memcg: clean up existing move charge code
[linux-flexiantxendom0-3.2.10.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_mutex              (truncate_pagecache)
62  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock             (exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_mutex
71  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
72  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page               (access_process_vm)
76  *
77  *  ->i_mutex                   (generic_file_buffered_write)
78  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
79  *
80  *  bdi->wb.list_lock
81  *    sb_lock                   (fs/fs-writeback.c)
82  *    ->mapping->tree_lock      (__sync_single_inode)
83  *
84  *  ->i_mmap_mutex
85  *    ->anon_vma.lock           (vma_adjust)
86  *
87  *  ->anon_vma.lock
88  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
89  *
90  *  ->page_table_lock or pte_lock
91  *    ->swap_lock               (try_to_unmap_one)
92  *    ->private_lock            (try_to_unmap_one)
93  *    ->tree_lock               (try_to_unmap_one)
94  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
95  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
96  *    ->private_lock            (page_remove_rmap->set_page_dirty)
97  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
98  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
99  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
100  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
101  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
102  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
103  *
104  * ->i_mmap_mutex
105  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
106  */
107
108 /*
109  * Delete a page from the page cache and free it. Caller has to make
110  * sure the page is locked and that nobody else uses it - or that usage
111  * is safe.  The caller must hold the mapping's tree_lock.
112  */
113 void __delete_from_page_cache(struct page *page)
114 {
115         struct address_space *mapping = page->mapping;
116
117         /*
118          * if we're uptodate, flush out into the cleancache, otherwise
119          * invalidate any existing cleancache entries.  We can't leave
120          * stale data around in the cleancache once our page is gone
121          */
122         if (PageUptodate(page) && PageMappedToDisk(page))
123                 cleancache_put_page(page);
124         else
125                 cleancache_flush_page(mapping, page);
126
127         radix_tree_delete(&mapping->page_tree, page->index);
128         page->mapping = NULL;
129         /* Leave page->index set: truncation lookup relies upon it */
130         mapping->nrpages--;
131         __dec_zone_page_state(page, NR_FILE_PAGES);
132         if (PageSwapBacked(page))
133                 __dec_zone_page_state(page, NR_SHMEM);
134         BUG_ON(page_mapped(page));
135
136         /*
137          * Some filesystems seem to re-dirty the page even after
138          * the VM has canceled the dirty bit (eg ext3 journaling).
139          *
140          * Fix it up by doing a final dirty accounting check after
141          * having removed the page entirely.
142          */
143         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
144                 dec_zone_page_state(page, NR_FILE_DIRTY);
145                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
146         }
147 }
148
149 /**
150  * delete_from_page_cache - delete page from page cache
151  * @page: the page which the kernel is trying to remove from page cache
152  *
153  * This must be called only on pages that have been verified to be in the page
154  * cache and locked.  It will never put the page into the free list, the caller
155  * has a reference on the page.
156  */
157 void delete_from_page_cache(struct page *page)
158 {
159         struct address_space *mapping = page->mapping;
160         void (*freepage)(struct page *);
161
162         BUG_ON(!PageLocked(page));
163
164         freepage = mapping->a_ops->freepage;
165         spin_lock_irq(&mapping->tree_lock);
166         __delete_from_page_cache(page);
167         spin_unlock_irq(&mapping->tree_lock);
168         mem_cgroup_uncharge_cache_page(page);
169
170         if (freepage)
171                 freepage(page);
172         page_cache_release(page);
173 }
174 EXPORT_SYMBOL(delete_from_page_cache);
175
176 static int sleep_on_page(void *word)
177 {
178         io_schedule();
179         return 0;
180 }
181
182 static int sleep_on_page_killable(void *word)
183 {
184         sleep_on_page(word);
185         return fatal_signal_pending(current) ? -EINTR : 0;
186 }
187
188 /**
189  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
190  * @mapping:    address space structure to write
191  * @start:      offset in bytes where the range starts
192  * @end:        offset in bytes where the range ends (inclusive)
193  * @sync_mode:  enable synchronous operation
194  *
195  * Start writeback against all of a mapping's dirty pages that lie
196  * within the byte offsets <start, end> inclusive.
197  *
198  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
199  * opposed to a regular memory cleansing writeback.  The difference between
200  * these two operations is that if a dirty page/buffer is encountered, it must
201  * be waited upon, and not just skipped over.
202  */
203 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
204                                 loff_t end, int sync_mode)
205 {
206         int ret;
207         struct writeback_control wbc = {
208                 .sync_mode = sync_mode,
209                 .nr_to_write = LONG_MAX,
210                 .range_start = start,
211                 .range_end = end,
212         };
213
214         if (!mapping_cap_writeback_dirty(mapping))
215                 return 0;
216
217         ret = do_writepages(mapping, &wbc);
218         return ret;
219 }
220
221 static inline int __filemap_fdatawrite(struct address_space *mapping,
222         int sync_mode)
223 {
224         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
225 }
226
227 int filemap_fdatawrite(struct address_space *mapping)
228 {
229         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
230 }
231 EXPORT_SYMBOL(filemap_fdatawrite);
232
233 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
234                                 loff_t end)
235 {
236         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
237 }
238 EXPORT_SYMBOL(filemap_fdatawrite_range);
239
240 /**
241  * filemap_flush - mostly a non-blocking flush
242  * @mapping:    target address_space
243  *
244  * This is a mostly non-blocking flush.  Not suitable for data-integrity
245  * purposes - I/O may not be started against all dirty pages.
246  */
247 int filemap_flush(struct address_space *mapping)
248 {
249         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
250 }
251 EXPORT_SYMBOL(filemap_flush);
252
253 /**
254  * filemap_fdatawait_range - wait for writeback to complete
255  * @mapping:            address space structure to wait for
256  * @start_byte:         offset in bytes where the range starts
257  * @end_byte:           offset in bytes where the range ends (inclusive)
258  *
259  * Walk the list of under-writeback pages of the given address space
260  * in the given range and wait for all of them.
261  */
262 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
263                             loff_t end_byte)
264 {
265         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
266         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
267         struct pagevec pvec;
268         int nr_pages;
269         int ret = 0;
270
271         if (end_byte < start_byte)
272                 return 0;
273
274         pagevec_init(&pvec, 0);
275         while ((index <= end) &&
276                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
277                         PAGECACHE_TAG_WRITEBACK,
278                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
279                 unsigned i;
280
281                 for (i = 0; i < nr_pages; i++) {
282                         struct page *page = pvec.pages[i];
283
284                         /* until radix tree lookup accepts end_index */
285                         if (page->index > end)
286                                 continue;
287
288                         wait_on_page_writeback(page);
289                         if (TestClearPageError(page))
290                                 ret = -EIO;
291                 }
292                 pagevec_release(&pvec);
293                 cond_resched();
294         }
295
296         /* Check for outstanding write errors */
297         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
298                 ret = -ENOSPC;
299         if (test_and_clear_bit(AS_EIO, &mapping->flags))
300                 ret = -EIO;
301
302         return ret;
303 }
304 EXPORT_SYMBOL(filemap_fdatawait_range);
305
306 /**
307  * filemap_fdatawait - wait for all under-writeback pages to complete
308  * @mapping: address space structure to wait for
309  *
310  * Walk the list of under-writeback pages of the given address space
311  * and wait for all of them.
312  */
313 int filemap_fdatawait(struct address_space *mapping)
314 {
315         loff_t i_size = i_size_read(mapping->host);
316
317         if (i_size == 0)
318                 return 0;
319
320         return filemap_fdatawait_range(mapping, 0, i_size - 1);
321 }
322 EXPORT_SYMBOL(filemap_fdatawait);
323
324 int filemap_write_and_wait(struct address_space *mapping)
325 {
326         int err = 0;
327
328         if (mapping->nrpages) {
329                 err = filemap_fdatawrite(mapping);
330                 /*
331                  * Even if the above returned error, the pages may be
332                  * written partially (e.g. -ENOSPC), so we wait for it.
333                  * But the -EIO is special case, it may indicate the worst
334                  * thing (e.g. bug) happened, so we avoid waiting for it.
335                  */
336                 if (err != -EIO) {
337                         int err2 = filemap_fdatawait(mapping);
338                         if (!err)
339                                 err = err2;
340                 }
341         }
342         return err;
343 }
344 EXPORT_SYMBOL(filemap_write_and_wait);
345
346 /**
347  * filemap_write_and_wait_range - write out & wait on a file range
348  * @mapping:    the address_space for the pages
349  * @lstart:     offset in bytes where the range starts
350  * @lend:       offset in bytes where the range ends (inclusive)
351  *
352  * Write out and wait upon file offsets lstart->lend, inclusive.
353  *
354  * Note that `lend' is inclusive (describes the last byte to be written) so
355  * that this function can be used to write to the very end-of-file (end = -1).
356  */
357 int filemap_write_and_wait_range(struct address_space *mapping,
358                                  loff_t lstart, loff_t lend)
359 {
360         int err = 0;
361
362         if (mapping->nrpages) {
363                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
364                                                  WB_SYNC_ALL);
365                 /* See comment of filemap_write_and_wait() */
366                 if (err != -EIO) {
367                         int err2 = filemap_fdatawait_range(mapping,
368                                                 lstart, lend);
369                         if (!err)
370                                 err = err2;
371                 }
372         }
373         return err;
374 }
375 EXPORT_SYMBOL(filemap_write_and_wait_range);
376
377 /**
378  * replace_page_cache_page - replace a pagecache page with a new one
379  * @old:        page to be replaced
380  * @new:        page to replace with
381  * @gfp_mask:   allocation mode
382  *
383  * This function replaces a page in the pagecache with a new one.  On
384  * success it acquires the pagecache reference for the new page and
385  * drops it for the old page.  Both the old and new pages must be
386  * locked.  This function does not add the new page to the LRU, the
387  * caller must do that.
388  *
389  * The remove + add is atomic.  The only way this function can fail is
390  * memory allocation failure.
