ARM: pgtable: use phys_addr_t for physical addresses
[linux-flexiantxendom0-3.2.10.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27
28 #include <asm/mach/arch.h>
29 #include <asm/mach/map.h>
30
31 #include "mm.h"
32
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35 /*
36  * empty_zero_page is a special page that is used for
37  * zero-initialized data and COW.
38  */
39 struct page *empty_zero_page;
40 EXPORT_SYMBOL(empty_zero_page);
41
42 /*
43  * The pmd table for the upper-most set of pages.
44  */
45 pmd_t *top_pmd;
46
47 #define CPOLICY_UNCACHED        0
48 #define CPOLICY_BUFFERED        1
49 #define CPOLICY_WRITETHROUGH    2
50 #define CPOLICY_WRITEBACK       3
51 #define CPOLICY_WRITEALLOC      4
52
53 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54 static unsigned int ecc_mask __initdata = 0;
55 pgprot_t pgprot_user;
56 pgprot_t pgprot_kernel;
57
58 EXPORT_SYMBOL(pgprot_user);
59 EXPORT_SYMBOL(pgprot_kernel);
60
61 struct cachepolicy {
62         const char      policy[16];
63         unsigned int    cr_mask;
64         unsigned int    pmd;
65         unsigned int    pte;
66 };
67
68 static struct cachepolicy cache_policies[] __initdata = {
69         {
70                 .policy         = "uncached",
71                 .cr_mask        = CR_W|CR_C,
72                 .pmd            = PMD_SECT_UNCACHED,
73                 .pte            = L_PTE_MT_UNCACHED,
74         }, {
75                 .policy         = "buffered",
76                 .cr_mask        = CR_C,
77                 .pmd            = PMD_SECT_BUFFERED,
78                 .pte            = L_PTE_MT_BUFFERABLE,
79         }, {
80                 .policy         = "writethrough",
81                 .cr_mask        = 0,
82                 .pmd            = PMD_SECT_WT,
83                 .pte            = L_PTE_MT_WRITETHROUGH,
84         }, {
85                 .policy         = "writeback",
86                 .cr_mask        = 0,
87                 .pmd            = PMD_SECT_WB,
88                 .pte            = L_PTE_MT_WRITEBACK,
89         }, {
90                 .policy         = "writealloc",
91                 .cr_mask        = 0,
92                 .pmd            = PMD_SECT_WBWA,
93                 .pte            = L_PTE_MT_WRITEALLOC,
94         }
95 };
96
97 /*
98  * These are useful for identifying cache coherency
99  * problems by allowing the cache or the cache and
100  * writebuffer to be turned off.  (Note: the write
101  * buffer should not be on and the cache off).
102  */
103 static int __init early_cachepolicy(char *p)
104 {
105         int i;
106
107         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108                 int len = strlen(cache_policies[i].policy);
109
110                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
111                         cachepolicy = i;
112                         cr_alignment &= ~cache_policies[i].cr_mask;
113                         cr_no_alignment &= ~cache_policies[i].cr_mask;
114                         break;
115                 }
116         }
117         if (i == ARRAY_SIZE(cache_policies))
118                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119         /*
120          * This restriction is partly to do with the way we boot; it is
121          * unpredictable to have memory mapped using two different sets of
122          * memory attributes (shared, type, and cache attribs).  We can not
123          * change these attributes once the initial assembly has setup the
124          * page tables.
