goto do_reset;
1814         }
1815
1816         if (status & INTR_MIF_STATUS) {
1817                 if (cas_mif_interrupt(dev, cp, status))
1818                         goto do_reset;
1819         }
1820
1821         if (status & INTR_PCI_ERROR_STATUS) {
1822                 if (cas_pci_interrupt(dev, cp, status))
1823                         goto do_reset;
1824         }
1825         return 0;
1826
1827 do_reset:
1828 #if 1
1829         atomic_inc(&cp->reset_task_pending);
1830         atomic_inc(&cp->reset_task_pending_all);
1831         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1832         schedule_work(&cp->reset_task);
1833 #else
1834         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1835         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1836         schedule_work(&cp->reset_task);
1837 #endif
1838         return 1;
1839 }
1840
1841 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1842  *       determining whether to do a netif_stop/wakeup
1843  */
1844 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1845 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1846 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1847                                   const int len)
1848 {
1849         unsigned long off = addr + len;
1850
1851         if (CAS_TABORT(cp) == 1)
1852                 return 0;
1853         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1854                 return 0;
1855         return TX_TARGET_ABORT_LEN;
1856 }
1857
1858 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1859 {
1860         struct cas_tx_desc *txds;
1861         struct sk_buff **skbs;
1862         struct net_device *dev = cp->dev;
1863         int entry, count;
1864
1865         spin_lock(&cp->tx_lock[ring]);
1866         txds = cp->init_txds[ring];
1867         skbs = cp->tx_skbs[ring];
1868         entry = cp->tx_old[ring];
1869
1870         count = TX_BUFF_COUNT(ring, entry, limit);
1871         while (entry != limit) {
1872                 struct sk_buff *skb = skbs[entry];
1873                 dma_addr_t daddr;
1874                 u32 dlen;
1875                 int frag;
1876
1877                 if (!skb) {
1878                         /* this should never occur */
1879                         entry = TX_DESC_NEXT(ring, entry);
1880                         continue;
1881                 }
1882
1883                 /* however, we might get only a partial skb release. */
1884                 count -= skb_shinfo(skb)->nr_frags +
1885                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1886                 if (count < 0)
1887                         break;
1888
1889                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1890                              "tx[%d] done, slot %d\n", ring, entry);
1891
1892                 skbs[entry] = NULL;
1893                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1894
1895                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1896                         struct cas_tx_desc *txd = txds + entry;
1897
1898                         daddr = le64_to_cpu(txd->buffer);
1899                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1900                                        le64_to_cpu(txd->control));
1901                         pci_unmap_page(cp->pdev, daddr, dlen,
1902                                        PCI_DMA_TODEVICE);
1903                         entry = TX_DESC_NEXT(ring, entry);
1904
1905                         /* tiny buffer may follow */
1906                         if (cp->tx_tiny_use[ring][entry].used) {
1907                                 cp->tx_tiny_use[ring][entry].used = 0;
1908                                 entry = TX_DESC_NEXT(ring, entry);
1909                         }
1910                 }
1911
1912                 spin_lock(&cp->stat_lock[ring]);
1913                 cp->net_stats[ring].tx_packets++;
1914                 cp->net_stats[ring].tx_bytes += skb->len;
1915                 spin_unlock(&cp->stat_lock[ring]);
1916                 dev_kfree_skb_irq(skb);
1917         }
1918         cp->tx_old[ring] = entry;
1919
1920         /* this is wrong for multiple tx rings. the net device needs
1921          * multiple queues for this to do the right thing.  we wait
1922          * for 2*packets to be available when using tiny buffers
1923          */
1924         if (netif_queue_stopped(dev) &&
1925             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1926                 netif_wake_queue(dev);
1927         spin_unlock(&cp->tx_lock[ring]);
1928 }
1929
1930 static void cas_tx(struct net_device *dev, struct cas *cp,
1931                    u32 status)
1932 {
1933         int limit, ring;
1934 #ifdef USE_TX_COMPWB
1935         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1936 #endif
1937         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1938                      "tx interrupt, status: 0x%x, %llx\n",
1939                      status, (unsigned long long)compwb);
1940         /* process all the rings */
1941         for (ring = 0; ring < N_TX_RINGS; ring++) {
1942 #ifdef USE_TX_COMPWB
1943                 /* use the completion writeback registers */
1944                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1945                         CAS_VAL(TX_COMPWB_LSB, compwb);
1946                 compwb = TX_COMPWB_NEXT(compwb);
1947 #else
1948                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1949 #endif
1950                 if (cp->tx_old[ring] != limit)
1951                         cas_tx_ringN(cp, ring, limit);
1952         }
1953 }
1954
1955
1956 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1957                               int entry, const u64 *words,
1958                               struct sk_buff **skbref)
1959 {
1960         int dlen, hlen, len, i, alloclen;
1961         int off, swivel = RX_SWIVEL_OFF_VAL;
1962         struct cas_page *page;
1963         struct sk_buff *skb;
1964         void *addr, *crcaddr;
1965         __sum16 csum;
1966         char *p;
1967
1968         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1969         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1970         len  = hlen + dlen;
1971
1972         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1973                 alloclen = len;
1974         else
1975                 alloclen = max(hlen, RX_COPY_MIN);
1976
1977         skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1978         if (skb == NULL)
1979                 return -1;
1980
1981         *skbref = skb;
1982         skb_reserve(skb, swivel);
1983
1984         p = skb->data;
1985         addr = crcaddr = NULL;
1986         if (hlen) { /* always copy header pages */
1987                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1988                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1989                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1990                         swivel;
1991
1992                 i = hlen;
1993                 if (!dlen) /* attach FCS */
1994                         i += cp->crc_size;
1995                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1996                                     PCI_DMA_FROMDEVICE);
1997                 addr = cas_page_map(page->buffer);
1998                 memcpy(p, addr + off, i);
1999                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2000                                     PCI_DMA_FROMDEVICE);
2001                 cas_page_unmap(addr);
2002                 RX_USED_ADD(page, 0x100);
2003                 p += hlen;
2004                 swivel = 0;
2005         }
2006
2007
2008         if (alloclen < (hlen + dlen)) {
2009                 skb_frag_t *frag = skb_shinfo(skb)->frags;
2010
2011                 /* normal or jumbo packets. we use frags */
2012                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2013                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2014                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2015
2016                 hlen = min(cp->page_size - off, dlen);
2017                 if (hlen < 0) {
2018                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2019                                      "rx page overflow: %d\n", hlen);
2020                         dev_kfree_skb_irq(skb);
2021                         return -1;
2022                 }
2023                 i = hlen;
2024                 if (i == dlen)  /* attach FCS */
2025                         i += cp->crc_size;
2026                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2027                                     PCI_DMA_FROMDEVICE);
2028
2029                 /* make sure we always copy a header */
2030                 swivel = 0;
2031                 if (p == (char *) skb->data) { /* not split */
2032                         addr = cas_page_map(page->buffer);
2033                         memcpy(p, addr + off, RX_COPY_MIN);
2034                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2035                                         PCI_DMA_FROMDEVICE);
2036                         cas_page_unmap(addr);
2037                         off += RX_COPY_MIN;
2038                         swivel = RX_COPY_MIN;
2039                         RX_USED_ADD(page, cp->mtu_stride);
2040                 } else {
2041                         RX_USED_ADD(page, hlen);
2042                 }
2043                 skb_put(skb, alloclen);
2044
2045                 skb_shinfo(skb)->nr_frags++;
2046                 skb->data_len += hlen - swivel;
2047                 skb->truesize += hlen - swivel;
2048                 skb->len      += hlen - swivel;
2049
2050                 __skb_frag_set_page(frag, page->buffer);
2051                 __skb_frag_ref(frag);
2052                 frag->page_offset = off;
2053                 skb_frag_size_set(frag, hlen - swivel);
2054
2055                 /* any more data? */
2056                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2057                         hlen = dlen;
2058                         off = 0;
2059
2060                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2061                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2062                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2063                                             hlen + cp->crc_size,
2064                                             PCI_DMA_FROMDEVICE);
2065                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2066                                             hlen + cp->crc_size,
2067                                             PCI_DMA_FROMDEVICE);
2068
2069                         skb_shinfo(skb)->nr_frags++;
2070                         skb->data_len += hlen;
2071                         skb->len      += hlen;
2072                         frag++;
2073
2074                         __skb_frag_set_page(frag, page->buffer);
2075                         __skb_frag_ref(frag);
2076                         frag->page_offset = 0;
2077                         skb_frag_size_set(frag, hlen);
2078                         RX_USED_ADD(page, hlen + cp->crc_size);
2079                 }
2080
2081                 if (cp->crc_size) {
2082                         addr = cas_page_map(page->buffer);
2083                         crcaddr  = addr + off + hlen;
2084                 }
2085
2086         } else {
2087                 /* copying packet */
2088                 if (!dlen)
2089                         goto end_copy_pkt;
2090
2091                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2092                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2093                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2094                 hlen = min(cp->page_size - off, dlen);
2095                 if (hlen < 0) {
2096                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2097                                      "rx page overflow: %d\n", hlen);
2098                         dev_kfree_skb_irq(skb);
2099                         return -1;
2100                 }
2101                 i = hlen;
2102                 if (i == dlen) /* attach FCS */
2103                         i += cp->crc_size;
2104                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2105                                     PCI_DMA_FROMDEVICE);
2106                 addr = cas_page_map(page->buffer);
2107                 memcpy(p, addr + off, i);
2108                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2109                                     PCI_DMA_FROMDEVICE);
2110                 cas_page_unmap(addr);
2111                 if (p == (char *) skb->data) /* not split */
2112                         RX_USED_ADD(page, cp->mtu_stride);
2113                 else
2114                         RX_USED_ADD(page, i);
2115
2116                 /* any more data? */
2117                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2118                         p += hlen;
2119                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2120                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2121                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2122                                             dlen + cp->crc_size,
2123                                             PCI_DMA_FROMDEVICE);
2124                         addr = cas_page_map(page->buffer);
2125                         memcpy(p, addr, dlen + cp->crc_size);
2126                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2127                                             dlen + cp->crc_size,
2128                                             PCI_DMA_FROMDEVICE);
2129                         cas_page_unmap(addr);
2130                         RX_USED_ADD(page, dlen + cp->crc_size);
2131                 }
2132 end_copy_pkt:
2133                 if (cp->crc_size) {
2134                         addr    = NULL;
2135                         crcaddr = skb->data + alloclen;
2136                 }
2137                 skb_put(skb, alloclen);
2138         }
2139
2140         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2141         if (cp->crc_size) {
2142                 /* checksum includes FCS. strip it out. */
2143                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2144                                               csum_unfold(csum)));
2145                 if (addr)
2146                         cas_page_unmap(addr);
2147         }
2148         skb->protocol = eth_type_trans(skb, cp->dev);
2149         if (skb->protocol == htons(ETH_P_IP)) {
2150                 skb->csum = csum_unfold(~csum);
2151                 skb->ip_summed = CHECKSUM_COMPLETE;
2152         } else
2153                 skb_checksum_none_assert(skb);
2154         return len;
2155 }
2156
2157
2158 /* we can handle up to 64 rx flows at a time. we do the same thing
2159  * as nonreassm except that we batch up the buffers.
2160  * NOTE: we currently just treat each flow as a bunch of packets that
2161  *       we pass up. a better way would be to coalesce the packets
2162  *       into a jumbo packet. to do that, we need to do the following:
2163  *       1) the first packet will have a clean split between header and
2164  *          data. save both.
2165  *       2) each time the next flow packet comes in, extend the
2166  *          data length and merge the checksums.
2167  *       3) on flow release, fix up the header.
2168  *       4) make sure the higher layer doesn't care.
2169  * because packets get coalesced, we shouldn't run into fragment count
2170  * issues.
2171  */
2172 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2173                                    struct sk_buff *skb)
2174 {
2175         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2176         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2177
2178         /* this is protected at a higher layer, so no need to
2179          * do any additional locking here. stick the buffer
2180          * at the end.
2181          */
2182         __skb_queue_tail(flow, skb);
2183         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2184                 while ((skb = __skb_dequeue(flow))) {
2185                         cas_skb_release(skb);
2186                 }
2187         }
2188 }
2189
2190 /* put rx descriptor back on ring. if a buffer is in use by a higher
2191  * layer, this will need to put in a replacement.
2192  */
2193 static void cas_post_page(struct cas *cp, const int ring, const int index)
2194 {
2195         cas_page_t *new;
2196         int entry;
2197
2198         entry = cp->rx_old[ring];
2199
2200         new = cas_page_swap(cp, ring, index);
2201         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2202         cp->init_rxds[ring][entry].index  =
2203                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2204                             CAS_BASE(RX_INDEX_RING, ring));
2205
2206         entry = RX_DESC_ENTRY(ring, entry + 1);
2207         cp->rx_old[ring] = entry;
2208
2209         if (entry % 4)
2210                 return;
2211
2212         if (ring == 0)
2213                 writel(entry, cp->regs + REG_RX_KICK);
2214         else if ((N_RX_DESC_RINGS > 1) &&
2215                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2216                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2217 }
2218
2219
2220 /* only when things are bad */
2221 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2222 {
2223         unsigned int entry, last, count, released;
2224         int cluster;
2225         cas_page_t **page = cp->rx_pages[ring];
2226
2227         entry = cp->rx_old[ring];
2228
2229         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2230                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2231
2232         cluster = -1;
2233         count = entry & 0x3;
2234         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2235         released = 0;
2236         while (entry != last) {
2237                 /* make a new buffer if it's still in use */
2238                 if (page_count(page[entry]->buffer) > 1) {
2239                         cas_page_t *new = cas_page_dequeue(cp);
2240                         if (!new) {
2241                                 /* let the timer know that we need to
2242                                  * do this again
2243                                  */
2244                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2245                                 if (!timer_pending(&cp->link_timer))
2246                                         mod_timer(&cp->link_timer, jiffies +
2247                                                   CAS_LINK_FAST_TIMEOUT);
2248                                 cp->rx_old[ring]  = entry;
2249                                 cp->rx_last[ring] = num ? num - released : 0;
2250                                 return -ENOMEM;
2251                         }
2252                         spin_lock(&cp->rx_inuse_lock);
2253                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2254                         spin_unlock(&cp->rx_inuse_lock);
2255                         cp->init_rxds[ring][entry].buffer =
2256                                 cpu_to_le64(new->dma_addr);
2257                         page[entry] = new;
2258
2259                 }
2260
2261                 if (++count == 4) {
2262                         cluster = entry;
2263                         count = 0;
2264                 }
2265                 released++;
2266                 entry = RX_DESC_ENTRY(ring, entry + 1);
2267         }
2268         cp->rx_old[ring] = entry;
2269
2270         if (cluster < 0)
2271                 return 0;
2272
2273         if (ring == 0)
2274                 writel(cluster, cp->regs + REG_RX_KICK);
2275         else if ((N_RX_DESC_RINGS > 1) &&
2276                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2277                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2278         return 0;
2279 }
2280
2281
2282 /* process a completion ring. packets are set up in three basic ways:
2283  * small packets: should be copied header + data in single buffer.