391  */
392 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
393 {
394         int error;
395
396         VM_BUG_ON(!PageLocked(old));
397         VM_BUG_ON(!PageLocked(new));
398         VM_BUG_ON(new->mapping);
399
400         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
401         if (!error) {
402                 struct address_space *mapping = old->mapping;
403                 void (*freepage)(struct page *);
404
405                 pgoff_t offset = old->index;
406                 freepage = mapping->a_ops->freepage;
407
408                 page_cache_get(new);
409                 new->mapping = mapping;
410                 new->index = offset;
411
412                 spin_lock_irq(&mapping->tree_lock);
413                 __delete_from_page_cache(old);
414                 error = radix_tree_insert(&mapping->page_tree, offset, new);
415                 BUG_ON(error);
416                 mapping->nrpages++;
417                 __inc_zone_page_state(new, NR_FILE_PAGES);
418                 if (PageSwapBacked(new))
419                         __inc_zone_page_state(new, NR_SHMEM);
420                 spin_unlock_irq(&mapping->tree_lock);
421                 /* mem_cgroup codes must not be called under tree_lock */
422                 mem_cgroup_replace_page_cache(old, new);
423                 radix_tree_preload_end();
424                 if (freepage)
425                         freepage(old);
426                 page_cache_release(old);
427         }
428
429         return error;
430 }
431 EXPORT_SYMBOL_GPL(replace_page_cache_page);
432
433 /**
434  * add_to_page_cache_locked - add a locked page to the pagecache
435  * @page:       page to add
436  * @mapping:    the page's address_space
437  * @offset:     page index
438  * @gfp_mask:   page allocation mode
439  *
440  * This function is used to add a page to the pagecache. It must be locked.
441  * This function does not add the page to the LRU.  The caller must do that.
442  */
443 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
444                 pgoff_t offset, gfp_t gfp_mask)
445 {
446         int error;
447
448         VM_BUG_ON(!PageLocked(page));
449         VM_BUG_ON(PageSwapBacked(page));
450
451         error = mem_cgroup_cache_charge(page, current->mm,
452                                         gfp_mask & GFP_RECLAIM_MASK);
453         if (error)
454                 goto out;
455
456         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
457         if (error == 0) {
458                 page_cache_get(page);
459                 page->mapping = mapping;
460                 page->index = offset;
461
462                 spin_lock_irq(&mapping->tree_lock);
463                 error = radix_tree_insert(&mapping->page_tree, offset, page);
464                 if (likely(!error)) {
465                         mapping->nrpages++;
466                         __inc_zone_page_state(page, NR_FILE_PAGES);
467                         spin_unlock_irq(&mapping->tree_lock);
468                 } else {
469                         page->mapping = NULL;
470                         /* Leave page->index set: truncation relies upon it */
471                         spin_unlock_irq(&mapping->tree_lock);
472                         mem_cgroup_uncharge_cache_page(page);
473                         page_cache_release(page);
474                 }
475                 radix_tree_preload_end();
476         } else
477                 mem_cgroup_uncharge_cache_page(page);
478 out:
479         return error;
480 }
481 EXPORT_SYMBOL(add_to_page_cache_locked);
482
483 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
484                                 pgoff_t offset, gfp_t gfp_mask)
485 {
486         int ret;
487
488         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
489         if (ret == 0)
490                 lru_cache_add_file(page);
491         return ret;
492 }
493 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
494
495 #ifdef CONFIG_NUMA
496 struct page *__page_cache_alloc(gfp_t gfp)
497 {
498         int n;
499         struct page *page;
500
501         if (cpuset_do_page_mem_spread()) {
502                 unsigned int cpuset_mems_cookie;
503                 do {
504                         cpuset_mems_cookie = get_mems_allowed();
505                         n = cpuset_mem_spread_node();
506                         page = alloc_pages_exact_node(n, gfp, 0);
507                 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
508
509                 return page;
510         }
511         return alloc_pages(gfp, 0);
512 }
513 EXPORT_SYMBOL(__page_cache_alloc);
514 #endif
515
516 /*
517  * In order to wait for pages to become available there must be
518  * waitqueues associated with pages. By using a hash table of
519  * waitqueues where the bucket discipline is to maintain all
520  * waiters on the same queue and wake all when any of the pages
521  * become available, and for the woken contexts to check to be
522  * sure the appropriate page became available, this saves space
523  * at a cost of "thundering herd" phenomena during rare hash
524  * collisions.
525  */
526 static wait_queue_head_t *page_waitqueue(struct page *page)
527 {
528         const struct zone *zone = page_zone(page);
529
530         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
531 }
532
533 static inline void wake_up_page(struct page *page, int bit)
534 {
535         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
536 }
537
538 void wait_on_page_bit(struct page *page, int bit_nr)
539 {
540         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
541
542         if (test_bit(bit_nr, &page->flags))
543                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
544                                                         TASK_UNINTERRUPTIBLE);
545 }
546 EXPORT_SYMBOL(wait_on_page_bit);
547
548 int wait_on_page_bit_killable(struct page *page, int bit_nr)
549 {
550         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
551
552         if (!test_bit(bit_nr, &page->flags))
553                 return 0;
554
555         return __wait_on_bit(page_waitqueue(page), &wait,
556                              sleep_on_page_killable, TASK_KILLABLE);
557 }
558
559 /**
560  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
561  * @page: Page defining the wait queue of interest
562  * @waiter: Waiter to add to the queue
563  *
564  * Add an arbitrary @waiter to the wait queue for the nominated @page.
565  */
566 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
567 {
568         wait_queue_head_t *q = page_waitqueue(page);
569         unsigned long flags;
570
571         spin_lock_irqsave(&q->lock, flags);
572         __add_wait_queue(q, waiter);
573         spin_unlock_irqrestore(&q->lock, flags);
574 }
575 EXPORT_SYMBOL_GPL(add_page_wait_queue);
576
577 /**
578  * unlock_page - unlock a locked page
579  * @page: the page
580  *
581  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
582  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
583  * mechananism between PageLocked pages and PageWriteback pages is shared.
584  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
585  *
586  * The mb is necessary to enforce ordering between the clear_bit and the read
587  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
588  */
589 void unlock_page(struct page *page)
590 {
591         VM_BUG_ON(!PageLocked(page));
592         clear_bit_unlock(PG_locked, &page->flags);
593         smp_mb__after_clear_bit();
594         wake_up_page(page, PG_locked);
595 }
596 EXPORT_SYMBOL(unlock_page);
597
598 /**
599  * end_page_writeback - end writeback against a page
600  * @page: the page
601  */
602 void end_page_writeback(struct page *page)
603 {
604         if (TestClearPageReclaim(page))
605                 rotate_reclaimable_page(page);
606
607         if (!test_clear_page_writeback(page))
608                 BUG();
609
610         smp_mb__after_clear_bit();
611         wake_up_page(page, PG_writeback);
612 }
613 EXPORT_SYMBOL(end_page_writeback);
614
615 /**
616  * __lock_page - get a lock on the page, assuming we need to sleep to get it
617  * @page: the page to lock
618  */
619 void __lock_page(struct page *page)
620 {
621         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
622
623         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
624                                                         TASK_UNINTERRUPTIBLE);
625 }
626 EXPORT_SYMBOL(__lock_page);
627
628 int __lock_page_killable(struct page *page)
629 {
630         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
631
632         return __wait_on_bit_lock(page_waitqueue(page), &wait,
633                                         sleep_on_page_killable, TASK_KILLABLE);
634 }
635 EXPORT_SYMBOL_GPL(__lock_page_killable);
636
637 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
638                          unsigned int flags)
639 {
640         if (flags & FAULT_FLAG_ALLOW_RETRY) {
641                 /*
642                  * CAUTION! In this case, mmap_sem is not released
643                  * even though return 0.
644                  */
645                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
646                         return 0;
647
648                 up_read(&mm->mmap_sem);
649                 if (flags & FAULT_FLAG_KILLABLE)
650                         wait_on_page_locked_killable(page);
651                 else
652                         wait_on_page_locked(page);
653                 return 0;
654         } else {
655                 if (flags & FAULT_FLAG_KILLABLE) {
656                         int ret;
657
658                         ret = __lock_page_killable(page);
659                         if (ret) {
660                                 up_read(&mm->mmap_sem);
661                                 return 0;
662                         }
663                 } else
664                         __lock_page(page);
665                 return 1;
666         }
667 }
668
669 /**
670  * find_get_page - find and get a page reference
671  * @mapping: the address_space to search
672  * @offset: the page index
673  *
674  * Is there a pagecache struct page at the given (mapping, offset) tuple?
675  * If yes, increment its refcount and return it; if no, return NULL.
676  */
677 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
678 {
679         void **pagep;
680         struct page *page;
681
682         rcu_read_lock();
683 repeat:
684         page = NULL;
685         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
686         if (pagep) {
687                 page = radix_tree_deref_slot(pagep);
688                 if (unlikely(!page))
689                         goto out;
690                 if (radix_tree_exception(page)) {
691                         if (radix_tree_deref_retry(page))
692                                 goto repeat;
693                         /*
694                          * Otherwise, shmem/tmpfs must be storing a swap entry
695                          * here as an exceptional entry: so return it without
696                          * attempting to raise page count.
697                          */
698                         goto out;
699                 }
700                 if (!page_cache_get_speculative(page))
701                         goto repeat;
702
703                 /*
704                  * Has the page moved?
705                  * This is part of the lockless pagecache protocol. See
706                  * include/linux/pagemap.h for details.
707                  */
708                 if (unlikely(page != *pagep)) {
709                         page_cache_release(page);
710                         goto repeat;
711                 }
712         }
713 out:
714         rcu_read_unlock();
715
716         return page;
717 }
718 EXPORT_SYMBOL(find_get_page);
719
720 /**
721  * find_lock_page - locate, pin and lock a pagecache page
722  * @mapping: the address_space to search
723  * @offset: the page index
724  *
725  * Locates the desired pagecache page, locks it, increments its reference
726  * count and returns its address.
727  *
728  * Returns zero if the page was not present. find_lock_page() may sleep.
