- 2.6.17 port work build breaks, but the patch set is relativly stable
[linux-flexiantxendom0-3.2.10.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54         bh->b_end_io = handler;
55         bh->b_private = private;
56 }
57
58 static int sync_buffer(void *word)
59 {
60         struct block_device *bd;
61         struct buffer_head *bh
62                 = container_of(word, struct buffer_head, b_state);
63
64         smp_mb();
65         bd = bh->b_bdev;
66         if (bd)
67                 blk_run_address_space(bd->bd_inode->i_mapping);
68         io_schedule();
69         return 0;
70 }
71
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75                                                         TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81         clear_buffer_locked(bh);
82         smp_mb__after_clear_bit();
83         wake_up_bit(&bh->b_state, BH_Lock);
84 }
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106         char b[BDEVNAME_SIZE];
107
108         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109                         bdevname(bh->b_bdev, b),
110                         (unsigned long long)bh->b_blocknr);
111 }
112
113 /*
114  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
115  * unlock the buffer. This is what ll_rw_block uses too.
116  */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119         if (uptodate) {
120                 set_buffer_uptodate(bh);
121         } else {
122                 /* This happens, due to failed READA attempts. */
123                 clear_buffer_uptodate(bh);
124         }
125         unlock_buffer(bh);
126         put_bh(bh);
127 }
128
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131         char b[BDEVNAME_SIZE];
132
133         if (uptodate) {
134                 set_buffer_uptodate(bh);
135         } else {
136                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137                         buffer_io_error(bh);
138                         printk(KERN_WARNING "lost page write due to "
139                                         "I/O error on %s\n",
140                                        bdevname(bh->b_bdev, b));
141                 }
142                 set_buffer_write_io_error(bh);
143                 clear_buffer_uptodate(bh);
144         }
145         unlock_buffer(bh);
146         put_bh(bh);
147 }
148
149 /*
150  * Write out and wait upon all the dirty data associated with a block
151  * device via its mapping.  Does not take the superblock lock.
152  */
153 int sync_blockdev(struct block_device *bdev)
154 {
155         int ret = 0;
156
157         if (bdev)
158                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159         return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162
163 static void __fsync_super(struct super_block *sb)
164 {
165         sync_inodes_sb(sb, 0);
166         DQUOT_SYNC(sb);
167         lock_super(sb);
168         if (sb->s_dirt && sb->s_op->write_super)
169                 sb->s_op->write_super(sb);
170         unlock_super(sb);
171         if (sb->s_op->sync_fs)
172                 sb->s_op->sync_fs(sb, 1);
173         sync_blockdev(sb->s_bdev);
174         sync_inodes_sb(sb, 1);
175 }
176
177 /*
178  * Write out and wait upon all dirty data associated with this
179  * superblock.  Filesystem data as well as the underlying block
180  * device.  Takes the superblock lock.
181  */
182 int fsync_super(struct super_block *sb)
183 {
184         __fsync_super(sb);
185         return sync_blockdev(sb->s_bdev);
186 }
187
188 /*
189  * Write out and wait upon all dirty data associated with this
190  * device.   Filesystem data as well as the underlying block
191  * device.  Takes the superblock lock.
192  */
193 int fsync_bdev(struct block_device *bdev)
194 {
195         struct super_block *sb = get_super(bdev);
196         if (sb) {
197                 int res = fsync_super(sb);
198                 drop_super(sb);
199                 return res;
200         }
201         return sync_blockdev(bdev);
202 }
203
204 /**
205  * freeze_bdev  --  lock a filesystem and force it into a consistent state
206  * @bdev:       blockdevice to lock
207  *
208  * This takes the block device bd_mount_mutex to make sure no new mounts
209  * happen on bdev until thaw_bdev() is called.
210  * If a superblock is found on this device, we take the s_umount semaphore
211  * on it to make sure nobody unmounts until the snapshot creation is done.
212  */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215         struct super_block *sb;
216
217         mutex_lock(&bdev->bd_mount_mutex);
218         sb = get_super(bdev);
219         if (sb && !(sb->s_flags & MS_RDONLY)) {
220                 sb->s_frozen = SB_FREEZE_WRITE;
221                 smp_wmb();
222
223                 __fsync_super(sb);
224
225                 sb->s_frozen = SB_FREEZE_TRANS;
226                 smp_wmb();
227
228                 sync_blockdev(sb->s_bdev);
229
230                 if (sb->s_op->write_super_lockfs)
231                         sb->s_op->write_super_lockfs(sb);
232         }
233
234         sync_blockdev(bdev);
235         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
236 }
237 EXPORT_SYMBOL(freeze_bdev);
238
239 /**
240  * thaw_bdev  -- unlock filesystem
241  * @bdev:       blockdevice to unlock
242  * @sb:         associated superblock
243  *
244  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245  */
246 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247 {
248         if (sb) {
249                 BUG_ON(sb->s_bdev != bdev);
250
251                 if (sb->s_op->unlockfs)
252                         sb->s_op->unlockfs(sb);
253                 sb->s_frozen = SB_UNFROZEN;
254                 smp_wmb();
255                 wake_up(&sb->s_wait_unfrozen);
256                 drop_super(sb);
257         }
258
259         mutex_unlock(&bdev->bd_mount_mutex);
260 }
261 EXPORT_SYMBOL(thaw_bdev);
262
263 /*
264  * sync everything.  Start out by waking pdflush, because that writes back
265  * all queues in parallel.
266  */
267 static void do_sync(unsigned long wait)
268 {
269         wakeup_pdflush(0);
270         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
271         DQUOT_SYNC(NULL);
272         sync_supers();          /* Write the superblocks */
273         sync_filesystems(0);    /* Start syncing the filesystems */
274         sync_filesystems(wait); /* Waitingly sync the filesystems */
275         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
276         if (!wait)
277                 printk("Emergency Sync complete\n");
278         if (unlikely(laptop_mode))
279                 laptop_sync_completion();
280 }
281
282 asmlinkage long sys_sync(void)
283 {
284         do_sync(1);
285         return 0;
286 }
287
288 void emergency_sync(void)
289 {
290         pdflush_operation(do_sync, 0);
291 }
292
293 /*
294  * Generic function to fsync a file.
295  *
296  * filp may be NULL if called via the msync of a vma.
297  */
298  
299 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300 {
301         struct inode * inode = dentry->d_inode;
302         struct super_block * sb;
303         int ret, err;
304
305         /* sync the inode to buffers */
306         ret = write_inode_now(inode, 0);
307
308         /* sync the superblock to buffers */
309         sb = inode->i_sb;
310         lock_super(sb);
311         if (sb->s_op->write_super)
312                 sb->s_op->write_super(sb);
313         unlock_super(sb);
314
315         /* .. finally sync the buffers to disk */
316         err = sync_blockdev(sb->s_bdev);
317         if (!ret)
318                 ret = err;
319         return ret;
320 }
321
322 long do_fsync(struct file *file, int datasync)
323 {
324         int ret;
325         int err;
326         struct address_space *mapping = file->f_mapping;
327
328         if (!file->f_op || !file->f_op->fsync) {
329                 /* Why?  We can still call filemap_fdatawrite */
330                 ret = -EINVAL;
331                 goto out;
332         }
333
334         current->flags |= PF_SYNCWRITE;
335         ret = filemap_fdatawrite(mapping);
336
337         /*
338          * We need to protect against concurrent writers, which could cause
339          * livelocks in fsync_buffers_list().
340          */
341         mutex_lock(&mapping->host->i_mutex);
342         err = file->f_op->fsync(file, file->f_dentry, datasync);
343         if (!ret)
344                 ret = err;
345         mutex_unlock(&mapping->host->i_mutex);
346         err = filemap_fdatawait(mapping);
347         if (!ret)
348                 ret = err;
349         current->flags &= ~PF_SYNCWRITE;
350 out:
351         return ret;
352 }
353
354 static long __do_fsync(unsigned int fd, int datasync)
355 {
356         struct file *file;
357         int ret = -EBADF;
358
359         file = fget(fd);
360         if (file) {
361                 ret = do_fsync(file, datasync);
362                 fput(file);
363         }
364         return ret;
365 }
366
367 asmlinkage long sys_fsync(unsigned int fd)
368 {
369         return __do_fsync(fd, 0);
370 }
371
372 asmlinkage long sys_fdatasync(unsigned int fd)
373 {
374         return __do_fsync(fd, 1);
375 }
376
377 /*
378  * Various filesystems appear to want __find_get_block to be non-blocking.
379  * But it's the page lock which protects the buffers.  To get around this,
380  * we get exclusion from try_to_free_buffers with the blockdev mapping's
381  * private_lock.
382  *
383  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384  * may be quite high.  This code could TryLock the page, and if that
385  * succeeds, there is no need to take private_lock. (But if
386  * private_lock is contended then so is mapping->tree_lock).
387  */
388 static struct buffer_head *
389 __find_get_block_slow(struct block_device *bdev, sector_t block)
390 {
391         struct inode *bd_inode = bdev->bd_inode;
392         struct address_space *bd_mapping = bd_inode->i_mapping;
393         struct buffer_head *ret = NULL;
394         pgoff_t index;
395         struct buffer_head *bh;
396         struct buffer_head *head;
397         struct page *page;
398         int all_mapped = 1;
399
400         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401         page = find_get_page(bd_mapping, index);
402         if (!page)
403                 goto out;
404
405         spin_lock(&bd_mapping->private_lock);
406         if (!page_has_buffers(page))
407                 goto out_unlock;
408         head = page_buffers(page);
409         bh = head;
410         do {
411                 if (bh->b_blocknr == block) {
412                         ret = bh;
413                         get_bh(bh);
414                         goto out_unlock;
415                 }
416                 if (!buffer_mapped(bh))
417                         all_mapped = 0;
418                 bh = bh->b_this_page;
419         } while (bh != head);
420
421         /* we might be here because some of the buffers on this page are
422          * not mapped.  This is due to various races between
423          * file io on the block device and getblk.  It gets dealt with
424          * elsewhere, don't buffer_error if we had some unmapped buffers
425          */
426         if (all_mapped) {
427                 printk("__find_get_block_slow() failed. "
428                         "block=%llu, b_blocknr=%llu\n",
429                         (unsigned long long)block,
430                         (unsigned long long)bh->b_blocknr);
431                 printk("b_state=0x%08lx, b_size=%zu\n",
432                         bh->b_state, bh->b_size);
433                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
434         }
435 out_unlock:
436         spin_unlock(&bd_mapping->private_lock);
437         page_cache_release(page);
438 out:
439         return ret;
440 }
441
442 /* If invalidate_buffers() will trash dirty buffers, it means some kind
443    of fs corruption is going on. Trashing dirty data always imply losing
444    information that was supposed to be just stored on the physical layer
445    by the user.
446
447    Thus invalidate_buffers in general usage is not allwowed to trash
448    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
449    be preserved.  These buffers are simply skipped.
450   
451    We also skip buffers which are still in use.  For example this can
452    happen if a userspace program is reading the block device.
453
454    NOTE: In the case where the user removed a removable-media-disk even if
455    there's still dirty data not synced on disk (due a bug in the device driver
456    or due an error of the user), by not destroying the dirty buffers we could
457    generate corruption also on the next media inserted, thus a parameter is
458    necessary to handle this case in the most safe way possible (trying
459    to not corrupt also the new disk inserted with the data belonging to
460    the old now corrupted disk). Also for the ramdisk the natural thing
461    to do in order to release the ramdisk memory is to destroy dirty buffers.
462
463    These are two special cases. Normal usage imply the device driver
464    to issue a sync on the device (without waiting I/O completion) and
465    then an invalidate_buffers call that doesn't trash dirty buffers.
466
467    For handling cache coherency with the blkdev pagecache the 'update' case
468    is been introduced. It is needed to re-read from disk any pinned
469    buffer. NOTE: re-reading from disk is destructive so we can do it only
470    when we assume nobody is changing the buffercache under our I/O and when
471    we think the disk contains more recent information than the buffercache.
472    The update == 1 pass marks the buffers we need to update, the update == 2
473    pass does the actual I/O. */
474 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
475 {
476         invalidate_bh_lrus();
477         /*
478          * FIXME: what about destroy_dirty_buffers?
479          * We really want to use invalidate_inode_pages2() for
480          * that, but not until that's cleaned up.
481          */
482         invalidate_inode_pages(bdev->bd_inode->i_mapping);
483 }
484
485 /*
486  * Kick pdflush then try to free up some ZONE_NORMAL memory.
