- Update to Linux 2.6.36-rc4.
[linux-flexiantxendom0-3.2.10.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40                                  unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54
55 static struct swap_list_t swap_list = {-1, -1};
56
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58
59 static DEFINE_MUTEX(swapon_mutex);
60
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
64 }
65
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70         swp_entry_t entry = swp_entry(si->type, offset);
71         struct page *page;
72         int ret = 0;
73
74         page = find_get_page(&swapper_space, entry.val);
75         if (!page)
76                 return 0;
77         /*
78          * This function is called from scan_swap_map() and it's called
79          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80          * We have to use trylock for avoiding deadlock. This is a special
81          * case and you should use try_to_free_swap() with explicit lock_page()
82          * in usual operations.
83          */
84         if (trylock_page(page)) {
85                 ret = try_to_free_swap(page);
86                 unlock_page(page);
87         }
88         page_cache_release(page);
89         return ret;
90 }
91
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101         swp_entry_t entry;
102
103         down_read(&swap_unplug_sem);
104         entry.val = page_private(page);
105         if (PageSwapCache(page)) {
106                 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107                 struct backing_dev_info *bdi;
108
109                 /*
110                  * If the page is removed from swapcache from under us (with a
111                  * racy try_to_unuse/swapoff) we need an additional reference
112                  * count to avoid reading garbage from page_private(page) above.
113                  * If the WARN_ON triggers during a swapoff it maybe the race
114                  * condition and it's harmless. However if it triggers without
115                  * swapoff it signals a problem.
116                  */
117                 WARN_ON(page_count(page) <= 1);
118
119                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120                 blk_run_backing_dev(bdi, page);
121         }
122         up_read(&swap_unplug_sem);
123 }
124
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131         struct swap_extent *se;
132         sector_t start_block;
133         sector_t nr_blocks;
134         int err = 0;
135
136         /* Do not discard the swap header page! */
137         se = &si->first_swap_extent;
138         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140         if (nr_blocks) {
141                 err = blkdev_issue_discard(si->bdev, start_block,
142                                 nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT);
143                 if (err)
144                         return err;
145                 cond_resched();
146         }
147
148         list_for_each_entry(se, &si->first_swap_extent.list, list) {
149                 start_block = se->start_block << (PAGE_SHIFT - 9);
150                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
151
152                 err = blkdev_issue_discard(si->bdev, start_block,
153                                 nr_blocks, GFP_KERNEL, BLKDEV_IFL_WAIT);
154                 if (err)
155                         break;
156
157                 cond_resched();
158         }
159         return err;             /* That will often be -EOPNOTSUPP */
160 }
161
162 /*
163  * swap allocation tell device that a cluster of swap can now be discarded,
164  * to allow the swap device to optimize its wear-levelling.
165  */
166 static void discard_swap_cluster(struct swap_info_struct *si,
167                                  pgoff_t start_page, pgoff_t nr_pages)
168 {
169         struct swap_extent *se = si->curr_swap_extent;
170         int found_extent = 0;
171
172         while (nr_pages) {
173                 struct list_head *lh;
174
175                 if (se->start_page <= start_page &&
176                     start_page < se->start_page + se->nr_pages) {
177                         pgoff_t offset = start_page - se->start_page;
178                         sector_t start_block = se->start_block + offset;
179                         sector_t nr_blocks = se->nr_pages - offset;
180
181                         if (nr_blocks > nr_pages)
182                                 nr_blocks = nr_pages;
183                         start_page += nr_blocks;
184                         nr_pages -= nr_blocks;
185
186                         if (!found_extent++)
187                                 si->curr_swap_extent = se;
188
189                         start_block <<= PAGE_SHIFT - 9;
190                         nr_blocks <<= PAGE_SHIFT - 9;
191                         if (blkdev_issue_discard(si->bdev, start_block,
192                                     nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT))
193                                 break;
194                 }
195
196                 lh = se->list.next;
197                 se = list_entry(lh, struct swap_extent, list);
198         }
199 }
200
201 static int wait_for_discard(void *word)
202 {
203         schedule();
204         return 0;
205 }
206
207 #define SWAPFILE_CLUSTER        256
208 #define LATENCY_LIMIT           256
209
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211                                           unsigned char usage)
212 {
213         unsigned long offset;
214         unsigned long scan_base;
215         unsigned long last_in_cluster = 0;
216         int latency_ration = LATENCY_LIMIT;
217         int found_free_cluster = 0;
218
219         /*
220          * We try to cluster swap pages by allocating them sequentially
221          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
222          * way, however, we resort to first-free allocation, starting
223          * a new cluster.  This prevents us from scattering swap pages
224          * all over the entire swap partition, so that we reduce
225          * overall disk seek times between swap pages.  -- sct
226          * But we do now try to find an empty cluster.  -Andrea
227          * And we let swap pages go all over an SSD partition.  Hugh
228          */
229
230         si->flags += SWP_SCANNING;
231         scan_base = offset = si->cluster_next;
232
233         if (unlikely(!si->cluster_nr--)) {
234                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
236                         goto checks;
237                 }
238                 if (si->flags & SWP_DISCARDABLE) {
239                         /*
240                          * Start range check on racing allocations, in case
241                          * they overlap the cluster we eventually decide on
242                          * (we scan without swap_lock to allow preemption).
243                          * It's hardly conceivable that cluster_nr could be
244                          * wrapped during our scan, but don't depend on it.
245                          */
246                         if (si->lowest_alloc)
247                                 goto checks;
248                         si->lowest_alloc = si->max;
249                         si->highest_alloc = 0;
250                 }
251                 spin_unlock(&swap_lock);
252
253                 /*
254                  * If seek is expensive, start searching for new cluster from
255                  * start of partition, to minimize the span of allocated swap.
256                  * But if seek is cheap, search from our current position, so
257                  * that swap is allocated from all over the partition: if the
258                  * Flash Translation Layer only remaps within limited zones,
259                  * we don't want to wear out the first zone too quickly.