729  */
730 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
731 {
732         struct page *page;
733
734 repeat:
735         page = find_get_page(mapping, offset);
736         if (page && !radix_tree_exception(page)) {
737                 lock_page(page);
738                 /* Has the page been truncated? */
739                 if (unlikely(page->mapping != mapping)) {
740                         unlock_page(page);
741                         page_cache_release(page);
742                         goto repeat;
743                 }
744                 VM_BUG_ON(page->index != offset);
745         }
746         return page;
747 }
748 EXPORT_SYMBOL(find_lock_page);
749
750 /**
751  * find_or_create_page - locate or add a pagecache page
752  * @mapping: the page's address_space
753  * @index: the page's index into the mapping
754  * @gfp_mask: page allocation mode
755  *
756  * Locates a page in the pagecache.  If the page is not present, a new page
757  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
758  * LRU list.  The returned page is locked and has its reference count
759  * incremented.
760  *
761  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
762  * allocation!
763  *
764  * find_or_create_page() returns the desired page's address, or zero on
765  * memory exhaustion.
766  */
767 struct page *find_or_create_page(struct address_space *mapping,
768                 pgoff_t index, gfp_t gfp_mask)
769 {
770         struct page *page;
771         int err;
772 repeat:
773         page = find_lock_page(mapping, index);
774         if (!page) {
775                 page = __page_cache_alloc(gfp_mask);
776                 if (!page)
777                         return NULL;
778                 /*
779                  * We want a regular kernel memory (not highmem or DMA etc)
780                  * allocation for the radix tree nodes, but we need to honour
781                  * the context-specific requirements the caller has asked for.
782                  * GFP_RECLAIM_MASK collects those requirements.
783                  */
784                 err = add_to_page_cache_lru(page, mapping, index,
785                         (gfp_mask & GFP_RECLAIM_MASK));
786                 if (unlikely(err)) {
787                         page_cache_release(page);
788                         page = NULL;
789                         if (err == -EEXIST)
790                                 goto repeat;
791                 }
792         }
793         return page;
794 }
795 EXPORT_SYMBOL(find_or_create_page);
796
797 /**
798  * find_get_pages - gang pagecache lookup
799  * @mapping:    The address_space to search
800  * @start:      The starting page index
801  * @nr_pages:   The maximum number of pages
802  * @pages:      Where the resulting pages are placed
803  *
804  * find_get_pages() will search for and return a group of up to
805  * @nr_pages pages in the mapping.  The pages are placed at @pages.
806  * find_get_pages() takes a reference against the returned pages.
807  *
808  * The search returns a group of mapping-contiguous pages with ascending
809  * indexes.  There may be holes in the indices due to not-present pages.
810  *
811  * find_get_pages() returns the number of pages which were found.
812  */
813 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
814                             unsigned int nr_pages, struct page **pages)
815 {
816         unsigned int i;
817         unsigned int ret;
818         unsigned int nr_found, nr_skip;
819
820         rcu_read_lock();
821 restart:
822         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
823                                 (void ***)pages, NULL, start, nr_pages);
824         ret = 0;
825         nr_skip = 0;
826         for (i = 0; i < nr_found; i++) {
827                 struct page *page;
828 repeat:
829                 page = radix_tree_deref_slot((void **)pages[i]);
830                 if (unlikely(!page))
831                         continue;
832
833                 if (radix_tree_exception(page)) {
834                         if (radix_tree_deref_retry(page)) {
835                                 /*
836                                  * Transient condition which can only trigger
837                                  * when entry at index 0 moves out of or back
838                                  * to root: none yet gotten, safe to restart.
839                                  */
840                                 WARN_ON(start | i);
841                                 goto restart;
842                         }
843                         /*
844                          * Otherwise, shmem/tmpfs must be storing a swap entry
845                          * here as an exceptional entry: so skip over it -
846                          * we only reach this from invalidate_mapping_pages().
847                          */
848                         nr_skip++;
849                         continue;
850                 }
851
852                 if (!page_cache_get_speculative(page))
853                         goto repeat;
854
855                 /* Has the page moved? */
856                 if (unlikely(page != *((void **)pages[i]))) {
857                         page_cache_release(page);
858                         goto repeat;
859                 }
860
861                 pages[ret] = page;
862                 ret++;
863         }
864
865         /*
866          * If all entries were removed before we could secure them,
867          * try again, because callers stop trying once 0 is returned.
868          */
869         if (unlikely(!ret && nr_found > nr_skip))
870                 goto restart;
871         rcu_read_unlock();
872         return ret;
873 }
874
875 /**
876  * find_get_pages_contig - gang contiguous pagecache lookup
877  * @mapping:    The address_space to search
878  * @index:      The starting page index
879  * @nr_pages:   The maximum number of pages
880  * @pages:      Where the resulting pages are placed
881  *
882  * find_get_pages_contig() works exactly like find_get_pages(), except
883  * that the returned number of pages are guaranteed to be contiguous.
884  *
885  * find_get_pages_contig() returns the number of pages which were found.
886  */
887 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
888                                unsigned int nr_pages, struct page **pages)
889 {
890         unsigned int i;
891         unsigned int ret;
892         unsigned int nr_found;
893
894         rcu_read_lock();
895 restart:
896         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
897                                 (void ***)pages, NULL, index, nr_pages);
898         ret = 0;
899         for (i = 0; i < nr_found; i++) {
900                 struct page *page;
901 repeat:
902                 page = radix_tree_deref_slot((void **)pages[i]);
903                 if (unlikely(!page))
904                         continue;
905
906                 if (radix_tree_exception(page)) {
907                         if (radix_tree_deref_retry(page)) {
908                                 /*
909                                  * Transient condition which can only trigger
910                                  * when entry at index 0 moves out of or back
911                                  * to root: none yet gotten, safe to restart.
912                                  */
913                                 goto restart;
914                         }
915                         /*
916                          * Otherwise, shmem/tmpfs must be storing a swap entry
917                          * here as an exceptional entry: so stop looking for
918                          * contiguous pages.
919                          */
920                         break;
921                 }
922
923                 if (!page_cache_get_speculative(page))
924                         goto repeat;
925
926                 /* Has the page moved? */
927                 if (unlikely(page != *((void **)pages[i]))) {
928                         page_cache_release(page);
929                         goto repeat;
930                 }
931
932                 /*
933                  * must check mapping and index after taking the ref.
934                  * otherwise we can get both false positives and false
935                  * negatives, which is just confusing to the caller.
936                  */
937                 if (page->mapping == NULL || page->index != index) {
938                         page_cache_release(page);
939                         break;
940                 }
941
942                 pages[ret] = page;
943                 ret++;
944                 index++;
945         }
946         rcu_read_unlock();
947         return ret;
948 }
949 EXPORT_SYMBOL(find_get_pages_contig);
950
951 /**
952  * find_get_pages_tag - find and return pages that match @tag
953  * @mapping:    the address_space to search
954  * @index:      the starting page index
955  * @tag:        the tag index
956  * @nr_pages:   the maximum number of pages
957  * @pages:      where the resulting pages are placed
958  *
959  * Like find_get_pages, except we only return pages which are tagged with
960  * @tag.   We update @index to index the next page for the traversal.
961  */
962 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
963                         int tag, unsigned int nr_pages, struct page **pages)
964 {
965         unsigned int i;
966         unsigned int ret;
967         unsigned int nr_found;
968
969         rcu_read_lock();
970 restart:
971         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
972                                 (void ***)pages, *index, nr_pages, tag);
973         ret = 0;
974         for (i = 0; i < nr_found; i++) {
975                 struct page *page;
976 repeat:
977                 page = radix_tree_deref_slot((void **)pages[i]);
978                 if (unlikely(!page))
979                         continue;
980
981                 if (radix_tree_exception(page)) {
982                         if (radix_tree_deref_retry(page)) {
983                                 /*
984                                  * Transient condition which can only trigger
985                                  * when entry at index 0 moves out of or back
986                                  * to root: none yet gotten, safe to restart.
987                                  */
988                                 goto restart;
989                         }
990                         /*
991                          * This function is never used on a shmem/tmpfs
992                          * mapping, so a swap entry won't be found here.
993                          */
994                         BUG();
995                 }
996
997                 if (!page_cache_get_speculative(page))
998                         goto repeat;
999
1000                 /* Has the page moved? */
1001                 if (unlikely(page != *((void **)pages[i]))) {
1002                         page_cache_release(page);
1003                         goto repeat;
1004                 }
1005
1006                 pages[ret] = page;
1007                 ret++;
1008         }
1009
1010         /*
1011          * If all entries were removed before we could secure them,
1012          * try again, because callers stop trying once 0 is returned.
1013          */
1014         if (unlikely(!ret && nr_found))
1015                 goto restart;
1016         rcu_read_unlock();
1017
1018         if (ret)
1019                 *index = pages[ret - 1]->index + 1;
1020
1021         return ret;
1022 }
1023 EXPORT_SYMBOL(find_get_pages_tag);
1024
1025 /**
1026  * grab_cache_page_nowait - returns locked page at given index in given cache
1027  * @mapping: target address_space
1028  * @index: the page index
1029  *
1030  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1031  * This is intended for speculative data generators, where the data can
1032  * be regenerated if the page couldn't be grabbed.  This routine should
1033  * be safe to call while holding the lock for another page.
1034  *
1035  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1036  * and deadlock against the caller's locked page.
1037  */
1038 struct page *
1039 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1040 {
1041         struct page *page = find_get_page(mapping, index);
1042
1043         if (page) {
1044                 if (trylock_page(page))
1045                         return page;
1046                 page_cache_release(page);
1047                 return NULL;
1048         }
1049         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1050         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1051                 page_cache_release(page);
1052                 page = NULL;
1053         }
1054         return page;
1055 }
1056 EXPORT_SYMBOL(grab_cache_page_nowait);
1057
1058 /*
1059  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1060  * a _large_ part of the i/o request. Imagine the worst scenario:
1061  *
1062  *      ---R__________________________________________B__________
1063  *         ^ reading here                             ^ bad block(assume 4k)
1064  *
1065  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1066  * => failing the whole request => read(R) => read(R+1) =>
1067  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1068  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1069  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1070  *
1071  * It is going insane. Fix it by quickly scaling down the readahead size.