487  */
488 static void free_more_memory(void)
489 {
490         struct zone **zones;
491         pg_data_t *pgdat;
492
493         wakeup_pdflush(1024);
494         yield();
495
496         for_each_online_pgdat(pgdat) {
497                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
498                 if (*zones)
499                         try_to_free_pages(zones, GFP_NOFS);
500         }
501 }
502
503 /*
504  * I/O completion handler for block_read_full_page() - pages
505  * which come unlocked at the end of I/O.
506  */
507 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
508 {
509         unsigned long flags;
510         struct buffer_head *first;
511         struct buffer_head *tmp;
512         struct page *page;
513         int page_uptodate = 1;
514
515         BUG_ON(!buffer_async_read(bh));
516
517         page = bh->b_page;
518         if (uptodate) {
519                 set_buffer_uptodate(bh);
520         } else {
521                 clear_buffer_uptodate(bh);
522                 if (printk_ratelimit())
523                         buffer_io_error(bh);
524                 SetPageError(page);
525         }
526
527         /*
528          * Be _very_ careful from here on. Bad things can happen if
529          * two buffer heads end IO at almost the same time and both
530          * decide that the page is now completely done.
531          */
532         first = page_buffers(page);
533         local_irq_save(flags);
534         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
535         clear_buffer_async_read(bh);
536         unlock_buffer(bh);
537         tmp = bh;
538         do {
539                 if (!buffer_uptodate(tmp))
540                         page_uptodate = 0;
541                 if (buffer_async_read(tmp)) {
542                         BUG_ON(!buffer_locked(tmp));
543                         goto still_busy;
544                 }
545                 tmp = tmp->b_this_page;
546         } while (tmp != bh);
547         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
548         local_irq_restore(flags);
549
550         /*
551          * If none of the buffers had errors and they are all
552          * uptodate then we can set the page uptodate.
553          */
554         if (page_uptodate && !PageError(page))
555                 SetPageUptodate(page);
556         unlock_page(page);
557         return;
558
559 still_busy:
560         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
561         local_irq_restore(flags);
562         return;
563 }
564
565 /*
566  * Completion handler for block_write_full_page() - pages which are unlocked
567  * during I/O, and which have PageWriteback cleared upon I/O completion.
568  */
569 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
570 {
571         char b[BDEVNAME_SIZE];
572         unsigned long flags;
573         struct buffer_head *first;
574         struct buffer_head *tmp;
575         struct page *page;
576
577         BUG_ON(!buffer_async_write(bh));
578
579         page = bh->b_page;
580         if (uptodate) {
581                 set_buffer_uptodate(bh);
582         } else {
583                 if (printk_ratelimit()) {
584                         buffer_io_error(bh);
585                         printk(KERN_WARNING "lost page write due to "
586                                         "I/O error on %s\n",
587                                bdevname(bh->b_bdev, b));
588                 }
589                 set_bit(AS_EIO, &page->mapping->flags);
590                 clear_buffer_uptodate(bh);
591                 SetPageError(page);
592         }
593
594         first = page_buffers(page);
595         local_irq_save(flags);
596         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
597
598         clear_buffer_async_write(bh);
599         unlock_buffer(bh);
600         tmp = bh->b_this_page;
601         while (tmp != bh) {
602                 if (buffer_async_write(tmp)) {
603                         BUG_ON(!buffer_locked(tmp));
604                         goto still_busy;
605                 }
606                 tmp = tmp->b_this_page;
607         }
608         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
609         local_irq_restore(flags);
610         end_page_writeback(page);
611         return;
612
613 still_busy:
614         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
615         local_irq_restore(flags);
616         return;
617 }
618
619 /*
620  * If a page's buffers are under async readin (end_buffer_async_read
621  * completion) then there is a possibility that another thread of
622  * control could lock one of the buffers after it has completed
623  * but while some of the other buffers have not completed.  This
624  * locked buffer would confuse end_buffer_async_read() into not unlocking
625  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
626  * that this buffer is not under async I/O.
627  *
628  * The page comes unlocked when it has no locked buffer_async buffers
629  * left.
630  *
631  * PageLocked prevents anyone starting new async I/O reads any of
632  * the buffers.
633  *
634  * PageWriteback is used to prevent simultaneous writeout of the same
635  * page.
636  *
637  * PageLocked prevents anyone from starting writeback of a page which is
638  * under read I/O (PageWriteback is only ever set against a locked page).
639  */
640 static void mark_buffer_async_read(struct buffer_head *bh)
641 {
642         bh->b_end_io = end_buffer_async_read;
643         set_buffer_async_read(bh);
644 }
645
646 void mark_buffer_async_write(struct buffer_head *bh)
647 {
648         bh->b_end_io = end_buffer_async_write;
649         set_buffer_async_write(bh);
650 }
651 EXPORT_SYMBOL(mark_buffer_async_write);
652
653
654 /*
655  * fs/buffer.c contains helper functions for buffer-backed address space's
656  * fsync functions.  A common requirement for buffer-based filesystems is
657  * that certain data from the backing blockdev needs to be written out for
658  * a successful fsync().  For example, ext2 indirect blocks need to be
659  * written back and waited upon before fsync() returns.
660  *
661  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
662  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
663  * management of a list of dependent buffers at ->i_mapping->private_list.
664  *
665  * Locking is a little subtle: try_to_free_buffers() will remove buffers
666  * from their controlling inode's queue when they are being freed.  But
667  * try_to_free_buffers() will be operating against the *blockdev* mapping
668  * at the time, not against the S_ISREG file which depends on those buffers.
669  * So the locking for private_list is via the private_lock in the address_space
670  * which backs the buffers.  Which is different from the address_space 
671  * against which the buffers are listed.  So for a particular address_space,
672  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
673  * mapping->private_list will always be protected by the backing blockdev's
674  * ->private_lock.
675  *
676  * Which introduces a requirement: all buffers on an address_space's
677  * ->private_list must be from the same address_space: the blockdev's.
678  *
679  * address_spaces which do not place buffers at ->private_list via these
680  * utility functions are free to use private_lock and private_list for
681  * whatever they want.  The only requirement is that list_empty(private_list)
682  * be true at clear_inode() time.
683  *
684  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
685  * filesystems should do that.  invalidate_inode_buffers() should just go
686  * BUG_ON(!list_empty).
687  *
688  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
689  * take an address_space, not an inode.  And it should be called
690  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
691  * queued up.
692  *
693  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
694  * list if it is already on a list.  Because if the buffer is on a list,
695  * it *must* already be on the right one.  If not, the filesystem is being
696  * silly.  This will save a ton of locking.  But first we have to ensure
697  * that buffers are taken *off* the old inode's list when they are freed
698  * (presumably in truncate).  That requires careful auditing of all
699  * filesystems (do it inside bforget()).  It could also be done by bringing
700  * b_inode back.
701  */
702
703 /*
704  * The buffer's backing address_space's private_lock must be held
705  */
706 static inline void __remove_assoc_queue(struct buffer_head *bh)
707 {
708         list_del_init(&bh->b_assoc_buffers);
709 }
710
711 int inode_has_buffers(struct inode *inode)
712 {
713         return !list_empty(&inode->i_data.private_list);
714 }
715
716 /*
717  * osync is designed to support O_SYNC io.  It waits synchronously for
718  * all already-submitted IO to complete, but does not queue any new
719  * writes to the disk.
720  *
721  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
722  * you dirty the buffers, and then use osync_inode_buffers to wait for
723  * completion.  Any other dirty buffers which are not yet queued for
724  * write will not be flushed to disk by the osync.
725  */
726 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
727 {
728         struct buffer_head *bh;
729         struct list_head *p;
730         int err = 0;
731
732         spin_lock(lock);
733 repeat:
734         list_for_each_prev(p, list) {
735                 bh = BH_ENTRY(p);
736                 if (buffer_locked(bh)) {
737                         get_bh(bh);
738                         spin_unlock(lock);
739                         wait_on_buffer(bh);
740                         if (!buffer_uptodate(bh))
741                                 err = -EIO;
742                         brelse(bh);
743                         spin_lock(lock);
744                         goto repeat;
745                 }
746         }
747         spin_unlock(lock);
748         return err;
749 }
750
751 /**
752  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
753  *                        buffers
754  * @mapping: the mapping which wants those buffers written
755  *
756  * Starts I/O against the buffers at mapping->private_list, and waits upon
757  * that I/O.
758  *
759  * Basically, this is a convenience function for fsync().
760  * @mapping is a file or directory which needs those buffers to be written for
761  * a successful fsync().
762  */
763 int sync_mapping_buffers(struct address_space *mapping)
764 {
765         struct address_space *buffer_mapping = mapping->assoc_mapping;
766
767         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
768                 return 0;
769
770         return fsync_buffers_list(&buffer_mapping->private_lock,
771                                         &mapping->private_list);
772 }
773 EXPORT_SYMBOL(sync_mapping_buffers);
774
775 /*
776  * Called when we've recently written block `bblock', and it is known that
777  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
778  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
779  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
780  */
781 void write_boundary_block(struct block_device *bdev,
782                         sector_t bblock, unsigned blocksize)
783 {
784         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
785         if (bh) {
786                 if (buffer_dirty(bh))
787                         ll_rw_block(WRITE, 1, &bh);
788                 put_bh(bh);
789         }
790 }
791
792 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
793 {
794         struct address_space *mapping = inode->i_mapping;
795         struct address_space *buffer_mapping = bh->b_page->mapping;
796
797         mark_buffer_dirty(bh);
798         if (!mapping->assoc_mapping) {
799                 mapping->assoc_mapping = buffer_mapping;
800         } else {
801                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
802         }
803         if (list_empty(&bh->b_assoc_buffers)) {
804                 spin_lock(&buffer_mapping->private_lock);
805                 list_move_tail(&bh->b_assoc_buffers,
806                                 &mapping->private_list);
807                 spin_unlock(&buffer_mapping->private_lock);
808         }
809 }
810 EXPORT_SYMBOL(mark_buffer_dirty_inode);
811
812 /*
813  * Add a page to the dirty page list.
814  *
815  * It is a sad fact of life that this function is called from several places
816  * deeply under spinlocking.  It may not sleep.
817  *
818  * If the page has buffers, the uptodate buffers are set dirty, to preserve
819  * dirty-state coherency between the page and the buffers.  It the page does
820  * not have buffers then when they are later attached they will all be set
821  * dirty.
822  *
823  * The buffers are dirtied before the page is dirtied.  There's a small race
824  * window in which a writepage caller may see the page cleanness but not the
825  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
826  * before the buffers, a concurrent writepage caller could clear the page dirty
827  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
828  * page on the dirty page list.
829  *
830  * We use private_lock to lock against try_to_free_buffers while using the
831  * page's buffer list.  Also use this to protect against clean buffers being
832  * added to the page after it was set dirty.
833  *
834  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
835  * address_space though.
836  */
837 int __set_page_dirty_buffers(struct page *page)
838 {
839         struct address_space * const mapping = page->mapping;
840
841         spin_lock(&mapping->private_lock);
842         if (page_has_buffers(page)) {
843                 struct buffer_head *head = page_buffers(page);
844                 struct buffer_head *bh = head;
845
846                 do {
847                         set_buffer_dirty(bh);
848                         bh = bh->b_this_page;
849                 } while (bh != head);
850         }
851         spin_unlock(&mapping->private_lock);
852
853         if (!TestSetPageDirty(page)) {
854                 write_lock_irq(&mapping->tree_lock);
855                 if (page->mapping) {    /* Race with truncate? */
856                         if (mapping_cap_account_dirty(mapping))
857                                 inc_page_state(nr_dirty);
858                         radix_tree_tag_set(&mapping->page_tree,
859                                                 page_index(page),
860                                                 PAGECACHE_TAG_DIRTY);
861                 }
862                 write_unlock_irq(&mapping->tree_lock);
863                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
864                 return 1;
865         }
866         return 0;
867 }
868 EXPORT_SYMBOL(__set_page_dirty_buffers);
869
870 /*
871  * Write out and wait upon a list of buffers.
872  *
873  * We have conflicting pressures: we want to make sure that all
874  * initially dirty buffers get waited on, but that any subsequently
875  * dirtied buffers don't.  After all, we don't want fsync to last
876  * forever if somebody is actively writing to the file.
877  *
878  * Do this in two main stages: first we copy dirty buffers to a
879  * temporary inode list, queueing the writes as we go.  Then we clean
880  * up, waiting for those writes to complete.
881  * 
882  * During this second stage, any subsequent updates to the file may end
883  * up refiling the buffer on the original inode's dirty list again, so
884  * there is a chance we will end up with a buffer queued for write but
885  * not yet completed on that list.  So, as a final cleanup we go through
886  * the osync code to catch these locked, dirty buffers without requeuing
887  * any newly dirty buffers for write.