125          */
126         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128                 cachepolicy = CPOLICY_WRITEBACK;
129         }
130         flush_cache_all();
131         set_cr(cr_alignment);
132         return 0;
133 }
134 early_param("cachepolicy", early_cachepolicy);
135
136 static int __init early_nocache(char *__unused)
137 {
138         char *p = "buffered";
139         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140         early_cachepolicy(p);
141         return 0;
142 }
143 early_param("nocache", early_nocache);
144
145 static int __init early_nowrite(char *__unused)
146 {
147         char *p = "uncached";
148         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
149         early_cachepolicy(p);
150         return 0;
151 }
152 early_param("nowb", early_nowrite);
153
154 static int __init early_ecc(char *p)
155 {
156         if (memcmp(p, "on", 2) == 0)
157                 ecc_mask = PMD_PROTECTION;
158         else if (memcmp(p, "off", 3) == 0)
159                 ecc_mask = 0;
160         return 0;
161 }
162 early_param("ecc", early_ecc);
163
164 static int __init noalign_setup(char *__unused)
165 {
166         cr_alignment &= ~CR_A;
167         cr_no_alignment &= ~CR_A;
168         set_cr(cr_alignment);
169         return 1;
170 }
171 __setup("noalign", noalign_setup);
172
173 #ifndef CONFIG_SMP
174 void adjust_cr(unsigned long mask, unsigned long set)
175 {
176         unsigned long flags;
177
178         mask &= ~CR_A;
179
180         set &= mask;
181
182         local_irq_save(flags);
183
184         cr_no_alignment = (cr_no_alignment & ~mask) | set;
185         cr_alignment = (cr_alignment & ~mask) | set;
186
187         set_cr((get_cr() & ~mask) | set);
188
189         local_irq_restore(flags);
190 }
191 #endif
192
193 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
194 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195
196 static struct mem_type mem_types[] = {
197         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
198                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199                                   L_PTE_SHARED,
200                 .prot_l1        = PMD_TYPE_TABLE,
201                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
202                 .domain         = DOMAIN_IO,
203         },
204         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
205                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
206                 .prot_l1        = PMD_TYPE_TABLE,
207                 .prot_sect      = PROT_SECT_DEVICE,
208                 .domain         = DOMAIN_IO,
209         },
210         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
211                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
212                 .prot_l1        = PMD_TYPE_TABLE,
213                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
214                 .domain         = DOMAIN_IO,
215         },      
216         [MT_DEVICE_WC] = {      /* ioremap_wc */
217                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
218                 .prot_l1        = PMD_TYPE_TABLE,
219                 .prot_sect      = PROT_SECT_DEVICE,
220                 .domain         = DOMAIN_IO,
221         },
222         [MT_UNCACHED] = {
223                 .prot_pte       = PROT_PTE_DEVICE,
224                 .prot_l1        = PMD_TYPE_TABLE,
225                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
226                 .domain         = DOMAIN_IO,
227         },
228         [MT_CACHECLEAN] = {
229                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230                 .domain    = DOMAIN_KERNEL,
231         },
232         [MT_MINICLEAN] = {
233                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
234                 .domain    = DOMAIN_KERNEL,
235         },
236         [MT_LOW_VECTORS] = {
237                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238                                 L_PTE_EXEC,
239                 .prot_l1   = PMD_TYPE_TABLE,
240                 .domain    = DOMAIN_USER,
241         },
242         [MT_HIGH_VECTORS] = {
243                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244                                 L_PTE_USER | L_PTE_EXEC,
245                 .prot_l1   = PMD_TYPE_TABLE,
246                 .domain    = DOMAIN_USER,
247         },
248         [MT_MEMORY] = {
249                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250                                 L_PTE_WRITE | L_PTE_EXEC,
251                 .prot_l1   = PMD_TYPE_TABLE,
252                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
253                 .domain    = DOMAIN_KERNEL,
254         },
255         [MT_ROM] = {
256                 .prot_sect = PMD_TYPE_SECT,
257                 .domain    = DOMAIN_KERNEL,
258         },
259         [MT_MEMORY_NONCACHED] = {
260                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
261                                 L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
262                 .prot_l1   = PMD_TYPE_TABLE,
263                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
264                 .domain    = DOMAIN_KERNEL,
265         },
266         [MT_MEMORY_DTCM] = {
267                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
268                                 L_PTE_WRITE,
269                 .prot_l1   = PMD_TYPE_TABLE,
270                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271                 .domain    = DOMAIN_KERNEL,
272         },
273         [MT_MEMORY_ITCM] = {
274                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
275                                 L_PTE_WRITE | L_PTE_EXEC,
276                 .prot_l1   = PMD_TYPE_TABLE,
277                 .domain    = DOMAIN_KERNEL,
278         },
279 };
280
281 const struct mem_type *get_mem_type(unsigned int type)
282 {
283         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
284 }
285 EXPORT_SYMBOL(get_mem_type);
286
287 /*
288  * Adjust the PMD section entries according to the CPU in use.