260                  */
261                 if (!(si->flags & SWP_SOLIDSTATE))
262                         scan_base = offset = si->lowest_bit;
263                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
264
265                 /* Locate the first empty (unaligned) cluster */
266                 for (; last_in_cluster <= si->highest_bit; offset++) {
267                         if (si->swap_map[offset])
268                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
269                         else if (offset == last_in_cluster) {
270                                 spin_lock(&swap_lock);
271                                 offset -= SWAPFILE_CLUSTER - 1;
272                                 si->cluster_next = offset;
273                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
274                                 found_free_cluster = 1;
275                                 goto checks;
276                         }
277                         if (unlikely(--latency_ration < 0)) {
278                                 cond_resched();
279                                 latency_ration = LATENCY_LIMIT;
280                         }
281                 }
282
283                 offset = si->lowest_bit;
284                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
285
286                 /* Locate the first empty (unaligned) cluster */
287                 for (; last_in_cluster < scan_base; offset++) {
288                         if (si->swap_map[offset])
289                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
290                         else if (offset == last_in_cluster) {
291                                 spin_lock(&swap_lock);
292                                 offset -= SWAPFILE_CLUSTER - 1;
293                                 si->cluster_next = offset;
294                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
295                                 found_free_cluster = 1;
296                                 goto checks;
297                         }
298                         if (unlikely(--latency_ration < 0)) {
299                                 cond_resched();
300                                 latency_ration = LATENCY_LIMIT;
301                         }
302                 }
303
304                 offset = scan_base;
305                 spin_lock(&swap_lock);
306                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
307                 si->lowest_alloc = 0;
308         }
309
310 checks:
311         if (!(si->flags & SWP_WRITEOK))
312                 goto no_page;
313         if (!si->highest_bit)
314                 goto no_page;
315         if (offset > si->highest_bit)
316                 scan_base = offset = si->lowest_bit;
317
318         /* reuse swap entry of cache-only swap if not busy. */
319         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
320                 int swap_was_freed;
321                 spin_unlock(&swap_lock);
322                 swap_was_freed = __try_to_reclaim_swap(si, offset);
323                 spin_lock(&swap_lock);
324                 /* entry was freed successfully, try to use this again */
325                 if (swap_was_freed)
326                         goto checks;
327                 goto scan; /* check next one */
328         }
329
330         if (si->swap_map[offset])
331                 goto scan;
332
333         if (offset == si->lowest_bit)
334                 si->lowest_bit++;
335         if (offset == si->highest_bit)
336                 si->highest_bit--;
337         si->inuse_pages++;
338         if (si->inuse_pages == si->pages) {
339                 si->lowest_bit = si->max;
340                 si->highest_bit = 0;
341         }
342         si->swap_map[offset] = usage;
343         si->cluster_next = offset + 1;
344         si->flags -= SWP_SCANNING;
345
346         if (si->lowest_alloc) {
347                 /*
348                  * Only set when SWP_DISCARDABLE, and there's a scan
349                  * for a free cluster in progress or just completed.
350                  */
351                 if (found_free_cluster) {
352                         /*
353                          * To optimize wear-levelling, discard the
354                          * old data of the cluster, taking care not to
355                          * discard any of its pages that have already
356                          * been allocated by racing tasks (offset has
357                          * already stepped over any at the beginning).
358                          */
359                         if (offset < si->highest_alloc &&
360                             si->lowest_alloc <= last_in_cluster)
361                                 last_in_cluster = si->lowest_alloc - 1;
362                         si->flags |= SWP_DISCARDING;
363                         spin_unlock(&swap_lock);
364
365                         if (offset < last_in_cluster)
366                                 discard_swap_cluster(si, offset,
367                                         last_in_cluster - offset + 1);
368
369                         spin_lock(&swap_lock);
370                         si->lowest_alloc = 0;
371                         si->flags &= ~SWP_DISCARDING;
372
373                         smp_mb();       /* wake_up_bit advises this */
374                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
375
376                 } else if (si->flags & SWP_DISCARDING) {
377                         /*
378                          * Delay using pages allocated by racing tasks
379                          * until the whole discard has been issued. We
380                          * could defer that delay until swap_writepage,
381                          * but it's easier to keep this self-contained.
382                          */
383                         spin_unlock(&swap_lock);
384                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
386                         spin_lock(&swap_lock);
387                 } else {
388                         /*
389                          * Note pages allocated by racing tasks while
390                          * scan for a free cluster is in progress, so
391                          * that its final discard can exclude them.
392                          */
393                         if (offset < si->lowest_alloc)
394                                 si->lowest_alloc = offset;
395                         if (offset > si->highest_alloc)
396                                 si->highest_alloc = offset;
397                 }
398         }
399         return offset;
400
401 scan:
402         spin_unlock(&swap_lock);
403         while (++offset <= si->highest_bit) {
404                 if (!si->swap_map[offset]) {
405                         spin_lock(&swap_lock);
406                         goto checks;
407                 }
408                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409                         spin_lock(&swap_lock);
410                         goto checks;
411                 }
412                 if (unlikely(--latency_ration < 0)) {
413                         cond_resched();
414                         latency_ration = LATENCY_LIMIT;
415                 }
416         }
417         offset = si->lowest_bit;
418         while (++offset < scan_base) {
419                 if (!si->swap_map[offset]) {
420                         spin_lock(&swap_lock);
421                         goto checks;
422                 }
423                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424                         spin_lock(&swap_lock);
425                         goto checks;
426                 }
427                 if (unlikely(--latency_ration < 0)) {
428                         cond_resched();
429                         latency_ration = LATENCY_LIMIT;
430                 }
431         }
432         spin_lock(&swap_lock);
433
434 no_page:
435         si->flags -= SWP_SCANNING;
436         return 0;
437 }
438
439 swp_entry_t get_swap_page(void)
440 {
441         struct swap_info_struct *si;