888  */
889 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
890 {
891         struct buffer_head *bh;
892         struct list_head tmp;
893         int err = 0, err2;
894
895         INIT_LIST_HEAD(&tmp);
896
897         spin_lock(lock);
898         while (!list_empty(list)) {
899                 bh = BH_ENTRY(list->next);
900                 list_del_init(&bh->b_assoc_buffers);
901                 if (buffer_dirty(bh) || buffer_locked(bh)) {
902                         list_add(&bh->b_assoc_buffers, &tmp);
903                         if (buffer_dirty(bh)) {
904                                 get_bh(bh);
905                                 spin_unlock(lock);
906                                 /*
907                                  * Ensure any pending I/O completes so that
908                                  * ll_rw_block() actually writes the current
909                                  * contents - it is a noop if I/O is still in
910                                  * flight on potentially older contents.
911                                  */
912                                 ll_rw_block(SWRITE, 1, &bh);
913                                 brelse(bh);
914                                 spin_lock(lock);
915                         }
916                 }
917         }
918
919         while (!list_empty(&tmp)) {
920                 bh = BH_ENTRY(tmp.prev);
921                 __remove_assoc_queue(bh);
922                 get_bh(bh);
923                 spin_unlock(lock);
924                 wait_on_buffer(bh);
925                 if (!buffer_uptodate(bh))
926                         err = -EIO;
927                 brelse(bh);
928                 spin_lock(lock);
929         }
930         
931         spin_unlock(lock);
932         err2 = osync_buffers_list(lock, list);
933         if (err)
934                 return err;
935         else
936                 return err2;
937 }
938
939 /*
940  * Invalidate any and all dirty buffers on a given inode.  We are
941  * probably unmounting the fs, but that doesn't mean we have already
942  * done a sync().  Just drop the buffers from the inode list.
943  *
944  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
945  * assumes that all the buffers are against the blockdev.  Not true
946  * for reiserfs.
947  */
948 void invalidate_inode_buffers(struct inode *inode)
949 {
950         if (inode_has_buffers(inode)) {
951                 struct address_space *mapping = &inode->i_data;
952                 struct list_head *list = &mapping->private_list;
953                 struct address_space *buffer_mapping = mapping->assoc_mapping;
954
955                 spin_lock(&buffer_mapping->private_lock);
956                 while (!list_empty(list))
957                         __remove_assoc_queue(BH_ENTRY(list->next));
958                 spin_unlock(&buffer_mapping->private_lock);
959         }
960 }
961
962 /*
963  * Remove any clean buffers from the inode's buffer list.  This is called
964  * when we're trying to free the inode itself.  Those buffers can pin it.
965  *
966  * Returns true if all buffers were removed.
967  */
968 int remove_inode_buffers(struct inode *inode)
969 {
970         int ret = 1;
971
972         if (inode_has_buffers(inode)) {
973                 struct address_space *mapping = &inode->i_data;
974                 struct list_head *list = &mapping->private_list;
975                 struct address_space *buffer_mapping = mapping->assoc_mapping;
976
977                 spin_lock(&buffer_mapping->private_lock);
978                 while (!list_empty(list)) {
979                         struct buffer_head *bh = BH_ENTRY(list->next);
980                         if (buffer_dirty(bh)) {
981                                 ret = 0;
982                                 break;
983                         }
984                         __remove_assoc_queue(bh);
985                 }
986                 spin_unlock(&buffer_mapping->private_lock);
987         }
988         return ret;
989 }
990
991 /*
992  * Create the appropriate buffers when given a page for data area and
993  * the size of each buffer.. Use the bh->b_this_page linked list to
994  * follow the buffers created.  Return NULL if unable to create more
995  * buffers.
996  *
997  * The retry flag is used to differentiate async IO (paging, swapping)
998  * which may not fail from ordinary buffer allocations.
999  */
1000 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1001                 int retry)
1002 {
1003         struct buffer_head *bh, *head;
1004         long offset;
1005
1006 try_again:
1007         head = NULL;
1008         offset = PAGE_SIZE;
1009         while ((offset -= size) >= 0) {
1010                 bh = alloc_buffer_head(GFP_NOFS);
1011                 if (!bh)
1012                         goto no_grow;
1013
1014                 bh->b_bdev = NULL;
1015                 bh->b_this_page = head;
1016                 bh->b_blocknr = -1;
1017                 head = bh;
1018
1019                 bh->b_state = 0;
1020                 atomic_set(&bh->b_count, 0);
1021                 bh->b_private = NULL;
1022                 bh->b_size = size;
1023
1024                 /* Link the buffer to its page */
1025                 set_bh_page(bh, page, offset);
1026
1027                 init_buffer(bh, NULL, NULL);
1028         }
1029         return head;
1030 /*
1031  * In case anything failed, we just free everything we got.
1032  */
1033 no_grow:
1034         if (head) {
1035                 do {
1036                         bh = head;
1037                         head = head->b_this_page;
1038                         free_buffer_head(bh);
1039                 } while (head);
1040         }
1041
1042         /*
1043          * Return failure for non-async IO requests.  Async IO requests
1044          * are not allowed to fail, so we have to wait until buffer heads
1045          * become available.  But we don't want tasks sleeping with 
1046          * partially complete buffers, so all were released above.
1047          */
1048         if (!retry)
1049                 return NULL;
1050
1051         /* We're _really_ low on memory. Now we just
1052          * wait for old buffer heads to become free due to
1053          * finishing IO.  Since this is an async request and
1054          * the reserve list is empty, we're sure there are 
1055          * async buffer heads in use.
1056          */
1057         free_more_memory();
1058         goto try_again;
1059 }
1060 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1061
1062 static inline void
1063 link_dev_buffers(struct page *page, struct buffer_head *head)
1064 {
1065         struct buffer_head *bh, *tail;
1066
1067         bh = head;
1068         do {
1069                 tail = bh;
1070                 bh = bh->b_this_page;
1071         } while (bh);
1072         tail->b_this_page = head;
1073         attach_page_buffers(page, head);
1074 }
1075
1076 /*
1077  * Initialise the state of a blockdev page's buffers.
1078  */ 
1079 static void
1080 init_page_buffers(struct page *page, struct block_device *bdev,
1081                         sector_t block, int size)
1082 {
1083         struct buffer_head *head = page_buffers(page);
1084         struct buffer_head *bh = head;
1085         int uptodate = PageUptodate(page);
1086
1087         do {
1088                 if (!buffer_mapped(bh)) {
1089                         init_buffer(bh, NULL, NULL);
1090                         bh->b_bdev = bdev;
1091                         bh->b_blocknr = block;
1092                         if (uptodate)
1093                                 set_buffer_uptodate(bh);
1094                         set_buffer_mapped(bh);
1095                 }
1096                 block++;
1097                 bh = bh->b_this_page;
1098         } while (bh != head);
1099 }
1100
1101 /*
1102  * Create the page-cache page that contains the requested block.
1103  *
1104  * This is user purely for blockdev mappings.
1105  */
1106 static struct page *
1107 grow_dev_page(struct block_device *bdev, sector_t block,
1108                 pgoff_t index, int size)
1109 {
1110         struct inode *inode = bdev->bd_inode;
1111         struct page *page;
1112         struct buffer_head *bh;
1113
1114         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1115         if (!page)
1116                 return NULL;
1117
1118         BUG_ON(!PageLocked(page));
1119
1120         if (page_has_buffers(page)) {
1121                 bh = page_buffers(page);
1122                 if (bh->b_size == size) {
1123                         init_page_buffers(page, bdev, block, size);
1124                         return page;
1125                 }
1126                 if (!try_to_free_buffers(page))
1127                         goto failed;
1128         }
1129
1130         /*
1131          * Allocate some buffers for this page
1132          */
1133         bh = alloc_page_buffers(page, size, 0);
1134         if (!bh)
1135                 goto failed;
1136
1137         /*
1138          * Link the page to the buffers and initialise them.  Take the
1139          * lock to be atomic wrt __find_get_block(), which does not
1140          * run under the page lock.
1141          */
1142         spin_lock(&inode->i_mapping->private_lock);
1143         link_dev_buffers(page, bh);
1144         init_page_buffers(page, bdev, block, size);
1145         spin_unlock(&inode->i_mapping->private_lock);
1146         return page;
1147
1148 failed:
1149         BUG();
1150         unlock_page(page);
1151         page_cache_release(page);
1152         return NULL;
1153 }
1154
1155 /*
1156  * Create buffers for the specified block device block's page.  If
1157  * that page was dirty, the buffers are set dirty also.
1158  *
1159  * Except that's a bug.  Attaching dirty buffers to a dirty
1160  * blockdev's page can result in filesystem corruption, because
1161  * some of those buffers may be aliases of filesystem data.
1162  * grow_dev_page() will go BUG() if this happens.
1163  */
1164 static int
1165 grow_buffers(struct block_device *bdev, sector_t block, int size)
1166 {
1167         struct page *page;
1168         pgoff_t index;
1169         int sizebits;
1170
1171         sizebits = -1;
1172         do {
1173                 sizebits++;
1174         } while ((size << sizebits) < PAGE_SIZE);
1175
1176         index = block >> sizebits;
1177         block = index << sizebits;
1178
1179         /* Create a page with the proper size buffers.. */
1180         page = grow_dev_page(bdev, block, index, size);
1181         if (!page)
1182                 return 0;
1183         unlock_page(page);
1184         page_cache_release(page);
1185         return 1;
1186 }
1187
1188 static struct buffer_head *
1189 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1190 {
1191         /* Size must be multiple of hard sectorsize */
1192         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1193                         (size < 512 || size > PAGE_SIZE))) {
1194                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1195                                         size);
1196                 printk(KERN_ERR "hardsect size: %d\n",
1197                                         bdev_hardsect_size(bdev));
1198
1199                 dump_stack();
1200                 return NULL;
1201         }
1202
1203         for (;;) {
1204                 struct buffer_head * bh;
1205
1206                 bh = __find_get_block(bdev, block, size);
1207                 if (bh)
1208                         return bh;
1209
1210                 if (!grow_buffers(bdev, block, size))
1211                         free_more_memory();
1212         }
1213 }
1214
1215 /*
1216  * The relationship between dirty buffers and dirty pages:
1217  *
1218  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1219  * the page is tagged dirty in its radix tree.
1220  *
1221  * At all times, the dirtiness of the buffers represents the dirtiness of
1222  * subsections of the page.  If the page has buffers, the page dirty bit is
1223  * merely a hint about the true dirty state.
1224  *
1225  * When a page is set dirty in its entirety, all its buffers are marked dirty
1226  * (if the page has buffers).
1227  *
1228  * When a buffer is marked dirty, its page is dirtied, but the page's other
1229  * buffers are not.
1230  *
1231  * Also.  When blockdev buffers are explicitly read with bread(), they
1232  * individually become uptodate.  But their backing page remains not
1233  * uptodate - even if all of its buffers are uptodate.  A subsequent
1234  * block_read_full_page() against that page will discover all the uptodate
1235  * buffers, will set the page uptodate and will perform no I/O.
1236  */
1237
1238 /**
1239  * mark_buffer_dirty - mark a buffer_head as needing writeout
1240  * @bh: the buffer_head to mark dirty
1241  *
1242  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1243  * backing page dirty, then tag the page as dirty in its address_space's radix
1244  * tree and then attach the address_space's inode to its superblock's dirty
1245  * inode list.
1246  *
1247  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1248  * mapping->tree_lock and the global inode_lock.
1249  */
1250 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1251 {
1252         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1253                 __set_page_dirty_nobuffers(bh->b_page);
1254 }
1255
1256 /*
1257  * Decrement a buffer_head's reference count.  If all buffers against a page
1258  * have zero reference count, are clean and unlocked, and if the page is clean
1259  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1260  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1261  * a page but it ends up not being freed, and buffers may later be reattached).
1262  */
1263 void __brelse(struct buffer_head * buf)
1264 {
1265         if (atomic_read(&buf->b_count)) {
1266                 put_bh(buf);
1267                 return;
1268         }
1269         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1270         WARN_ON(1);
1271 }
1272
1273 /*
1274  * bforget() is like brelse(), except it discards any
1275  * potentially dirty data.