289  */
290 static void __init build_mem_type_table(void)
291 {
292         struct cachepolicy *cp;
293         unsigned int cr = get_cr();
294         unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
295         int cpu_arch = cpu_architecture();
296         int i;
297
298         if (cpu_arch < CPU_ARCH_ARMv6) {
299 #if defined(CONFIG_CPU_DCACHE_DISABLE)
300                 if (cachepolicy > CPOLICY_BUFFERED)
301                         cachepolicy = CPOLICY_BUFFERED;
302 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
303                 if (cachepolicy > CPOLICY_WRITETHROUGH)
304                         cachepolicy = CPOLICY_WRITETHROUGH;
305 #endif
306         }
307         if (cpu_arch < CPU_ARCH_ARMv5) {
308                 if (cachepolicy >= CPOLICY_WRITEALLOC)
309                         cachepolicy = CPOLICY_WRITEBACK;
310                 ecc_mask = 0;
311         }
312         if (is_smp())
313                 cachepolicy = CPOLICY_WRITEALLOC;
314
315         /*
316          * Strip out features not present on earlier architectures.
317          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
318          * without extended page tables don't have the 'Shared' bit.
319          */
320         if (cpu_arch < CPU_ARCH_ARMv5)
321                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
322                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
323         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
324                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
325                         mem_types[i].prot_sect &= ~PMD_SECT_S;
326
327         /*
328          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
329          * "update-able on write" bit on ARM610).  However, Xscale and
330          * Xscale3 require this bit to be cleared.
331          */
332         if (cpu_is_xscale() || cpu_is_xsc3()) {
333                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
334                         mem_types[i].prot_sect &= ~PMD_BIT4;
335                         mem_types[i].prot_l1 &= ~PMD_BIT4;
336                 }
337         } else if (cpu_arch < CPU_ARCH_ARMv6) {
338                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
339                         if (mem_types[i].prot_l1)
340                                 mem_types[i].prot_l1 |= PMD_BIT4;
341                         if (mem_types[i].prot_sect)
342                                 mem_types[i].prot_sect |= PMD_BIT4;
343                 }
344         }
345
346         /*
347          * Mark the device areas according to the CPU/architecture.
348          */
349         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
350                 if (!cpu_is_xsc3()) {
351                         /*
352                          * Mark device regions on ARMv6+ as execute-never
353                          * to prevent speculative instruction fetches.
354                          */
355                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
356                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
357                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
358                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
359                 }
360                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
361                         /*
362                          * For ARMv7 with TEX remapping,
363                          * - shared device is SXCB=1100
364                          * - nonshared device is SXCB=0100
365                          * - write combine device mem is SXCB=0001
366                          * (Uncached Normal memory)
367                          */
368                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
369                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
370                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
371                 } else if (cpu_is_xsc3()) {
372                         /*
373                          * For Xscale3,
374                          * - shared device is TEXCB=00101
375                          * - nonshared device is TEXCB=01000
376                          * - write combine device mem is TEXCB=00100
377                          * (Inner/Outer Uncacheable in xsc3 parlance)
378                          */
379                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
380                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
381                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
382                 } else {
383                         /*
384                          * For ARMv6 and ARMv7 without TEX remapping,
385                          * - shared device is TEXCB=00001
386                          * - nonshared device is TEXCB=01000
387                          * - write combine device mem is TEXCB=00100
388                          * (Uncached Normal in ARMv6 parlance).
389                          */
390                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
391                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
392                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
393                 }
394         } else {
395                 /*
396                  * On others, write combining is "Uncached/Buffered"
397                  */
398                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
399         }
400
401         /*
402          * Now deal with the memory-type mappings
403          */
404         cp = &cache_policies[cachepolicy];
405         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
406
407         /*
408          * Only use write-through for non-SMP systems
409          */
410         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
411                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
412
413         /*
414          * Enable CPU-specific coherency if supported.