2284  * large packets: header and data in a single buffer.
2285  * split packets: header in a separate buffer from data.
2286  *                data may be in multiple pages. data may be > 256
2287  *                bytes but in a single page.
2288  *
2289  * NOTE: RX page posting is done in this routine as well. while there's
2290  *       the capability of using multiple RX completion rings, it isn't
2291  *       really worthwhile due to the fact that the page posting will
2292  *       force serialization on the single descriptor ring.
2293  */
2294 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2295 {
2296         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2297         int entry, drops;
2298         int npackets = 0;
2299
2300         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2301                      "rx[%d] interrupt, done: %d/%d\n",
2302                      ring,
2303                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2304
2305         entry = cp->rx_new[ring];
2306         drops = 0;
2307         while (1) {
2308                 struct cas_rx_comp *rxc = rxcs + entry;
2309                 struct sk_buff *uninitialized_var(skb);
2310                 int type, len;
2311                 u64 words[4];
2312                 int i, dring;
2313
2314                 words[0] = le64_to_cpu(rxc->word1);
2315                 words[1] = le64_to_cpu(rxc->word2);
2316                 words[2] = le64_to_cpu(rxc->word3);
2317                 words[3] = le64_to_cpu(rxc->word4);
2318
2319                 /* don't touch if still owned by hw */
2320                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2321                 if (type == 0)
2322                         break;
2323
2324                 /* hw hasn't cleared the zero bit yet */
2325                 if (words[3] & RX_COMP4_ZERO) {
2326                         break;
2327                 }
2328
2329                 /* get info on the packet */
2330                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2331                         spin_lock(&cp->stat_lock[ring]);
2332                         cp->net_stats[ring].rx_errors++;
2333                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2334                                 cp->net_stats[ring].rx_length_errors++;
2335                         if (words[3] & RX_COMP4_BAD)
2336                                 cp->net_stats[ring].rx_crc_errors++;
2337                         spin_unlock(&cp->stat_lock[ring]);
2338
2339                         /* We'll just return it to Cassini. */
2340                 drop_it:
2341                         spin_lock(&cp->stat_lock[ring]);
2342                         ++cp->net_stats[ring].rx_dropped;
2343                         spin_unlock(&cp->stat_lock[ring]);
2344                         goto next;
2345                 }
2346
2347                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2348                 if (len < 0) {
2349                         ++drops;
2350                         goto drop_it;
2351                 }
2352
2353                 /* see if it's a flow re-assembly or not. the driver
2354                  * itself handles release back up.
2355                  */
2356                 if (RX_DONT_BATCH || (type == 0x2)) {
2357                         /* non-reassm: these always get released */
2358                         cas_skb_release(skb);
2359                 } else {
2360                         cas_rx_flow_pkt(cp, words, skb);
2361                 }
2362
2363                 spin_lock(&cp->stat_lock[ring]);
2364                 cp->net_stats[ring].rx_packets++;
2365                 cp->net_stats[ring].rx_bytes += len;
2366                 spin_unlock(&cp->stat_lock[ring]);
2367
2368         next:
2369                 npackets++;
2370
2371                 /* should it be released? */
2372                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2373                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2374                         dring = CAS_VAL(RX_INDEX_RING, i);
2375                         i = CAS_VAL(RX_INDEX_NUM, i);
2376                         cas_post_page(cp, dring, i);
2377                 }
2378
2379                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2380                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2381                         dring = CAS_VAL(RX_INDEX_RING, i);
2382                         i = CAS_VAL(RX_INDEX_NUM, i);
2383                         cas_post_page(cp, dring, i);
2384                 }
2385
2386                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2387                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2388                         dring = CAS_VAL(RX_INDEX_RING, i);
2389                         i = CAS_VAL(RX_INDEX_NUM, i);
2390                         cas_post_page(cp, dring, i);
2391                 }
2392
2393                 /* skip to the next entry */
2394                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2395                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2396 #ifdef USE_NAPI
2397                 if (budget && (npackets >= budget))
2398                         break;
2399 #endif
2400         }
2401         cp->rx_new[ring] = entry;
2402
2403         if (drops)
2404                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2405         return npackets;
2406 }
2407
2408
2409 /* put completion entries back on the ring */
2410 static void cas_post_rxcs_ringN(struct net_device *dev,
2411                                 struct cas *cp, int ring)
2412 {
2413         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2414         int last, entry;
2415
2416         last = cp->rx_cur[ring];
2417         entry = cp->rx_new[ring];
2418         netif_printk(cp, intr, KERN_DEBUG, dev,
2419                      "rxc[%d] interrupt, done: %d/%d\n",
2420                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2421
2422         /* zero and re-mark descriptors */
2423         while (last != entry) {
2424                 cas_rxc_init(rxc + last);
2425                 last = RX_COMP_ENTRY(ring, last + 1);
2426         }
2427         cp->rx_cur[ring] = last;
2428
2429         if (ring == 0)
2430                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2431         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2432                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2433 }
2434
2435
2436
2437 /* cassini can use all four PCI interrupts for the completion ring.
2438  * rings 3 and 4 are identical
2439  */
2440 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2441 static inline void cas_handle_irqN(struct net_device *dev,
2442                                    struct cas *cp, const u32 status,
2443                                    const int ring)
2444 {
2445         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2446                 cas_post_rxcs_ringN(dev, cp, ring);
2447 }
2448
2449 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2450 {
2451         struct net_device *dev = dev_id;
2452         struct cas *cp = netdev_priv(dev);
2453         unsigned long flags;
2454         int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2455         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2456
2457         /* check for shared irq */
2458         if (status == 0)
2459                 return IRQ_NONE;
2460
2461         spin_lock_irqsave(&cp->lock, flags);
2462         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2463 #ifdef USE_NAPI
2464                 cas_mask_intr(cp);
2465                 napi_schedule(&cp->napi);
2466 #else
2467                 cas_rx_ringN(cp, ring, 0);
2468 #endif
2469                 status &= ~INTR_RX_DONE_ALT;
2470         }
2471
2472         if (status)
2473                 cas_handle_irqN(dev, cp, status, ring);
2474         spin_unlock_irqrestore(&cp->lock, flags);
2475         return IRQ_HANDLED;
2476 }
2477 #endif
2478
2479 #ifdef USE_PCI_INTB
2480 /* everything but rx packets */
2481 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2482 {
2483         if (status & INTR_RX_BUF_UNAVAIL_1) {
2484                 /* Frame arrived, no free RX buffers available.
2485                  * NOTE: we can get this on a link transition. */
2486                 cas_post_rxds_ringN(cp, 1, 0);
2487                 spin_lock(&cp->stat_lock[1]);
2488                 cp->net_stats[1].rx_dropped++;
2489                 spin_unlock(&cp->stat_lock[1]);
2490         }
2491
2492         if (status & INTR_RX_BUF_AE_1)
2493                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2494                                     RX_AE_FREEN_VAL(1));
2495
2496         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2497                 cas_post_rxcs_ringN(cp, 1);
2498 }
2499
2500 /* ring 2 handles a few more events than 3 and 4 */
2501 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2502 {
2503         struct net_device *dev = dev_id;
2504         struct cas *cp = netdev_priv(dev);
2505         unsigned long flags;
2506         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2507
2508         /* check for shared interrupt */
2509         if (status == 0)
2510                 return IRQ_NONE;
2511
2512         spin_lock_irqsave(&cp->lock, flags);
2513         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2514 #ifdef USE_NAPI
2515                 cas_mask_intr(cp);
2516                 napi_schedule(&cp->napi);
2517 #else
2518                 cas_rx_ringN(cp, 1, 0);
2519 #endif
2520                 status &= ~INTR_RX_DONE_ALT;
2521         }
2522         if (status)
2523                 cas_handle_irq1(cp, status);
2524         spin_unlock_irqrestore(&cp->lock, flags);
2525         return IRQ_HANDLED;
2526 }
2527 #endif
2528
2529 static inline void cas_handle_irq(struct net_device *dev,
2530                                   struct cas *cp, const u32 status)
2531 {
2532         /* housekeeping interrupts */
2533         if (status & INTR_ERROR_MASK)
2534                 cas_abnormal_irq(dev, cp, status);
2535
2536         if (status & INTR_RX_BUF_UNAVAIL) {
2537                 /* Frame arrived, no free RX buffers available.
2538                  * NOTE: we can get this on a link transition.
2539                  */
2540                 cas_post_rxds_ringN(cp, 0, 0);
2541                 spin_lock(&cp->stat_lock[0]);
2542                 cp->net_stats[0].rx_dropped++;
2543                 spin_unlock(&cp->stat_lock[0]);
2544         } else if (status & INTR_RX_BUF_AE) {
2545                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2546                                     RX_AE_FREEN_VAL(0));
2547         }
2548
2549         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2550                 cas_post_rxcs_ringN(dev, cp, 0);
2551 }
2552
2553 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2554 {
2555         struct net_device *dev = dev_id;
2556         struct cas *cp = netdev_priv(dev);
2557         unsigned long flags;
2558         u32 status = readl(cp->regs + REG_INTR_STATUS);
2559
2560         if (status == 0)
2561                 return IRQ_NONE;
2562
2563         spin_lock_irqsave(&cp->lock, flags);
2564         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2565                 cas_tx(dev, cp, status);
2566                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2567         }
2568
2569         if (status & INTR_RX_DONE) {
2570 #ifdef USE_NAPI
2571                 cas_mask_intr(cp);
2572                 napi_schedule(&cp->napi);
2573 #else
2574                 cas_rx_ringN(cp, 0, 0);
2575 #endif
2576                 status &= ~INTR_RX_DONE;
2577         }
2578
2579         if (status)
2580                 cas_handle_irq(dev, cp, status);
2581         spin_unlock_irqrestore(&cp->lock, flags);
2582         return IRQ_HANDLED;
2583 }
2584
2585
2586 #ifdef USE_NAPI
2587 static int cas_poll(struct napi_struct *napi, int budget)
2588 {
2589         struct cas *cp = container_of(napi, struct cas, napi);
2590         struct net_device *dev = cp->dev;
2591         int i, enable_intr, credits;
2592         u32 status = readl(cp->regs + REG_INTR_STATUS);
2593         unsigned long flags;
2594
2595         spin_lock_irqsave(&cp->lock, flags);
2596         cas_tx(dev, cp, status);
2597         spin_unlock_irqrestore(&cp->lock, flags);
2598
2599         /* NAPI rx packets. we spread the credits across all of the
2600          * rxc rings
2601          *
2602          * to make sure we're fair with the work we loop through each
2603          * ring N_RX_COMP_RING times with a request of
2604          * budget / N_RX_COMP_RINGS
2605          */
2606         enable_intr = 1;
2607         credits = 0;
2608         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2609                 int j;
2610                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2611                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2612                         if (credits >= budget) {
2613                                 enable_intr = 0;
2614                                 goto rx_comp;
2615                         }
2616                 }
2617         }
2618
2619 rx_comp:
2620         /* final rx completion */
2621         spin_lock_irqsave(&cp->lock, flags);
2622         if (status)
2623                 cas_handle_irq(dev, cp, status);
2624
2625 #ifdef USE_PCI_INTB
2626         if (N_RX_COMP_RINGS > 1) {
2627                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2628                 if (status)
2629                         cas_handle_irq1(dev, cp, status);
2630         }
2631 #endif
2632
2633 #ifdef USE_PCI_INTC
2634         if (N_RX_COMP_RINGS > 2) {
2635                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2636                 if (status)
2637                         cas_handle_irqN(dev, cp, status, 2);
2638         }
2639 #endif
2640
2641 #ifdef USE_PCI_INTD
2642         if (N_RX_COMP_RINGS > 3) {
2643                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2644                 if (status)
2645                         cas_handle_irqN(dev, cp, status, 3);
2646         }
2647 #endif
2648         spin_unlock_irqrestore(&cp->lock, flags);
2649         if (enable_intr) {
2650                 napi_complete(napi);
2651                 cas_unmask_intr(cp);
2652         }
2653         return credits;
2654 }
2655 #endif
2656
2657 #ifdef CONFIG_NET_POLL_CONTROLLER
2658 static void cas_netpoll(struct net_device *dev)
2659 {
2660         struct cas *cp = netdev_priv(dev);
2661
2662         cas_disable_irq(cp, 0);
2663         cas_interrupt(cp->pdev->irq, dev);
2664         cas_enable_irq(cp, 0);
2665
2666 #ifdef USE_PCI_INTB
2667         if (N_RX_COMP_RINGS > 1) {
2668                 /* cas_interrupt1(); */
2669         }
2670 #endif
2671 #ifdef USE_PCI_INTC
2672         if (N_RX_COMP_RINGS > 2) {
2673                 /* cas_interruptN(); */
2674         }
2675 #endif
2676 #ifdef USE_PCI_INTD
2677         if (N_RX_COMP_RINGS > 3) {
2678                 /* cas_interruptN(); */
2679         }
2680 #endif
2681 }
2682 #endif
2683
2684 static void cas_tx_timeout(struct net_device *dev)
2685 {
2686         struct cas *cp = netdev_priv(dev);
2687
2688         netdev_err(dev, "transmit timed out, resetting\n");
2689         if (!cp->hw_running) {
2690                 netdev_err(dev, "hrm.. hw not running!\n");
2691                 return;
2692         }
2693
2694         netdev_err(dev, "MIF_STATE[%08x]\n",
2695                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2696
2697         netdev_err(dev, "MAC_STATE[%08x]\n",
2698                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2699
2700         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2701                    readl(cp->regs + REG_TX_CFG),
2702                    readl(cp->regs + REG_MAC_TX_STATUS),
2703                    readl(cp->regs + REG_MAC_TX_CFG),
2704                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2705                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2706                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2707                    readl(cp->regs + REG_TX_SM_1),
2708                    readl(cp->regs + REG_TX_SM_2));
2709
2710         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2711                    readl(cp->regs + REG_RX_CFG),
2712                    readl(cp->regs + REG_MAC_RX_STATUS),
2713                    readl(cp->regs + REG_MAC_RX_CFG));
2714
2715         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2716                    readl(cp->regs + REG_HP_STATE_MACHINE),
2717                    readl(cp->regs + REG_HP_STATUS0),
2718                    readl(cp->regs + REG_HP_STATUS1),
2719                    readl(cp->regs + REG_HP_STATUS2));
2720
2721 #if 1
2722         atomic_inc(&cp->reset_task_pending);
2723         atomic_inc(&cp->reset_task_pending_all);
2724         schedule_work(&cp->reset_task);
2725 #else
2726         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2727         schedule_work(&cp->reset_task);
2728 #endif
2729 }
2730
2731 static inline int cas_intme(int ring, int entry)
2732 {
2733         /* Algorithm: IRQ every 1/2 of descriptors. */
2734         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2735                 return 1;
2736         return 0;
2737 }
2738
2739
2740 static void cas_write_txd(struct cas *cp, int ring, int entry,
2741                           dma_addr_t mapping, int len, u64 ctrl, int last)
2742 {
2743         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2744
2745         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2746         if (cas_intme(ring, entry))
2747                 ctrl |= TX_DESC_INTME;
2748         if (last)
2749                 ctrl |= TX_DESC_EOF;
2750         txd->control = cpu_to_le64(ctrl);