1276  */
1277 void __bforget(struct buffer_head *bh)
1278 {
1279         clear_buffer_dirty(bh);
1280         if (!list_empty(&bh->b_assoc_buffers)) {
1281                 struct address_space *buffer_mapping = bh->b_page->mapping;
1282
1283                 spin_lock(&buffer_mapping->private_lock);
1284                 list_del_init(&bh->b_assoc_buffers);
1285                 spin_unlock(&buffer_mapping->private_lock);
1286         }
1287         __brelse(bh);
1288 }
1289
1290 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1291 {
1292         lock_buffer(bh);
1293         if (buffer_uptodate(bh)) {
1294                 unlock_buffer(bh);
1295                 return bh;
1296         } else {
1297                 get_bh(bh);
1298                 bh->b_end_io = end_buffer_read_sync;
1299                 submit_bh(READ, bh);
1300                 wait_on_buffer(bh);
1301                 if (buffer_uptodate(bh))
1302                         return bh;
1303         }
1304         brelse(bh);
1305         return NULL;
1306 }
1307
1308 /*
1309  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1310  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1311  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1312  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1313  * CPU's LRUs at the same time.
1314  *
1315  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1316  * sb_find_get_block().
1317  *
1318  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1319  * a local interrupt disable for that.
1320  */
1321
1322 #define BH_LRU_SIZE     8
1323
1324 struct bh_lru {
1325         struct buffer_head *bhs[BH_LRU_SIZE];
1326 };
1327
1328 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1329
1330 #ifdef CONFIG_SMP
1331 #define bh_lru_lock()   local_irq_disable()
1332 #define bh_lru_unlock() local_irq_enable()
1333 #else
1334 #define bh_lru_lock()   preempt_disable()
1335 #define bh_lru_unlock() preempt_enable()
1336 #endif
1337
1338 static int lru_disabled __read_mostly;
1339
1340 static inline void check_irqs_on(void)
1341 {
1342 #ifdef irqs_disabled
1343         BUG_ON(irqs_disabled());
1344 #endif
1345 }
1346
1347 /*
1348  * The LRU management algorithm is dopey-but-simple.  Sorry.
1349  */
1350 static void bh_lru_install(struct buffer_head *bh)
1351 {
1352         struct buffer_head *evictee = NULL;
1353         struct bh_lru *lru;
1354
1355         if (lru_disabled)
1356                 return; 
1357
1358         check_irqs_on();
1359         bh_lru_lock();
1360         lru = &__get_cpu_var(bh_lrus);
1361         if (lru->bhs[0] != bh) {
1362                 struct buffer_head *bhs[BH_LRU_SIZE];
1363                 int in;
1364                 int out = 0;
1365
1366                 get_bh(bh);
1367                 bhs[out++] = bh;
1368                 for (in = 0; in < BH_LRU_SIZE; in++) {
1369                         struct buffer_head *bh2 = lru->bhs[in];
1370
1371                         if (bh2 == bh) {
1372                                 __brelse(bh2);
1373                         } else {
1374                                 if (out >= BH_LRU_SIZE) {
1375                                         BUG_ON(evictee != NULL);
1376                                         evictee = bh2;
1377                                 } else {
1378                                         bhs[out++] = bh2;
1379                                 }
1380                         }
1381                 }
1382                 while (out < BH_LRU_SIZE)
1383                         bhs[out++] = NULL;
1384                 memcpy(lru->bhs, bhs, sizeof(bhs));
1385         }
1386         bh_lru_unlock();
1387
1388         if (evictee)
1389                 __brelse(evictee);
1390 }
1391
1392 /*
1393  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1394  */
1395 static struct buffer_head *
1396 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1397 {
1398         struct buffer_head *ret = NULL;
1399         struct bh_lru *lru;
1400         int i;
1401
1402         if (lru_disabled)
1403                 return ret;     
1404
1405         check_irqs_on();
1406         bh_lru_lock();
1407         lru = &__get_cpu_var(bh_lrus);
1408         for (i = 0; i < BH_LRU_SIZE; i++) {
1409                 struct buffer_head *bh = lru->bhs[i];
1410
1411                 if (bh && bh->b_bdev == bdev &&
1412                                 bh->b_blocknr == block && bh->b_size == size) {
1413                         if (i) {
1414                                 while (i) {
1415                                         lru->bhs[i] = lru->bhs[i - 1];
1416                                         i--;
1417                                 }
1418                                 lru->bhs[0] = bh;
1419                         }
1420                         get_bh(bh);
1421                         ret = bh;
1422                         break;
1423                 }
1424         }
1425         bh_lru_unlock();
1426         return ret;
1427 }
1428
1429 /*
1430  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1431  * it in the LRU and mark it as accessed.  If it is not present then return
1432  * NULL
1433  */
1434 struct buffer_head *
1435 __find_get_block(struct block_device *bdev, sector_t block, int size)
1436 {
1437         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1438
1439         if (bh == NULL) {
1440                 bh = __find_get_block_slow(bdev, block);
1441                 if (bh)
1442                         bh_lru_install(bh);
1443         }
1444         if (bh)
1445                 touch_buffer(bh);
1446         return bh;
1447 }
1448 EXPORT_SYMBOL(__find_get_block);
1449
1450 /*
1451  * __getblk will locate (and, if necessary, create) the buffer_head
1452  * which corresponds to the passed block_device, block and size. The
1453  * returned buffer has its reference count incremented.
1454  *
1455  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1456  * illegal block number, __getblk() will happily return a buffer_head
1457  * which represents the non-existent block.  Very weird.
1458  *
1459  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1460  * attempt is failing.  FIXME, perhaps?
1461  */
1462 struct buffer_head *
1463 __getblk(struct block_device *bdev, sector_t block, int size)
1464 {
1465         struct buffer_head *bh = __find_get_block(bdev, block, size);
1466
1467         might_sleep();
1468         if (bh == NULL)
1469                 bh = __getblk_slow(bdev, block, size);
1470         return bh;
1471 }
1472 EXPORT_SYMBOL(__getblk);
1473
1474 /*
1475  * Do async read-ahead on a buffer..
1476  */
1477 void __breadahead(struct block_device *bdev, sector_t block, int size)
1478 {
1479         struct buffer_head *bh = __getblk(bdev, block, size);
1480         if (likely(bh)) {
1481                 ll_rw_block(READA, 1, &bh);
1482                 brelse(bh);
1483         }
1484 }
1485 EXPORT_SYMBOL(__breadahead);
1486
1487 /**
1488  *  __bread() - reads a specified block and returns the bh
1489  *  @bdev: the block_device to read from
1490  *  @block: number of block
1491  *  @size: size (in bytes) to read
1492  * 
1493  *  Reads a specified block, and returns buffer head that contains it.
1494  *  It returns NULL if the block was unreadable.
1495  */
1496 struct buffer_head *
1497 __bread(struct block_device *bdev, sector_t block, int size)
1498 {
1499         struct buffer_head *bh = __getblk(bdev, block, size);
1500
1501         if (likely(bh) && !buffer_uptodate(bh))
1502                 bh = __bread_slow(bh);
1503         return bh;
1504 }
1505 EXPORT_SYMBOL(__bread);
1506
1507 /*
1508  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1509  * This doesn't race because it runs in each cpu either in irq
1510  * or with preempt disabled.
1511  */
1512 static void invalidate_bh_lru(void *arg)
1513 {
1514         struct bh_lru *b = &get_cpu_var(bh_lrus);
1515         int i;
1516
1517         for (i = 0; i < BH_LRU_SIZE; i++) {
1518                 brelse(b->bhs[i]);
1519                 b->bhs[i] = NULL;
1520         }
1521         put_cpu_var(bh_lrus);
1522 }
1523         
1524 static void invalidate_bh_lrus(void)
1525 {
1526         if (!lru_disabled)
1527                 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1528 }
1529
1530 void set_bh_page(struct buffer_head *bh,
1531                 struct page *page, unsigned long offset)
1532 {
1533         bh->b_page = page;
1534         BUG_ON(offset >= PAGE_SIZE);
1535         if (PageHighMem(page))
1536                 /*
1537                  * This catches illegal uses and preserves the offset:
1538                  */
1539                 bh->b_data = (char *)(0 + offset);
1540         else
1541                 bh->b_data = page_address(page) + offset;
1542 }
1543 EXPORT_SYMBOL(set_bh_page);
1544
1545 /*
1546  * Called when truncating a buffer on a page completely.
1547  */
1548 static void discard_buffer(struct buffer_head * bh)
1549 {
1550         lock_buffer(bh);
1551         clear_buffer_dirty(bh);
1552         bh->b_bdev = NULL;
1553         clear_buffer_mapped(bh);
1554         clear_buffer_req(bh);
1555         clear_buffer_new(bh);
1556         clear_buffer_delay(bh);
1557         unlock_buffer(bh);
1558 }
1559
1560 /**
1561  * try_to_release_page() - release old fs-specific metadata on a page
1562  *
1563  * @page: the page which the kernel is trying to free
1564  * @gfp_mask: memory allocation flags (and I/O mode)
1565  *
1566  * The address_space is to try to release any data against the page
1567  * (presumably at page->private).  If the release was successful, return `1'.
1568  * Otherwise return zero.
1569  *
1570  * The @gfp_mask argument specifies whether I/O may be performed to release
1571  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1572  *
1573  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1574  */
1575 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1576 {
1577         struct address_space * const mapping = page->mapping;
1578
1579         BUG_ON(!PageLocked(page));
1580         if (PageWriteback(page))
1581                 return 0;
1582         
1583         if (mapping && mapping->a_ops->releasepage)
1584                 return mapping->a_ops->releasepage(page, gfp_mask);
1585         return try_to_free_buffers(page);
1586 }
1587 EXPORT_SYMBOL(try_to_release_page);
1588
1589 /**
1590  * block_invalidatepage - invalidate part of all of a buffer-backed page
1591  *
1592  * @page: the page which is affected
1593  * @offset: the index of the truncation point
1594  *
1595  * block_invalidatepage() is called when all or part of the page has become
1596  * invalidatedby a truncate operation.
1597  *
1598  * block_invalidatepage() does not have to release all buffers, but it must
1599  * ensure that no dirty buffer is left outside @offset and that no I/O
1600  * is underway against any of the blocks which are outside the truncation
1601  * point.  Because the caller is about to free (and possibly reuse) those
1602  * blocks on-disk.
1603  */
1604 void block_invalidatepage(struct page *page, unsigned long offset)
1605 {
1606         struct buffer_head *head, *bh, *next;
1607         unsigned int curr_off = 0;
1608
1609         BUG_ON(!PageLocked(page));
1610         if (!page_has_buffers(page))
1611                 goto out;
1612
1613         head = page_buffers(page);
1614         bh = head;
1615         do {
1616                 unsigned int next_off = curr_off + bh->b_size;
1617                 next = bh->b_this_page;
1618
1619                 /*
1620                  * is this block fully invalidated?
1621                  */
1622                 if (offset <= curr_off)
1623                         discard_buffer(bh);
1624                 curr_off = next_off;
1625                 bh = next;
1626         } while (bh != head);
1627
1628         /*
1629          * We release buffers only if the entire page is being invalidated.
1630          * The get_block cached value has been unconditionally invalidated,
1631          * so real IO is not possible anymore.
1632          */
1633         if (offset == 0)
1634                 try_to_release_page(page, 0);
1635 out:
1636         return;
1637 }
1638 EXPORT_SYMBOL(block_invalidatepage);
1639
1640 void do_invalidatepage(struct page *page, unsigned long offset)
1641 {
1642         void (*invalidatepage)(struct page *, unsigned long);
1643         invalidatepage = page->mapping->a_ops->invalidatepage ? :
1644                 block_invalidatepage;
1645         (*invalidatepage)(page, offset);
1646 }
1647
1648 /*
1649  * We attach and possibly dirty the buffers atomically wrt
1650  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1651  * is already excluded via the page lock.
1652  */
1653 void create_empty_buffers(struct page *page,
1654                         unsigned long blocksize, unsigned long b_state)
1655 {
1656         struct buffer_head *bh, *head, *tail;
1657
1658         head = alloc_page_buffers(page, blocksize, 1);
1659         bh = head;
1660         do {
1661                 bh->b_state |= b_state;
1662                 tail = bh;
1663                 bh = bh->b_this_page;
1664         } while (bh);
1665         tail->b_this_page = head;
1666
1667         spin_lock(&page->mapping->private_lock);
1668         if (PageUptodate(page) || PageDirty(page)) {
1669                 bh = head;
1670                 do {
1671                         if (PageDirty(page))
1672                                 set_buffer_dirty(bh);
1673                         if (PageUptodate(page))
1674                                 set_buffer_uptodate(bh);
1675                         bh = bh->b_this_page;
1676                 } while (bh != head);
1677         }
1678         attach_page_buffers(page, head);
1679         spin_unlock(&page->mapping->private_lock);
1680 }
1681 EXPORT_SYMBOL(create_empty_buffers);
1682
1683 /*
1684  * We are taking a block for data and we don't want any output from any
1685  * buffer-cache aliases starting from return from that function and
1686  * until the moment when something will explicitly mark the buffer
1687  * dirty (hopefully that will not happen until we will free that block ;-)
1688  * We don't even need to mark it not-uptodate - nobody can expect
1689  * anything from a newly allocated buffer anyway. We used to used
1690  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1691  * don't want to mark the alias unmapped, for example - it would confuse
1692  * anyone who might pick it with bread() afterwards...