415          * (Only available on XSC3 at the moment.)
416          */
417         if (arch_is_coherent() && cpu_is_xsc3()) {
418                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
419                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
420                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
421                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
422         }
423         /*
424          * ARMv6 and above have extended page tables.
425          */
426         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
427                 /*
428                  * Mark cache clean areas and XIP ROM read only
429                  * from SVC mode and no access from userspace.
430                  */
431                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
432                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
433                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
434
435                 if (is_smp()) {
436                         /*
437                          * Mark memory with the "shared" attribute
438                          * for SMP systems
439                          */
440                         user_pgprot |= L_PTE_SHARED;
441                         kern_pgprot |= L_PTE_SHARED;
442                         vecs_pgprot |= L_PTE_SHARED;
443                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
444                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
445                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
446                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
447                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
448                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
449                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
450                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
451                 }
452         }
453
454         /*
455          * Non-cacheable Normal - intended for memory areas that must
456          * not cause dirty cache line writebacks when used
457          */
458         if (cpu_arch >= CPU_ARCH_ARMv6) {
459                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
460                         /* Non-cacheable Normal is XCB = 001 */
461                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
462                                 PMD_SECT_BUFFERED;
463                 } else {
464                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
465                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
466                                 PMD_SECT_TEX(1);
467                 }
468         } else {
469                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
470         }
471
472         for (i = 0; i < 16; i++) {
473                 unsigned long v = pgprot_val(protection_map[i]);
474                 protection_map[i] = __pgprot(v | user_pgprot);
475         }
476
477         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
478         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
479
480         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
481         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
482                                  L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
483
484         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
485         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
486         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
487         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
488         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
489         mem_types[MT_ROM].prot_sect |= cp->pmd;
490
491         switch (cp->pmd) {
492         case PMD_SECT_WT:
493                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
494                 break;
495         case PMD_SECT_WB:
496         case PMD_SECT_WBWA:
497                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
498                 break;
499         }
500         printk("Memory policy: ECC %sabled, Data cache %s\n",
501                 ecc_mask ? "en" : "dis", cp->policy);
502
503         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
504                 struct mem_type *t = &mem_types[i];
505                 if (t->prot_l1)
506                         t->prot_l1 |= PMD_DOMAIN(t->domain);
507                 if (t->prot_sect)
508                         t->prot_sect |= PMD_DOMAIN(t->domain);
509         }
510 }
511
512 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
513 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
514                               unsigned long size, pgprot_t vma_prot)
515 {
516         if (!pfn_valid(pfn))
517                 return pgprot_noncached(vma_prot);
518         else if (file->f_flags & O_SYNC)
519                 return pgprot_writecombine(vma_prot);
520         return vma_prot;
521 }
522 EXPORT_SYMBOL(phys_mem_access_prot);
523 #endif
524
525 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
526
527 static void __init *early_alloc(unsigned long sz)
528 {
529         void *ptr = __va(memblock_alloc(sz, sz));
530         memset(ptr, 0, sz);
531         return ptr;
532 }
533
534 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
535 {
536         if (pmd_none(*pmd)) {
537                 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
538                 __pmd_populate(pmd, __pa(pte), prot);
539         }
540         BUG_ON(pmd_bad(*pmd));
541         return pte_offset_kernel(pmd, addr);
542 }
543
544 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
545                                   unsigned long end, unsigned long pfn,
546                                   const struct mem_type *type)
547 {
548         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
549         do {
550                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
551                 pfn++;
552         } while (pte++, addr += PAGE_SIZE, addr != end);
553 }
554
555 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
556                                       unsigned long end, phys_addr_t phys,
557                                       const struct mem_type *type)
558 {
559         pmd_t *pmd = pmd_offset(pgd, addr);
560
561         /*
562          * Try a section mapping - end, addr and phys must all be aligned
563          * to a section boundary.  Note that PMDs refer to the individual
564          * L1 entries, whereas PGDs refer to a group of L1 entries making
565          * up one logical pointer to an L2 table.