1072  */
1073 static void shrink_readahead_size_eio(struct file *filp,
1074                                         struct file_ra_state *ra)
1075 {
1076         ra->ra_pages /= 4;
1077 }
1078
1079 /**
1080  * do_generic_file_read - generic file read routine
1081  * @filp:       the file to read
1082  * @ppos:       current file position
1083  * @desc:       read_descriptor
1084  * @actor:      read method
1085  *
1086  * This is a generic file read routine, and uses the
1087  * mapping->a_ops->readpage() function for the actual low-level stuff.
1088  *
1089  * This is really ugly. But the goto's actually try to clarify some
1090  * of the logic when it comes to error handling etc.
1091  */
1092 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1093                 read_descriptor_t *desc, read_actor_t actor)
1094 {
1095         struct address_space *mapping = filp->f_mapping;
1096         struct inode *inode = mapping->host;
1097         struct file_ra_state *ra = &filp->f_ra;
1098         pgoff_t index;
1099         pgoff_t last_index;
1100         pgoff_t prev_index;
1101         unsigned long offset;      /* offset into pagecache page */
1102         unsigned int prev_offset;
1103         int error;
1104
1105         index = *ppos >> PAGE_CACHE_SHIFT;
1106         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1107         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1108         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1109         offset = *ppos & ~PAGE_CACHE_MASK;
1110
1111         for (;;) {
1112                 struct page *page;
1113                 pgoff_t end_index;
1114                 loff_t isize;
1115                 unsigned long nr, ret;
1116
1117                 cond_resched();
1118 find_page:
1119                 page = find_get_page(mapping, index);
1120                 if (!page) {
1121                         page_cache_sync_readahead(mapping,
1122                                         ra, filp,
1123                                         index, last_index - index);
1124                         page = find_get_page(mapping, index);
1125                         if (unlikely(page == NULL))
1126                                 goto no_cached_page;
1127                 }
1128                 if (PageReadahead(page)) {
1129                         page_cache_async_readahead(mapping,
1130                                         ra, filp, page,
1131                                         index, last_index - index);
1132                 }
1133                 if (!PageUptodate(page)) {
1134                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1135                                         !mapping->a_ops->is_partially_uptodate)
1136                                 goto page_not_up_to_date;
1137                         if (!trylock_page(page))
1138                                 goto page_not_up_to_date;
1139                         /* Did it get truncated before we got the lock? */
1140                         if (!page->mapping)
1141                                 goto page_not_up_to_date_locked;
1142                         if (!mapping->a_ops->is_partially_uptodate(page,
1143                                                                 desc, offset))
1144                                 goto page_not_up_to_date_locked;
1145                         unlock_page(page);
1146                 }
1147 page_ok:
1148                 /*
1149                  * i_size must be checked after we know the page is Uptodate.
1150                  *
1151                  * Checking i_size after the check allows us to calculate
1152                  * the correct value for "nr", which means the zero-filled
1153                  * part of the page is not copied back to userspace (unless
1154                  * another truncate extends the file - this is desired though).
1155                  */
1156
1157                 isize = i_size_read(inode);
1158                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1159                 if (unlikely(!isize || index > end_index)) {
1160                         page_cache_release(page);
1161                         goto out;
1162                 }
1163
1164                 /* nr is the maximum number of bytes to copy from this page */
1165                 nr = PAGE_CACHE_SIZE;
1166                 if (index == end_index) {
1167                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1168                         if (nr <= offset) {
1169                                 page_cache_release(page);
1170                                 goto out;
1171                         }
1172                 }
1173                 nr = nr - offset;
1174
1175                 /* If users can be writing to this page using arbitrary
1176                  * virtual addresses, take care about potential aliasing
1177                  * before reading the page on the kernel side.
1178                  */
1179                 if (mapping_writably_mapped(mapping))
1180                         flush_dcache_page(page);
1181
1182                 /*
1183                  * When a sequential read accesses a page several times,
1184                  * only mark it as accessed the first time.
1185                  */
1186                 if (prev_index != index || offset != prev_offset)
1187                         mark_page_accessed(page);
1188                 prev_index = index;
1189
1190                 /*
1191                  * Ok, we have the page, and it's up-to-date, so
1192                  * now we can copy it to user space...
1193                  *
1194                  * The actor routine returns how many bytes were actually used..
1195                  * NOTE! This may not be the same as how much of a user buffer
1196                  * we filled up (we may be padding etc), so we can only update
1197                  * "pos" here (the actor routine has to update the user buffer
1198                  * pointers and the remaining count).
1199                  */
1200                 ret = actor(desc, page, offset, nr);
1201                 offset += ret;
1202                 index += offset >> PAGE_CACHE_SHIFT;
1203                 offset &= ~PAGE_CACHE_MASK;
1204                 prev_offset = offset;
1205
1206                 page_cache_release(page);
1207                 if (ret == nr && desc->count)
1208                         continue;
1209                 goto out;
1210
1211 page_not_up_to_date:
1212                 /* Get exclusive access to the page ... */
1213                 error = lock_page_killable(page);
1214                 if (unlikely(error))
1215                         goto readpage_error;
1216
1217 page_not_up_to_date_locked:
1218                 /* Did it get truncated before we got the lock? */
1219                 if (!page->mapping) {
1220                         unlock_page(page);
1221                         page_cache_release(page);
1222                         continue;
1223                 }
1224
1225                 /* Did somebody else fill it already? */
1226                 if (PageUptodate(page)) {
1227                         unlock_page(page);
1228                         goto page_ok;
1229                 }
1230
1231 readpage:
1232                 /*
1233                  * A previous I/O error may have been due to temporary
1234                  * failures, eg. multipath errors.
1235                  * PG_error will be set again if readpage fails.
1236                  */
1237                 ClearPageError(page);
1238                 /* Start the actual read. The read will unlock the page. */
1239                 error = mapping->a_ops->readpage(filp, page);
1240
1241                 if (unlikely(error)) {
1242                         if (error == AOP_TRUNCATED_PAGE) {
1243                                 page_cache_release(page);
1244                                 goto find_page;
1245                         }
1246                         goto readpage_error;
1247                 }
1248
1249                 if (!PageUptodate(page)) {
1250                         error = lock_page_killable(page);
1251                         if (unlikely(error))
1252                                 goto readpage_error;
1253                         if (!PageUptodate(page)) {
1254                                 if (page->mapping == NULL) {
1255                                         /*
1256                                          * invalidate_mapping_pages got it
1257                                          */
1258                                         unlock_page(page);
1259                                         page_cache_release(page);
1260                                         goto find_page;
1261                                 }
1262                                 unlock_page(page);
1263                                 shrink_readahead_size_eio(filp, ra);
1264                                 error = -EIO;
1265                                 goto readpage_error;
1266                         }
1267                         unlock_page(page);
1268                 }
1269
1270                 goto page_ok;
1271
1272 readpage_error:
1273                 /* UHHUH! A synchronous read error occurred. Report it */
1274                 desc->error = error;
1275                 page_cache_release(page);
1276                 goto out;
1277
1278 no_cached_page:
1279                 /*
1280                  * Ok, it wasn't cached, so we need to create a new
1281                  * page..
1282                  */
1283                 page = page_cache_alloc_cold(mapping);
1284                 if (!page) {
1285                         desc->error = -ENOMEM;
1286                         goto out;
1287                 }
1288                 error = add_to_page_cache_lru(page, mapping,
1289                                                 index, GFP_KERNEL);
1290                 if (error) {
1291                         page_cache_release(page);
1292                         if (error == -EEXIST)
1293                                 goto find_page;
1294                         desc->error = error;
1295                         goto out;
1296                 }
1297                 goto readpage;
1298         }
1299
1300 out:
1301         ra->prev_pos = prev_index;
1302         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1303         ra->prev_pos |= prev_offset;
1304
1305         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1306         file_accessed(filp);
1307 }
1308
1309 int file_read_actor(read_descriptor_t *desc, struct page *page,
1310                         unsigned long offset, unsigned long size)
1311 {
1312         char *kaddr;
1313         unsigned long left, count = desc->count;
1314
1315         if (size > count)
1316                 size = count;
1317
1318         /*
1319          * Faults on the destination of a read are common, so do it before
1320          * taking the kmap.
1321          */
1322         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1323                 kaddr = kmap_atomic(page);
1324                 left = __copy_to_user_inatomic(desc->arg.buf,
1325                                                 kaddr + offset, size);
1326                 kunmap_atomic(kaddr);
1327                 if (left == 0)
1328                         goto success;
1329         }
1330
1331         /* Do it the slow way */
1332         kaddr = kmap(page);
1333         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1334         kunmap(page);
1335
1336         if (left) {
1337                 size -= left;
1338                 desc->error = -EFAULT;
1339         }
1340 success:
1341         desc->count = count - size;
1342         desc->written += size;
1343         desc->arg.buf += size;
1344         return size;
1345 }
1346
1347 /*
1348  * Performs necessary checks before doing a write
1349  * @iov:        io vector request
1350  * @nr_segs:    number of segments in the iovec
1351  * @count:      number of bytes to write
1352  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1353  *
1354  * Adjust number of segments and amount of bytes to write (nr_segs should be
1355  * properly initialized first). Returns appropriate error code that caller
1356  * should return or zero in case that write should be allowed.
1357  */
1358 int generic_segment_checks(const struct iovec *iov,
1359                         unsigned long *nr_segs, size_t *count, int access_flags)
1360 {
1361         unsigned long   seg;
1362         size_t cnt = 0;
1363         for (seg = 0; seg < *nr_segs; seg++) {
1364                 const struct iovec *iv = &iov[seg];
1365
1366                 /*
1367                  * If any segment has a negative length, or the cumulative
1368                  * length ever wraps negative then return -EINVAL.
1369                  */
1370                 cnt += iv->iov_len;
1371                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1372                         return -EINVAL;
1373                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1374                         continue;
1375                 if (seg == 0)
1376                         return -EFAULT;
1377                 *nr_segs = seg;
1378                 cnt -= iv->iov_len;     /* This segment is no good */
1379                 break;
1380         }
1381         *count = cnt;
1382         return 0;
1383 }
1384 EXPORT_SYMBOL(generic_segment_checks);
1385
1386 /**
1387  * generic_file_aio_read - generic filesystem read routine
1388  * @iocb:       kernel I/O control block
1389  * @iov:        io vector request
1390  * @nr_segs:    number of segments in the iovec
1391  * @pos:        current file position
1392  *
1393  * This is the "read()" routine for all filesystems
1394  * that can use the page cache directly.