1693  *
1694  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1695  * be writeout I/O going on against recently-freed buffers.  We don't
1696  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1697  * only if we really need to.  That happens here.
1698  */
1699 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1700 {
1701         struct buffer_head *old_bh;
1702
1703         might_sleep();
1704
1705         old_bh = __find_get_block_slow(bdev, block);
1706         if (old_bh) {
1707                 clear_buffer_dirty(old_bh);
1708                 wait_on_buffer(old_bh);
1709                 clear_buffer_req(old_bh);
1710                 __brelse(old_bh);
1711         }
1712 }
1713 EXPORT_SYMBOL(unmap_underlying_metadata);
1714
1715 /*
1716  * NOTE! All mapped/uptodate combinations are valid:
1717  *
1718  *      Mapped  Uptodate        Meaning
1719  *
1720  *      No      No              "unknown" - must do get_block()
1721  *      No      Yes             "hole" - zero-filled
1722  *      Yes     No              "allocated" - allocated on disk, not read in
1723  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1724  *
1725  * "Dirty" is valid only with the last case (mapped+uptodate).
1726  */
1727
1728 /*
1729  * While block_write_full_page is writing back the dirty buffers under
1730  * the page lock, whoever dirtied the buffers may decide to clean them
1731  * again at any time.  We handle that by only looking at the buffer
1732  * state inside lock_buffer().
1733  *
1734  * If block_write_full_page() is called for regular writeback
1735  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1736  * locked buffer.   This only can happen if someone has written the buffer
1737  * directly, with submit_bh().  At the address_space level PageWriteback
1738  * prevents this contention from occurring.
1739  */
1740 static int __block_write_full_page(struct inode *inode, struct page *page,
1741                         get_block_t *get_block, struct writeback_control *wbc)
1742 {
1743         int err;
1744         sector_t block;
1745         sector_t last_block;
1746         struct buffer_head *bh, *head;
1747         const unsigned blocksize = 1 << inode->i_blkbits;
1748         int nr_underway = 0;
1749
1750         BUG_ON(!PageLocked(page));
1751
1752         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1753
1754         if (!page_has_buffers(page)) {
1755                 create_empty_buffers(page, blocksize,
1756                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1757         }
1758
1759         /*
1760          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1761          * here, and the (potentially unmapped) buffers may become dirty at
1762          * any time.  If a buffer becomes dirty here after we've inspected it
1763          * then we just miss that fact, and the page stays dirty.
1764          *
1765          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1766          * handle that here by just cleaning them.
1767          */
1768
1769         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1770         head = page_buffers(page);
1771         bh = head;
1772
1773         /*
1774          * Get all the dirty buffers mapped to disk addresses and
1775          * handle any aliases from the underlying blockdev's mapping.
1776          */
1777         do {
1778                 if (block > last_block) {
1779                         /*
1780                          * mapped buffers outside i_size will occur, because
1781                          * this page can be outside i_size when there is a
1782                          * truncate in progress.
1783                          */
1784                         /*
1785                          * The buffer was zeroed by block_write_full_page()
1786                          */
1787                         clear_buffer_dirty(bh);
1788                         set_buffer_uptodate(bh);
1789                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1790                         WARN_ON(bh->b_size != blocksize);
1791                         err = get_block(inode, block, bh, 1);
1792                         if (err)
1793                                 goto recover;
1794                         if (buffer_new(bh)) {
1795                                 /* blockdev mappings never come here */
1796                                 clear_buffer_new(bh);
1797                                 unmap_underlying_metadata(bh->b_bdev,
1798                                                         bh->b_blocknr);
1799                         }
1800                 }
1801                 bh = bh->b_this_page;
1802                 block++;
1803         } while (bh != head);
1804
1805         do {
1806                 if (!buffer_mapped(bh))
1807                         continue;
1808                 /*
1809                  * If it's a fully non-blocking write attempt and we cannot
1810                  * lock the buffer then redirty the page.  Note that this can
1811                  * potentially cause a busy-wait loop from pdflush and kswapd
1812                  * activity, but those code paths have their own higher-level
1813                  * throttling.
1814                  */
1815                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1816                         lock_buffer(bh);
1817                 } else if (test_set_buffer_locked(bh)) {
1818                         redirty_page_for_writepage(wbc, page);
1819                         continue;
1820                 }
1821                 if (test_clear_buffer_dirty(bh)) {
1822                         mark_buffer_async_write(bh);
1823                 } else {
1824                         unlock_buffer(bh);
1825                 }
1826         } while ((bh = bh->b_this_page) != head);
1827
1828         /*
1829          * The page and its buffers are protected by PageWriteback(), so we can
1830          * drop the bh refcounts early.
1831          */
1832         BUG_ON(PageWriteback(page));
1833         set_page_writeback(page);
1834
1835         do {
1836                 struct buffer_head *next = bh->b_this_page;
1837                 if (buffer_async_write(bh)) {
1838                         submit_bh(WRITE, bh);
1839                         nr_underway++;
1840                 }
1841                 bh = next;
1842         } while (bh != head);
1843         unlock_page(page);
1844
1845         err = 0;
1846 done:
1847         if (nr_underway == 0) {
1848                 /*
1849                  * The page was marked dirty, but the buffers were
1850                  * clean.  Someone wrote them back by hand with
1851                  * ll_rw_block/submit_bh.  A rare case.
1852                  */
1853                 int uptodate = 1;
1854                 do {
1855                         if (!buffer_uptodate(bh)) {
1856                                 uptodate = 0;
1857                                 break;
1858                         }
1859                         bh = bh->b_this_page;
1860                 } while (bh != head);
1861                 if (uptodate)
1862                         SetPageUptodate(page);
1863                 end_page_writeback(page);
1864                 /*
1865                  * The page and buffer_heads can be released at any time from
1866                  * here on.
1867                  */
1868                 wbc->pages_skipped++;   /* We didn't write this page */
1869         }
1870         return err;
1871
1872 recover:
1873         /*
1874          * ENOSPC, or some other error.  We may already have added some
1875          * blocks to the file, so we need to write these out to avoid
1876          * exposing stale data.
1877          * The page is currently locked and not marked for writeback
1878          */
1879         bh = head;
1880         /* Recovery: lock and submit the mapped buffers */
1881         do {
1882                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1883                         lock_buffer(bh);
1884                         mark_buffer_async_write(bh);
1885                 } else {
1886                         /*
1887                          * The buffer may have been set dirty during
1888                          * attachment to a dirty page.
1889                          */
1890                         clear_buffer_dirty(bh);
1891                 }
1892         } while ((bh = bh->b_this_page) != head);
1893         SetPageError(page);
1894         BUG_ON(PageWriteback(page));
1895         set_page_writeback(page);
1896         unlock_page(page);
1897         do {
1898                 struct buffer_head *next = bh->b_this_page;
1899                 if (buffer_async_write(bh)) {
1900                         clear_buffer_dirty(bh);
1901                         submit_bh(WRITE, bh);
1902                         nr_underway++;
1903                 }
1904                 bh = next;
1905         } while (bh != head);
1906         goto done;
1907 }
1908
1909 static int __block_prepare_write(struct inode *inode, struct page *page,
1910                 unsigned from, unsigned to, get_block_t *get_block)
1911 {
1912         unsigned block_start, block_end;
1913         sector_t block;
1914         int err = 0;
1915         unsigned blocksize, bbits;
1916         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1917
1918         BUG_ON(!PageLocked(page));
1919         BUG_ON(from > PAGE_CACHE_SIZE);
1920         BUG_ON(to > PAGE_CACHE_SIZE);
1921         BUG_ON(from > to);
1922
1923         blocksize = 1 << inode->i_blkbits;
1924         if (!page_has_buffers(page))
1925                 create_empty_buffers(page, blocksize, 0);
1926         head = page_buffers(page);
1927
1928         bbits = inode->i_blkbits;
1929         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1930
1931         for(bh = head, block_start = 0; bh != head || !block_start;
1932             block++, block_start=block_end, bh = bh->b_this_page) {
1933                 block_end = block_start + blocksize;
1934                 if (block_end <= from || block_start >= to) {
1935                         if (PageUptodate(page)) {
1936                                 if (!buffer_uptodate(bh))
1937                                         set_buffer_uptodate(bh);
1938                         }
1939                         continue;
1940                 }
1941                 if (buffer_new(bh))
1942                         clear_buffer_new(bh);
1943                 if (!buffer_mapped(bh)) {
1944                         WARN_ON(bh->b_size != blocksize);
1945                         err = get_block(inode, block, bh, 1);
1946                         if (err)
1947                                 break;
1948                         if (buffer_new(bh)) {
1949                                 unmap_underlying_metadata(bh->b_bdev,
1950                                                         bh->b_blocknr);
1951                                 if (PageUptodate(page)) {
1952                                         set_buffer_uptodate(bh);
1953                                         continue;
1954                                 }
1955                                 if (block_end > to || block_start < from) {
1956                                         void *kaddr;
1957
1958                                         kaddr = kmap_atomic(page, KM_USER0);
1959                                         if (block_end > to)
1960                                                 memset(kaddr+to, 0,
1961                                                         block_end-to);
1962                                         if (block_start < from)
1963                                                 memset(kaddr+block_start,
1964                                                         0, from-block_start);
1965                                         flush_dcache_page(page);
1966                                         kunmap_atomic(kaddr, KM_USER0);
1967                                 }
1968                                 continue;
1969                         }
1970                 }
1971                 if (PageUptodate(page)) {
1972                         if (!buffer_uptodate(bh))
1973                                 set_buffer_uptodate(bh);
1974                         continue; 
1975                 }
1976                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1977                      (block_start < from || block_end > to)) {
1978                         ll_rw_block(READ, 1, &bh);
1979                         *wait_bh++=bh;
1980                 }
1981         }
1982         /*
1983          * If we issued read requests - let them complete.
1984          */
1985         while(wait_bh > wait) {
1986                 wait_on_buffer(*--wait_bh);
1987                 if (!buffer_uptodate(*wait_bh))
1988                         err = -EIO;
1989         }
1990         if (!err) {
1991                 bh = head;
1992                 do {
1993                         if (buffer_new(bh))
1994                                 clear_buffer_new(bh);
1995                 } while ((bh = bh->b_this_page) != head);
1996                 return 0;
1997         }
1998         /* Error case: */
1999         /*
2000          * Zero out any newly allocated blocks to avoid exposing stale
2001          * data.  If BH_New is set, we know that the block was newly
2002          * allocated in the above loop.
2003          */
2004         bh = head;
2005         block_start = 0;
2006         do {
2007                 block_end = block_start+blocksize;
2008                 if (block_end <= from)
2009                         goto next_bh;
2010                 if (block_start >= to)
2011                         break;
2012                 if (buffer_new(bh)) {
2013                         void *kaddr;
2014
2015                         clear_buffer_new(bh);
2016                         kaddr = kmap_atomic(page, KM_USER0);
2017                         memset(kaddr+block_start, 0, bh->b_size);
2018                         kunmap_atomic(kaddr, KM_USER0);
2019                         set_buffer_uptodate(bh);
2020                         mark_buffer_dirty(bh);
2021                 }
2022 next_bh:
2023                 block_start = block_end;
2024                 bh = bh->b_this_page;
2025         } while (bh != head);
2026         return err;
2027 }
2028
2029 static int __block_commit_write(struct inode *inode, struct page *page,
2030                 unsigned from, unsigned to)
2031 {
2032         unsigned block_start, block_end;
2033         int partial = 0;
2034         unsigned blocksize;
2035         struct buffer_head *bh, *head;
2036
2037         blocksize = 1 << inode->i_blkbits;
2038
2039         for(bh = head = page_buffers(page), block_start = 0;
2040             bh != head || !block_start;
2041             block_start=block_end, bh = bh->b_this_page) {
2042                 block_end = block_start + blocksize;
2043                 if (block_end <= from || block_start >= to) {
2044                         if (!buffer_uptodate(bh))
2045                                 partial = 1;
2046                 } else {
2047                         set_buffer_uptodate(bh);
2048                         mark_buffer_dirty(bh);
2049                 }
2050         }
2051
2052         /*
2053          * If this is a partial write which happened to make all buffers
2054          * uptodate then we can optimize away a bogus readpage() for
2055          * the next read(). Here we 'discover' whether the page went
2056          * uptodate as a result of this (potentially partial) write.