2751         txd->buffer = cpu_to_le64(mapping);
2752 }
2753
2754 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2755                                 const int entry)
2756 {
2757         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2758 }
2759
2760 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2761                                      const int entry, const int tentry)
2762 {
2763         cp->tx_tiny_use[ring][tentry].nbufs++;
2764         cp->tx_tiny_use[ring][entry].used = 1;
2765         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2766 }
2767
2768 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2769                                     struct sk_buff *skb)
2770 {
2771         struct net_device *dev = cp->dev;
2772         int entry, nr_frags, frag, tabort, tentry;
2773         dma_addr_t mapping;
2774         unsigned long flags;
2775         u64 ctrl;
2776         u32 len;
2777
2778         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2779
2780         /* This is a hard error, log it. */
2781         if (TX_BUFFS_AVAIL(cp, ring) <=
2782             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2783                 netif_stop_queue(dev);
2784                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2785                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2786                 return 1;
2787         }
2788
2789         ctrl = 0;
2790         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2791                 const u64 csum_start_off = skb_checksum_start_offset(skb);
2792                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2793
2794                 ctrl =  TX_DESC_CSUM_EN |
2795                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2796                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2797         }
2798
2799         entry = cp->tx_new[ring];
2800         cp->tx_skbs[ring][entry] = skb;
2801
2802         nr_frags = skb_shinfo(skb)->nr_frags;
2803         len = skb_headlen(skb);
2804         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2805                                offset_in_page(skb->data), len,
2806                                PCI_DMA_TODEVICE);
2807
2808         tentry = entry;
2809         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2810         if (unlikely(tabort)) {
2811                 /* NOTE: len is always >  tabort */
2812                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2813                               ctrl | TX_DESC_SOF, 0);
2814                 entry = TX_DESC_NEXT(ring, entry);
2815
2816                 skb_copy_from_linear_data_offset(skb, len - tabort,
2817                               tx_tiny_buf(cp, ring, entry), tabort);
2818                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2819                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2820                               (nr_frags == 0));
2821         } else {
2822                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2823                               TX_DESC_SOF, (nr_frags == 0));
2824         }
2825         entry = TX_DESC_NEXT(ring, entry);
2826
2827         for (frag = 0; frag < nr_frags; frag++) {
2828                 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2829
2830                 len = skb_frag_size(fragp);
2831                 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2832                                            DMA_TO_DEVICE);
2833
2834                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2835                 if (unlikely(tabort)) {
2836                         void *addr;
2837
2838                         /* NOTE: len is always > tabort */
2839                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2840                                       ctrl, 0);
2841                         entry = TX_DESC_NEXT(ring, entry);
2842
2843                         addr = cas_page_map(skb_frag_page(fragp));
2844                         memcpy(tx_tiny_buf(cp, ring, entry),
2845                                addr + fragp->page_offset + len - tabort,
2846                                tabort);
2847                         cas_page_unmap(addr);
2848                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2849                         len     = tabort;
2850                 }
2851
2852                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2853                               (frag + 1 == nr_frags));
2854                 entry = TX_DESC_NEXT(ring, entry);
2855         }
2856
2857         cp->tx_new[ring] = entry;
2858         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2859                 netif_stop_queue(dev);
2860
2861         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2862                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2863                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2864         writel(entry, cp->regs + REG_TX_KICKN(ring));
2865         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2866         return 0;
2867 }
2868
2869 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2870 {
2871         struct cas *cp = netdev_priv(dev);
2872
2873         /* this is only used as a load-balancing hint, so it doesn't
2874          * need to be SMP safe
2875          */
2876         static int ring;
2877
2878         if (skb_padto(skb, cp->min_frame_size))
2879                 return NETDEV_TX_OK;
2880
2881         /* XXX: we need some higher-level QoS hooks to steer packets to
2882          *      individual queues.
2883          */
2884         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2885                 return NETDEV_TX_BUSY;
2886         return NETDEV_TX_OK;
2887 }
2888
2889 static void cas_init_tx_dma(struct cas *cp)
2890 {
2891         u64 desc_dma = cp->block_dvma;
2892         unsigned long off;
2893         u32 val;
2894         int i;
2895
2896         /* set up tx completion writeback registers. must be 8-byte aligned */
2897 #ifdef USE_TX_COMPWB
2898         off = offsetof(struct cas_init_block, tx_compwb);
2899         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2900         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2901 #endif
2902
2903         /* enable completion writebacks, enable paced mode,
2904          * disable read pipe, and disable pre-interrupt compwbs
2905          */
2906         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2907                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2908                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2909                 TX_CFG_INTR_COMPWB_DIS;
2910
2911         /* write out tx ring info and tx desc bases */
2912         for (i = 0; i < MAX_TX_RINGS; i++) {
2913                 off = (unsigned long) cp->init_txds[i] -
2914                         (unsigned long) cp->init_block;
2915
2916                 val |= CAS_TX_RINGN_BASE(i);
2917                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2918                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2919                        REG_TX_DBN_LOW(i));
2920                 /* don't zero out the kick register here as the system
2921                  * will wedge
2922                  */
2923         }
2924         writel(val, cp->regs + REG_TX_CFG);
2925
2926         /* program max burst sizes. these numbers should be different
2927          * if doing QoS.
2928          */
2929 #ifdef USE_QOS
2930         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2931         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2932         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2933         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2934 #else
2935         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2936         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2937         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2938         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2939 #endif
2940 }
2941
2942 /* Must be invoked under cp->lock. */
2943 static inline void cas_init_dma(struct cas *cp)
2944 {
2945         cas_init_tx_dma(cp);
2946         cas_init_rx_dma(cp);
2947 }
2948
2949 static void cas_process_mc_list(struct cas *cp)
2950 {
2951         u16 hash_table[16];
2952         u32 crc;
2953         struct netdev_hw_addr *ha;
2954         int i = 1;
2955
2956         memset(hash_table, 0, sizeof(hash_table));
2957         netdev_for_each_mc_addr(ha, cp->dev) {
2958                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2959                         /* use the alternate mac address registers for the
2960                          * first 15 multicast addresses
2961                          */
2962                         writel((ha->addr[4] << 8) | ha->addr[5],
2963                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2964                         writel((ha->addr[2] << 8) | ha->addr[3],
2965                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2966                         writel((ha->addr[0] << 8) | ha->addr[1],
2967                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2968                         i++;
2969                 }
2970                 else {
2971                         /* use hw hash table for the next series of
2972                          * multicast addresses
2973                          */
2974                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2975                         crc >>= 24;
2976                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2977                 }
2978         }
2979         for (i = 0; i < 16; i++)
2980                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2981 }
2982
2983 /* Must be invoked under cp->lock. */
2984 static u32 cas_setup_multicast(struct cas *cp)
2985 {
2986         u32 rxcfg = 0;
2987         int i;
2988
2989         if (cp->dev->flags & IFF_PROMISC) {
2990                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2991
2992         } else if (cp->dev->flags & IFF_ALLMULTI) {
2993                 for (i=0; i < 16; i++)
2994                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2995                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2996
2997         } else {
2998                 cas_process_mc_list(cp);
2999                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3000         }
3001
3002         return rxcfg;
3003 }
3004
3005 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3006 static void cas_clear_mac_err(struct cas *cp)
3007 {
3008         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3009         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3010         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3011         writel(0, cp->regs + REG_MAC_COLL_LATE);
3012         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3013         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3014         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3015         writel(0, cp->regs + REG_MAC_LEN_ERR);
3016         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3017         writel(0, cp->regs + REG_MAC_FCS_ERR);
3018         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3019 }
3020
3021
3022 static void cas_mac_reset(struct cas *cp)
3023 {
3024         int i;
3025
3026         /* do both TX and RX reset */
3027         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3028         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3029
3030         /* wait for TX */
3031         i = STOP_TRIES;
3032         while (i-- > 0) {
3033                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3034                         break;
3035                 udelay(10);
3036         }
3037
3038         /* wait for RX */
3039         i = STOP_TRIES;
3040         while (i-- > 0) {
3041                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3042                         break;
3043                 udelay(10);
3044         }
3045
3046         if (readl(cp->regs + REG_MAC_TX_RESET) |
3047             readl(cp->regs + REG_MAC_RX_RESET))
3048                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3049                            readl(cp->regs + REG_MAC_TX_RESET),
3050                            readl(cp->regs + REG_MAC_RX_RESET),
3051                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3052 }
3053
3054
3055 /* Must be invoked under cp->lock. */
3056 static void cas_init_mac(struct cas *cp)
3057 {
3058         unsigned char *e = &cp->dev->dev_addr[0];
3059         int i;
3060         cas_mac_reset(cp);
3061
3062         /* setup core arbitration weight register */
3063         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3064
3065         /* XXX Use pci_dma_burst_advice() */
3066 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3067         /* set the infinite burst register for chips that don't have
3068          * pci issues.
3069          */
3070         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3071                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3072 #endif
3073
3074         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3075
3076         writel(0x00, cp->regs + REG_MAC_IPG0);
3077         writel(0x08, cp->regs + REG_MAC_IPG1);
3078         writel(0x04, cp->regs + REG_MAC_IPG2);
3079
3080         /* change later for 802.3z */
3081         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3082
3083         /* min frame + FCS */
3084         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3085
3086         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3087          * specify the maximum frame size to prevent RX tag errors on
3088          * oversized frames.
3089          */
3090         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3091                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3092                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3093                cp->regs + REG_MAC_FRAMESIZE_MAX);
3094
3095         /* NOTE: crc_size is used as a surrogate for half-duplex.
3096          * workaround saturn half-duplex issue by increasing preamble
3097          * size to 65 bytes.
3098          */
3099         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3100                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3101         else
3102                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3103         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3104         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3105         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3106
3107         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3108
3109         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3110         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3111         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3112         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3113         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3114
3115         /* setup mac address in perfect filter array */
3116         for (i = 0; i < 45; i++)
3117                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3118
3119         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3120         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3121         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3122
3123         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3124         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3125         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3126
3127         cp->mac_rx_cfg = cas_setup_multicast(cp);
3128
3129         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3130         cas_clear_mac_err(cp);
3131         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3132
3133         /* Setup MAC interrupts.  We want to get all of the interesting
3134          * counter expiration events, but we do not want to hear about
3135          * normal rx/tx as the DMA engine tells us that.
3136          */
3137         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3138         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3139
3140         /* Don't enable even the PAUSE interrupts for now, we
3141          * make no use of those events other than to record them.
3142          */
3143         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3144 }
3145
3146 /* Must be invoked under cp->lock. */
3147 static void cas_init_pause_thresholds(struct cas *cp)
3148 {
3149         /* Calculate pause thresholds.  Setting the OFF threshold to the
3150          * full RX fifo size effectively disables PAUSE generation
3151          */
3152         if (cp->rx_fifo_size <= (2 * 1024)) {
3153                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3154         } else {
3155                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3156                 if (max_frame * 3 > cp->rx_fifo_size) {
3157                         cp->rx_pause_off = 7104;
3158                         cp->rx_pause_on  = 960;
3159                 } else {
3160                         int off = (cp->rx_fifo_size - (max_frame * 2));
3161                         int on = off - max_frame;
3162                         cp->rx_pause_off = off;
3163                         cp->rx_pause_on = on;
3164                 }
3165         }
3166 }
3167
3168 static int cas_vpd_match(const void __iomem *p, const char *str)
3169 {
3170         int len = strlen(str) + 1;
3171         int i;
3172
3173         for (i = 0; i < len; i++) {
3174                 if (readb(p + i) != str[i])
3175                         return 0;
3176         }
3177         return 1;
3178 }
3179
3180
3181 /* get the mac address by reading the vpd information in the rom.