566          */
567         if (((addr | end | phys) & ~SECTION_MASK) == 0) {
568                 pmd_t *p = pmd;
569
570                 if (addr & SECTION_SIZE)
571                         pmd++;
572
573                 do {
574                         *pmd = __pmd(phys | type->prot_sect);
575                         phys += SECTION_SIZE;
576                 } while (pmd++, addr += SECTION_SIZE, addr != end);
577
578                 flush_pmd_entry(p);
579         } else {
580                 /*
581                  * No need to loop; pte's aren't interested in the
582                  * individual L1 entries.
583                  */
584                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
585         }
586 }
587
588 static void __init create_36bit_mapping(struct map_desc *md,
589                                         const struct mem_type *type)
590 {
591         unsigned long addr, length, end;
592         phys_addr_t phys;
593         pgd_t *pgd;
594
595         addr = md->virtual;
596         phys = (unsigned long)__pfn_to_phys(md->pfn);
597         length = PAGE_ALIGN(md->length);
598
599         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
600                 printk(KERN_ERR "MM: CPU does not support supersection "
601                        "mapping for 0x%08llx at 0x%08lx\n",
602                        __pfn_to_phys((u64)md->pfn), addr);
603                 return;
604         }
605
606         /* N.B. ARMv6 supersections are only defined to work with domain 0.
607          *      Since domain assignments can in fact be arbitrary, the
608          *      'domain == 0' check below is required to insure that ARMv6
609          *      supersections are only allocated for domain 0 regardless
610          *      of the actual domain assignments in use.
611          */
612         if (type->domain) {
613                 printk(KERN_ERR "MM: invalid domain in supersection "
614                        "mapping for 0x%08llx at 0x%08lx\n",
615                        __pfn_to_phys((u64)md->pfn), addr);
616                 return;
617         }
618
619         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
620                 printk(KERN_ERR "MM: cannot create mapping for "
621                        "0x%08llx at 0x%08lx invalid alignment\n",
622                        __pfn_to_phys((u64)md->pfn), addr);
623                 return;
624         }
625
626         /*
627          * Shift bits [35:32] of address into bits [23:20] of PMD
628          * (See ARMv6 spec).
629          */
630         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
631
632         pgd = pgd_offset_k(addr);
633         end = addr + length;
634         do {
635                 pmd_t *pmd = pmd_offset(pgd, addr);
636                 int i;
637
638                 for (i = 0; i < 16; i++)
639                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
640
641                 addr += SUPERSECTION_SIZE;
642                 phys += SUPERSECTION_SIZE;
643                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
644         } while (addr != end);
645 }
646
647 /*
648  * Create the page directory entries and any necessary
649  * page tables for the mapping specified by `md'.  We
650  * are able to cope here with varying sizes and address
651  * offsets, and we take full advantage of sections and
652  * supersections.
653  */
654 static void __init create_mapping(struct map_desc *md)
655 {
656         unsigned long phys, addr, length, end;
657         const struct mem_type *type;
658         pgd_t *pgd;
659
660         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
661                 printk(KERN_WARNING "BUG: not creating mapping for "
662                        "0x%08llx at 0x%08lx in user region\n",
663                        __pfn_to_phys((u64)md->pfn), md->virtual);
664                 return;
665         }
666
667         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
668             md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
669                 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
670                        "overlaps vmalloc space\n",
671                        __pfn_to_phys((u64)md->pfn), md->virtual);
672         }
673
674         type = &mem_types[md->type];
675
676         /*
677          * Catch 36-bit addresses
678          */
679         if (md->pfn >= 0x100000) {
680                 create_36bit_mapping(md, type);
681                 return;
682         }
683
684         addr = md->virtual & PAGE_MASK;
685         phys = (unsigned long)__pfn_to_phys(md->pfn);
686         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
687
688         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
689                 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
690                        "be mapped using pages, ignoring.\n",
691                        __pfn_to_phys(md->pfn), addr);
692                 return;
693         }
694
695         pgd = pgd_offset_k(addr);
696         end = addr + length;
697         do {
698                 unsigned long next = pgd_addr_end(addr, end);
699
700                 alloc_init_section(pgd, addr, next, phys, type);
701
702                 phys += next - addr;
703                 addr = next;
704         } while (pgd++, addr != end);
705 }
706
707 /*
708  * Create the architecture specific mappings
709  */
710 void __init iotable_init(struct map_desc *io_desc, int nr)
711 {
712         int i;
713
714         for (i = 0; i < nr; i++)
715                 create_mapping(io_desc + i);
716 }
717
718 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
719
720 /*
721  * vmalloc=size forces the vmalloc area to be exactly 'size'
722  * bytes. This can be used to increase (or decrease) the vmalloc
723  * area - the default is 128m.