1395  */
1396 ssize_t
1397 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1398                 unsigned long nr_segs, loff_t pos)
1399 {
1400         struct file *filp = iocb->ki_filp;
1401         ssize_t retval;
1402         unsigned long seg = 0;
1403         size_t count;
1404         loff_t *ppos = &iocb->ki_pos;
1405
1406         count = 0;
1407         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1408         if (retval)
1409                 return retval;
1410
1411         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1412         if (filp->f_flags & O_DIRECT) {
1413                 loff_t size;
1414                 struct address_space *mapping;
1415                 struct inode *inode;
1416
1417                 mapping = filp->f_mapping;
1418                 inode = mapping->host;
1419                 if (!count)
1420                         goto out; /* skip atime */
1421                 size = i_size_read(inode);
1422                 if (pos < size) {
1423                         retval = filemap_write_and_wait_range(mapping, pos,
1424                                         pos + iov_length(iov, nr_segs) - 1);
1425                         if (!retval) {
1426                                 struct blk_plug plug;
1427
1428                                 blk_start_plug(&plug);
1429                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1430                                                         iov, pos, nr_segs);
1431                                 blk_finish_plug(&plug);
1432                         }
1433                         if (retval > 0) {
1434                                 *ppos = pos + retval;
1435                                 count -= retval;
1436                         }
1437
1438                         /*
1439                          * Btrfs can have a short DIO read if we encounter
1440                          * compressed extents, so if there was an error, or if
1441                          * we've already read everything we wanted to, or if
1442                          * there was a short read because we hit EOF, go ahead
1443                          * and return.  Otherwise fallthrough to buffered io for
1444                          * the rest of the read.
1445                          */
1446                         if (retval < 0 || !count || *ppos >= size) {
1447                                 file_accessed(filp);
1448                                 goto out;
1449                         }
1450                 }
1451         }
1452
1453         count = retval;
1454         for (seg = 0; seg < nr_segs; seg++) {
1455                 read_descriptor_t desc;
1456                 loff_t offset = 0;
1457
1458                 /*
1459                  * If we did a short DIO read we need to skip the section of the
1460                  * iov that we've already read data into.
1461                  */
1462                 if (count) {
1463                         if (count > iov[seg].iov_len) {
1464                                 count -= iov[seg].iov_len;
1465                                 continue;
1466                         }
1467                         offset = count;
1468                         count = 0;
1469                 }
1470
1471                 desc.written = 0;
1472                 desc.arg.buf = iov[seg].iov_base + offset;
1473                 desc.count = iov[seg].iov_len - offset;
1474                 if (desc.count == 0)
1475                         continue;
1476                 desc.error = 0;
1477                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1478                 retval += desc.written;
1479                 if (desc.error) {
1480                         retval = retval ?: desc.error;
1481                         break;
1482                 }
1483                 if (desc.count > 0)
1484                         break;
1485         }
1486 out:
1487         return retval;
1488 }
1489 EXPORT_SYMBOL(generic_file_aio_read);
1490
1491 static ssize_t
1492 do_readahead(struct address_space *mapping, struct file *filp,
1493              pgoff_t index, unsigned long nr)
1494 {
1495         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1496                 return -EINVAL;
1497
1498         force_page_cache_readahead(mapping, filp, index, nr);
1499         return 0;
1500 }
1501
1502 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1503 {
1504         ssize_t ret;
1505         struct file *file;
1506
1507         ret = -EBADF;
1508         file = fget(fd);
1509         if (file) {
1510                 if (file->f_mode & FMODE_READ) {
1511                         struct address_space *mapping = file->f_mapping;
1512                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1513                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1514                         unsigned long len = end - start + 1;
1515                         ret = do_readahead(mapping, file, start, len);
1516                 }
1517                 fput(file);
1518         }
1519         return ret;
1520 }
1521 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1522 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1523 {
1524         return SYSC_readahead((int) fd, offset, (size_t) count);
1525 }
1526 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1527 #endif
1528
1529 #ifdef CONFIG_MMU
1530 /**
1531  * page_cache_read - adds requested page to the page cache if not already there
1532  * @file:       file to read
1533  * @offset:     page index
1534  *
1535  * This adds the requested page to the page cache if it isn't already there,
1536  * and schedules an I/O to read in its contents from disk.
1537  */
1538 static int page_cache_read(struct file *file, pgoff_t offset)
1539 {
1540         struct address_space *mapping = file->f_mapping;
1541         struct page *page; 
1542         int ret;
1543
1544         do {
1545                 page = page_cache_alloc_cold(mapping);
1546                 if (!page)
1547                         return -ENOMEM;
1548
1549                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1550                 if (ret == 0)
1551                         ret = mapping->a_ops->readpage(file, page);
1552                 else if (ret == -EEXIST)
1553                         ret = 0; /* losing race to add is OK */
1554
1555                 page_cache_release(page);
1556
1557         } while (ret == AOP_TRUNCATED_PAGE);
1558                 
1559         return ret;
1560 }
1561
1562 #define MMAP_LOTSAMISS  (100)
1563
1564 /*
1565  * Synchronous readahead happens when we don't even find
1566  * a page in the page cache at all.
1567  */
1568 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1569                                    struct file_ra_state *ra,
1570                                    struct file *file,
1571                                    pgoff_t offset)
1572 {
1573         unsigned long ra_pages;
1574         struct address_space *mapping = file->f_mapping;
1575
1576         /* If we don't want any read-ahead, don't bother */
1577         if (VM_RandomReadHint(vma))
1578                 return;
1579         if (!ra->ra_pages)
1580                 return;
1581
1582         if (VM_SequentialReadHint(vma)) {
1583                 page_cache_sync_readahead(mapping, ra, file, offset,
1584                                           ra->ra_pages);
1585                 return;
1586         }
1587
1588         /* Avoid banging the cache line if not needed */
1589         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1590                 ra->mmap_miss++;
1591
1592         /*
1593          * Do we miss much more than hit in this file? If so,
1594          * stop bothering with read-ahead. It will only hurt.
1595          */
1596         if (ra->mmap_miss > MMAP_LOTSAMISS)
1597                 return;
1598
1599         /*
1600          * mmap read-around
1601          */
1602         ra_pages = max_sane_readahead(ra->ra_pages);
1603         ra->start = max_t(long, 0, offset - ra_pages / 2);
1604         ra->size = ra_pages;
1605         ra->async_size = ra_pages / 4;
1606         ra_submit(ra, mapping, file);
1607 }
1608
1609 /*
1610  * Asynchronous readahead happens when we find the page and PG_readahead,
1611  * so we want to possibly extend the readahead further..
1612  */
1613 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1614                                     struct file_ra_state *ra,
1615                                     struct file *file,
1616                                     struct page *page,
1617                                     pgoff_t offset)
1618 {
1619         struct address_space *mapping = file->f_mapping;
1620
1621         /* If we don't want any read-ahead, don't bother */
1622         if (VM_RandomReadHint(vma))
1623                 return;
1624         if (ra->mmap_miss > 0)
1625                 ra->mmap_miss--;
1626         if (PageReadahead(page))
1627                 page_cache_async_readahead(mapping, ra, file,
1628                                            page, offset, ra->ra_pages);
1629 }
1630
1631 /**
1632  * filemap_fault - read in file data for page fault handling
1633  * @vma:        vma in which the fault was taken
1634  * @vmf:        struct vm_fault containing details of the fault
1635  *
1636  * filemap_fault() is invoked via the vma operations vector for a
1637  * mapped memory region to read in file data during a page fault.
1638  *
1639  * The goto's are kind of ugly, but this streamlines the normal case of having
1640  * it in the page cache, and handles the special cases reasonably without
1641  * having a lot of duplicated code.
1642  */
1643 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1644 {
1645         int error;
1646         struct file *file = vma->vm_file;
1647         struct address_space *mapping = file->f_mapping;
1648         struct file_ra_state *ra = &file->f_ra;
1649         struct inode *inode = mapping->host;
1650         pgoff_t offset = vmf->pgoff;
1651         struct page *page;
1652         pgoff_t size;
1653         int ret = 0;
1654
1655         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1656         if (offset >= size)
1657                 return VM_FAULT_SIGBUS;
1658
1659         /*
1660          * Do we have something in the page cache already?
1661          */
1662         page = find_get_page(mapping, offset);
1663         if (likely(page)) {
1664                 /*
1665                  * We found the page, so try async readahead before
1666                  * waiting for the lock.
1667                  */
1668                 do_async_mmap_readahead(vma, ra, file, page, offset);
1669         } else {
1670                 /* No page in the page cache at all */
1671                 do_sync_mmap_readahead(vma, ra, file, offset);
1672                 count_vm_event(PGMAJFAULT);
1673                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1674                 ret = VM_FAULT_MAJOR;
1675 retry_find:
1676                 page = find_get_page(mapping, offset);
1677                 if (!page)
1678                         goto no_cached_page;
1679         }
1680
1681         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1682                 page_cache_release(page);
1683                 return ret | VM_FAULT_RETRY;
1684         }
1685
1686         /* Did it get truncated? */
1687         if (unlikely(page->mapping != mapping)) {
1688                 unlock_page(page);
1689                 put_page(page);
1690                 goto retry_find;
1691         }
1692         VM_BUG_ON(page->index != offset);
1693
1694         /*
1695          * We have a locked page in the page cache, now we need to check
1696          * that it's up-to-date. If not, it is going to be due to an error.
1697          */
1698         if (unlikely(!PageUptodate(page)))
1699                 goto page_not_uptodate;
1700
1701         /*
1702          * Found the page and have a reference on it.
1703          * We must recheck i_size under page lock.