3182  * also get the phy type and determine if there's an entropy generator.
3183  * NOTE: this is a bit convoluted for the following reasons:
3184  *  1) vpd info has order-dependent mac addresses for multinic cards
3185  *  2) the only way to determine the nic order is to use the slot
3186  *     number.
3187  *  3) fiber cards don't have bridges, so their slot numbers don't
3188  *     mean anything.
3189  *  4) we don't actually know we have a fiber card until after
3190  *     the mac addresses are parsed.
3191  */
3192 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3193                             const int offset)
3194 {
3195         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3196         void __iomem *base, *kstart;
3197         int i, len;
3198         int found = 0;
3199 #define VPD_FOUND_MAC        0x01
3200 #define VPD_FOUND_PHY        0x02
3201
3202         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3203         int mac_off  = 0;
3204
3205 #if defined(CONFIG_SPARC)
3206         const unsigned char *addr;
3207 #endif
3208
3209         /* give us access to the PROM */
3210         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3211                cp->regs + REG_BIM_LOCAL_DEV_EN);
3212
3213         /* check for an expansion rom */
3214         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3215                 goto use_random_mac_addr;
3216
3217         /* search for beginning of vpd */
3218         base = NULL;
3219         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3220                 /* check for PCIR */
3221                 if ((readb(p + i + 0) == 0x50) &&
3222                     (readb(p + i + 1) == 0x43) &&
3223                     (readb(p + i + 2) == 0x49) &&
3224                     (readb(p + i + 3) == 0x52)) {
3225                         base = p + (readb(p + i + 8) |
3226                                     (readb(p + i + 9) << 8));
3227                         break;
3228                 }
3229         }
3230
3231         if (!base || (readb(base) != 0x82))
3232                 goto use_random_mac_addr;
3233
3234         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3235         while (i < EXPANSION_ROM_SIZE) {
3236                 if (readb(base + i) != 0x90) /* no vpd found */
3237                         goto use_random_mac_addr;
3238
3239                 /* found a vpd field */
3240                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3241
3242                 /* extract keywords */
3243                 kstart = base + i + 3;
3244                 p = kstart;
3245                 while ((p - kstart) < len) {
3246                         int klen = readb(p + 2);
3247                         int j;
3248                         char type;
3249
3250                         p += 3;
3251
3252                         /* look for the following things:
3253                          * -- correct length == 29
3254                          * 3 (type) + 2 (size) +
3255                          * 18 (strlen("local-mac-address") + 1) +
3256                          * 6 (mac addr)
3257                          * -- VPD Instance 'I'
3258                          * -- VPD Type Bytes 'B'
3259                          * -- VPD data length == 6
3260                          * -- property string == local-mac-address
3261                          *
3262                          * -- correct length == 24
3263                          * 3 (type) + 2 (size) +
3264                          * 12 (strlen("entropy-dev") + 1) +
3265                          * 7 (strlen("vms110") + 1)
3266                          * -- VPD Instance 'I'
3267                          * -- VPD Type String 'B'
3268                          * -- VPD data length == 7
3269                          * -- property string == entropy-dev
3270                          *
3271                          * -- correct length == 18
3272                          * 3 (type) + 2 (size) +
3273                          * 9 (strlen("phy-type") + 1) +
3274                          * 4 (strlen("pcs") + 1)
3275                          * -- VPD Instance 'I'
3276                          * -- VPD Type String 'S'
3277                          * -- VPD data length == 4
3278                          * -- property string == phy-type
3279                          *
3280                          * -- correct length == 23
3281                          * 3 (type) + 2 (size) +
3282                          * 14 (strlen("phy-interface") + 1) +
3283                          * 4 (strlen("pcs") + 1)
3284                          * -- VPD Instance 'I'
3285                          * -- VPD Type String 'S'
3286                          * -- VPD data length == 4
3287                          * -- property string == phy-interface
3288                          */
3289                         if (readb(p) != 'I')
3290                                 goto next;
3291
3292                         /* finally, check string and length */
3293                         type = readb(p + 3);
3294                         if (type == 'B') {
3295                                 if ((klen == 29) && readb(p + 4) == 6 &&
3296                                     cas_vpd_match(p + 5,
3297                                                   "local-mac-address")) {
3298                                         if (mac_off++ > offset)
3299                                                 goto next;
3300
3301                                         /* set mac address */
3302                                         for (j = 0; j < 6; j++)
3303                                                 dev_addr[j] =
3304                                                         readb(p + 23 + j);
3305                                         goto found_mac;
3306                                 }
3307                         }
3308
3309                         if (type != 'S')
3310                                 goto next;
3311
3312 #ifdef USE_ENTROPY_DEV
3313                         if ((klen == 24) &&
3314                             cas_vpd_match(p + 5, "entropy-dev") &&
3315                             cas_vpd_match(p + 17, "vms110")) {
3316                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3317                                 goto next;
3318                         }
3319 #endif
3320
3321                         if (found & VPD_FOUND_PHY)
3322                                 goto next;
3323
3324                         if ((klen == 18) && readb(p + 4) == 4 &&
3325                             cas_vpd_match(p + 5, "phy-type")) {
3326                                 if (cas_vpd_match(p + 14, "pcs")) {
3327                                         phy_type = CAS_PHY_SERDES;
3328                                         goto found_phy;
3329                                 }
3330                         }
3331
3332                         if ((klen == 23) && readb(p + 4) == 4 &&
3333                             cas_vpd_match(p + 5, "phy-interface")) {
3334                                 if (cas_vpd_match(p + 19, "pcs")) {
3335                                         phy_type = CAS_PHY_SERDES;
3336                                         goto found_phy;
3337                                 }
3338                         }
3339 found_mac:
3340                         found |= VPD_FOUND_MAC;
3341                         goto next;
3342
3343 found_phy:
3344                         found |= VPD_FOUND_PHY;
3345
3346 next:
3347                         p += klen;
3348                 }
3349                 i += len + 3;
3350         }
3351
3352 use_random_mac_addr:
3353         if (found & VPD_FOUND_MAC)
3354                 goto done;
3355
3356 #if defined(CONFIG_SPARC)
3357         addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3358         if (addr != NULL) {
3359                 memcpy(dev_addr, addr, 6);
3360                 goto done;
3361         }
3362 #endif
3363
3364         /* Sun MAC prefix then 3 random bytes. */
3365         pr_info("MAC address not found in ROM VPD\n");
3366         dev_addr[0] = 0x08;
3367         dev_addr[1] = 0x00;
3368         dev_addr[2] = 0x20;
3369         get_random_bytes(dev_addr + 3, 3);
3370
3371 done:
3372         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3373         return phy_type;
3374 }
3375
3376 /* check pci invariants */
3377 static void cas_check_pci_invariants(struct cas *cp)
3378 {
3379         struct pci_dev *pdev = cp->pdev;
3380
3381         cp->cas_flags = 0;
3382         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3383             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3384                 if (pdev->revision >= CAS_ID_REVPLUS)
3385                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3386                 if (pdev->revision < CAS_ID_REVPLUS02u)
3387                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3388
3389                 /* Original Cassini supports HW CSUM, but it's not
3390                  * enabled by default as it can trigger TX hangs.
3391                  */
3392                 if (pdev->revision < CAS_ID_REV2)
3393                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3394         } else {
3395                 /* Only sun has original cassini chips.  */
3396                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3397
3398                 /* We use a flag because the same phy might be externally
3399                  * connected.
3400                  */
3401                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3402                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3403                         cp->cas_flags |= CAS_FLAG_SATURN;
3404         }
3405 }
3406
3407
3408 static int cas_check_invariants(struct cas *cp)
3409 {
3410         struct pci_dev *pdev = cp->pdev;
3411         u32 cfg;
3412         int i;
3413
3414         /* get page size for rx buffers. */
3415         cp->page_order = 0;
3416 #ifdef USE_PAGE_ORDER
3417         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3418                 /* see if we can allocate larger pages */
3419                 struct page *page = alloc_pages(GFP_ATOMIC,
3420                                                 CAS_JUMBO_PAGE_SHIFT -
3421                                                 PAGE_SHIFT);
3422                 if (page) {
3423                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3424                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3425                 } else {
3426                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3427                 }
3428         }
3429 #endif
3430         cp->page_size = (PAGE_SIZE << cp->page_order);
3431
3432         /* Fetch the FIFO configurations. */
3433         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3434         cp->rx_fifo_size = RX_FIFO_SIZE;
3435
3436         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3437          * they're both connected.
3438          */
3439         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3440                                         PCI_SLOT(pdev->devfn));
3441         if (cp->phy_type & CAS_PHY_SERDES) {
3442                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3443                 return 0; /* no more checking needed */
3444         }
3445
3446         /* MII */
3447         cfg = readl(cp->regs + REG_MIF_CFG);
3448         if (cfg & MIF_CFG_MDIO_1) {
3449                 cp->phy_type = CAS_PHY_MII_MDIO1;
3450         } else if (cfg & MIF_CFG_MDIO_0) {
3451                 cp->phy_type = CAS_PHY_MII_MDIO0;
3452         }
3453
3454         cas_mif_poll(cp, 0);
3455         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3456
3457         for (i = 0; i < 32; i++) {
3458                 u32 phy_id;
3459                 int j;
3460
3461                 for (j = 0; j < 3; j++) {
3462                         cp->phy_addr = i;
3463                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3464                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3465                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3466                                 cp->phy_id = phy_id;
3467                                 goto done;
3468                         }
3469                 }
3470         }
3471         pr_err("MII phy did not respond [%08x]\n",
3472                readl(cp->regs + REG_MIF_STATE_MACHINE));
3473         return -1;
3474
3475 done:
3476         /* see if we can do gigabit */
3477         cfg = cas_phy_read(cp, MII_BMSR);
3478         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3479             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3480                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3481         return 0;
3482 }
3483
3484 /* Must be invoked under cp->lock. */
3485 static inline void cas_start_dma(struct cas *cp)
3486 {
3487         int i;
3488         u32 val;
3489         int txfailed = 0;
3490
3491         /* enable dma */
3492         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3493         writel(val, cp->regs + REG_TX_CFG);
3494         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3495         writel(val, cp->regs + REG_RX_CFG);
3496
3497         /* enable the mac */
3498         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3499         writel(val, cp->regs + REG_MAC_TX_CFG);
3500         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3501         writel(val, cp->regs + REG_MAC_RX_CFG);
3502
3503         i = STOP_TRIES;
3504         while (i-- > 0) {
3505                 val = readl(cp->regs + REG_MAC_TX_CFG);
3506                 if ((val & MAC_TX_CFG_EN))
3507                         break;
3508                 udelay(10);
3509         }
3510         if (i < 0) txfailed = 1;
3511         i = STOP_TRIES;
3512         while (i-- > 0) {
3513                 val = readl(cp->regs + REG_MAC_RX_CFG);
3514                 if ((val & MAC_RX_CFG_EN)) {
3515                         if (txfailed) {
3516                                 netdev_err(cp->dev,
3517                                            "enabling mac failed [tx:%08x:%08x]\n",
3518                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3519                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3520                         }
3521                         goto enable_rx_done;
3522                 }
3523                 udelay(10);
3524         }
3525         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3526                    (txfailed ? "tx,rx" : "rx"),
3527                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3528                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3529
3530 enable_rx_done:
3531         cas_unmask_intr(cp); /* enable interrupts */
3532         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3533         writel(0, cp->regs + REG_RX_COMP_TAIL);
3534
3535         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3536                 if (N_RX_DESC_RINGS > 1)
3537                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3538                                cp->regs + REG_PLUS_RX_KICK1);
3539
3540                 for (i = 1; i < N_RX_COMP_RINGS; i++)
3541                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3542         }
3543 }
3544
3545 /* Must be invoked under cp->lock. */
3546 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3547                                    int *pause)
3548 {
3549         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3550         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3551         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3552         if (val & PCS_MII_LPA_ASYM_PAUSE)
3553                 *pause |= 0x10;
3554         *spd = 1000;
3555 }
3556
3557 /* Must be invoked under cp->lock. */
3558 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3559                                    int *pause)
3560 {
3561         u32 val;
3562
3563         *fd = 0;
3564         *spd = 10;
3565         *pause = 0;
3566
3567         /* use GMII registers */
3568         val = cas_phy_read(cp, MII_LPA);
3569         if (val & CAS_LPA_PAUSE)
3570                 *pause = 0x01;
3571
3572         if (val & CAS_LPA_ASYM_PAUSE)
3573                 *pause |= 0x10;
3574
3575         if (val & LPA_DUPLEX)
3576                 *fd = 1;
3577         if (val & LPA_100)
3578                 *spd = 100;
3579
3580         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3581                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3582                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3583                         *spd = 1000;
3584                 if (val & CAS_LPA_1000FULL)
3585                         *fd = 1;
3586         }
3587 }
3588
3589 /* A link-up condition has occurred, initialize and enable the
3590  * rest of the chip.
3591  *
3592  * Must be invoked under cp->lock.