724  */
725 static int __init early_vmalloc(char *arg)
726 {
727         unsigned long vmalloc_reserve = memparse(arg, NULL);
728
729         if (vmalloc_reserve < SZ_16M) {
730                 vmalloc_reserve = SZ_16M;
731                 printk(KERN_WARNING
732                         "vmalloc area too small, limiting to %luMB\n",
733                         vmalloc_reserve >> 20);
734         }
735
736         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
737                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
738                 printk(KERN_WARNING
739                         "vmalloc area is too big, limiting to %luMB\n",
740                         vmalloc_reserve >> 20);
741         }
742
743         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
744         return 0;
745 }
746 early_param("vmalloc", early_vmalloc);
747
748 static phys_addr_t lowmem_limit __initdata = 0;
749
750 static void __init sanity_check_meminfo(void)
751 {
752         int i, j, highmem = 0;
753
754         lowmem_limit = __pa(vmalloc_min - 1) + 1;
755         memblock_set_current_limit(lowmem_limit);
756
757         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
758                 struct membank *bank = &meminfo.bank[j];
759                 *bank = meminfo.bank[i];
760
761 #ifdef CONFIG_HIGHMEM
762                 if (__va(bank->start) > vmalloc_min ||
763                     __va(bank->start) < (void *)PAGE_OFFSET)
764                         highmem = 1;
765
766                 bank->highmem = highmem;
767
768                 /*
769                  * Split those memory banks which are partially overlapping
770                  * the vmalloc area greatly simplifying things later.
771                  */
772                 if (__va(bank->start) < vmalloc_min &&
773                     bank->size > vmalloc_min - __va(bank->start)) {
774                         if (meminfo.nr_banks >= NR_BANKS) {
775                                 printk(KERN_CRIT "NR_BANKS too low, "
776                                                  "ignoring high memory\n");
777                         } else {
778                                 memmove(bank + 1, bank,
779                                         (meminfo.nr_banks - i) * sizeof(*bank));
780                                 meminfo.nr_banks++;
781                                 i++;
782                                 bank[1].size -= vmalloc_min - __va(bank->start);
783                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
784                                 bank[1].highmem = highmem = 1;
785                                 j++;
786                         }
787                         bank->size = vmalloc_min - __va(bank->start);
788                 }
789 #else
790                 bank->highmem = highmem;
791
792                 /*
793                  * Check whether this memory bank would entirely overlap
794                  * the vmalloc area.
795                  */
796                 if (__va(bank->start) >= vmalloc_min ||
797                     __va(bank->start) < (void *)PAGE_OFFSET) {
798                         printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
799                                "(vmalloc region overlap).\n",
800                                bank->start, bank->start + bank->size - 1);
801                         continue;
802                 }
803
804                 /*
805                  * Check whether this memory bank would partially overlap
806                  * the vmalloc area.