1704          */
1705         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1706         if (unlikely(offset >= size)) {
1707                 unlock_page(page);
1708                 page_cache_release(page);
1709                 return VM_FAULT_SIGBUS;
1710         }
1711
1712         vmf->page = page;
1713         return ret | VM_FAULT_LOCKED;
1714
1715 no_cached_page:
1716         /*
1717          * We're only likely to ever get here if MADV_RANDOM is in
1718          * effect.
1719          */
1720         error = page_cache_read(file, offset);
1721
1722         /*
1723          * The page we want has now been added to the page cache.
1724          * In the unlikely event that someone removed it in the
1725          * meantime, we'll just come back here and read it again.
1726          */
1727         if (error >= 0)
1728                 goto retry_find;
1729
1730         /*
1731          * An error return from page_cache_read can result if the
1732          * system is low on memory, or a problem occurs while trying
1733          * to schedule I/O.
1734          */
1735         if (error == -ENOMEM)
1736                 return VM_FAULT_OOM;
1737         return VM_FAULT_SIGBUS;
1738
1739 page_not_uptodate:
1740         /*
1741          * Umm, take care of errors if the page isn't up-to-date.
1742          * Try to re-read it _once_. We do this synchronously,
1743          * because there really aren't any performance issues here
1744          * and we need to check for errors.
1745          */
1746         ClearPageError(page);
1747         error = mapping->a_ops->readpage(file, page);
1748         if (!error) {
1749                 wait_on_page_locked(page);
1750                 if (!PageUptodate(page))
1751                         error = -EIO;
1752         }
1753         page_cache_release(page);
1754
1755         if (!error || error == AOP_TRUNCATED_PAGE)
1756                 goto retry_find;
1757
1758         /* Things didn't work out. Return zero to tell the mm layer so. */
1759         shrink_readahead_size_eio(file, ra);
1760         return VM_FAULT_SIGBUS;
1761 }
1762 EXPORT_SYMBOL(filemap_fault);
1763
1764 const struct vm_operations_struct generic_file_vm_ops = {
1765         .fault          = filemap_fault,
1766 };
1767
1768 /* This is used for a general mmap of a disk file */
1769
1770 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1771 {
1772         struct address_space *mapping = file->f_mapping;
1773
1774         if (!mapping->a_ops->readpage)
1775                 return -ENOEXEC;
1776         file_accessed(file);
1777         vma->vm_ops = &generic_file_vm_ops;
1778         vma->vm_flags |= VM_CAN_NONLINEAR;
1779         return 0;
1780 }
1781
1782 /*
1783  * This is for filesystems which do not implement ->writepage.
1784  */
1785 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1786 {
1787         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1788                 return -EINVAL;
1789         return generic_file_mmap(file, vma);
1790 }
1791 #else
1792 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1793 {
1794         return -ENOSYS;
1795 }
1796 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1797 {
1798         return -ENOSYS;
1799 }
1800 #endif /* CONFIG_MMU */
1801
1802 EXPORT_SYMBOL(generic_file_mmap);
1803 EXPORT_SYMBOL(generic_file_readonly_mmap);
1804
1805 static struct page *__read_cache_page(struct address_space *mapping,
1806                                 pgoff_t index,
1807                                 int (*filler)(void *, struct page *),
1808                                 void *data,
1809                                 gfp_t gfp)
1810 {
1811         struct page *page;
1812         int err;
1813 repeat:
1814         page = find_get_page(mapping, index);
1815         if (!page) {
1816                 page = __page_cache_alloc(gfp | __GFP_COLD);
1817                 if (!page)
1818                         return ERR_PTR(-ENOMEM);
1819                 err = add_to_page_cache_lru(page, mapping, index, gfp);
1820                 if (unlikely(err)) {
1821                         page_cache_release(page);
1822                         if (err == -EEXIST)
1823                                 goto repeat;
1824                         /* Presumably ENOMEM for radix tree node */
1825                         return ERR_PTR(err);
1826                 }
1827                 err = filler(data, page);
1828                 if (err < 0) {
1829                         page_cache_release(page);
1830                         page = ERR_PTR(err);
1831                 }
1832         }
1833         return page;
1834 }
1835
1836 static struct page *do_read_cache_page(struct address_space *mapping,
1837                                 pgoff_t index,
1838                                 int (*filler)(void *, struct page *),
1839                                 void *data,
1840                                 gfp_t gfp)
1841
1842 {
1843         struct page *page;
1844         int err;
1845
1846 retry:
1847         page = __read_cache_page(mapping, index, filler, data, gfp);
1848         if (IS_ERR(page))
1849                 return page;
1850         if (PageUptodate(page))
1851                 goto out;
1852
1853         lock_page(page);
1854         if (!page->mapping) {
1855                 unlock_page(page);
1856                 page_cache_release(page);
1857                 goto retry;
1858         }
1859         if (PageUptodate(page)) {
1860                 unlock_page(page);
1861                 goto out;
1862         }
1863         err = filler(data, page);
1864         if (err < 0) {
1865                 page_cache_release(page);
1866                 return ERR_PTR(err);
1867         }
1868 out:
1869         mark_page_accessed(page);
1870         return page;
1871 }
1872
1873 /**
1874  * read_cache_page_async - read into page cache, fill it if needed
1875  * @mapping:    the page's address_space
1876  * @index:      the page index
1877  * @filler:     function to perform the read
1878  * @data:       first arg to filler(data, page) function, often left as NULL
1879  *
1880  * Same as read_cache_page, but don't wait for page to become unlocked
1881  * after submitting it to the filler.
1882  *
1883  * Read into the page cache. If a page already exists, and PageUptodate() is
1884  * not set, try to fill the page but don't wait for it to become unlocked.
1885  *
1886  * If the page does not get brought uptodate, return -EIO.
1887  */
1888 struct page *read_cache_page_async(struct address_space *mapping,
1889                                 pgoff_t index,
1890                                 int (*filler)(void *, struct page *),
1891                                 void *data)
1892 {
1893         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1894 }
1895 EXPORT_SYMBOL(read_cache_page_async);
1896
1897 static struct page *wait_on_page_read(struct page *page)
1898 {
1899         if (!IS_ERR(page)) {
1900                 wait_on_page_locked(page);
1901                 if (!PageUptodate(page)) {
1902                         page_cache_release(page);
1903                         page = ERR_PTR(-EIO);
1904                 }
1905         }
1906         return page;
1907 }
1908
1909 /**
1910  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1911  * @mapping:    the page's address_space
1912  * @index:      the page index
1913  * @gfp:        the page allocator flags to use if allocating
1914  *
1915  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1916  * any new page allocations done using the specified allocation flags.
1917  *
1918  * If the page does not get brought uptodate, return -EIO.
1919  */
1920 struct page *read_cache_page_gfp(struct address_space *mapping,
1921                                 pgoff_t index,
1922                                 gfp_t gfp)
1923 {
1924         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1925
1926         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1927 }
1928 EXPORT_SYMBOL(read_cache_page_gfp);
1929
1930 /**
1931  * read_cache_page - read into page cache, fill it if needed
1932  * @mapping:    the page's address_space
1933  * @index:      the page index
1934  * @filler:     function to perform the read
1935  * @data:       first arg to filler(data, page) function, often left as NULL
1936  *
1937  * Read into the page cache. If a page already exists, and PageUptodate() is
1938  * not set, try to fill the page then wait for it to become unlocked.
1939  *
1940  * If the page does not get brought uptodate, return -EIO.
1941  */
1942 struct page *read_cache_page(struct address_space *mapping,
1943                                 pgoff_t index,
1944                                 int (*filler)(void *, struct page *),
1945                                 void *data)
1946 {
1947         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1948 }
1949 EXPORT_SYMBOL(read_cache_page);
1950
1951 /*
1952  * The logic we want is
1953  *
1954  *      if suid or (sgid and xgrp)
1955  *              remove privs
1956  */
1957 int should_remove_suid(struct dentry *dentry)
1958 {
1959         umode_t mode = dentry->d_inode->i_mode;
1960         int kill = 0;
1961
1962         /* suid always must be killed */
1963         if (unlikely(mode & S_ISUID))
1964                 kill = ATTR_KILL_SUID;
1965
1966         /*
1967          * sgid without any exec bits is just a mandatory locking mark; leave
1968          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1969          */
1970         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1971                 kill |= ATTR_KILL_SGID;
1972
1973         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1974                 return kill;
1975
1976         return 0;
1977 }
1978 EXPORT_SYMBOL(should_remove_suid);
1979
1980 static int __remove_suid(struct dentry *dentry, int kill)
1981 {
1982         struct iattr newattrs;
1983
1984         newattrs.ia_valid = ATTR_FORCE | kill;
1985         return notify_change(dentry, &newattrs);
1986 }
1987
1988 int file_remove_suid(struct file *file)
1989 {
1990         struct dentry *dentry = file->f_path.dentry;
1991         struct inode *inode = dentry->d_inode;
1992         int killsuid;
1993         int killpriv;
1994         int error = 0;
1995
1996         /* Fast path for nothing security related */
1997         if (IS_NOSEC(inode))
1998                 return 0;
1999
2000         killsuid = should_remove_suid(dentry);
2001         killpriv = security_inode_need_killpriv(dentry);
2002
2003         if (killpriv < 0)
2004                 return killpriv;
2005         if (killpriv)
2006                 error = security_inode_killpriv(dentry);
2007         if (!error && killsuid)
2008                 error = __remove_suid(dentry, killsuid);
2009         if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2010                 inode->i_flags |= S_NOSEC;
2011
2012         return error;
2013 }
2014 EXPORT_SYMBOL(file_remove_suid);
2015
2016 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2017                         const struct iovec *iov, size_t base, size_t bytes)
2018 {
2019         size_t copied = 0, left = 0;
2020
2021         while (bytes) {
2022                 char __user *buf = iov->iov_base + base;
2023                 int copy = min(bytes, iov->iov_len - base);
2024
2025                 base = 0;
2026                 left = __copy_from_user_inatomic(vaddr, buf, copy);
2027                 copied += copy;
2028                 bytes -= copy;
2029                 vaddr += copy;
2030                 iov++;
2031
2032                 if (unlikely(left))
2033                         break;
2034         }
2035         return copied - left;
2036 }
2037
2038 /*
2039  * Copy as much as we can into the page and return the number of bytes which
2040  * were successfully copied.  If a fault is encountered then return the number of
2041  * bytes which were copied.