2057          */
2058         if (!partial)
2059                 SetPageUptodate(page);
2060         return 0;
2061 }
2062
2063 /*
2064  * Generic "read page" function for block devices that have the normal
2065  * get_block functionality. This is most of the block device filesystems.
2066  * Reads the page asynchronously --- the unlock_buffer() and
2067  * set/clear_buffer_uptodate() functions propagate buffer state into the
2068  * page struct once IO has completed.
2069  */
2070 int block_read_full_page(struct page *page, get_block_t *get_block)
2071 {
2072         struct inode *inode = page->mapping->host;
2073         sector_t iblock, lblock;
2074         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2075         unsigned int blocksize;
2076         int nr, i;
2077         int fully_mapped = 1;
2078
2079         BUG_ON(!PageLocked(page));
2080         blocksize = 1 << inode->i_blkbits;
2081         if (!page_has_buffers(page))
2082                 create_empty_buffers(page, blocksize, 0);
2083         head = page_buffers(page);
2084
2085         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2086         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2087         bh = head;
2088         nr = 0;
2089         i = 0;
2090
2091         do {
2092                 if (buffer_uptodate(bh))
2093                         continue;
2094
2095                 if (!buffer_mapped(bh)) {
2096                         int err = 0;
2097
2098                         fully_mapped = 0;
2099                         if (iblock < lblock) {
2100                                 WARN_ON(bh->b_size != blocksize);
2101                                 err = get_block(inode, iblock, bh, 0);
2102                                 if (err)
2103                                         SetPageError(page);
2104                         }
2105                         if (!buffer_mapped(bh)) {
2106                                 void *kaddr = kmap_atomic(page, KM_USER0);
2107                                 memset(kaddr + i * blocksize, 0, blocksize);
2108                                 flush_dcache_page(page);
2109                                 kunmap_atomic(kaddr, KM_USER0);
2110                                 if (!err)
2111                                         set_buffer_uptodate(bh);
2112                                 continue;
2113                         }
2114                         /*
2115                          * get_block() might have updated the buffer
2116                          * synchronously
2117                          */
2118                         if (buffer_uptodate(bh))
2119                                 continue;
2120                 }
2121                 arr[nr++] = bh;
2122         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2123
2124         if (fully_mapped)
2125                 SetPageMappedToDisk(page);
2126
2127         if (!nr) {
2128                 /*
2129                  * All buffers are uptodate - we can set the page uptodate
2130                  * as well. But not if get_block() returned an error.
2131                  */
2132                 if (!PageError(page))
2133                         SetPageUptodate(page);
2134                 unlock_page(page);
2135                 return 0;
2136         }
2137
2138         /* Stage two: lock the buffers */
2139         for (i = 0; i < nr; i++) {
2140                 bh = arr[i];
2141                 lock_buffer(bh);
2142                 mark_buffer_async_read(bh);
2143         }
2144
2145         /*
2146          * Stage 3: start the IO.  Check for uptodateness
2147          * inside the buffer lock in case another process reading
2148          * the underlying blockdev brought it uptodate (the sct fix).
2149          */
2150         for (i = 0; i < nr; i++) {
2151                 bh = arr[i];
2152                 if (buffer_uptodate(bh))
2153                         end_buffer_async_read(bh, 1);
2154                 else
2155                         submit_bh(READ, bh);
2156         }
2157         return 0;
2158 }
2159
2160 /* utility function for filesystems that need to do work on expanding
2161  * truncates.  Uses prepare/commit_write to allow the filesystem to
2162  * deal with the hole.  
2163  */
2164 static int __generic_cont_expand(struct inode *inode, loff_t size,
2165                                  pgoff_t index, unsigned int offset)
2166 {
2167         struct address_space *mapping = inode->i_mapping;
2168         struct page *page;
2169         unsigned long limit;
2170         int err;
2171
2172         err = -EFBIG;
2173         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2174         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2175                 send_sig(SIGXFSZ, current, 0);
2176                 goto out;
2177         }
2178         if (size > inode->i_sb->s_maxbytes)
2179                 goto out;
2180
2181         err = -ENOMEM;
2182         page = grab_cache_page(mapping, index);
2183         if (!page)
2184                 goto out;
2185         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2186         if (err) {
2187                 /*
2188                  * ->prepare_write() may have instantiated a few blocks
2189                  * outside i_size.  Trim these off again.
2190                  */
2191                 unlock_page(page);
2192                 page_cache_release(page);
2193                 vmtruncate(inode, inode->i_size);
2194                 goto out;
2195         }
2196
2197         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2198
2199         unlock_page(page);
2200         page_cache_release(page);
2201         if (err > 0)
2202                 err = 0;
2203 out:
2204         return err;
2205 }
2206
2207 int generic_cont_expand(struct inode *inode, loff_t size)
2208 {
2209         pgoff_t index;
2210         unsigned int offset;
2211
2212         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2213
2214         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2215         ** skip the prepare.  make sure we never send an offset for the start
2216         ** of a block
2217         */
2218         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2219                 /* caller must handle this extra byte. */
2220                 offset++;
2221         }
2222         index = size >> PAGE_CACHE_SHIFT;
2223
2224         return __generic_cont_expand(inode, size, index, offset);
2225 }
2226
2227 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2228 {
2229         loff_t pos = size - 1;
2230         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2231         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2232
2233         /* prepare/commit_write can handle even if from==to==start of block. */
2234         return __generic_cont_expand(inode, size, index, offset);
2235 }
2236
2237 /*
2238  * For moronic filesystems that do not allow holes in file.
2239  * We may have to extend the file.
2240  */
2241
2242 int cont_prepare_write(struct page *page, unsigned offset,
2243                 unsigned to, get_block_t *get_block, loff_t *bytes)
2244 {
2245         struct address_space *mapping = page->mapping;
2246         struct inode *inode = mapping->host;
2247         struct page *new_page;
2248         pgoff_t pgpos;
2249         long status;
2250         unsigned zerofrom;
2251         unsigned blocksize = 1 << inode->i_blkbits;
2252         void *kaddr;
2253
2254         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2255                 status = -ENOMEM;
2256                 new_page = grab_cache_page(mapping, pgpos);
2257                 if (!new_page)
2258                         goto out;
2259                 /* we might sleep */
2260                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2261                         unlock_page(new_page);
2262                         page_cache_release(new_page);
2263                         continue;
2264                 }
2265                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2266                 if (zerofrom & (blocksize-1)) {
2267                         *bytes |= (blocksize-1);
2268                         (*bytes)++;
2269                 }
2270                 status = __block_prepare_write(inode, new_page, zerofrom,
2271                                                 PAGE_CACHE_SIZE, get_block);
2272                 if (status)
2273                         goto out_unmap;
2274                 kaddr = kmap_atomic(new_page, KM_USER0);
2275                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2276                 flush_dcache_page(new_page);
2277                 kunmap_atomic(kaddr, KM_USER0);
2278                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2279                 unlock_page(new_page);
2280                 page_cache_release(new_page);
2281         }
2282
2283         if (page->index < pgpos) {
2284                 /* completely inside the area */
2285                 zerofrom = offset;
2286         } else {
2287                 /* page covers the boundary, find the boundary offset */
2288                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2289
2290                 /* if we will expand the thing last block will be filled */
2291                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2292                         *bytes |= (blocksize-1);
2293                         (*bytes)++;
2294                 }
2295
2296                 /* starting below the boundary? Nothing to zero out */
2297                 if (offset <= zerofrom)
2298                         zerofrom = offset;
2299         }
2300         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2301         if (status)
2302                 goto out1;
2303         if (zerofrom < offset) {
2304                 kaddr = kmap_atomic(page, KM_USER0);
2305                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2306                 flush_dcache_page(page);
2307                 kunmap_atomic(kaddr, KM_USER0);
2308                 __block_commit_write(inode, page, zerofrom, offset);
2309         }
2310         return 0;
2311 out1:
2312         ClearPageUptodate(page);
2313         return status;
2314
2315 out_unmap:
2316         ClearPageUptodate(new_page);
2317         unlock_page(new_page);
2318         page_cache_release(new_page);
2319 out:
2320         return status;
2321 }
2322
2323 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2324                         get_block_t *get_block)
2325 {
2326         struct inode *inode = page->mapping->host;
2327         int err = __block_prepare_write(inode, page, from, to, get_block);
2328         if (err)
2329                 ClearPageUptodate(page);
2330         return err;
2331 }
2332
2333 int block_commit_write(struct page *page, unsigned from, unsigned to)
2334 {
2335         struct inode *inode = page->mapping->host;
2336         __block_commit_write(inode,page,from,to);
2337         return 0;
2338 }
2339
2340 int generic_commit_write(struct file *file, struct page *page,
2341                 unsigned from, unsigned to)
2342 {
2343         struct inode *inode = page->mapping->host;
2344         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2345         __block_commit_write(inode,page,from,to);
2346         /*
2347          * No need to use i_size_read() here, the i_size
2348          * cannot change under us because we hold i_mutex.
2349          */
2350         if (pos > inode->i_size) {
2351                 i_size_write(inode, pos);
2352                 mark_inode_dirty(inode);
2353         }
2354         return 0;
2355 }
2356
2357
2358 /*
2359  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2360  * immediately, while under the page lock.  So it needs a special end_io
2361  * handler which does not touch the bh after unlocking it.
2362  *
2363  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2364  * a race there is benign: unlock_buffer() only use the bh's address for
2365  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2366  * itself.
2367  */
2368 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2369 {
2370         if (uptodate) {
2371                 set_buffer_uptodate(bh);
2372         } else {
2373                 /* This happens, due to failed READA attempts. */
2374                 clear_buffer_uptodate(bh);
2375         }
2376         unlock_buffer(bh);
2377 }
2378
2379 /*
2380  * On entry, the page is fully not uptodate.
2381  * On exit the page is fully uptodate in the areas outside (from,to)
2382  */
2383 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2384                         get_block_t *get_block)
2385 {
2386         struct inode *inode = page->mapping->host;
2387         const unsigned blkbits = inode->i_blkbits;
2388         const unsigned blocksize = 1 << blkbits;
2389         struct buffer_head map_bh;
2390         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2391         unsigned block_in_page;
2392         unsigned block_start;
2393         sector_t block_in_file;
2394         char *kaddr;
2395         int nr_reads = 0;
2396         int i;
2397         int ret = 0;
2398         int is_mapped_to_disk = 1;
2399         int dirtied_it = 0;
2400
2401         if (PageMappedToDisk(page))
2402                 return 0;
2403
2404         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2405         map_bh.b_page = page;
2406
2407         /*
2408          * We loop across all blocks in the page, whether or not they are
2409          * part of the affected region.  This is so we can discover if the
2410          * page is fully mapped-to-disk.
2411          */
2412         for (block_start = 0, block_in_page = 0;
2413                   block_start < PAGE_CACHE_SIZE;
2414                   block_in_page++, block_start += blocksize) {
2415                 unsigned block_end = block_start + blocksize;
2416                 int create;
2417
2418                 map_bh.b_state = 0;
2419                 create = 1;
2420                 if (block_start >= to)
2421                         create = 0;
2422                 map_bh.b_size = blocksize;
2423                 ret = get_block(inode, block_in_file + block_in_page,
2424                                         &map_bh, create);
2425                 if (ret)
2426                         goto failed;
2427                 if (!buffer_mapped(&map_bh))
2428                         is_mapped_to_disk = 0;
2429                 if (buffer_new(&map_bh))
2430                         unmap_underlying_metadata(map_bh.b_bdev,
2431                                                         map_bh.b_blocknr);
2432                 if (PageUptodate(page))
2433                         continue;
2434                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2435                         kaddr = kmap_atomic(page, KM_USER0);
2436                         if (block_start < from) {
2437                                 memset(kaddr+block_start, 0, from-block_start);
2438                                 dirtied_it = 1;
2439                         }
2440                         if (block_end > to) {
2441                                 memset(kaddr + to, 0, block_end - to);
2442                                 dirtied_it = 1;
2443                         }
2444                         flush_dcache_page(page);
2445                         kunmap_atomic(kaddr, KM_USER0);
2446                         continue;
2447                 }
2448                 if (buffer_uptodate(&map_bh))
2449                         continue;       /* reiserfs does this */
2450                 if (block_start < from || block_end > to) {
2451                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2452
2453                         if (!bh) {
2454                                 ret = -ENOMEM;
2455                                 goto failed;
2456                         }
2457                         bh->b_state = map_bh.b_state;
2458                         atomic_set(&bh->b_count, 0);
2459                         bh->b_this_page = NULL;
2460                         bh->b_page = page;
2461                         bh->b_blocknr = map_bh.b_blocknr;
2462                         bh->b_size = blocksize;
2463                         bh->b_data = (char *)(long)block_start;
2464                         bh->b_bdev = map_bh.b_bdev;
2465                         bh->b_private = NULL;
2466                         read_bh[nr_reads++] = bh;
2467                 }
2468         }
2469
2470         if (nr_reads) {
2471                 struct buffer_head *bh;
2472
2473                 /*
2474                  * The page is locked, so these buffers are protected from
2475                  * any VM or truncate activity.  Hence we don't need to care
2476                  * for the buffer_head refcounts.