442         pgoff_t offset;
443         int type, next;
444         int wrapped = 0;
445
446         spin_lock(&swap_lock);
447         if (nr_swap_pages <= 0)
448                 goto noswap;
449         nr_swap_pages--;
450
451         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
452                 si = swap_info[type];
453                 next = si->next;
454                 if (next < 0 ||
455                     (!wrapped && si->prio != swap_info[next]->prio)) {
456                         next = swap_list.head;
457                         wrapped++;
458                 }
459
460                 if (!si->highest_bit)
461                         continue;
462                 if (!(si->flags & SWP_WRITEOK))
463                         continue;
464
465                 swap_list.next = next;
466                 /* This is called for allocating swap entry for cache */
467                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
468                 if (offset) {
469                         spin_unlock(&swap_lock);
470                         return swp_entry(type, offset);
471                 }
472                 next = swap_list.next;
473         }
474
475         nr_swap_pages++;
476 noswap:
477         spin_unlock(&swap_lock);
478         return (swp_entry_t) {0};
479 }
480
481 /* The only caller of this function is now susupend routine */
482 swp_entry_t get_swap_page_of_type(int type)
483 {
484         struct swap_info_struct *si;
485         pgoff_t offset;
486
487         spin_lock(&swap_lock);
488         si = swap_info[type];
489         if (si && (si->flags & SWP_WRITEOK)) {
490                 nr_swap_pages--;
491                 /* This is called for allocating swap entry, not cache */
492                 offset = scan_swap_map(si, 1);
493                 if (offset) {
494                         spin_unlock(&swap_lock);
495                         return swp_entry(type, offset);
496                 }
497                 nr_swap_pages++;
498         }
499         spin_unlock(&swap_lock);
500         return (swp_entry_t) {0};
501 }
502
503 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
504 {
505         struct swap_info_struct *p;
506         unsigned long offset, type;
507
508         if (!entry.val)
509                 goto out;
510         type = swp_type(entry);
511         if (type >= nr_swapfiles)
512                 goto bad_nofile;
513         p = swap_info[type];
514         if (!(p->flags & SWP_USED))
515                 goto bad_device;
516         offset = swp_offset(entry);
517         if (offset >= p->max)
518                 goto bad_offset;
519         if (!p->swap_map[offset])
520                 goto bad_free;
521         spin_lock(&swap_lock);
522         return p;
523
524 bad_free:
525         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
526         goto out;
527 bad_offset:
528         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
529         goto out;
530 bad_device:
531         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
532         goto out;
533 bad_nofile:
534         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
535 out:
536         return NULL;
537 }
538
539 static unsigned char swap_entry_free(struct swap_info_struct *p,
540                                      swp_entry_t entry, unsigned char usage)
541 {
542         unsigned long offset = swp_offset(entry);
543         unsigned char count;
544         unsigned char has_cache;
545
546         count = p->swap_map[offset];
547         has_cache = count & SWAP_HAS_CACHE;
548         count &= ~SWAP_HAS_CACHE;
549
550         if (usage == SWAP_HAS_CACHE) {
551                 VM_BUG_ON(!has_cache);
552                 has_cache = 0;
553         } else if (count == SWAP_MAP_SHMEM) {
554                 /*
555                  * Or we could insist on shmem.c using a special
556                  * swap_shmem_free() and free_shmem_swap_and_cache()...
557                  */
558                 count = 0;
559         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560                 if (count == COUNT_CONTINUED) {
561                         if (swap_count_continued(p, offset, count))
562                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
563                         else
564                                 count = SWAP_MAP_MAX;
565                 } else
566                         count--;
567         }
568
569         if (!count)
570                 mem_cgroup_uncharge_swap(entry);
571
572         usage = count | has_cache;
573         p->swap_map[offset] = usage;
574
575         /* free if no reference */
576         if (!usage) {
577                 struct gendisk *disk = p->bdev->bd_disk;
578                 if (offset < p->lowest_bit)
579                         p->lowest_bit = offset;
580                 if (offset > p->highest_bit)
581                         p->highest_bit = offset;
582                 if (swap_list.next >= 0 &&
583                     p->prio > swap_info[swap_list.next]->prio)
584                         swap_list.next = p->type;
585                 nr_swap_pages++;
586                 p->inuse_pages--;
587                 preswap_flush(p->type, offset);
588                 if ((p->flags & SWP_BLKDEV) &&
589                                 disk->fops->swap_slot_free_notify)
590                         disk->fops->swap_slot_free_notify(p->bdev, offset);
591         }
592
593         return usage;
594 }
595
596 /*
597  * Caller has made sure that the swapdevice corresponding to entry
598  * is still around or has not been recycled.
599  */
600 void swap_free(swp_entry_t entry)
601 {
602         struct swap_info_struct *p;
603
604         p = swap_info_get(entry);
605         if (p) {
606                 swap_entry_free(p, entry, 1);
607                 spin_unlock(&swap_lock);
608         }
609 }
610
611 /*
612  * Called after dropping swapcache to decrease refcnt to swap entries.
613  */
614 void swapcache_free(swp_entry_t entry, struct page *page)
615 {
616         struct swap_info_struct *p;
617         unsigned char count;
618
619         p = swap_info_get(entry);
620         if (p) {
621                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
622                 if (page)
623                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
624                 spin_unlock(&swap_lock);
625         }
626 }
627
628 /*
629  * How many references to page are currently swapped out?
630  * This does not give an exact answer when swap count is continued,
631  * but does include the high COUNT_CONTINUED flag to allow for that.
632  */
633 static inline int page_swapcount(struct page *page)
634 {
635         int count = 0;
636         struct swap_info_struct *p;
637         swp_entry_t entry;
638
639         entry.val = page_private(page);
640         p = swap_info_get(entry);
641         if (p) {
642                 count = swap_count(p->swap_map[swp_offset(entry)]);
643                 spin_unlock(&swap_lock);
644         }
645         return count;
646 }
647
648 /*
649  * We can write to an anon page without COW if there are no other references
650  * to it.  And as a side-effect, free up its swap: because the old content
651  * on disk will never be read, and seeking back there to write new content
652  * later would only waste time away from clustering.
653  */
654 int reuse_swap_page(struct page *page)
655 {
656         int count;
657
658         VM_BUG_ON(!PageLocked(page));
659         if (unlikely(PageKsm(page)))
660                 return 0;
661         count = page_mapcount(page);
662         if (count <= 1 && PageSwapCache(page)) {
663                 count += page_swapcount(page);
664                 if (count == 1 && !PageWriteback(page)) {
665                         delete_from_swap_cache(page);
666                         SetPageDirty(page);
667                 }
668         }
669         return count <= 1;
670 }
671
672 /*
673  * If swap is getting full, or if there are no more mappings of this page,
674  * then try_to_free_swap is called to free its swap space.