2042  */
2043 size_t iov_iter_copy_from_user_atomic(struct page *page,
2044                 struct iov_iter *i, unsigned long offset, size_t bytes)
2045 {
2046         char *kaddr;
2047         size_t copied;
2048
2049         BUG_ON(!in_atomic());
2050         kaddr = kmap_atomic(page);
2051         if (likely(i->nr_segs == 1)) {
2052                 int left;
2053                 char __user *buf = i->iov->iov_base + i->iov_offset;
2054                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2055                 copied = bytes - left;
2056         } else {
2057                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2058                                                 i->iov, i->iov_offset, bytes);
2059         }
2060         kunmap_atomic(kaddr);
2061
2062         return copied;
2063 }
2064 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2065
2066 /*
2067  * This has the same sideeffects and return value as
2068  * iov_iter_copy_from_user_atomic().
2069  * The difference is that it attempts to resolve faults.
2070  * Page must not be locked.
2071  */
2072 size_t iov_iter_copy_from_user(struct page *page,
2073                 struct iov_iter *i, unsigned long offset, size_t bytes)
2074 {
2075         char *kaddr;
2076         size_t copied;
2077
2078         kaddr = kmap(page);
2079         if (likely(i->nr_segs == 1)) {
2080                 int left;
2081                 char __user *buf = i->iov->iov_base + i->iov_offset;
2082                 left = __copy_from_user(kaddr + offset, buf, bytes);
2083                 copied = bytes - left;
2084         } else {
2085                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2086                                                 i->iov, i->iov_offset, bytes);
2087         }
2088         kunmap(page);
2089         return copied;
2090 }
2091 EXPORT_SYMBOL(iov_iter_copy_from_user);
2092
2093 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2094 {
2095         BUG_ON(i->count < bytes);
2096
2097         if (likely(i->nr_segs == 1)) {
2098                 i->iov_offset += bytes;
2099                 i->count -= bytes;
2100         } else {
2101                 const struct iovec *iov = i->iov;
2102                 size_t base = i->iov_offset;
2103                 unsigned long nr_segs = i->nr_segs;
2104
2105                 /*
2106                  * The !iov->iov_len check ensures we skip over unlikely
2107                  * zero-length segments (without overruning the iovec).
2108                  */
2109                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2110                         int copy;
2111
2112                         copy = min(bytes, iov->iov_len - base);
2113                         BUG_ON(!i->count || i->count < copy);
2114                         i->count -= copy;
2115                         bytes -= copy;
2116                         base += copy;
2117                         if (iov->iov_len == base) {
2118                                 iov++;
2119                                 nr_segs--;
2120                                 base = 0;
2121                         }
2122                 }
2123                 i->iov = iov;
2124                 i->iov_offset = base;
2125                 i->nr_segs = nr_segs;
2126         }
2127 }
2128 EXPORT_SYMBOL(iov_iter_advance);
2129
2130 /*
2131  * Fault in the first iovec of the given iov_iter, to a maximum length
2132  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2133  * accessed (ie. because it is an invalid address).
2134  *
2135  * writev-intensive code may want this to prefault several iovecs -- that
2136  * would be possible (callers must not rely on the fact that _only_ the
2137  * first iovec will be faulted with the current implementation).
2138  */
2139 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2140 {
2141         char __user *buf = i->iov->iov_base + i->iov_offset;
2142         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2143         return fault_in_pages_readable(buf, bytes);
2144 }
2145 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2146
2147 /*
2148  * Return the count of just the current iov_iter segment.
2149  */
2150 size_t iov_iter_single_seg_count(struct iov_iter *i)
2151 {
2152         const struct iovec *iov = i->iov;
2153         if (i->nr_segs == 1)
2154                 return i->count;
2155         else
2156                 return min(i->count, iov->iov_len - i->iov_offset);
2157 }
2158 EXPORT_SYMBOL(iov_iter_single_seg_count);
2159
2160 /*
2161  * Performs necessary checks before doing a write
2162  *
2163  * Can adjust writing position or amount of bytes to write.
2164  * Returns appropriate error code that caller should return or
2165  * zero in case that write should be allowed.
2166  */
2167 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2168 {
2169         struct inode *inode = file->f_mapping->host;
2170         unsigned long limit = rlimit(RLIMIT_FSIZE);
2171
2172         if (unlikely(*pos < 0))
2173                 return -EINVAL;
2174
2175         if (!isblk) {
2176                 /* FIXME: this is for backwards compatibility with 2.4 */
2177                 if (file->f_flags & O_APPEND)
2178                         *pos = i_size_read(inode);
2179
2180                 if (limit != RLIM_INFINITY) {
2181                         if (*pos >= limit) {
2182                                 send_sig(SIGXFSZ, current, 0);
2183                                 return -EFBIG;
2184                         }
2185                         if (*count > limit - (typeof(limit))*pos) {
2186                                 *count = limit - (typeof(limit))*pos;
2187                         }
2188                 }
2189         }
2190
2191         /*
2192          * LFS rule
2193          */
2194         if (unlikely(*pos + *count > MAX_NON_LFS &&
2195                                 !(file->f_flags & O_LARGEFILE))) {
2196                 if (*pos >= MAX_NON_LFS) {
2197                         return -EFBIG;
2198                 }
2199                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2200                         *count = MAX_NON_LFS - (unsigned long)*pos;
2201                 }
2202         }
2203
2204         /*
2205          * Are we about to exceed the fs block limit ?
2206          *
2207          * If we have written data it becomes a short write.  If we have
2208          * exceeded without writing data we send a signal and return EFBIG.
2209          * Linus frestrict idea will clean these up nicely..
2210          */
2211         if (likely(!isblk)) {
2212                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2213                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2214                                 return -EFBIG;
2215                         }
2216                         /* zero-length writes at ->s_maxbytes are OK */
2217                 }
2218
2219                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2220                         *count = inode->i_sb->s_maxbytes - *pos;
2221         } else {
2222 #ifdef CONFIG_BLOCK
2223                 loff_t isize;
2224                 if (bdev_read_only(I_BDEV(inode)))
2225                         return -EPERM;
2226                 isize = i_size_read(inode);
2227                 if (*pos >= isize) {
2228                         if (*count || *pos > isize)
2229                                 return -ENOSPC;
2230                 }
2231
2232                 if (*pos + *count > isize)
2233                         *count = isize - *pos;
2234 #else
2235                 return -EPERM;
2236 #endif
2237         }
2238         return 0;
2239 }
2240 EXPORT_SYMBOL(generic_write_checks);
2241
2242 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2243                                 loff_t pos, unsigned len, unsigned flags,
2244                                 struct page **pagep, void **fsdata)
2245 {
2246         const struct address_space_operations *aops = mapping->a_ops;
2247
2248         return aops->write_begin(file, mapping, pos, len, flags,
2249                                                         pagep, fsdata);
2250 }
2251 EXPORT_SYMBOL(pagecache_write_begin);
2252
2253 int pagecache_write_end(struct file *file, struct address_space *mapping,
2254                                 loff_t pos, unsigned len, unsigned copied,
2255                                 struct page *page, void *fsdata)
2256 {
2257         const struct address_space_operations *aops = mapping->a_ops;
2258
2259         mark_page_accessed(page);
2260         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2261 }
2262 EXPORT_SYMBOL(pagecache_write_end);
2263
2264 ssize_t
2265 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2266                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2267                 size_t count, size_t ocount)
2268 {
2269         struct file     *file = iocb->ki_filp;
2270         struct address_space *mapping = file->f_mapping;
2271         struct inode    *inode = mapping->host;
2272         ssize_t         written;
2273         size_t          write_len;
2274         pgoff_t         end;
2275
2276         if (count != ocount)
2277                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2278
2279         write_len = iov_length(iov, *nr_segs);
2280         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2281
2282         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2283         if (written)
2284                 goto out;
2285
2286         /*
2287          * After a write we want buffered reads to be sure to go to disk to get
2288          * the new data.  We invalidate clean cached page from the region we're
2289          * about to write.  We do this *before* the write so that we can return
2290          * without clobbering -EIOCBQUEUED from ->direct_IO().
2291          */
2292         if (mapping->nrpages) {
2293                 written = invalidate_inode_pages2_range(mapping,
2294                                         pos >> PAGE_CACHE_SHIFT, end);
2295                 /*
2296                  * If a page can not be invalidated, return 0 to fall back
2297                  * to buffered write.
2298                  */
2299                 if (written) {
2300                         if (written == -EBUSY)
2301                                 return 0;
2302                         goto out;
2303                 }
2304         }
2305
2306         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2307
2308         /*
2309          * Finally, try again to invalidate clean pages which might have been
2310          * cached by non-direct readahead, or faulted in by get_user_pages()
2311          * if the source of the write was an mmap'ed region of the file
2312          * we're writing.  Either one is a pretty crazy thing to do,
2313          * so we don't support it 100%.  If this invalidation
2314          * fails, tough, the write still worked...
2315          */
2316         if (mapping->nrpages) {
2317                 invalidate_inode_pages2_range(mapping,
2318                                               pos >> PAGE_CACHE_SHIFT, end);
2319         }
2320
2321         if (written > 0) {
2322                 pos += written;
2323                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2324                         i_size_write(inode, pos);
2325                         mark_inode_dirty(inode);
2326                 }
2327                 *ppos = pos;
2328         }
2329 out:
2330         return written;
2331 }
2332 EXPORT_SYMBOL(generic_file_direct_write);
2333
2334 /*
2335  * Find or create a page at the given pagecache position. Return the locked
2336  * page. This function is specifically for buffered writes.