3593  */
3594 static void cas_set_link_modes(struct cas *cp)
3595 {
3596         u32 val;
3597         int full_duplex, speed, pause;
3598
3599         full_duplex = 0;
3600         speed = 10;
3601         pause = 0;
3602
3603         if (CAS_PHY_MII(cp->phy_type)) {
3604                 cas_mif_poll(cp, 0);
3605                 val = cas_phy_read(cp, MII_BMCR);
3606                 if (val & BMCR_ANENABLE) {
3607                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3608                                                &pause);
3609                 } else {
3610                         if (val & BMCR_FULLDPLX)
3611                                 full_duplex = 1;
3612
3613                         if (val & BMCR_SPEED100)
3614                                 speed = 100;
3615                         else if (val & CAS_BMCR_SPEED1000)
3616                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3617                                         1000 : 100;
3618                 }
3619                 cas_mif_poll(cp, 1);
3620
3621         } else {
3622                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3623                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3624                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3625                         if (val & PCS_MII_CTRL_DUPLEX)
3626                                 full_duplex = 1;
3627                 }
3628         }
3629
3630         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3631                    speed, full_duplex ? "full" : "half");
3632
3633         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3634         if (CAS_PHY_MII(cp->phy_type)) {
3635                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3636                 if (!full_duplex)
3637                         val |= MAC_XIF_DISABLE_ECHO;
3638         }
3639         if (full_duplex)
3640                 val |= MAC_XIF_FDPLX_LED;
3641         if (speed == 1000)
3642                 val |= MAC_XIF_GMII_MODE;
3643         writel(val, cp->regs + REG_MAC_XIF_CFG);
3644
3645         /* deal with carrier and collision detect. */
3646         val = MAC_TX_CFG_IPG_EN;
3647         if (full_duplex) {
3648                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3649                 val |= MAC_TX_CFG_IGNORE_COLL;
3650         } else {
3651 #ifndef USE_CSMA_CD_PROTO
3652                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3653                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3654 #endif
3655         }
3656         /* val now set up for REG_MAC_TX_CFG */
3657
3658         /* If gigabit and half-duplex, enable carrier extension
3659          * mode.  increase slot time to 512 bytes as well.
3660          * else, disable it and make sure slot time is 64 bytes.
3661          * also activate checksum bug workaround
3662          */
3663         if ((speed == 1000) && !full_duplex) {
3664                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3665                        cp->regs + REG_MAC_TX_CFG);
3666
3667                 val = readl(cp->regs + REG_MAC_RX_CFG);
3668                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3669                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3670                        cp->regs + REG_MAC_RX_CFG);
3671
3672                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3673
3674                 cp->crc_size = 4;
3675                 /* minimum size gigabit frame at half duplex */
3676                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3677
3678         } else {
3679                 writel(val, cp->regs + REG_MAC_TX_CFG);
3680
3681                 /* checksum bug workaround. don't strip FCS when in
3682                  * half-duplex mode
3683                  */
3684                 val = readl(cp->regs + REG_MAC_RX_CFG);
3685                 if (full_duplex) {
3686                         val |= MAC_RX_CFG_STRIP_FCS;
3687                         cp->crc_size = 0;
3688                         cp->min_frame_size = CAS_MIN_MTU;
3689                 } else {
3690                         val &= ~MAC_RX_CFG_STRIP_FCS;
3691                         cp->crc_size = 4;
3692                         cp->min_frame_size = CAS_MIN_FRAME;
3693                 }
3694                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3695                        cp->regs + REG_MAC_RX_CFG);
3696                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3697         }
3698
3699         if (netif_msg_link(cp)) {
3700                 if (pause & 0x01) {
3701                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3702                                     cp->rx_fifo_size,
3703                                     cp->rx_pause_off,
3704                                     cp->rx_pause_on);
3705                 } else if (pause & 0x10) {
3706                         netdev_info(cp->dev, "TX pause enabled\n");
3707                 } else {
3708                         netdev_info(cp->dev, "Pause is disabled\n");
3709                 }
3710         }
3711
3712         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3713         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3714         if (pause) { /* symmetric or asymmetric pause */
3715                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3716                 if (pause & 0x01) { /* symmetric pause */
3717                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3718                 }
3719         }
3720         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3721         cas_start_dma(cp);
3722 }
3723
3724 /* Must be invoked under cp->lock. */
3725 static void cas_init_hw(struct cas *cp, int restart_link)
3726 {
3727         if (restart_link)
3728                 cas_phy_init(cp);
3729
3730         cas_init_pause_thresholds(cp);
3731         cas_init_mac(cp);
3732         cas_init_dma(cp);
3733
3734         if (restart_link) {
3735                 /* Default aneg parameters */
3736                 cp->timer_ticks = 0;
3737                 cas_begin_auto_negotiation(cp, NULL);
3738         } else if (cp->lstate == link_up) {
3739                 cas_set_link_modes(cp);
3740                 netif_carrier_on(cp->dev);
3741         }
3742 }
3743
3744 /* Must be invoked under cp->lock. on earlier cassini boards,
3745  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3746  * let it settle out, and then restore pci state.
3747  */
3748 static void cas_hard_reset(struct cas *cp)
3749 {
3750         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3751         udelay(20);
3752         pci_restore_state(cp->pdev);
3753 }
3754
3755
3756 static void cas_global_reset(struct cas *cp, int blkflag)
3757 {
3758         int limit;
3759
3760         /* issue a global reset. don't use RSTOUT. */
3761         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3762                 /* For PCS, when the blkflag is set, we should set the
3763                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3764                  * the last autonegotiation from being cleared.  We'll
3765                  * need some special handling if the chip is set into a
3766                  * loopback mode.
3767                  */
3768                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3769                        cp->regs + REG_SW_RESET);
3770         } else {
3771                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3772         }
3773
3774         /* need to wait at least 3ms before polling register */
3775         mdelay(3);
3776
3777         limit = STOP_TRIES;
3778         while (limit-- > 0) {
3779                 u32 val = readl(cp->regs + REG_SW_RESET);
3780                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3781                         goto done;
3782                 udelay(10);
3783         }
3784         netdev_err(cp->dev, "sw reset failed\n");
3785
3786 done:
3787         /* enable various BIM interrupts */
3788         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3789                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3790
3791         /* clear out pci error status mask for handled errors.
3792          * we don't deal with DMA counter overflows as they happen
3793          * all the time.
3794          */
3795         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3796                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3797                                PCI_ERR_BIM_DMA_READ), cp->regs +
3798                REG_PCI_ERR_STATUS_MASK);
3799
3800         /* set up for MII by default to address mac rx reset timeout
3801          * issue
3802          */
3803         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3804 }
3805
3806 static void cas_reset(struct cas *cp, int blkflag)
3807 {
3808         u32 val;
3809
3810         cas_mask_intr(cp);
3811         cas_global_reset(cp, blkflag);
3812         cas_mac_reset(cp);
3813         cas_entropy_reset(cp);
3814
3815         /* disable dma engines. */
3816         val = readl(cp->regs + REG_TX_CFG);
3817         val &= ~TX_CFG_DMA_EN;
3818         writel(val, cp->regs + REG_TX_CFG);
3819
3820         val = readl(cp->regs + REG_RX_CFG);
3821         val &= ~RX_CFG_DMA_EN;
3822         writel(val, cp->regs + REG_RX_CFG);
3823
3824         /* program header parser */
3825         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3826             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3827                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3828         } else {
3829                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3830         }
3831
3832         /* clear out error registers */
3833         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3834         cas_clear_mac_err(cp);
3835         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3836 }
3837
3838 /* Shut down the chip, must be called with pm_mutex held.  */
3839 static void cas_shutdown(struct cas *cp)
3840 {
3841         unsigned long flags;
3842
3843         /* Make us not-running to avoid timers respawning */
3844         cp->hw_running = 0;
3845
3846         del_timer_sync(&cp->link_timer);
3847
3848         /* Stop the reset task */
3849 #if 0
3850         while (atomic_read(&cp->reset_task_pending_mtu) ||
3851                atomic_read(&cp->reset_task_pending_spare) ||
3852                atomic_read(&cp->reset_task_pending_all))
3853                 schedule();
3854
3855 #else
3856         while (atomic_read(&cp->reset_task_pending))
3857                 schedule();
3858 #endif
3859         /* Actually stop the chip */
3860         cas_lock_all_save(cp, flags);
3861         cas_reset(cp, 0);
3862         if (cp->cas_flags & CAS_FLAG_SATURN)
3863                 cas_phy_powerdown(cp);
3864         cas_unlock_all_restore(cp, flags);
3865 }
3866
3867 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3868 {
3869         struct cas *cp = netdev_priv(dev);
3870
3871         if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3872                 return -EINVAL;
3873
3874         dev->mtu = new_mtu;
3875         if (!netif_running(dev) || !netif_device_present(dev))
3876                 return 0;
3877
3878         /* let the reset task handle it */
3879 #if 1
3880         atomic_inc(&cp->reset_task_pending);
3881         if ((cp->phy_type & CAS_PHY_SERDES)) {
3882                 atomic_inc(&cp->reset_task_pending_all);
3883         } else {
3884                 atomic_inc(&cp->reset_task_pending_mtu);
3885         }
3886         schedule_work(&cp->reset_task);
3887 #else
3888         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3889                    CAS_RESET_ALL : CAS_RESET_MTU);
3890         pr_err("reset called in cas_change_mtu\n");
3891         schedule_work(&cp->reset_task);
3892 #endif
3893
3894         flush_work_sync(&cp->reset_task);
3895         return 0;
3896 }
3897
3898 static void cas_clean_txd(struct cas *cp, int ring)
3899 {
3900         struct cas_tx_desc *txd = cp->init_txds[ring];
3901         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3902         u64 daddr, dlen;
3903         int i, size;
3904
3905         size = TX_DESC_RINGN_SIZE(ring);
3906         for (i = 0; i < size; i++) {
3907                 int frag;
3908
3909                 if (skbs[i] == NULL)
3910                         continue;
3911
3912                 skb = skbs[i];
3913                 skbs[i] = NULL;
3914
3915                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3916                         int ent = i & (size - 1);
3917
3918                         /* first buffer is never a tiny buffer and so
3919                          * needs to be unmapped.
3920                          */
3921                         daddr = le64_to_cpu(txd[ent].buffer);
3922                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3923                                          le64_to_cpu(txd[ent].control));
3924                         pci_unmap_page(cp->pdev, daddr, dlen,
3925                                        PCI_DMA_TODEVICE);
3926
3927                         if (frag != skb_shinfo(skb)->nr_frags) {
3928                                 i++;
3929
3930                                 /* next buffer might by a tiny buffer.
3931                                  * skip past it.
3932                                  */
3933                                 ent = i & (size - 1);
3934                                 if (cp->tx_tiny_use[ring][ent].used)
3935                                         i++;
3936                         }
3937                 }
3938                 dev_kfree_skb_any(skb);
3939         }
3940
3941         /* zero out tiny buf usage */
3942         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3943 }
3944
3945 /* freed on close */
3946 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3947 {
3948         cas_page_t **page = cp->rx_pages[ring];
3949         int i, size;
3950
3951         size = RX_DESC_RINGN_SIZE(ring);
3952         for (i = 0; i < size; i++) {
3953                 if (page[i]) {
3954                         cas_page_free(cp, page[i]);
3955                         page[i] = NULL;
3956                 }
3957         }
3958 }
3959
3960 static void cas_free_rxds(struct cas *cp)
3961 {
3962         int i;
3963
3964         for (i = 0; i < N_RX_DESC_RINGS; i++)
3965                 cas_free_rx_desc(cp, i);
3966 }
3967
3968 /* Must be invoked under cp->lock. */
3969 static void cas_clean_rings(struct cas *cp)
3970 {
3971         int i;
3972
3973         /* need to clean all tx rings */
3974         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3975         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3976         for (i = 0; i < N_TX_RINGS; i++)
3977                 cas_clean_txd(cp, i);
3978
3979         /* zero out init block */
3980         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3981         cas_clean_rxds(cp);
3982         cas_clean_rxcs(cp);
3983 }
3984
3985 /* allocated on open */
3986 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3987 {
3988         cas_page_t **page = cp->rx_pages[ring];
3989         int size, i = 0;
3990
3991         size = RX_DESC_RINGN_SIZE(ring);
3992         for (i = 0; i < size; i++) {
3993                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3994                         return -1;
3995         }
3996         return 0;
3997 }
3998
3999 static int cas_alloc_rxds(struct cas *cp)
4000 {
4001         int i;
4002
4003         for (i = 0; i < N_RX_DESC_RINGS; i++) {
4004                 if (cas_alloc_rx_desc(cp, i) < 0) {
4005                         cas_free_rxds(cp);
4006                         return -1;
4007                 }
4008         }
4009         return 0;
4010 }
4011
4012 static void cas_reset_task(struct work_struct *work)
4013 {
4014         struct cas *cp = container_of(work, struct cas, reset_task);
4015 #if 0
4016         int pending = atomic_read(&cp->reset_task_pending);
4017 #else
4018         int pending_all = atomic_read(&cp->reset_task_pending_all);
4019         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4020         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4021
4022         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4023                 /* We can have more tasks scheduled than actually
4024                  * needed.
4025                  */
4026                 atomic_dec(&cp->reset_task_pending);
4027                 return;
4028         }
4029 #endif
4030         /* The link went down, we reset the ring, but keep
4031          * DMA stopped. Use this function for reset
4032          * on error as well.
4033          */
4034         if (cp->hw_running) {
4035                 unsigned long flags;
4036
4037                 /* Make sure we don't get interrupts or tx packets */
4038                 netif_device_detach(cp->dev);
4039                 cas_lock_all_save(cp, flags);
4040
4041                 if (cp->opened) {
4042                         /* We call cas_spare_recover when we call cas_open.
4043                          * but we do not initialize the lists cas_spare_recover
4044                          * uses until cas_open is called.
4045                          */
4046                         cas_spare_recover(cp, GFP_ATOMIC);
4047                 }
4048 #if 1
4049                 /* test => only pending_spare set */
4050                 if (!pending_all && !pending_mtu)
4051                         goto done;
4052 #else
4053                 if (pending == CAS_RESET_SPARE)
4054                         goto done;
4055 #endif
4056                 /* when pending == CAS_RESET_ALL, the following
4057                  * call to cas_init_hw will restart auto negotiation.