675  */
676 int try_to_free_swap(struct page *page)
677 {
678         VM_BUG_ON(!PageLocked(page));
679
680         if (!PageSwapCache(page))
681                 return 0;
682         if (PageWriteback(page))
683                 return 0;
684         if (page_swapcount(page))
685                 return 0;
686
687         /*
688          * Once hibernation has begun to create its image of memory,
689          * there's a danger that one of the calls to try_to_free_swap()
690          * - most probably a call from __try_to_reclaim_swap() while
691          * hibernation is allocating its own swap pages for the image,
692          * but conceivably even a call from memory reclaim - will free
693          * the swap from a page which has already been recorded in the
694          * image as a clean swapcache page, and then reuse its swap for
695          * another page of the image.  On waking from hibernation, the
696          * original page might be freed under memory pressure, then
697          * later read back in from swap, now with the wrong data.
698          *
699          * Hibernation clears bits from gfp_allowed_mask to prevent
700          * memory reclaim from writing to disk, so check that here.
701          */
702         if (!(gfp_allowed_mask & __GFP_IO))
703                 return 0;
704
705         delete_from_swap_cache(page);
706         SetPageDirty(page);
707         return 1;
708 }
709
710 /*
711  * Free the swap entry like above, but also try to
712  * free the page cache entry if it is the last user.
713  */
714 int free_swap_and_cache(swp_entry_t entry)
715 {
716         struct swap_info_struct *p;
717         struct page *page = NULL;
718
719         if (non_swap_entry(entry))
720                 return 1;
721
722         p = swap_info_get(entry);
723         if (p) {
724                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
725                         page = find_get_page(&swapper_space, entry.val);
726                         if (page && !trylock_page(page)) {
727                                 page_cache_release(page);
728                                 page = NULL;
729                         }
730                 }
731                 spin_unlock(&swap_lock);
732         }
733         if (page) {
734                 /*
735                  * Not mapped elsewhere, or swap space full? Free it!
736                  * Also recheck PageSwapCache now page is locked (above).
737                  */
738                 if (PageSwapCache(page) && !PageWriteback(page) &&
739                                 (!page_mapped(page) || vm_swap_full())) {
740                         delete_from_swap_cache(page);
741                         SetPageDirty(page);
742                 }
743                 unlock_page(page);
744                 page_cache_release(page);
745         }
746         return p != NULL;
747 }
748
749 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
750 /**
751  * mem_cgroup_count_swap_user - count the user of a swap entry
752  * @ent: the swap entry to be checked
753  * @pagep: the pointer for the swap cache page of the entry to be stored
754  *
755  * Returns the number of the user of the swap entry. The number is valid only
756  * for swaps of anonymous pages.
757  * If the entry is found on swap cache, the page is stored to pagep with
758  * refcount of it being incremented.
759  */
760 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
761 {
762         struct page *page;
763         struct swap_info_struct *p;
764         int count = 0;
765
766         page = find_get_page(&swapper_space, ent.val);
767         if (page)
768                 count += page_mapcount(page);
769         p = swap_info_get(ent);
770         if (p) {
771                 count += swap_count(p->swap_map[swp_offset(ent)]);
772                 spin_unlock(&swap_lock);
773         }
774
775         *pagep = page;
776         return count;
777 }
778 #endif
779
780 #ifdef CONFIG_HIBERNATION
781 /*
782  * Find the swap type that corresponds to given device (if any).
783  *
784  * @offset - number of the PAGE_SIZE-sized block of the device, starting
785  * from 0, in which the swap header is expected to be located.
786  *
787  * This is needed for the suspend to disk (aka swsusp).
788  */
789 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
790 {
791         struct block_device *bdev = NULL;
792         int type;
793
794         if (device)
795                 bdev = bdget(device);
796
797         spin_lock(&swap_lock);
798         for (type = 0; type < nr_swapfiles; type++) {
799                 struct swap_info_struct *sis = swap_info[type];
800
801                 if (!(sis->flags & SWP_WRITEOK))
802                         continue;
803
804                 if (!bdev) {
805                         if (bdev_p)
806                                 *bdev_p = bdgrab(sis->bdev);
807
808                         spin_unlock(&swap_lock);
809                         return type;
810                 }
811                 if (bdev == sis->bdev) {
812                         struct swap_extent *se = &sis->first_swap_extent;
813
814                         if (se->start_block == offset) {
815                                 if (bdev_p)
816                                         *bdev_p = bdgrab(sis->bdev);
817
818                                 spin_unlock(&swap_lock);
819                                 bdput(bdev);
820                                 return type;
821                         }
822                 }
823         }
824         spin_unlock(&swap_lock);
825         if (bdev)
826                 bdput(bdev);
827
828         return -ENODEV;
829 }
830
831 /*
832  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
833  * corresponding to given index in swap_info (swap type).
834  */
835 sector_t swapdev_block(int type, pgoff_t offset)
836 {
837         struct block_device *bdev;
838
839         if ((unsigned int)type >= nr_swapfiles)
840                 return 0;
841         if (!(swap_info[type]->flags & SWP_WRITEOK))
842                 return 0;
843         return map_swap_entry(swp_entry(type, offset), &bdev);
844 }
845
846 /*
847  * Return either the total number of swap pages of given type, or the number
848  * of free pages of that type (depending on @free)
849  *
850  * This is needed for software suspend
851  */
852 unsigned int count_swap_pages(int type, int free)
853 {
854         unsigned int n = 0;
855
856         spin_lock(&swap_lock);
857         if ((unsigned int)type < nr_swapfiles) {
858                 struct swap_info_struct *sis = swap_info[type];
859
860                 if (sis->flags & SWP_WRITEOK) {
861                         n = sis->pages;
862                         if (free)
863                                 n -= sis->inuse_pages;
864                 }
865         }
866         spin_unlock(&swap_lock);
867         return n;
868 }
869 #endif /* CONFIG_HIBERNATION */
870
871 /*
872  * No need to decide whether this PTE shares the swap entry with others,
873  * just let do_wp_page work it out if a write is requested later - to
874  * force COW, vm_page_prot omits write permission from any private vma.