2477                  */
2478                 for (i = 0; i < nr_reads; i++) {
2479                         bh = read_bh[i];
2480                         lock_buffer(bh);
2481                         bh->b_end_io = end_buffer_read_nobh;
2482                         submit_bh(READ, bh);
2483                 }
2484                 for (i = 0; i < nr_reads; i++) {
2485                         bh = read_bh[i];
2486                         wait_on_buffer(bh);
2487                         if (!buffer_uptodate(bh))
2488                                 ret = -EIO;
2489                         free_buffer_head(bh);
2490                         read_bh[i] = NULL;
2491                 }
2492                 if (ret)
2493                         goto failed;
2494         }
2495
2496         if (is_mapped_to_disk)
2497                 SetPageMappedToDisk(page);
2498         SetPageUptodate(page);
2499
2500         /*
2501          * Setting the page dirty here isn't necessary for the prepare_write
2502          * function - commit_write will do that.  But if/when this function is
2503          * used within the pagefault handler to ensure that all mmapped pages
2504          * have backing space in the filesystem, we will need to dirty the page
2505          * if its contents were altered.
2506          */
2507         if (dirtied_it)
2508                 set_page_dirty(page);
2509
2510         return 0;
2511
2512 failed:
2513         for (i = 0; i < nr_reads; i++) {
2514                 if (read_bh[i])
2515                         free_buffer_head(read_bh[i]);
2516         }
2517
2518         /*
2519          * Error recovery is pretty slack.  Clear the page and mark it dirty
2520          * so we'll later zero out any blocks which _were_ allocated.
2521          */
2522         kaddr = kmap_atomic(page, KM_USER0);
2523         memset(kaddr, 0, PAGE_CACHE_SIZE);
2524         kunmap_atomic(kaddr, KM_USER0);
2525         SetPageUptodate(page);
2526         set_page_dirty(page);
2527         return ret;
2528 }
2529 EXPORT_SYMBOL(nobh_prepare_write);
2530
2531 int nobh_commit_write(struct file *file, struct page *page,
2532                 unsigned from, unsigned to)
2533 {
2534         struct inode *inode = page->mapping->host;
2535         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2536
2537         set_page_dirty(page);
2538         if (pos > inode->i_size) {
2539                 i_size_write(inode, pos);
2540                 mark_inode_dirty(inode);
2541         }
2542         return 0;
2543 }
2544 EXPORT_SYMBOL(nobh_commit_write);
2545
2546 /*
2547  * nobh_writepage() - based on block_full_write_page() except
2548  * that it tries to operate without attaching bufferheads to
2549  * the page.
2550  */
2551 int nobh_writepage(struct page *page, get_block_t *get_block,
2552                         struct writeback_control *wbc)
2553 {
2554         struct inode * const inode = page->mapping->host;
2555         loff_t i_size = i_size_read(inode);
2556         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2557         unsigned offset;
2558         void *kaddr;
2559         int ret;
2560
2561         /* Is the page fully inside i_size? */
2562         if (page->index < end_index)
2563                 goto out;
2564
2565         /* Is the page fully outside i_size? (truncate in progress) */
2566         offset = i_size & (PAGE_CACHE_SIZE-1);
2567         if (page->index >= end_index+1 || !offset) {
2568                 /*
2569                  * The page may have dirty, unmapped buffers.  For example,
2570                  * they may have been added in ext3_writepage().  Make them
2571                  * freeable here, so the page does not leak.
2572                  */
2573 #if 0
2574                 /* Not really sure about this  - do we need this ? */
2575                 if (page->mapping->a_ops->invalidatepage)
2576                         page->mapping->a_ops->invalidatepage(page, offset);
2577 #endif
2578                 unlock_page(page);
2579                 return 0; /* don't care */
2580         }
2581
2582         /*
2583          * The page straddles i_size.  It must be zeroed out on each and every
2584          * writepage invocation because it may be mmapped.  "A file is mapped
2585          * in multiples of the page size.  For a file that is not a multiple of
2586          * the  page size, the remaining memory is zeroed when mapped, and
2587          * writes to that region are not written out to the file."
2588          */
2589         kaddr = kmap_atomic(page, KM_USER0);
2590         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2591         flush_dcache_page(page);
2592         kunmap_atomic(kaddr, KM_USER0);
2593 out:
2594         ret = mpage_writepage(page, get_block, wbc);
2595         if (ret == -EAGAIN)
2596                 ret = __block_write_full_page(inode, page, get_block, wbc);
2597         return ret;
2598 }
2599 EXPORT_SYMBOL(nobh_writepage);
2600
2601 /*
2602  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2603  */
2604 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2605 {
2606         struct inode *inode = mapping->host;
2607         unsigned blocksize = 1 << inode->i_blkbits;
2608         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2609         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2610         unsigned to;
2611         struct page *page;
2612         struct address_space_operations *a_ops = mapping->a_ops;
2613         char *kaddr;
2614         int ret = 0;
2615
2616         if ((offset & (blocksize - 1)) == 0)
2617                 goto out;
2618
2619         ret = -ENOMEM;
2620         page = grab_cache_page(mapping, index);
2621         if (!page)
2622                 goto out;
2623
2624         to = (offset + blocksize) & ~(blocksize - 1);
2625         ret = a_ops->prepare_write(NULL, page, offset, to);
2626         if (ret == 0) {
2627                 kaddr = kmap_atomic(page, KM_USER0);
2628                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2629                 flush_dcache_page(page);
2630                 kunmap_atomic(kaddr, KM_USER0);
2631                 set_page_dirty(page);
2632         }
2633         unlock_page(page);
2634         page_cache_release(page);
2635 out:
2636         return ret;
2637 }
2638 EXPORT_SYMBOL(nobh_truncate_page);
2639
2640 int block_truncate_page(struct address_space *mapping,
2641                         loff_t from, get_block_t *get_block)
2642 {
2643         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2644         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2645         unsigned blocksize;
2646         sector_t iblock;
2647         unsigned length, pos;
2648         struct inode *inode = mapping->host;
2649         struct page *page;
2650         struct buffer_head *bh;
2651         void *kaddr;
2652         int err;
2653
2654         blocksize = 1 << inode->i_blkbits;
2655         length = offset & (blocksize - 1);
2656
2657         /* Block boundary? Nothing to do */
2658         if (!length)
2659                 return 0;
2660
2661         length = blocksize - length;
2662         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2663         
2664         page = grab_cache_page(mapping, index);
2665         err = -ENOMEM;
2666         if (!page)
2667                 goto out;
2668
2669         if (!page_has_buffers(page))
2670                 create_empty_buffers(page, blocksize, 0);
2671
2672         /* Find the buffer that contains "offset" */
2673         bh = page_buffers(page);
2674         pos = blocksize;
2675         while (offset >= pos) {
2676                 bh = bh->b_this_page;
2677                 iblock++;
2678                 pos += blocksize;
2679         }
2680
2681         err = 0;
2682         if (!buffer_mapped(bh)) {
2683                 WARN_ON(bh->b_size != blocksize);
2684                 err = get_block(inode, iblock, bh, 0);
2685                 if (err)
2686                         goto unlock;
2687                 /* unmapped? It's a hole - nothing to do */
2688                 if (!buffer_mapped(bh))
2689                         goto unlock;
2690         }
2691
2692         /* Ok, it's mapped. Make sure it's up-to-date */
2693         if (PageUptodate(page))
2694                 set_buffer_uptodate(bh);
2695
2696         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2697                 err = -EIO;
2698                 ll_rw_block(READ, 1, &bh);
2699                 wait_on_buffer(bh);
2700                 /* Uhhuh. Read error. Complain and punt. */
2701                 if (!buffer_uptodate(bh))
2702                         goto unlock;
2703         }
2704
2705         kaddr = kmap_atomic(page, KM_USER0);
2706         memset(kaddr + offset, 0, length);
2707         flush_dcache_page(page);
2708         kunmap_atomic(kaddr, KM_USER0);
2709
2710         mark_buffer_dirty(bh);
2711         err = 0;
2712
2713 unlock:
2714         unlock_page(page);
2715         page_cache_release(page);
2716 out:
2717         return err;
2718 }
2719
2720 /*
2721  * The generic ->writepage function for buffer-backed address_spaces
2722  */
2723 int block_write_full_page(struct page *page, get_block_t *get_block,
2724                         struct writeback_control *wbc)
2725 {
2726         struct inode * const inode = page->mapping->host;
2727         loff_t i_size = i_size_read(inode);
2728         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2729         unsigned offset;
2730         void *kaddr;
2731
2732         /* Is the page fully inside i_size? */
2733         if (page->index < end_index)
2734                 return __block_write_full_page(inode, page, get_block, wbc);
2735
2736         /* Is the page fully outside i_size? (truncate in progress) */
2737         offset = i_size & (PAGE_CACHE_SIZE-1);
2738         if (page->index >= end_index+1 || !offset) {
2739                 /*
2740                  * The page may have dirty, unmapped buffers.  For example,
2741                  * they may have been added in ext3_writepage().  Make them
2742                  * freeable here, so the page does not leak.
2743                  */
2744                 do_invalidatepage(page, 0);
2745                 unlock_page(page);
2746                 return 0; /* don't care */
2747         }
2748
2749         /*
2750          * The page straddles i_size.  It must be zeroed out on each and every
2751          * writepage invokation because it may be mmapped.  "A file is mapped
2752          * in multiples of the page size.  For a file that is not a multiple of
2753          * the  page size, the remaining memory is zeroed when mapped, and
2754          * writes to that region are not written out to the file."
2755          */
2756         kaddr = kmap_atomic(page, KM_USER0);
2757         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2758         flush_dcache_page(page);
2759         kunmap_atomic(kaddr, KM_USER0);
2760         return __block_write_full_page(inode, page, get_block, wbc);
2761 }
2762
2763 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2764                             get_block_t *get_block)
2765 {
2766         struct buffer_head tmp;
2767         struct inode *inode = mapping->host;
2768         tmp.b_state = 0;
2769         tmp.b_blocknr = 0;
2770         tmp.b_size = 1 << inode->i_blkbits;
2771         get_block(inode, block, &tmp, 0);
2772         return tmp.b_blocknr;
2773 }
2774
2775 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2776 {
2777         struct buffer_head *bh = bio->bi_private;
2778
2779         if (bio->bi_size)
2780                 return 1;
2781
2782         if (err == -EOPNOTSUPP) {
2783                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2784                 set_bit(BH_Eopnotsupp, &bh->b_state);
2785         }
2786
2787         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2788         bio_put(bio);
2789         return 0;
2790 }
2791
2792 int submit_bh(int rw, struct buffer_head * bh)
2793 {
2794         struct bio *bio;
2795         int ret = 0;
2796
2797         BUG_ON(!buffer_locked(bh));
2798         BUG_ON(!buffer_mapped(bh));
2799         BUG_ON(!bh->b_end_io);
2800
2801         if (buffer_ordered(bh) && (rw == WRITE))
2802                 rw = WRITE_BARRIER;
2803
2804         /*
2805          * Only clear out a write error when rewriting, should this
2806          * include WRITE_SYNC as well?
2807          */
2808         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2809                 clear_buffer_write_io_error(bh);
2810
2811         /*
2812          * from here on down, it's all bio -- do the initial mapping,
2813          * submit_bio -> generic_make_request may further map this bio around
2814          */
2815         bio = bio_alloc(GFP_NOIO, 1);
2816
2817         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2818         bio->bi_bdev = bh->b_bdev;
2819         bio->bi_io_vec[0].bv_page = bh->b_page;
2820         bio->bi_io_vec[0].bv_len = bh->b_size;
2821         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2822
2823         bio->bi_vcnt = 1;
2824         bio->bi_idx = 0;
2825         bio->bi_size = bh->b_size;
2826
2827         bio->bi_end_io = end_bio_bh_io_sync;
2828         bio->bi_private = bh;
2829
2830         bio_get(bio);
2831         submit_bio(rw, bio);
2832
2833         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2834                 ret = -EOPNOTSUPP;
2835
2836         bio_put(bio);
2837         return ret;
2838 }
2839
2840 /**
2841  * ll_rw_block: low-level access to block devices (DEPRECATED)
2842  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2843  * @nr: number of &struct buffer_heads in the array
2844  * @bhs: array of pointers to &struct buffer_head
2845  *
2846  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2847  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2848  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2849  * are sent to disk. The fourth %READA option is described in the documentation
2850  * for generic_make_request() which ll_rw_block() calls.