4058                  * Setting the second argument of cas_reset to
4059                  * !(pending == CAS_RESET_ALL) will set this argument
4060                  * to 1 (avoiding reinitializing the PHY for the normal
4061                  * PCS case) when auto negotiation is not restarted.
4062                  */
4063 #if 1
4064                 cas_reset(cp, !(pending_all > 0));
4065                 if (cp->opened)
4066                         cas_clean_rings(cp);
4067                 cas_init_hw(cp, (pending_all > 0));
4068 #else
4069                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4070                 if (cp->opened)
4071                         cas_clean_rings(cp);
4072                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4073 #endif
4074
4075 done:
4076                 cas_unlock_all_restore(cp, flags);
4077                 netif_device_attach(cp->dev);
4078         }
4079 #if 1
4080         atomic_sub(pending_all, &cp->reset_task_pending_all);
4081         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4082         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4083         atomic_dec(&cp->reset_task_pending);
4084 #else
4085         atomic_set(&cp->reset_task_pending, 0);
4086 #endif
4087 }
4088
4089 static void cas_link_timer(unsigned long data)
4090 {
4091         struct cas *cp = (struct cas *) data;
4092         int mask, pending = 0, reset = 0;
4093         unsigned long flags;
4094
4095         if (link_transition_timeout != 0 &&
4096             cp->link_transition_jiffies_valid &&
4097             ((jiffies - cp->link_transition_jiffies) >
4098               (link_transition_timeout))) {
4099                 /* One-second counter so link-down workaround doesn't
4100                  * cause resets to occur so fast as to fool the switch
4101                  * into thinking the link is down.
4102                  */
4103                 cp->link_transition_jiffies_valid = 0;
4104         }
4105
4106         if (!cp->hw_running)
4107                 return;
4108
4109         spin_lock_irqsave(&cp->lock, flags);
4110         cas_lock_tx(cp);
4111         cas_entropy_gather(cp);
4112
4113         /* If the link task is still pending, we just
4114          * reschedule the link timer
4115          */
4116 #if 1
4117         if (atomic_read(&cp->reset_task_pending_all) ||
4118             atomic_read(&cp->reset_task_pending_spare) ||
4119             atomic_read(&cp->reset_task_pending_mtu))
4120                 goto done;
4121 #else
4122         if (atomic_read(&cp->reset_task_pending))
4123                 goto done;
4124 #endif
4125
4126         /* check for rx cleaning */
4127         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4128                 int i, rmask;
4129
4130                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4131                         rmask = CAS_FLAG_RXD_POST(i);
4132                         if ((mask & rmask) == 0)
4133                                 continue;
4134
4135                         /* post_rxds will do a mod_timer */
4136                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4137                                 pending = 1;
4138                                 continue;
4139                         }
4140                         cp->cas_flags &= ~rmask;
4141                 }
4142         }
4143
4144         if (CAS_PHY_MII(cp->phy_type)) {
4145                 u16 bmsr;
4146                 cas_mif_poll(cp, 0);
4147                 bmsr = cas_phy_read(cp, MII_BMSR);
4148                 /* WTZ: Solaris driver reads this twice, but that
4149                  * may be due to the PCS case and the use of a
4150                  * common implementation. Read it twice here to be
4151                  * safe.
4152                  */
4153                 bmsr = cas_phy_read(cp, MII_BMSR);
4154                 cas_mif_poll(cp, 1);
4155                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4156                 reset = cas_mii_link_check(cp, bmsr);
4157         } else {
4158                 reset = cas_pcs_link_check(cp);
4159         }
4160
4161         if (reset)
4162                 goto done;
4163
4164         /* check for tx state machine confusion */
4165         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4166                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4167                 u32 wptr, rptr;
4168                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4169
4170                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4171                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4172                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4173                                      "tx err: MAC_STATE[%08x]\n", val);
4174                         reset = 1;
4175                         goto done;
4176                 }
4177
4178                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4179                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4180                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4181                 if ((val == 0) && (wptr != rptr)) {
4182                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4183                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4184                                      val, wptr, rptr);
4185                         reset = 1;
4186                 }
4187
4188                 if (reset)
4189                         cas_hard_reset(cp);
4190         }
4191
4192 done:
4193         if (reset) {
4194 #if 1
4195                 atomic_inc(&cp->reset_task_pending);
4196                 atomic_inc(&cp->reset_task_pending_all);
4197                 schedule_work(&cp->reset_task);
4198 #else
4199                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4200                 pr_err("reset called in cas_link_timer\n");
4201                 schedule_work(&cp->reset_task);
4202 #endif
4203         }
4204
4205         if (!pending)
4206                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4207         cas_unlock_tx(cp);
4208         spin_unlock_irqrestore(&cp->lock, flags);
4209 }
4210
4211 /* tiny buffers are used to avoid target abort issues with
4212  * older cassini's
4213  */
4214 static void cas_tx_tiny_free(struct cas *cp)
4215 {
4216         struct pci_dev *pdev = cp->pdev;
4217         int i;
4218
4219         for (i = 0; i < N_TX_RINGS; i++) {
4220                 if (!cp->tx_tiny_bufs[i])
4221                         continue;
4222
4223                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4224                                     cp->tx_tiny_bufs[i],
4225                                     cp->tx_tiny_dvma[i]);
4226                 cp->tx_tiny_bufs[i] = NULL;
4227         }
4228 }
4229
4230 static int cas_tx_tiny_alloc(struct cas *cp)
4231 {
4232         struct pci_dev *pdev = cp->pdev;
4233         int i;
4234
4235         for (i = 0; i < N_TX_RINGS; i++) {
4236                 cp->tx_tiny_bufs[i] =
4237                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4238                                              &cp->tx_tiny_dvma[i]);
4239                 if (!cp->tx_tiny_bufs[i]) {
4240                         cas_tx_tiny_free(cp);
4241                         return -1;
4242                 }
4243         }
4244         return 0;
4245 }
4246
4247
4248 static int cas_open(struct net_device *dev)
4249 {
4250         struct cas *cp = netdev_priv(dev);
4251         int hw_was_up, err;
4252         unsigned long flags;
4253
4254         mutex_lock(&cp->pm_mutex);
4255
4256         hw_was_up = cp->hw_running;
4257
4258         /* The power-management mutex protects the hw_running
4259          * etc. state so it is safe to do this bit without cp->lock
4260          */
4261         if (!cp->hw_running) {
4262                 /* Reset the chip */
4263                 cas_lock_all_save(cp, flags);
4264                 /* We set the second arg to cas_reset to zero
4265                  * because cas_init_hw below will have its second
4266                  * argument set to non-zero, which will force
4267                  * autonegotiation to start.
4268                  */
4269                 cas_reset(cp, 0);
4270                 cp->hw_running = 1;
4271                 cas_unlock_all_restore(cp, flags);
4272         }
4273
4274         err = -ENOMEM;
4275         if (cas_tx_tiny_alloc(cp) < 0)
4276                 goto err_unlock;
4277
4278         /* alloc rx descriptors */
4279         if (cas_alloc_rxds(cp) < 0)
4280                 goto err_tx_tiny;
4281
4282         /* allocate spares */
4283         cas_spare_init(cp);
4284         cas_spare_recover(cp, GFP_KERNEL);
4285
4286         /* We can now request the interrupt as we know it's masked
4287          * on the controller. cassini+ has up to 4 interrupts
4288          * that can be used, but you need to do explicit pci interrupt
4289          * mapping to expose them
4290          */
4291         if (request_irq(cp->pdev->irq, cas_interrupt,
4292                         IRQF_SHARED, dev->name, (void *) dev)) {
4293                 netdev_err(cp->dev, "failed to request irq !\n");
4294                 err = -EAGAIN;
4295                 goto err_spare;
4296         }
4297
4298 #ifdef USE_NAPI
4299         napi_enable(&cp->napi);
4300 #endif
4301         /* init hw */
4302         cas_lock_all_save(cp, flags);
4303         cas_clean_rings(cp);
4304         cas_init_hw(cp, !hw_was_up);
4305         cp->opened = 1;
4306         cas_unlock_all_restore(cp, flags);
4307
4308         netif_start_queue(dev);
4309         mutex_unlock(&cp->pm_mutex);
4310         return 0;
4311
4312 err_spare:
4313         cas_spare_free(cp);
4314         cas_free_rxds(cp);
4315 err_tx_tiny:
4316         cas_tx_tiny_free(cp);
4317 err_unlock:
4318         mutex_unlock(&cp->pm_mutex);
4319         return err;
4320 }
4321
4322 static int cas_close(struct net_device *dev)
4323 {
4324         unsigned long flags;
4325         struct cas *cp = netdev_priv(dev);
4326
4327 #ifdef USE_NAPI
4328         napi_disable(&cp->napi);
4329 #endif
4330         /* Make sure we don't get distracted by suspend/resume */
4331         mutex_lock(&cp->pm_mutex);
4332
4333         netif_stop_queue(dev);
4334
4335         /* Stop traffic, mark us closed */
4336         cas_lock_all_save(cp, flags);
4337         cp->opened = 0;
4338         cas_reset(cp, 0);
4339         cas_phy_init(cp);
4340         cas_begin_auto_negotiation(cp, NULL);
4341         cas_clean_rings(cp);
4342         cas_unlock_all_restore(cp, flags);
4343
4344         free_irq(cp->pdev->irq, (void *) dev);
4345         cas_spare_free(cp);
4346         cas_free_rxds(cp);
4347         cas_tx_tiny_free(cp);
4348         mutex_unlock(&cp->pm_mutex);
4349         return 0;
4350 }
4351
4352 static struct {
4353         const char name[ETH_GSTRING_LEN];
4354 } ethtool_cassini_statnames[] = {
4355         {"collisions"},
4356         {"rx_bytes"},
4357         {"rx_crc_errors"},
4358         {"rx_dropped"},
4359         {"rx_errors"},
4360         {"rx_fifo_errors"},
4361         {"rx_frame_errors"},
4362         {"rx_length_errors"},
4363         {"rx_over_errors"},
4364         {"rx_packets"},
4365         {"tx_aborted_errors"},
4366         {"tx_bytes"},
4367         {"tx_dropped"},
4368         {"tx_errors"},
4369         {"tx_fifo_errors"},
4370         {"tx_packets"}
4371 };
4372 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4373
4374 static struct {
4375         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4376 } ethtool_register_table[] = {
4377         {-MII_BMSR},
4378         {-MII_BMCR},
4379         {REG_CAWR},
4380         {REG_INF_BURST},
4381         {REG_BIM_CFG},
4382         {REG_RX_CFG},
4383         {REG_HP_CFG},
4384         {REG_MAC_TX_CFG},
4385         {REG_MAC_RX_CFG},
4386         {REG_MAC_CTRL_CFG},
4387         {REG_MAC_XIF_CFG},
4388         {REG_MIF_CFG},
4389         {REG_PCS_CFG},
4390         {REG_SATURN_PCFG},
4391         {REG_PCS_MII_STATUS},
4392         {REG_PCS_STATE_MACHINE},
4393         {REG_MAC_COLL_EXCESS},
4394         {REG_MAC_COLL_LATE}
4395 };
4396 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4397 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4398
4399 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4400 {
4401         u8 *p;
4402         int i;
4403         unsigned long flags;
4404
4405         spin_lock_irqsave(&cp->lock, flags);
4406         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4407                 u16 hval;
4408                 u32 val;
4409                 if (ethtool_register_table[i].offsets < 0) {
4410                         hval = cas_phy_read(cp,
4411                                     -ethtool_register_table[i].offsets);
4412                         val = hval;
4413                 } else {
4414                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4415                 }
4416                 memcpy(p, (u8 *)&val, sizeof(u32));
4417         }
4418         spin_unlock_irqrestore(&cp->lock, flags);
4419 }
4420
4421 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4422 {
4423         struct cas *cp = netdev_priv(dev);
4424         struct net_device_stats *stats = cp->net_stats;
4425         unsigned long flags;
4426         int i;
4427         unsigned long tmp;
4428
4429         /* we collate all of the stats into net_stats[N_TX_RING] */
4430         if (!cp->hw_running)
4431                 return stats + N_TX_RINGS;
4432
4433         /* collect outstanding stats */
4434         /* WTZ: the Cassini spec gives these as 16 bit counters but
4435          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4436          * in case the chip somehow puts any garbage in the other bits.
4437          * Also, counter usage didn't seem to mach what Adrian did
4438          * in the parts of the code that set these quantities. Made
4439          * that consistent.