875  */
876 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
877                 unsigned long addr, swp_entry_t entry, struct page *page)
878 {
879         struct mem_cgroup *ptr = NULL;
880         spinlock_t *ptl;
881         pte_t *pte;
882         int ret = 1;
883
884         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
885                 ret = -ENOMEM;
886                 goto out_nolock;
887         }
888
889         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
890         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
891                 if (ret > 0)
892                         mem_cgroup_cancel_charge_swapin(ptr);
893                 ret = 0;
894                 goto out;
895         }
896
897         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
898         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
899         get_page(page);
900         set_pte_at(vma->vm_mm, addr, pte,
901                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
902         page_add_anon_rmap(page, vma, addr);
903         mem_cgroup_commit_charge_swapin(page, ptr);
904         swap_free(entry);
905         /*
906          * Move the page to the active list so it is not
907          * immediately swapped out again after swapon.
908          */
909         activate_page(page);
910 out:
911         pte_unmap_unlock(pte, ptl);
912 out_nolock:
913         return ret;
914 }
915
916 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
917                                 unsigned long addr, unsigned long end,
918                                 swp_entry_t entry, struct page *page)
919 {
920         pte_t swp_pte = swp_entry_to_pte(entry);
921         pte_t *pte;
922         int ret = 0;
923
924         /*
925          * We don't actually need pte lock while scanning for swp_pte: since
926          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
927          * page table while we're scanning; though it could get zapped, and on
928          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
929          * of unmatched parts which look like swp_pte, so unuse_pte must
930          * recheck under pte lock.  Scanning without pte lock lets it be
931          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
932          */
933         pte = pte_offset_map(pmd, addr);
934         do {
935                 /*
936                  * swapoff spends a _lot_ of time in this loop!
937                  * Test inline before going to call unuse_pte.
938                  */
939                 if (unlikely(pte_same(*pte, swp_pte))) {
940                         pte_unmap(pte);
941                         ret = unuse_pte(vma, pmd, addr, entry, page);
942                         if (ret)
943                                 goto out;
944                         pte = pte_offset_map(pmd, addr);
945                 }
946         } while (pte++, addr += PAGE_SIZE, addr != end);
947         pte_unmap(pte - 1);
948 out:
949         return ret;
950 }
951
952 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
953                                 unsigned long addr, unsigned long end,
954                                 swp_entry_t entry, struct page *page)
955 {
956         pmd_t *pmd;
957         unsigned long next;
958         int ret;
959
960         pmd = pmd_offset(pud, addr);
961         do {
962                 next = pmd_addr_end(addr, end);
963                 if (pmd_none_or_clear_bad(pmd))
964                         continue;
965                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
966                 if (ret)
967                         return ret;
968         } while (pmd++, addr = next, addr != end);
969         return 0;
970 }
971
972 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
973                                 unsigned long addr, unsigned long end,
974                                 swp_entry_t entry, struct page *page)
975 {
976         pud_t *pud;
977         unsigned long next;
978         int ret;
979
980         pud = pud_offset(pgd, addr);
981         do {
982                 next = pud_addr_end(addr, end);
983                 if (pud_none_or_clear_bad(pud))
984                         continue;
985                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
986                 if (ret)
987                         return ret;
988         } while (pud++, addr = next, addr != end);
989         return 0;
990 }
991
992 static int unuse_vma(struct vm_area_struct *vma,
993                                 swp_entry_t entry, struct page *page)
994 {
995         pgd_t *pgd;
996         unsigned long addr, end, next;
997         int ret;
998
999         if (page_anon_vma(page)) {
1000                 addr = page_address_in_vma(page, vma);
1001                 if (addr == -EFAULT)
1002                         return 0;
1003                 else
1004                         end = addr + PAGE_SIZE;
1005         } else {
1006                 addr = vma->vm_start;
1007                 end = vma->vm_end;
1008         }
1009
1010         pgd = pgd_offset(vma->vm_mm, addr);
1011         do {
1012                 next = pgd_addr_end(addr, end);
1013                 if (pgd_none_or_clear_bad(pgd))
1014                         continue;
1015                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1016                 if (ret)
1017                         return ret;
1018         } while (pgd++, addr = next, addr != end);
1019         return 0;
1020 }
1021
1022 static int unuse_mm(struct mm_struct *mm,
1023                                 swp_entry_t entry, struct page *page)
1024 {
1025         struct vm_area_struct *vma;
1026         int ret = 0;
1027
1028         if (!down_read_trylock(&mm->mmap_sem)) {
1029                 /*
1030                  * Activate page so shrink_inactive_list is unlikely to unmap
1031                  * its ptes while lock is dropped, so swapoff can make progress.
1032                  */
1033                 activate_page(page);
1034                 unlock_page(page);
1035                 down_read(&mm->mmap_sem);
1036                 lock_page(page);
1037         }
1038         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1039                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1040                         break;
1041         }
1042         up_read(&mm->mmap_sem);
1043         return (ret < 0)? ret: 0;
1044 }
1045
1046 /*
1047  * Scan swap_map from current position to next entry still in use.
1048  * Recycle to start on reaching the end, returning 0 when empty.
1049  */
1050 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1051                                 unsigned int prev, unsigned int preswap)
1052 {
1053         unsigned int max = si->max;
1054         unsigned int i = prev;
1055         unsigned char count;
1056
1057         /*
1058          * No need for swap_lock here: we're just looking
1059          * for whether an entry is in use, not modifying it; false
1060          * hits are okay, and sys_swapoff() has already prevented new
1061          * allocations from this area (while holding swap_lock).
1062          */
1063         for (;;) {
1064                 if (++i >= max) {
1065                         if (!prev) {
1066                                 i = 0;
1067                                 break;
1068                         }
1069                         /*
1070                          * No entries in use at top of swap_map,
1071                          * loop back to start and recheck there.
1072                          */
1073                         max = prev + 1;
1074                         prev = 0;
1075                         i = 1;
1076                 }
1077                 if (preswap) {
1078                         if (preswap_test(si, i))
1079                                 break;
1080                         else
1081                                 continue;
1082                 }
1083                 count = si->swap_map[i];
1084                 if (count && swap_count(count) != SWAP_MAP_BAD)
1085                         break;
1086         }
1087         return i;
1088 }
1089
1090 /*
1091  * We completely avoid races by reading each swap page in advance,
1092  * and then search for the process using it.  All the necessary
1093  * page table adjustments can then be made atomically.