2851  *
2852  * This function drops any buffer that it cannot get a lock on (with the
2853  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2854  * clean when doing a write request, and any buffer that appears to be
2855  * up-to-date when doing read request.  Further it marks as clean buffers that
2856  * are processed for writing (the buffer cache won't assume that they are
2857  * actually clean until the buffer gets unlocked).
2858  *
2859  * ll_rw_block sets b_end_io to simple completion handler that marks
2860  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2861  * any waiters. 
2862  *
2863  * All of the buffers must be for the same device, and must also be a
2864  * multiple of the current approved size for the device.
2865  */
2866 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2867 {
2868         int i;
2869
2870         for (i = 0; i < nr; i++) {
2871                 struct buffer_head *bh = bhs[i];
2872
2873                 if (rw == SWRITE)
2874                         lock_buffer(bh);
2875                 else if (test_set_buffer_locked(bh))
2876                         continue;
2877
2878                 if (rw == WRITE || rw == SWRITE) {
2879                         if (test_clear_buffer_dirty(bh)) {
2880                                 bh->b_end_io = end_buffer_write_sync;
2881                                 get_bh(bh);
2882                                 submit_bh(WRITE, bh);
2883                                 continue;
2884                         }
2885                 } else {
2886                         if (!buffer_uptodate(bh)) {
2887                                 bh->b_end_io = end_buffer_read_sync;
2888                                 get_bh(bh);
2889                                 submit_bh(rw, bh);
2890                                 continue;
2891                         }
2892                 }
2893                 unlock_buffer(bh);
2894         }
2895 }
2896
2897 /*
2898  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2899  * and then start new I/O and then wait upon it.  The caller must have a ref on
2900  * the buffer_head.
2901  */
2902 int sync_dirty_buffer(struct buffer_head *bh)
2903 {
2904         int ret = 0;
2905
2906         WARN_ON(atomic_read(&bh->b_count) < 1);
2907         lock_buffer(bh);
2908         if (test_clear_buffer_dirty(bh)) {
2909                 get_bh(bh);
2910                 bh->b_end_io = end_buffer_write_sync;
2911                 ret = submit_bh(WRITE, bh);
2912                 wait_on_buffer(bh);
2913                 if (buffer_eopnotsupp(bh)) {
2914                         clear_buffer_eopnotsupp(bh);
2915                         ret = -EOPNOTSUPP;
2916                 }
2917                 if (!ret && !buffer_uptodate(bh))
2918                         ret = -EIO;
2919         } else {
2920                 unlock_buffer(bh);
2921         }
2922         return ret;
2923 }
2924
2925 /*
2926  * try_to_free_buffers() checks if all the buffers on this particular page
2927  * are unused, and releases them if so.
2928  *
2929  * Exclusion against try_to_free_buffers may be obtained by either
2930  * locking the page or by holding its mapping's private_lock.
2931  *
2932  * If the page is dirty but all the buffers are clean then we need to
2933  * be sure to mark the page clean as well.  This is because the page
2934  * may be against a block device, and a later reattachment of buffers
2935  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2936  * filesystem data on the same device.
2937  *
2938  * The same applies to regular filesystem pages: if all the buffers are
2939  * clean then we set the page clean and proceed.  To do that, we require
2940  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2941  * private_lock.
2942  *
2943  * try_to_free_buffers() is non-blocking.
2944  */
2945 static inline int buffer_busy(struct buffer_head *bh)
2946 {
2947         return atomic_read(&bh->b_count) |
2948                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2949 }
2950
2951 static int
2952 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2953 {
2954         struct buffer_head *head = page_buffers(page);
2955         struct buffer_head *bh;
2956
2957         bh = head;
2958         do {
2959                 if (buffer_write_io_error(bh) && page->mapping)
2960                         set_bit(AS_EIO, &page->mapping->flags);
2961                 if (buffer_busy(bh))
2962                         goto failed;
2963                 bh = bh->b_this_page;
2964         } while (bh != head);
2965
2966         do {
2967                 struct buffer_head *next = bh->b_this_page;
2968
2969                 if (!list_empty(&bh->b_assoc_buffers))
2970                         __remove_assoc_queue(bh);
2971                 bh = next;
2972         } while (bh != head);
2973         *buffers_to_free = head;
2974         __clear_page_buffers(page);
2975         return 1;
2976 failed:
2977         return 0;
2978 }
2979
2980 int try_to_free_buffers(struct page *page)
2981 {
2982         struct address_space * const mapping = page->mapping;
2983         struct buffer_head *buffers_to_free = NULL;
2984         int ret = 0;
2985
2986         BUG_ON(!PageLocked(page));
2987         if (PageWriteback(page))
2988                 return 0;
2989
2990         if (mapping == NULL) {          /* can this still happen? */
2991                 ret = drop_buffers(page, &buffers_to_free);
2992                 goto out;
2993         }
2994
2995         spin_lock(&mapping->private_lock);
2996         ret = drop_buffers(page, &buffers_to_free);
2997         if (ret) {
2998                 /*
2999                  * If the filesystem writes its buffers by hand (eg ext3)
3000                  * then we can have clean buffers against a dirty page.  We
3001                  * clean the page here; otherwise later reattachment of buffers
3002                  * could encounter a non-uptodate page, which is unresolvable.
3003                  * This only applies in the rare case where try_to_free_buffers
3004                  * succeeds but the page is not freed.
3005                  */
3006                 clear_page_dirty(page);
3007         }
3008         spin_unlock(&mapping->private_lock);
3009 out:
3010         if (buffers_to_free) {
3011                 struct buffer_head *bh = buffers_to_free;
3012
3013                 do {
3014                         struct buffer_head *next = bh->b_this_page;
3015                         free_buffer_head(bh);
3016                         bh = next;
3017                 } while (bh != buffers_to_free);
3018         }
3019         return ret;
3020 }
3021 EXPORT_SYMBOL(try_to_free_buffers);
3022
3023 void block_sync_page(struct page *page)
3024 {
3025         struct address_space *mapping;
3026
3027         smp_mb();
3028         mapping = page_mapping(page);
3029         if (mapping)
3030                 blk_run_backing_dev(mapping->backing_dev_info, page);
3031 }
3032
3033 /*
3034  * There are no bdflush tunables left.  But distributions are
3035  * still running obsolete flush daemons, so we terminate them here.
3036  *
3037  * Use of bdflush() is deprecated and will be removed in a future kernel.
3038  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3039  */
3040 asmlinkage long sys_bdflush(int func, long data)
3041 {
3042         static int msg_count;
3043
3044         if (!capable(CAP_SYS_ADMIN))
3045                 return -EPERM;
3046
3047         if (msg_count < 5) {
3048                 msg_count++;
3049                 printk(KERN_INFO
3050                         "warning: process `%s' used the obsolete bdflush"
3051                         " system call\n", current->comm);
3052                 printk(KERN_INFO "Fix your initscripts?\n");
3053         }
3054
3055         if (func == 1)
3056                 do_exit(0);
3057         return 0;
3058 }
3059
3060 /*
3061  * Buffer-head allocation
3062  */
3063 static kmem_cache_t *bh_cachep;
3064
3065 /*
3066  * Once the number of bh's in the machine exceeds this level, we start
3067  * stripping them in writeback.
3068  */
3069 static int max_buffer_heads;
3070
3071 int buffer_heads_over_limit;
3072
3073 struct bh_accounting {
3074         int nr;                 /* Number of live bh's */
3075         int ratelimit;          /* Limit cacheline bouncing */
3076 };
3077
3078 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3079
3080 static void recalc_bh_state(void)
3081 {
3082         int i;
3083         int tot = 0;
3084
3085         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3086                 return;
3087         __get_cpu_var(bh_accounting).ratelimit = 0;
3088         for_each_online_cpu(i)
3089                 tot += per_cpu(bh_accounting, i).nr;
3090         buffer_heads_over_limit = (tot > max_buffer_heads);
3091 }
3092         
3093 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3094 {
3095         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3096         if (ret) {
3097                 get_cpu_var(bh_accounting).nr++;
3098                 recalc_bh_state();
3099                 put_cpu_var(bh_accounting);
3100         }
3101         return ret;
3102 }
3103 EXPORT_SYMBOL(alloc_buffer_head);
3104
3105 void free_buffer_head(struct buffer_head *bh)
3106 {
3107         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3108         kmem_cache_free(bh_cachep, bh);
3109         get_cpu_var(bh_accounting).nr--;
3110         recalc_bh_state();
3111         put_cpu_var(bh_accounting);
3112 }
3113 EXPORT_SYMBOL(free_buffer_head);
3114
3115 static void
3116 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3117 {
3118         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3119                             SLAB_CTOR_CONSTRUCTOR) {
3120                 struct buffer_head * bh = (struct buffer_head *)data;
3121
3122                 memset(bh, 0, sizeof(*bh));
3123                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3124         }
3125 }
3126
3127 #ifdef CONFIG_HOTPLUG_CPU
3128 static void buffer_exit_cpu(int cpu)
3129 {
3130         int i;
3131         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3132
3133         if (lru_disabled)
3134                 return;
3135
3136         for (i = 0; i < BH_LRU_SIZE; i++) {
3137                 brelse(b->bhs[i]);
3138                 b->bhs[i] = NULL;
3139         }
3140         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3141         per_cpu(bh_accounting, cpu).nr = 0;
3142         put_cpu_var(bh_accounting);
3143 }
3144
3145 static int buffer_cpu_notify(struct notifier_block *self,
3146                               unsigned long action, void *hcpu)
3147 {
3148         if (action == CPU_DEAD)
3149                 buffer_exit_cpu((unsigned long)hcpu);
3150         return NOTIFY_OK;
3151 }
3152 #endif /* CONFIG_HOTPLUG_CPU */
3153
3154 void __init buffer_init(void)
3155 {
3156         int nrpages;
3157
3158         bh_cachep = kmem_cache_create("buffer_head",
3159                                         sizeof(struct buffer_head), 0,
3160                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3161                                         SLAB_MEM_SPREAD),
3162                                         init_buffer_head,
3163                                         NULL);
3164
3165         /*
3166          * Limit the bh occupancy to 10% of ZONE_NORMAL
3167          */
3168         nrpages = (nr_free_buffer_pages() * 10) / 100;
3169         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3170         hotcpu_notifier(buffer_cpu_notify, 0);
3171 }
3172
3173 static int __init disable_buffer_lru(char *s)
3174 {
3175         lru_disabled = 1;
3176         return 0;
3177 }
3178 __setup("disable_buffer_lru", disable_buffer_lru);
3179
3180 EXPORT_SYMBOL(__bforget);
3181 EXPORT_SYMBOL(__brelse);
3182 EXPORT_SYMBOL(__wait_on_buffer);
3183 EXPORT_SYMBOL(block_commit_write);
3184 EXPORT_SYMBOL(block_prepare_write);
3185 EXPORT_SYMBOL(block_read_full_page);
3186 EXPORT_SYMBOL(block_sync_page);
3187 EXPORT_SYMBOL(block_truncate_page);
3188 EXPORT_SYMBOL(block_write_full_page);
3189 EXPORT_SYMBOL(cont_prepare_write);
3190 EXPORT_SYMBOL(end_buffer_async_write);
3191 EXPORT_SYMBOL(end_buffer_read_sync);
3192 EXPORT_SYMBOL(end_buffer_write_sync);
3193 EXPORT_SYMBOL(file_fsync);
3194 EXPORT_SYMBOL(fsync_bdev);
3195 EXPORT_SYMBOL(generic_block_bmap);
3196 EXPORT_SYMBOL(generic_commit_write);
3197 EXPORT_SYMBOL(generic_cont_expand);
3198 EXPORT_SYMBOL(generic_cont_expand_simple);
3199 EXPORT_SYMBOL(init_buffer);
3200 EXPORT_SYMBOL(invalidate_bdev);
3201 EXPORT_SYMBOL(ll_rw_block);
3202 EXPORT_SYMBOL(mark_buffer_dirty);
3203 EXPORT_SYMBOL(submit_bh);
3204 EXPORT_SYMBOL(sync_dirty_buffer);
3205 EXPORT_SYMBOL(unlock_buffer);