4440          */
4441         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4442         stats[N_TX_RINGS].rx_crc_errors +=
4443           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4444         stats[N_TX_RINGS].rx_frame_errors +=
4445                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4446         stats[N_TX_RINGS].rx_length_errors +=
4447                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4448 #if 1
4449         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4450                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4451         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4452         stats[N_TX_RINGS].collisions +=
4453           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4454 #else
4455         stats[N_TX_RINGS].tx_aborted_errors +=
4456                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4457         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4458                 readl(cp->regs + REG_MAC_COLL_LATE);
4459 #endif
4460         cas_clear_mac_err(cp);
4461
4462         /* saved bits that are unique to ring 0 */
4463         spin_lock(&cp->stat_lock[0]);
4464         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4465         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4466         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4467         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4468         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4469         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4470         spin_unlock(&cp->stat_lock[0]);
4471
4472         for (i = 0; i < N_TX_RINGS; i++) {
4473                 spin_lock(&cp->stat_lock[i]);
4474                 stats[N_TX_RINGS].rx_length_errors +=
4475                         stats[i].rx_length_errors;
4476                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4477                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4478                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4479                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4480                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4481                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4482                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4483                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4484                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4485                 memset(stats + i, 0, sizeof(struct net_device_stats));
4486                 spin_unlock(&cp->stat_lock[i]);
4487         }
4488         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4489         return stats + N_TX_RINGS;
4490 }
4491
4492
4493 static void cas_set_multicast(struct net_device *dev)
4494 {
4495         struct cas *cp = netdev_priv(dev);
4496         u32 rxcfg, rxcfg_new;
4497         unsigned long flags;
4498         int limit = STOP_TRIES;
4499
4500         if (!cp->hw_running)
4501                 return;
4502
4503         spin_lock_irqsave(&cp->lock, flags);
4504         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4505
4506         /* disable RX MAC and wait for completion */
4507         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4508         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4509                 if (!limit--)
4510                         break;
4511                 udelay(10);
4512         }
4513
4514         /* disable hash filter and wait for completion */
4515         limit = STOP_TRIES;
4516         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4517         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4518         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4519                 if (!limit--)
4520                         break;
4521                 udelay(10);
4522         }
4523
4524         /* program hash filters */
4525         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4526         rxcfg |= rxcfg_new;
4527         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4528         spin_unlock_irqrestore(&cp->lock, flags);
4529 }
4530
4531 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4532 {
4533         struct cas *cp = netdev_priv(dev);
4534         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4535         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4536         strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4537         info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4538                 cp->casreg_len : CAS_MAX_REGS;
4539         info->n_stats = CAS_NUM_STAT_KEYS;
4540 }
4541
4542 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4543 {
4544         struct cas *cp = netdev_priv(dev);
4545         u16 bmcr;
4546         int full_duplex, speed, pause;
4547         unsigned long flags;
4548         enum link_state linkstate = link_up;
4549
4550         cmd->advertising = 0;
4551         cmd->supported = SUPPORTED_Autoneg;
4552         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4553                 cmd->supported |= SUPPORTED_1000baseT_Full;
4554                 cmd->advertising |= ADVERTISED_1000baseT_Full;
4555         }
4556
4557         /* Record PHY settings if HW is on. */
4558         spin_lock_irqsave(&cp->lock, flags);
4559         bmcr = 0;
4560         linkstate = cp->lstate;
4561         if (CAS_PHY_MII(cp->phy_type)) {
4562                 cmd->port = PORT_MII;
4563                 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4564                         XCVR_INTERNAL : XCVR_EXTERNAL;
4565                 cmd->phy_address = cp->phy_addr;
4566                 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4567                         ADVERTISED_10baseT_Half |
4568                         ADVERTISED_10baseT_Full |
4569                         ADVERTISED_100baseT_Half |
4570                         ADVERTISED_100baseT_Full;
4571
4572                 cmd->supported |=
4573                         (SUPPORTED_10baseT_Half |
4574                          SUPPORTED_10baseT_Full |
4575                          SUPPORTED_100baseT_Half |
4576                          SUPPORTED_100baseT_Full |
4577                          SUPPORTED_TP | SUPPORTED_MII);
4578
4579                 if (cp->hw_running) {
4580                         cas_mif_poll(cp, 0);
4581                         bmcr = cas_phy_read(cp, MII_BMCR);
4582                         cas_read_mii_link_mode(cp, &full_duplex,
4583                                                &speed, &pause);
4584                         cas_mif_poll(cp, 1);
4585                 }
4586
4587         } else {
4588                 cmd->port = PORT_FIBRE;
4589                 cmd->transceiver = XCVR_INTERNAL;
4590                 cmd->phy_address = 0;
4591                 cmd->supported   |= SUPPORTED_FIBRE;
4592                 cmd->advertising |= ADVERTISED_FIBRE;
4593
4594                 if (cp->hw_running) {
4595                         /* pcs uses the same bits as mii */
4596                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4597                         cas_read_pcs_link_mode(cp, &full_duplex,
4598                                                &speed, &pause);
4599                 }
4600         }
4601         spin_unlock_irqrestore(&cp->lock, flags);
4602
4603         if (bmcr & BMCR_ANENABLE) {
4604                 cmd->advertising |= ADVERTISED_Autoneg;
4605                 cmd->autoneg = AUTONEG_ENABLE;
4606                 ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4607                                             SPEED_10 :
4608                                             ((speed == 1000) ?
4609                                              SPEED_1000 : SPEED_100)));
4610                 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4611         } else {
4612                 cmd->autoneg = AUTONEG_DISABLE;
4613                 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4614                                             SPEED_1000 :
4615                                             ((bmcr & BMCR_SPEED100) ?
4616                                              SPEED_100 : SPEED_10)));
4617                 cmd->duplex =
4618                         (bmcr & BMCR_FULLDPLX) ?
4619                         DUPLEX_FULL : DUPLEX_HALF;
4620         }
4621         if (linkstate != link_up) {
4622                 /* Force these to "unknown" if the link is not up and
4623                  * autonogotiation in enabled. We can set the link
4624                  * speed to 0, but not cmd->duplex,
4625                  * because its legal values are 0 and 1.  Ethtool will
4626                  * print the value reported in parentheses after the
4627                  * word "Unknown" for unrecognized values.
4628                  *
4629                  * If in forced mode, we report the speed and duplex
4630                  * settings that we configured.
4631                  */
4632                 if (cp->link_cntl & BMCR_ANENABLE) {
4633                         ethtool_cmd_speed_set(cmd, 0);
4634                         cmd->duplex = 0xff;
4635                 } else {
4636                         ethtool_cmd_speed_set(cmd, SPEED_10);
4637                         if (cp->link_cntl & BMCR_SPEED100) {
4638                                 ethtool_cmd_speed_set(cmd, SPEED_100);
4639                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4640                                 ethtool_cmd_speed_set(cmd, SPEED_1000);
4641                         }
4642                         cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4643                                 DUPLEX_FULL : DUPLEX_HALF;
4644                 }
4645         }
4646         return 0;
4647 }
4648
4649 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4650 {
4651         struct cas *cp = netdev_priv(dev);
4652         unsigned long flags;
4653         u32 speed = ethtool_cmd_speed(cmd);
4654
4655         /* Verify the settings we care about. */
4656         if (cmd->autoneg != AUTONEG_ENABLE &&
4657             cmd->autoneg != AUTONEG_DISABLE)
4658                 return -EINVAL;
4659
4660         if (cmd->autoneg == AUTONEG_DISABLE &&
4661             ((speed != SPEED_1000 &&
4662               speed != SPEED_100 &&
4663               speed != SPEED_10) ||
4664              (cmd->duplex != DUPLEX_HALF &&
4665               cmd->duplex != DUPLEX_FULL)))
4666                 return -EINVAL;
4667
4668         /* Apply settings and restart link process. */
4669         spin_lock_irqsave(&cp->lock, flags);
4670         cas_begin_auto_negotiation(cp, cmd);
4671         spin_unlock_irqrestore(&cp->lock, flags);
4672         return 0;
4673 }
4674
4675 static int cas_nway_reset(struct net_device *dev)
4676 {
4677         struct cas *cp = netdev_priv(dev);
4678         unsigned long flags;
4679
4680         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4681                 return -EINVAL;
4682
4683         /* Restart link process. */
4684         spin_lock_irqsave(&cp->lock, flags);
4685         cas_begin_auto_negotiation(cp, NULL);
4686         spin_unlock_irqrestore(&cp->lock, flags);
4687
4688         return 0;
4689 }
4690
4691 static u32 cas_get_link(struct net_device *dev)
4692 {
4693         struct cas *cp = netdev_priv(dev);
4694         return cp->lstate == link_up;
4695 }
4696
4697 static u32 cas_get_msglevel(struct net_device *dev)
4698 {
4699         struct cas *cp = netdev_priv(dev);
4700         return cp->msg_enable;
4701 }
4702
4703 static void cas_set_msglevel(struct net_device *dev, u32 value)
4704 {
4705         struct cas *cp = netdev_priv(dev);
4706         cp->msg_enable = value;
4707 }
4708
4709 static int cas_get_regs_len(struct net_device *dev)
4710 {
4711         struct cas *cp = netdev_priv(dev);
4712         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4713 }
4714
4715 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4716                              void *p)
4717 {
4718         struct cas *cp = netdev_priv(dev);
4719         regs->version = 0;
4720         /* cas_read_regs handles locks (cp->lock).  */
4721         cas_read_regs(cp, p, regs->len / sizeof(u32));
4722 }
4723
4724 static int cas_get_sset_count(struct net_device *dev, int sset)
4725 {
4726         switch (sset) {
4727         case ETH_SS_STATS:
4728                 return CAS_NUM_STAT_KEYS;
4729         default:
4730                 return -EOPNOTSUPP;
4731         }
4732 }
4733
4734 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4735 {
4736          memcpy(data, &ethtool_cassini_statnames,
4737                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4738 }
4739
4740 static void cas_get_ethtool_stats(struct net_device *dev,
4741                                       struct ethtool_stats *estats, u64 *data)
4742 {
4743         struct cas *cp = netdev_priv(dev);
4744         struct net_device_stats *stats = cas_get_stats(cp->dev);
4745         int i = 0;
4746         data[i++] = stats->collisions;
4747         data[i++] = stats->rx_bytes;
4748         data[i++] = stats->rx_crc_errors;
4749         data[i++] = stats->rx_dropped;
4750         data[i++] = stats->rx_errors;
4751         data[i++] = stats->rx_fifo_errors;
4752         data[i++] = stats->rx_frame_errors;
4753         data[i++] = stats->rx_length_errors;
4754         data[i++] = stats->rx_over_errors;
4755         data[i++] = stats->rx_packets;
4756         data[i++] = stats->tx_aborted_errors;
4757         data[i++] = stats->tx_bytes;
4758         data[i++] = stats->tx_dropped;
4759         data[i++] = stats->tx_errors;
4760         data[i++] = stats->tx_fifo_errors;
4761         data[i++] = stats->tx_packets;
4762         BUG_ON(i != CAS_NUM_STAT_KEYS);
4763 }
4764
4765 static const struct ethtool_ops cas_ethtool_ops = {
4766         .get_drvinfo            = cas_get_drvinfo,
4767         .get_settings           = cas_get_settings,
4768         .set_settings           = cas_set_settings,
4769         .nway_reset             = cas_nway_reset,
4770         .get_link               = cas_get_link,
4771         .get_msglevel           = cas_get_msglevel,
4772         .set_msglevel           = cas_set_msglevel,
4773         .get_regs_len           = cas_get_regs_len,
4774         .get_regs               = cas_get_regs,
4775         .get_sset_count         = cas_get_sset_count,
4776         .get_strings            = cas_get_strings,
4777         .get_ethtool_stats      = cas_get_ethtool_stats,
4778 };
4779
4780 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4781 {
4782         struct cas *cp = netdev_priv(dev);
4783         struct mii_ioctl_data *data = if_mii(ifr);
4784         unsigned long flags;
4785         int rc = -EOPNOTSUPP;
4786
4787         /* Hold the PM mutex while doing ioctl's or we may collide
4788          * with open/close and power management and oops.
4789          */
4790         mutex_lock(&cp->pm_mutex);
4791         switch (cmd) {
4792         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4793                 data->phy_id = cp->phy_addr;
4794                 /* Fallthrough... */
4795
4796         case SIOCGMIIREG:               /* Read MII PHY register. */
4797                 spin_lock_irqsave(&cp->lock, flags);
4798                 cas_mif_poll(cp, 0);
4799                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4800                 cas_mif_poll(cp, 1);
4801                 spin_unlock_irqrestore(&cp->lock, flags);
4802                 rc = 0;
4803                 break;
4804
4805         case SIOCSMIIREG:               /* Write MII PHY register. */
4806                 spin_lock_irqsave(&cp->lock, flags);
4807                 cas_mif_poll(cp, 0);
4808                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4809                 cas_mif_poll(cp, 1);
4810                 spin_unlock_irqrestore(&cp->lock, flags);
4811                 break;
4812         default:
4813                 break;
4814         }
4815
4816         mutex_unlock(&cp->pm_mutex);
4817         return rc;
4818 }
4819
4820 /* When this chip sits underneath an Intel 31154 bridge, it is the
4821  * only subordinate device and we can tweak the bridge settings to
4822  * reflect that fact.
4823  */
4824 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4825 {
4826         struct pci_dev *pdev = cas_pdev->bus->self;
4827         u32 val;
4828
4829         if (!pdev)
4830                 return;
4831
4832         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4833                 return;
4834
4835         /* Clear bit 10 (Bus Parking Control) in the Secondary
4836          * Arbiter Control/Status Register which lives at offset
4837          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4838          * is much simpler so that's how we do this.
4839          */
4840         pci_read_config_dword(pdev, 0x40, &val);
4841         val &= ~0x00040000;
4842         pci_write_config_dword(pdev, 0x40, val);
4843
4844         /* Max out the Multi-Transaction Timer settings since
4845          * Cassini is the only device present.
4846          *
4847          * The register is 16-bit and lives at 0x50.  When the
4848          * settings are enabled, it extends the GRANT# signal
4849          * for a requestor after a transaction is complete.  This
4850          * allows the next request to run without first needing
4851          * to negotiate the GRANT# signal back.
4852          *
4853          * Bits 12:10 define the grant duration:
4854          *
4855          *      1       --      16 clocks
4856          *      2       --      32 clocks
4857          *      3       --      64 clocks
4858          *      4       --      128 clocks
4859          *      5       --      256 clocks
4860          *
4861          * All other values are illegal.
4862          *
4863          * Bits 09:00 define which REQ/GNT signal pairs get the
4864          * GRANT# signal treatment.  We set them all.
4865          */
4866         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4867
4868         /* The Read Prefecth Policy register is 16-bit and sits at
4869          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4870          * enable it and max out all of the settings since only one
4871          * device is sitting underneath and thus bandwidth sharing is
4872          * not an issue.