1094  *
1095  * if the boolean preswap is true, only unuse pages_to_unuse pages;
1096  * pages_to_unuse==0 means all pages
1097  */
1098 static int try_to_unuse(unsigned int type, unsigned int preswap,
1099                 unsigned long pages_to_unuse)
1100 {
1101         struct swap_info_struct *si = swap_info[type];
1102         struct mm_struct *start_mm;
1103         unsigned char *swap_map;
1104         unsigned char swcount;
1105         struct page *page;
1106         swp_entry_t entry;
1107         unsigned int i = 0;
1108         int retval = 0;
1109
1110         /*
1111          * When searching mms for an entry, a good strategy is to
1112          * start at the first mm we freed the previous entry from
1113          * (though actually we don't notice whether we or coincidence
1114          * freed the entry).  Initialize this start_mm with a hold.
1115          *
1116          * A simpler strategy would be to start at the last mm we
1117          * freed the previous entry from; but that would take less
1118          * advantage of mmlist ordering, which clusters forked mms
1119          * together, child after parent.  If we race with dup_mmap(), we
1120          * prefer to resolve parent before child, lest we miss entries
1121          * duplicated after we scanned child: using last mm would invert
1122          * that.
1123          */
1124         start_mm = &init_mm;
1125         atomic_inc(&init_mm.mm_users);
1126
1127         /*
1128          * Keep on scanning until all entries have gone.  Usually,
1129          * one pass through swap_map is enough, but not necessarily:
1130          * there are races when an instance of an entry might be missed.
1131          */
1132         while ((i = find_next_to_unuse(si, i, preswap)) != 0) {
1133                 if (signal_pending(current)) {
1134                         retval = -EINTR;
1135                         break;
1136                 }
1137
1138                 /*
1139                  * Get a page for the entry, using the existing swap
1140                  * cache page if there is one.  Otherwise, get a clean
1141                  * page and read the swap into it.
1142                  */
1143                 swap_map = &si->swap_map[i];
1144                 entry = swp_entry(type, i);
1145                 page = read_swap_cache_async(entry,
1146                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1147                 if (!page) {
1148                         /*
1149                          * Either swap_duplicate() failed because entry
1150                          * has been freed independently, and will not be
1151                          * reused since sys_swapoff() already disabled
1152                          * allocation from here, or alloc_page() failed.
1153                          */
1154                         if (!*swap_map)
1155                                 continue;
1156                         retval = -ENOMEM;
1157                         break;
1158                 }
1159
1160                 /*
1161                  * Don't hold on to start_mm if it looks like exiting.
1162                  */
1163                 if (atomic_read(&start_mm->mm_users) == 1) {
1164                         mmput(start_mm);
1165                         start_mm = &init_mm;
1166                         atomic_inc(&init_mm.mm_users);
1167                 }
1168
1169                 /*
1170                  * Wait for and lock page.  When do_swap_page races with
1171                  * try_to_unuse, do_swap_page can handle the fault much
1172                  * faster than try_to_unuse can locate the entry.  This
1173                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1174                  * defer to do_swap_page in such a case - in some tests,
1175                  * do_swap_page and try_to_unuse repeatedly compete.
1176                  */
1177                 wait_on_page_locked(page);
1178                 wait_on_page_writeback(page);
1179                 lock_page(page);
1180                 wait_on_page_writeback(page);
1181
1182                 /*
1183                  * Remove all references to entry.
1184                  */
1185                 swcount = *swap_map;
1186                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1187                         retval = shmem_unuse(entry, page);
1188                         /* page has already been unlocked and released */
1189                         if (retval < 0)
1190                                 break;
1191                         continue;
1192                 }
1193                 if (swap_count(swcount) && start_mm != &init_mm)
1194                         retval = unuse_mm(start_mm, entry, page);
1195
1196                 if (swap_count(*swap_map)) {
1197                         int set_start_mm = (*swap_map >= swcount);
1198                         struct list_head *p = &start_mm->mmlist;
1199                         struct mm_struct *new_start_mm = start_mm;
1200                         struct mm_struct *prev_mm = start_mm;
1201                         struct mm_struct *mm;
1202
1203                         atomic_inc(&new_start_mm->mm_users);
1204                         atomic_inc(&prev_mm->mm_users);
1205                         spin_lock(&mmlist_lock);
1206                         while (swap_count(*swap_map) && !retval &&
1207                                         (p = p->next) != &start_mm->mmlist) {
1208                                 mm = list_entry(p, struct mm_struct, mmlist);
1209                                 if (!atomic_inc_not_zero(&mm->mm_users))
1210                                         continue;
1211                                 spin_unlock(&mmlist_lock);
1212                                 mmput(prev_mm);
1213                                 prev_mm = mm;
1214
1215                                 cond_resched();
1216
1217                                 swcount = *swap_map;
1218                                 if (!swap_count(swcount)) /* any usage ? */
1219                                         ;
1220                                 else if (mm == &init_mm)
1221                                         set_start_mm = 1;
1222                                 else
1223                                         retval = unuse_mm(mm, entry, page);
1224
1225                                 if (set_start_mm && *swap_map < swcount) {
1226                                         mmput(new_start_mm);
1227                                         atomic_inc(&mm->mm_users);
1228                                         new_start_mm = mm;
1229                                         set_start_mm = 0;
1230                                 }
1231                                 spin_lock(&mmlist_lock);
1232                         }
1233                         spin_unlock(&mmlist_lock);
1234                         mmput(prev_mm);
1235                         mmput(start_mm);
1236                         start_mm = new_start_mm;
1237                 }
1238                 if (retval) {
1239                         unlock_page(page);
1240                         page_cache_release(page);
1241                         break;
1242                 }
1243
1244                 /*
1245                  * If a reference remains (rare), we would like to leave
1246                  * the page in the swap cache; but try_to_unmap could
1247                  * then re-duplicate the entry once we drop page lock,
1248                  * so we might loop indefinitely; also, that page could
1249                  * not be swapped out to other storage meanwhile.  So:
1250                  * delete from cache even if there's another reference,
1251                  * after ensuring that the data has been saved to disk -
1252                  * since if the reference remains (rarer), it will be
1253                  * read from disk into another page.  Splitting into two
1254                  * pages would be incorrect if swap supported "shared
1255                  * private" pages, but they are handled by tmpfs files.