2337  */
2338 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2339                                         pgoff_t index, unsigned flags)
2340 {
2341         int status;
2342         gfp_t gfp_mask;
2343         struct page *page;
2344         gfp_t gfp_notmask = 0;
2345
2346         gfp_mask = mapping_gfp_mask(mapping);
2347         if (mapping_cap_account_dirty(mapping))
2348                 gfp_mask |= __GFP_WRITE;
2349         if (flags & AOP_FLAG_NOFS)
2350                 gfp_notmask = __GFP_FS;
2351 repeat:
2352         page = find_lock_page(mapping, index);
2353         if (page)
2354                 goto found;
2355
2356         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2357         if (!page)
2358                 return NULL;
2359         status = add_to_page_cache_lru(page, mapping, index,
2360                                                 GFP_KERNEL & ~gfp_notmask);
2361         if (unlikely(status)) {
2362                 page_cache_release(page);
2363                 if (status == -EEXIST)
2364                         goto repeat;
2365                 return NULL;
2366         }
2367 found:
2368         wait_on_page_writeback(page);
2369         return page;
2370 }
2371 EXPORT_SYMBOL(grab_cache_page_write_begin);
2372
2373 static ssize_t generic_perform_write(struct file *file,
2374                                 struct iov_iter *i, loff_t pos)
2375 {
2376         struct address_space *mapping = file->f_mapping;
2377         const struct address_space_operations *a_ops = mapping->a_ops;
2378         long status = 0;
2379         ssize_t written = 0;
2380         unsigned int flags = 0;
2381
2382         /*
2383          * Copies from kernel address space cannot fail (NFSD is a big user).
2384          */
2385         if (segment_eq(get_fs(), KERNEL_DS))
2386                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2387
2388         do {
2389                 struct page *page;
2390                 unsigned long offset;   /* Offset into pagecache page */
2391                 unsigned long bytes;    /* Bytes to write to page */
2392                 size_t copied;          /* Bytes copied from user */
2393                 void *fsdata;
2394
2395                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2396                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2397                                                 iov_iter_count(i));
2398
2399 again:
2400                 /*
2401                  * Bring in the user page that we will copy from _first_.
2402                  * Otherwise there's a nasty deadlock on copying from the
2403                  * same page as we're writing to, without it being marked
2404                  * up-to-date.
2405                  *
2406                  * Not only is this an optimisation, but it is also required
2407                  * to check that the address is actually valid, when atomic
2408                  * usercopies are used, below.
2409                  */
2410                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2411                         status = -EFAULT;
2412                         break;
2413                 }
2414
2415                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2416                                                 &page, &fsdata);
2417                 if (unlikely(status))
2418                         break;
2419
2420                 if (mapping_writably_mapped(mapping))
2421                         flush_dcache_page(page);
2422
2423                 pagefault_disable();
2424                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2425                 pagefault_enable();
2426                 flush_dcache_page(page);
2427
2428                 mark_page_accessed(page);
2429                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2430                                                 page, fsdata);
2431                 if (unlikely(status < 0))
2432                         break;
2433                 copied = status;
2434
2435                 cond_resched();
2436
2437                 iov_iter_advance(i, copied);
2438                 if (unlikely(copied == 0)) {
2439                         /*
2440                          * If we were unable to copy any data at all, we must
2441                          * fall back to a single segment length write.
2442                          *
2443                          * If we didn't fallback here, we could livelock
2444                          * because not all segments in the iov can be copied at
2445                          * once without a pagefault.
2446                          */
2447                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2448                                                 iov_iter_single_seg_count(i));
2449                         goto again;
2450                 }
2451                 pos += copied;
2452                 written += copied;
2453
2454                 balance_dirty_pages_ratelimited(mapping);
2455                 if (fatal_signal_pending(current)) {
2456                         status = -EINTR;
2457                         break;
2458                 }
2459         } while (iov_iter_count(i));
2460
2461         return written ? written : status;
2462 }
2463
2464 ssize_t
2465 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2466                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2467                 size_t count, ssize_t written)
2468 {
2469         struct file *file = iocb->ki_filp;
2470         ssize_t status;
2471         struct iov_iter i;
2472
2473         iov_iter_init(&i, iov, nr_segs, count, written);
2474         status = generic_perform_write(file, &i, pos);
2475
2476         if (likely(status >= 0)) {
2477                 written += status;
2478                 *ppos = pos + status;
2479         }
2480         
2481         return written ? written : status;
2482 }
2483 EXPORT_SYMBOL(generic_file_buffered_write);
2484
2485 /**
2486  * __generic_file_aio_write - write data to a file
2487  * @iocb:       IO state structure (file, offset, etc.)
2488  * @iov:        vector with data to write
2489  * @nr_segs:    number of segments in the vector
2490  * @ppos:       position where to write
2491  *
2492  * This function does all the work needed for actually writing data to a
2493  * file. It does all basic checks, removes SUID from the file, updates
2494  * modification times and calls proper subroutines depending on whether we
2495  * do direct IO or a standard buffered write.
2496  *
2497  * It expects i_mutex to be grabbed unless we work on a block device or similar
2498  * object which does not need locking at all.
2499  *
2500  * This function does *not* take care of syncing data in case of O_SYNC write.
2501  * A caller has to handle it. This is mainly due to the fact that we want to
2502  * avoid syncing under i_mutex.
2503  */
2504 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2505                                  unsigned long nr_segs, loff_t *ppos)
2506 {
2507         struct file *file = iocb->ki_filp;
2508         struct address_space * mapping = file->f_mapping;
2509         size_t ocount;          /* original count */
2510         size_t count;           /* after file limit checks */
2511         struct inode    *inode = mapping->host;
2512         loff_t          pos;
2513         ssize_t         written;
2514         ssize_t         err;
2515
2516         ocount = 0;
2517         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2518         if (err)
2519                 return err;
2520
2521         count = ocount;
2522         pos = *ppos;
2523
2524         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2525
2526         /* We can write back this queue in page reclaim */
2527         current->backing_dev_info = mapping->backing_dev_info;
2528         written = 0;
2529
2530         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2531         if (err)
2532                 goto out;
2533
2534         if (count == 0)
2535                 goto out;
2536
2537         err = file_remove_suid(file);
2538         if (err)
2539                 goto out;
2540
2541         file_update_time(file);
2542
2543         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2544         if (unlikely(file->f_flags & O_DIRECT)) {
2545                 loff_t endbyte;
2546                 ssize_t written_buffered;
2547
2548                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2549                                                         ppos, count, ocount);
2550                 if (written < 0 || written == count)
2551                         goto out;
2552                 /*
2553                  * direct-io write to a hole: fall through to buffered I/O
2554                  * for completing the rest of the request.
2555                  */
2556                 pos += written;
2557                 count -= written;
2558                 written_buffered = generic_file_buffered_write(iocb, iov,
2559                                                 nr_segs, pos, ppos, count,
2560                                                 written);
2561                 /*
2562                  * If generic_file_buffered_write() retuned a synchronous error
2563                  * then we want to return the number of bytes which were
2564                  * direct-written, or the error code if that was zero.  Note
2565                  * that this differs from normal direct-io semantics, which
2566                  * will return -EFOO even if some bytes were written.
2567                  */
2568                 if (written_buffered < 0) {
2569                         err = written_buffered;
2570                         goto out;
2571                 }
2572
2573                 /*
2574                  * We need to ensure that the page cache pages are written to
2575                  * disk and invalidated to preserve the expected O_DIRECT
2576                  * semantics.
2577                  */
2578                 endbyte = pos + written_buffered - written - 1;
2579                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2580                 if (err == 0) {
2581                         written = written_buffered;
2582                         invalidate_mapping_pages(mapping,
2583                                                  pos >> PAGE_CACHE_SHIFT,
2584                                                  endbyte >> PAGE_CACHE_SHIFT);
2585                 } else {
2586                         /*
2587                          * We don't know how much we wrote, so just return
2588                          * the number of bytes which were direct-written
2589                          */
2590                 }
2591         } else {
2592                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2593                                 pos, ppos, count, written);
2594         }
2595 out:
2596         current->backing_dev_info = NULL;
2597         return written ? written : err;
2598 }
2599 EXPORT_SYMBOL(__generic_file_aio_write);
2600
2601 /**
2602  * generic_file_aio_write - write data to a file
2603  * @iocb:       IO state structure
2604  * @iov:        vector with data to write
2605  * @nr_segs:    number of segments in the vector
2606  * @pos:        position in file where to write
2607  *
2608  * This is a wrapper around __generic_file_aio_write() to be used by most
2609  * filesystems. It takes care of syncing the file in case of O_SYNC file
2610  * and acquires i_mutex as needed.
2611  */
2612 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2613                 unsigned long nr_segs, loff_t pos)
2614 {
2615         struct file *file = iocb->ki_filp;
2616         struct inode *inode = file->f_mapping->host;
2617         struct blk_plug plug;
2618         ssize_t ret;
2619
2620         BUG_ON(iocb->ki_pos != pos);
2621
2622         mutex_lock(&inode->i_mutex);
2623         blk_start_plug(&plug);
2624         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2625         mutex_unlock(&inode->i_mutex);
2626
2627         if (ret > 0 || ret == -EIOCBQUEUED) {
2628                 ssize_t err;
2629
2630                 err = generic_write_sync(file, pos, ret);
2631                 if (err < 0 && ret > 0)
2632                         ret = err;
2633         }
2634         blk_finish_plug(&plug);
2635         return ret;
2636 }
2637 EXPORT_SYMBOL(generic_file_aio_write);
2638
2639 /**
2640  * try_to_release_page() - release old fs-specific metadata on a page
2641  *
2642  * @page: the page which the kernel is trying to free
2643  * @gfp_mask: memory allocation flags (and I/O mode)
2644  *
2645  * The address_space is to try to release any data against the page
2646  * (presumably at page->private).  If the release was successful, return `1'.
2647  * Otherwise return zero.
2648  *
2649  * This may also be called if PG_fscache is set on a page, indicating that the
2650  * page is known to the local caching routines.
2651  *
2652  * The @gfp_mask argument specifies whether I/O may be performed to release
2653  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2654  *
2655  */
2656 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2657 {
2658         struct address_space * const mapping = page->mapping;
2659
2660         BUG_ON(!PageLocked(page));
2661         if (PageWriteback(page))
2662                 return 0;
2663
2664         if (mapping && mapping->a_ops->releasepage)
2665                 return mapping->a_ops->releasepage(page, gfp_mask);
2666         return try_to_free_buffers(page);
2667 }
2668
2669 EXPORT_SYMBOL(try_to_release_page);