4873          *
4874          * The register has several 3 bit fields, which indicates a
4875          * multiplier applied to the base amount of prefetching the
4876          * chip would do.  These fields are at:
4877          *
4878          *      15:13   ---     ReRead Primary Bus
4879          *      12:10   ---     FirstRead Primary Bus
4880          *      09:07   ---     ReRead Secondary Bus
4881          *      06:04   ---     FirstRead Secondary Bus
4882          *
4883          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4884          * get enabled on.  Bit 3 is a grouped enabler which controls
4885          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4886          * the individual REQ/GNT pairs [2:0].
4887          */
4888         pci_write_config_word(pdev, 0x52,
4889                               (0x7 << 13) |
4890                               (0x7 << 10) |
4891                               (0x7 <<  7) |
4892                               (0x7 <<  4) |
4893                               (0xf <<  0));
4894
4895         /* Force cacheline size to 0x8 */
4896         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4897
4898         /* Force latency timer to maximum setting so Cassini can
4899          * sit on the bus as long as it likes.
4900          */
4901         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4902 }
4903
4904 static const struct net_device_ops cas_netdev_ops = {
4905         .ndo_open               = cas_open,
4906         .ndo_stop               = cas_close,
4907         .ndo_start_xmit         = cas_start_xmit,
4908         .ndo_get_stats          = cas_get_stats,
4909         .ndo_set_rx_mode        = cas_set_multicast,
4910         .ndo_do_ioctl           = cas_ioctl,
4911         .ndo_tx_timeout         = cas_tx_timeout,
4912         .ndo_change_mtu         = cas_change_mtu,
4913         .ndo_set_mac_address    = eth_mac_addr,
4914         .ndo_validate_addr      = eth_validate_addr,
4915 #ifdef CONFIG_NET_POLL_CONTROLLER
4916         .ndo_poll_controller    = cas_netpoll,
4917 #endif
4918 };
4919
4920 static int __devinit cas_init_one(struct pci_dev *pdev,
4921                                   const struct pci_device_id *ent)
4922 {
4923         static int cas_version_printed = 0;
4924         unsigned long casreg_len;
4925         struct net_device *dev;
4926         struct cas *cp;
4927         int i, err, pci_using_dac;
4928         u16 pci_cmd;
4929         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4930
4931         if (cas_version_printed++ == 0)
4932                 pr_info("%s", version);
4933
4934         err = pci_enable_device(pdev);
4935         if (err) {
4936                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4937                 return err;
4938         }
4939
4940         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4941                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4942                        "base address, aborting\n");
4943                 err = -ENODEV;
4944                 goto err_out_disable_pdev;
4945         }
4946
4947         dev = alloc_etherdev(sizeof(*cp));
4948         if (!dev) {
4949                 err = -ENOMEM;
4950                 goto err_out_disable_pdev;
4951         }
4952         SET_NETDEV_DEV(dev, &pdev->dev);
4953
4954         err = pci_request_regions(pdev, dev->name);
4955         if (err) {
4956                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4957                 goto err_out_free_netdev;
4958         }
4959         pci_set_master(pdev);
4960
4961         /* we must always turn on parity response or else parity
4962          * doesn't get generated properly. disable SERR/PERR as well.
4963          * in addition, we want to turn MWI on.
4964          */
4965         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4966         pci_cmd &= ~PCI_COMMAND_SERR;
4967         pci_cmd |= PCI_COMMAND_PARITY;
4968         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4969         if (pci_try_set_mwi(pdev))
4970                 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4971
4972         cas_program_bridge(pdev);
4973
4974         /*
4975          * On some architectures, the default cache line size set
4976          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4977          * it for this case.  To start, we'll print some configuration
4978          * data.
4979          */
4980 #if 1
4981         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4982                              &orig_cacheline_size);
4983         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4984                 cas_cacheline_size =
4985                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4986                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4987                 if (pci_write_config_byte(pdev,
4988                                           PCI_CACHE_LINE_SIZE,
4989                                           cas_cacheline_size)) {
4990                         dev_err(&pdev->dev, "Could not set PCI cache "
4991                                "line size\n");
4992                         goto err_write_cacheline;
4993                 }
4994         }
4995 #endif
4996
4997
4998         /* Configure DMA attributes. */
4999         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5000                 pci_using_dac = 1;
5001                 err = pci_set_consistent_dma_mask(pdev,
5002                                                   DMA_BIT_MASK(64));
5003                 if (err < 0) {
5004                         dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5005                                "for consistent allocations\n");
5006                         goto err_out_free_res;
5007                 }
5008
5009         } else {
5010                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5011                 if (err) {
5012                         dev_err(&pdev->dev, "No usable DMA configuration, "
5013                                "aborting\n");
5014                         goto err_out_free_res;
5015                 }
5016                 pci_using_dac = 0;
5017         }
5018
5019         casreg_len = pci_resource_len(pdev, 0);
5020
5021         cp = netdev_priv(dev);
5022         cp->pdev = pdev;
5023 #if 1
5024         /* A value of 0 indicates we never explicitly set it */
5025         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5026 #endif
5027         cp->dev = dev;
5028         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5029           cassini_debug;
5030
5031 #if defined(CONFIG_SPARC)
5032         cp->of_node = pci_device_to_OF_node(pdev);
5033 #endif
5034
5035         cp->link_transition = LINK_TRANSITION_UNKNOWN;
5036         cp->link_transition_jiffies_valid = 0;
5037
5038         spin_lock_init(&cp->lock);
5039         spin_lock_init(&cp->rx_inuse_lock);
5040         spin_lock_init(&cp->rx_spare_lock);
5041         for (i = 0; i < N_TX_RINGS; i++) {
5042                 spin_lock_init(&cp->stat_lock[i]);
5043                 spin_lock_init(&cp->tx_lock[i]);
5044         }
5045         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5046         mutex_init(&cp->pm_mutex);
5047
5048         init_timer(&cp->link_timer);
5049         cp->link_timer.function = cas_link_timer;
5050         cp->link_timer.data = (unsigned long) cp;
5051
5052 #if 1
5053         /* Just in case the implementation of atomic operations
5054          * change so that an explicit initialization is necessary.
5055          */
5056         atomic_set(&cp->reset_task_pending, 0);
5057         atomic_set(&cp->reset_task_pending_all, 0);
5058         atomic_set(&cp->reset_task_pending_spare, 0);
5059         atomic_set(&cp->reset_task_pending_mtu, 0);
5060 #endif
5061         INIT_WORK(&cp->reset_task, cas_reset_task);
5062
5063         /* Default link parameters */
5064         if (link_mode >= 0 && link_mode < 6)
5065                 cp->link_cntl = link_modes[link_mode];
5066         else
5067                 cp->link_cntl = BMCR_ANENABLE;
5068         cp->lstate = link_down;
5069         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5070         netif_carrier_off(cp->dev);
5071         cp->timer_ticks = 0;
5072
5073         /* give us access to cassini registers */
5074         cp->regs = pci_iomap(pdev, 0, casreg_len);
5075         if (!cp->regs) {
5076                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5077                 goto err_out_free_res;
5078         }
5079         cp->casreg_len = casreg_len;
5080
5081         pci_save_state(pdev);
5082         cas_check_pci_invariants(cp);
5083         cas_hard_reset(cp);
5084         cas_reset(cp, 0);
5085         if (cas_check_invariants(cp))
5086                 goto err_out_iounmap;
5087         if (cp->cas_flags & CAS_FLAG_SATURN)
5088                 if (cas_saturn_firmware_init(cp))
5089                         goto err_out_iounmap;
5090
5091         cp->init_block = (struct cas_init_block *)
5092                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5093                                      &cp->block_dvma);
5094         if (!cp->init_block) {
5095                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5096                 goto err_out_iounmap;
5097         }
5098
5099         for (i = 0; i < N_TX_RINGS; i++)
5100                 cp->init_txds[i] = cp->init_block->txds[i];
5101
5102         for (i = 0; i < N_RX_DESC_RINGS; i++)
5103                 cp->init_rxds[i] = cp->init_block->rxds[i];
5104
5105         for (i = 0; i < N_RX_COMP_RINGS; i++)
5106                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5107
5108         for (i = 0; i < N_RX_FLOWS; i++)
5109                 skb_queue_head_init(&cp->rx_flows[i]);
5110
5111         dev->netdev_ops = &cas_netdev_ops;
5112         dev->ethtool_ops = &cas_ethtool_ops;
5113         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5114
5115 #ifdef USE_NAPI
5116         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5117 #endif
5118         dev->irq = pdev->irq;
5119         dev->dma = 0;
5120
5121         /* Cassini features. */
5122         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5123                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5124
5125         if (pci_using_dac)
5126                 dev->features |= NETIF_F_HIGHDMA;
5127
5128         if (register_netdev(dev)) {
5129                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5130                 goto err_out_free_consistent;
5131         }
5132
5133         i = readl(cp->regs + REG_BIM_CFG);
5134         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5135                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5136                     (i & BIM_CFG_32BIT) ? "32" : "64",
5137                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5138                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5139                     dev->dev_addr);
5140
5141         pci_set_drvdata(pdev, dev);
5142         cp->hw_running = 1;
5143         cas_entropy_reset(cp);
5144         cas_phy_init(cp);
5145         cas_begin_auto_negotiation(cp, NULL);
5146         return 0;
5147
5148 err_out_free_consistent:
5149         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5150                             cp->init_block, cp->block_dvma);
5151
5152 err_out_iounmap:
5153         mutex_lock(&cp->pm_mutex);
5154         if (cp->hw_running)
5155                 cas_shutdown(cp);
5156         mutex_unlock(&cp->pm_mutex);
5157
5158         pci_iounmap(pdev, cp->regs);
5159
5160
5161 err_out_free_res:
5162         pci_release_regions(pdev);
5163
5164 err_write_cacheline:
5165         /* Try to restore it in case the error occurred after we
5166          * set it.
5167          */
5168         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5169
5170 err_out_free_netdev:
5171         free_netdev(dev);
5172
5173 err_out_disable_pdev:
5174         pci_disable_device(pdev);
5175         pci_set_drvdata(pdev, NULL);
5176         return -ENODEV;
5177 }
5178
5179 static void __devexit cas_remove_one(struct pci_dev *pdev)
5180 {
5181         struct net_device *dev = pci_get_drvdata(pdev);
5182         struct cas *cp;
5183         if (!dev)
5184                 return;
5185
5186         cp = netdev_priv(dev);
5187         unregister_netdev(dev);
5188
5189         if (cp->fw_data)
5190                 vfree(cp->fw_data);
5191
5192         mutex_lock(&cp->pm_mutex);
5193         cancel_work_sync(&cp->reset_task);
5194         if (cp->hw_running)
5195                 cas_shutdown(cp);
5196         mutex_unlock(&cp->pm_mutex);
5197
5198 #if 1
5199         if (cp->orig_cacheline_size) {
5200                 /* Restore the cache line size if we had modified
5201                  * it.
5202                  */
5203                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5204                                       cp->orig_cacheline_size);
5205         }
5206 #endif
5207         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5208                             cp->init_block, cp->block_dvma);
5209         pci_iounmap(pdev, cp->regs);
5210         free_netdev(dev);
5211         pci_release_regions(pdev);
5212         pci_disable_device(pdev);
5213         pci_set_drvdata(pdev, NULL);
5214 }
5215
5216 #ifdef CONFIG_PM
5217 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5218 {
5219         struct net_device *dev = pci_get_drvdata(pdev);
5220         struct cas *cp = netdev_priv(dev);
5221         unsigned long flags;
5222
5223         mutex_lock(&cp->pm_mutex);
5224
5225         /* If the driver is opened, we stop the DMA */
5226         if (cp->opened) {
5227                 netif_device_detach(dev);
5228
5229                 cas_lock_all_save(cp, flags);
5230
5231                 /* We can set the second arg of cas_reset to 0
5232                  * because on resume, we'll call cas_init_hw with
5233                  * its second arg set so that autonegotiation is
5234                  * restarted.
5235                  */
5236                 cas_reset(cp, 0);
5237                 cas_clean_rings(cp);
5238                 cas_unlock_all_restore(cp, flags);
5239         }
5240
5241         if (cp->hw_running)
5242                 cas_shutdown(cp);
5243         mutex_unlock(&cp->pm_mutex);
5244
5245         return 0;
5246 }
5247
5248 static int cas_resume(struct pci_dev *pdev)
5249 {
5250         struct net_device *dev = pci_get_drvdata(pdev);
5251         struct cas *cp = netdev_priv(dev);
5252
5253         netdev_info(dev, "resuming\n");
5254
5255         mutex_lock(&cp->pm_mutex);
5256         cas_hard_reset(cp);
5257         if (cp->opened) {
5258                 unsigned long flags;
5259                 cas_lock_all_save(cp, flags);
5260                 cas_reset(cp, 0);
5261                 cp->hw_running = 1;
5262                 cas_clean_rings(cp);
5263                 cas_init_hw(cp, 1);
5264                 cas_unlock_all_restore(cp, flags);
5265
5266                 netif_device_attach(dev);
5267         }
5268         mutex_unlock(&cp->pm_mutex);
5269         return 0;
5270 }
5271 #endif /* CONFIG_PM */
5272
5273 static struct pci_driver cas_driver = {
5274         .name           = DRV_MODULE_NAME,
5275         .id_table       = cas_pci_tbl,
5276         .probe          = cas_init_one,
5277         .remove         = __devexit_p(cas_remove_one),
5278 #ifdef CONFIG_PM
5279         .suspend        = cas_suspend,
5280         .resume         = cas_resume
5281 #endif
5282 };
5283
5284 static int __init cas_init(void)
5285 {
5286         if (linkdown_timeout > 0)
5287                 link_transition_timeout = linkdown_timeout * HZ;
5288         else
5289                 link_transition_timeout = 0;
5290
5291         return pci_register_driver(&cas_driver);
5292 }
5293
5294 static void __exit cas_cleanup(void)
5295 {
5296         pci_unregister_driver(&cas_driver);
5297 }
5298
5299 module_init(cas_init);
5300 module_exit(cas_cleanup);