1256                  *
1257                  * Given how unuse_vma() targets one particular offset
1258                  * in an anon_vma, once the anon_vma has been determined,
1259                  * this splitting happens to be just what is needed to
1260                  * handle where KSM pages have been swapped out: re-reading
1261                  * is unnecessarily slow, but we can fix that later on.
1262                  */
1263                 if (swap_count(*swap_map) &&
1264                      PageDirty(page) && PageSwapCache(page)) {
1265                         struct writeback_control wbc = {
1266                                 .sync_mode = WB_SYNC_NONE,
1267                         };
1268
1269                         swap_writepage(page, &wbc);
1270                         lock_page(page);
1271                         wait_on_page_writeback(page);
1272                 }
1273
1274                 /*
1275                  * It is conceivable that a racing task removed this page from
1276                  * swap cache just before we acquired the page lock at the top,
1277                  * or while we dropped it in unuse_mm().  The page might even
1278                  * be back in swap cache on another swap area: that we must not
1279                  * delete, since it may not have been written out to swap yet.
1280                  */
1281                 if (PageSwapCache(page) &&
1282                     likely(page_private(page) == entry.val))
1283                         delete_from_swap_cache(page);
1284
1285                 /*
1286                  * So we could skip searching mms once swap count went
1287                  * to 1, we did not mark any present ptes as dirty: must
1288                  * mark page dirty so shrink_page_list will preserve it.
1289                  */
1290                 SetPageDirty(page);
1291                 unlock_page(page);
1292                 page_cache_release(page);
1293
1294                 /*
1295                  * Make sure that we aren't completely killing
1296                  * interactive performance.
1297                  */
1298                 cond_resched();
1299                 if (preswap && pages_to_unuse && !--pages_to_unuse)
1300                         break;
1301         }
1302
1303         mmput(start_mm);
1304         return retval;
1305 }
1306
1307 /*
1308  * After a successful try_to_unuse, if no swap is now in use, we know
1309  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1310  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1311  * added to the mmlist just after page_duplicate - before would be racy.
1312  */
1313 static void drain_mmlist(void)
1314 {
1315         struct list_head *p, *next;
1316         unsigned int type;
1317
1318         for (type = 0; type < nr_swapfiles; type++)
1319                 if (swap_info[type]->inuse_pages)
1320                         return;
1321         spin_lock(&mmlist_lock);
1322         list_for_each_safe(p, next, &init_mm.mmlist)
1323                 list_del_init(p);
1324         spin_unlock(&mmlist_lock);
1325 }
1326
1327 /*
1328  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1329  * corresponds to page offset for the specified swap entry.
1330  * Note that the type of this function is sector_t, but it returns page offset
1331  * into the bdev, not sector offset.
1332  */
1333 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1334 {
1335         struct swap_info_struct *sis;
1336         struct swap_extent *start_se;
1337         struct swap_extent *se;
1338         pgoff_t offset;
1339
1340         sis = swap_info[swp_type(entry)];
1341         *bdev = sis->bdev;
1342
1343         offset = swp_offset(entry);
1344         start_se = sis->curr_swap_extent;
1345         se = start_se;
1346
1347         for ( ; ; ) {
1348                 struct list_head *lh;
1349
1350                 if (se->start_page <= offset &&
1351                                 offset < (se->start_page + se->nr_pages)) {
1352                         return se->start_block + (offset - se->start_page);
1353                 }
1354                 lh = se->list.next;
1355                 se = list_entry(lh, struct swap_extent, list);
1356                 sis->curr_swap_extent = se;
1357                 BUG_ON(se == start_se);         /* It *must* be present */
1358         }
1359 }
1360
1361 /*
1362  * Returns the page offset into bdev for the specified page's swap entry.
1363  */
1364 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1365 {
1366         swp_entry_t entry;
1367         entry.val = page_private(page);
1368         return map_swap_entry(entry, bdev);
1369 }
1370
1371 /*
1372  * Free all of a swapdev's extent information
1373  */
1374 static void destroy_swap_extents(struct swap_info_struct *sis)
1375 {
1376         while (!list_empty(&sis->first_swap_extent.list)) {
1377                 struct swap_extent *se;
1378
1379                 se = list_entry(sis->first_swap_extent.list.next,
1380                                 struct swap_extent, list);
1381                 list_del(&se->list);
1382                 kfree(se);
1383         }
1384
1385         if (sis->flags & SWP_FILE) {
1386                 struct file *swap_file = sis->swap_file;
1387                 struct address_space *mapping = swap_file->f_mapping;
1388
1389                 sis->flags &= ~SWP_FILE;
1390                 mapping->a_ops->swapoff(swap_file);
1391         }
1392 }
1393
1394 /*
1395  * Add a block range (and the corresponding page range) into this swapdev's
1396  * extent list.  The extent list is kept sorted in page order.
1397  *
1398  * This function rather assumes that it is called in ascending page order.
1399  */
1400 static int
1401 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1402                 unsigned long nr_pages, sector_t start_block)
1403 {
1404         struct swap_extent *se;
1405         struct swap_extent *new_se;
1406         struct list_head *lh;
1407
1408         if (start_page == 0) {
1409                 se = &sis->first_swap_extent;
1410                 sis->curr_swap_extent = se;
1411                 se->start_page = 0;
1412                 se->nr_pages = nr_pages;
1413                 se->start_block = start_block;
1414                 return 1;
1415         } else {
1416                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1417                 se = list_entry(lh, struct swap_extent, list);
1418                 BUG_ON(se->start_page + se->nr_pages != start_page);
1419                 if (se->start_block + se->nr_pages == start_block) {
1420                         /* Merge it */
1421                         se->nr_pages += nr_pages;
1422                         return 0;
1423                 }
1424         }
1425
1426         /*
1427          * No merge.  Insert a new extent, preserving ordering.
1428          */
1429         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1430         if (new_se == NULL)
1431                 return -ENOMEM;
1432         new_se->start_page = start_page;
1433         new_se->nr_pages = nr_pages;
1434         new_se->start_block = start_block;
1435
1436         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1437         return 1;
1438 }
1439
1440 /*
1441  * A `swap extent' is a simple thing which maps a contiguous range of pages
1442  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1443  * is built at swapon time and is then used at swap_writepage/swap_readpage
1444  * time for locating where on disk a page belongs.