807                  */
808                 if (__va(bank->start + bank->size) > vmalloc_min ||
809                     __va(bank->start + bank->size) < __va(bank->start)) {
810                         unsigned long newsize = vmalloc_min - __va(bank->start);
811                         printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
812                                "to -%.8lx (vmalloc region overlap).\n",
813                                bank->start, bank->start + bank->size - 1,
814                                bank->start + newsize - 1);
815                         bank->size = newsize;
816                 }
817 #endif
818                 j++;
819         }
820 #ifdef CONFIG_HIGHMEM
821         if (highmem) {
822                 const char *reason = NULL;
823
824                 if (cache_is_vipt_aliasing()) {
825                         /*
826                          * Interactions between kmap and other mappings
827                          * make highmem support with aliasing VIPT caches
828                          * rather difficult.
829                          */
830                         reason = "with VIPT aliasing cache";
831                 } else if (is_smp() && tlb_ops_need_broadcast()) {
832                         /*
833                          * kmap_high needs to occasionally flush TLB entries,
834                          * however, if the TLB entries need to be broadcast
835                          * we may deadlock:
836                          *  kmap_high(irqs off)->flush_all_zero_pkmaps->
837                          *  flush_tlb_kernel_range->smp_call_function_many
838                          *   (must not be called with irqs off)
839                          */
840                         reason = "without hardware TLB ops broadcasting";
841                 }
842                 if (reason) {
843                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
844                                 reason);
845                         while (j > 0 && meminfo.bank[j - 1].highmem)
846                                 j--;
847                 }
848         }
849 #endif
850         meminfo.nr_banks = j;
851 }
852
853 static inline void prepare_page_table(void)
854 {
855         unsigned long addr;
856         phys_addr_t end;
857
858         /*
859          * Clear out all the mappings below the kernel image.
860          */
861         for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
862                 pmd_clear(pmd_off_k(addr));
863
864 #ifdef CONFIG_XIP_KERNEL
865         /* The XIP kernel is mapped in the module area -- skip over it */
866         addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
867 #endif
868         for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
869                 pmd_clear(pmd_off_k(addr));
870
871         /*
872          * Find the end of the first block of lowmem.
873          */
874         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
875         if (end >= lowmem_limit)
876                 end = lowmem_limit;
877
878         /*
879          * Clear out all the kernel space mappings, except for the first
880          * memory bank, up to the end of the vmalloc region.
881          */
882         for (addr = __phys_to_virt(end);
883              addr < VMALLOC_END; addr += PGDIR_SIZE)
884                 pmd_clear(pmd_off_k(addr));
885 }
886
887 /*
888  * Reserve the special regions of memory
889  */
890 void __init arm_mm_memblock_reserve(void)
891 {
892         /*
893          * Reserve the page tables.  These are already in use,
894          * and can only be in node 0.
895          */
896         memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
897
898 #ifdef CONFIG_SA1111
899         /*
900          * Because of the SA1111 DMA bug, we want to preserve our
901          * precious DMA-able memory...
902          */
903         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
904 #endif
905 }
906
907 /*
908  * Set up device the mappings.  Since we clear out the page tables for all
909  * mappings above VMALLOC_END, we will remove any debug device mappings.
910  * This means you have to be careful how you debug this function, or any
911  * called function.  This means you can't use any function or debugging
912  * method which may touch any device, otherwise the kernel _will_ crash.
913  */
914 static void __init devicemaps_init(struct machine_desc *mdesc)
915 {
916         struct map_desc map;
917         unsigned long addr;
918         void *vectors;
919
920         /*
921          * Allocate the vector page early.
922          */
923         vectors = early_alloc(PAGE_SIZE);
924
925         for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
926                 pmd_clear(pmd_off_k(addr));
927
928         /*
929          * Map the kernel if it is XIP.
930          * It is always first in the modulearea.
931          */
932 #ifdef CONFIG_XIP_KERNEL
933         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
934         map.virtual = MODULES_VADDR;
935         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
936         map.type = MT_ROM;
937         create_mapping(&map);
938 #endif
939
940         /*
941          * Map the cache flushing regions.
942          */
943 #ifdef FLUSH_BASE
944         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
945         map.virtual = FLUSH_BASE;
946         map.length = SZ_1M;
947         map.type = MT_CACHECLEAN;
948         create_mapping(&map);
949 #endif
950 #ifdef FLUSH_BASE_MINICACHE
951         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
952         map.virtual = FLUSH_BASE_MINICACHE;
953         map.length = SZ_1M;
954         map.type = MT_MINICLEAN;
955         create_mapping(&map);
956 #endif
957
958         /*
959          * Create a mapping for the machine vectors at the high-vectors
960          * location (0xffff0000).  If we aren't using high-vectors, also
961          * create a mapping at the low-vectors virtual address.
962          */
963         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
964         map.virtual = 0xffff0000;
965         map.length = PAGE_SIZE;
966         map.type = MT_HIGH_VECTORS;
967         create_mapping(&map);
968
969         if (!vectors_high()) {
970                 map.virtual = 0;
971                 map.type = MT_LOW_VECTORS;
972                 create_mapping(&map);
973         }
974
975         /*
976          * Ask the machine support to map in the statically mapped devices.
977          */
978         if (mdesc->map_io)
979                 mdesc->map_io();
980
981         /*
982          * Finally flush the caches and tlb to ensure that we're in a
983          * consistent state wrt the writebuffer.  This also ensures that
984          * any write-allocated cache lines in the vector page are written
985          * back.  After this point, we can start to touch devices again.
986          */
987         local_flush_tlb_all();
988         flush_cache_all();
989 }
990
991 static void __init kmap_init(void)
992 {
993 #ifdef CONFIG_HIGHMEM
994         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
995                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
996 #endif
997 }
998
999 static void __init map_lowmem(void)
1000 {
1001         struct memblock_region *reg;
1002
1003         /* Map all the lowmem memory banks. */
1004         for_each_memblock(memory, reg) {
1005                 phys_addr_t start = reg->base;
1006                 phys_addr_t end = start + reg->size;
1007                 struct map_desc map;
1008
1009                 if (end > lowmem_limit)
1010                         end = lowmem_limit;
1011                 if (start >= end)
1012                         break;
1013
1014                 map.pfn = __phys_to_pfn(start);
1015                 map.virtual = __phys_to_virt(start);
1016                 map.length = end - start;
1017                 map.type = MT_MEMORY;
1018
1019                 create_mapping(&map);
1020         }
1021 }
1022
1023 /*
1024  * paging_init() sets up the page tables, initialises the zone memory
1025  * maps, and sets up the zero page, bad page and bad page tables.
1026  */
1027 void __init paging_init(struct machine_desc *mdesc)
1028 {
1029         void *zero_page;
1030
1031         build_mem_type_table();
1032         sanity_check_meminfo();
1033         prepare_page_table();
1034         map_lowmem();
1035         devicemaps_init(mdesc);
1036         kmap_init();
1037
1038         top_pmd = pmd_off_k(0xffff0000);
1039
1040         /* allocate the zero page. */
1041         zero_page = early_alloc(PAGE_SIZE);
1042
1043         bootmem_init();
1044
1045         empty_zero_page = virt_to_page(zero_page);
1046         __flush_dcache_page(NULL, empty_zero_page);
1047 }
1048
1049 /*
1050  * In order to soft-boot, we need to insert a 1:1 mapping in place of
1051  * the user-mode pages.  This will then ensure that we have predictable
1052  * results when turning the mmu off
1053  */
1054 void setup_mm_for_reboot(char mode)
1055 {
1056         unsigned long base_pmdval;
1057         pgd_t *pgd;
1058         int i;
1059
1060         /*
1061          * We need to access to user-mode page tables here. For kernel threads
1062          * we don't have any user-mode mappings so we use the context that we
1063          * "borrowed".
1064          */
1065         pgd = current->active_mm->pgd;
1066
1067         base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1068         if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1069                 base_pmdval |= PMD_BIT4;
1070
1071         for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1072                 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1073                 pmd_t *pmd;
1074
1075                 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1076                 pmd[0] = __pmd(pmdval);
1077                 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1078                 flush_pmd_entry(pmd);
1079         }
1080
1081         local_flush_tlb_all();
1082 }