1445  *
1446  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1447  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1448  * swap files identically.
1449  *
1450  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1451  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1452  * swapfiles are handled *identically* after swapon time.
1453  *
1454  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1455  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1456  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1457  * requirements, they are simply tossed out - we will never use those blocks
1458  * for swapping.
1459  *
1460  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1461  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1462  * which will scribble on the fs.
1463  *
1464  * The amount of disk space which a single swap extent represents varies.
1465  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1466  * extents in the list.  To avoid much list walking, we cache the previous
1467  * search location in `curr_swap_extent', and start new searches from there.
1468  * This is extremely effective.  The average number of iterations in
1469  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1470  */
1471 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1472 {
1473         struct file *swap_file = sis->swap_file;
1474         struct address_space *mapping = swap_file->f_mapping;
1475         struct inode *inode = mapping->host;
1476         unsigned blocks_per_page;
1477         unsigned long page_no;
1478         unsigned blkbits;
1479         sector_t probe_block;
1480         sector_t last_block;
1481         sector_t lowest_block = -1;
1482         sector_t highest_block = 0;
1483         int nr_extents = 0;
1484         int ret;
1485
1486         if (S_ISBLK(inode->i_mode)) {
1487                 ret = add_swap_extent(sis, 0, sis->max, 0);
1488                 *span = sis->pages;
1489                 goto out;
1490         }
1491
1492         if (mapping->a_ops->swapon) {
1493                 ret = mapping->a_ops->swapon(swap_file);
1494                 if (!ret) {
1495                         sis->flags |= SWP_FILE;
1496                         ret = add_swap_extent(sis, 0, sis->max, 0);
1497                         *span = sis->pages;
1498                 }
1499                 goto out;
1500         }
1501
1502         blkbits = inode->i_blkbits;
1503         blocks_per_page = PAGE_SIZE >> blkbits;
1504
1505         /*
1506          * Map all the blocks into the extent list.  This code doesn't try
1507          * to be very smart.
1508          */
1509         probe_block = 0;
1510         page_no = 0;
1511         last_block = i_size_read(inode) >> blkbits;
1512         while ((probe_block + blocks_per_page) <= last_block &&
1513                         page_no < sis->max) {
1514                 unsigned block_in_page;
1515                 sector_t first_block;
1516
1517                 first_block = bmap(inode, probe_block);
1518                 if (first_block == 0)
1519                         goto bad_bmap;
1520
1521                 /*
1522                  * It must be PAGE_SIZE aligned on-disk
1523                  */
1524                 if (first_block & (blocks_per_page - 1)) {
1525                         probe_block++;
1526                         goto reprobe;
1527                 }
1528
1529                 for (block_in_page = 1; block_in_page < blocks_per_page;
1530                                         block_in_page++) {
1531                         sector_t block;
1532
1533                         block = bmap(inode, probe_block + block_in_page);
1534                         if (block == 0)
1535                                 goto bad_bmap;
1536                         if (block != first_block + block_in_page) {
1537                                 /* Discontiguity */
1538                                 probe_block++;
1539                                 goto reprobe;
1540                         }
1541                 }
1542
1543                 first_block >>= (PAGE_SHIFT - blkbits);
1544                 if (page_no) {  /* exclude the header page */
1545                         if (first_block < lowest_block)
1546                                 lowest_block = first_block;
1547                         if (first_block > highest_block)
1548                                 highest_block = first_block;
1549                 }
1550
1551                 /*
1552                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1553                  */
1554                 ret = add_swap_extent(sis, page_no, 1, first_block);
1555                 if (ret < 0)
1556                         goto out;
1557                 nr_extents += ret;
1558                 page_no++;
1559                 probe_block += blocks_per_page;
1560 reprobe:
1561                 continue;
1562         }
1563         ret = nr_extents;
1564         *span = 1 + highest_block - lowest_block;
1565         if (page_no == 0)
1566                 page_no = 1;    /* force Empty message */
1567         sis->max = page_no;
1568         sis->pages = page_no - 1;
1569         sis->highest_bit = page_no - 1;
1570 out:
1571         return ret;
1572 bad_bmap:
1573         printk(KERN_ERR "swapon: swapfile has holes\n");
1574         ret = -EINVAL;
1575         goto out;
1576 }
1577
1578 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1579 {
1580         struct swap_info_struct *p = NULL;
1581         unsigned char *swap_map;
1582         struct file *swap_file, *victim;
1583         struct address_space *mapping;
1584         struct inode *inode;
1585         char *pathname;
1586         int i, type, prev;
1587         int err;
1588
1589         if (!capable(CAP_SYS_ADMIN))
1590                 return -EPERM;
1591
1592         pathname = getname(specialfile);
1593         err = PTR_ERR(pathname);
1594         if (IS_ERR(pathname))
1595                 goto out;
1596
1597         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1598         putname(pathname);
1599         err = PTR_ERR(victim);
1600         if (IS_ERR(victim))
1601                 goto out;
1602
1603         mapping = victim->f_mapping;
1604         prev = -1;
1605         spin_lock(&swap_lock);
1606         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1607                 p = swap_info[type];
1608                 if (p->flags & SWP_WRITEOK) {
1609                         if (p->swap_file->f_mapping == mapping)
1610                                 break;
1611                 }
1612                 prev = type;
1613         }
1614         if (type < 0) {
1615                 err = -EINVAL;
1616                 spin_unlock(&swap_lock);
1617                 goto out_dput;
1618         }
1619         if (!security_vm_enough_memory(p->pages))
1620                 vm_unacct_memory(p->pages);
1621         else {
1622                 err = -ENOMEM;
1623                 spin_unlock(&swap_lock);
1624                 goto out_dput;
1625         }
1626         if (prev < 0)
1627                 swap_list.head = p->next;
1628         else
1629                 swap_info[prev]->next = p->next;
1630         if (type == swap_list.next) {
1631                 /* just pick something that's safe... */
1632                 swap_list.next = swap_list.head;
1633         }
1634         if (p->prio < 0) {
1635                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1636                         swap_info[i]->prio = p->prio--;
1637                 least_priority++;
1638         }
1639         nr_swap_pages -= p->pages;
1640         total_swap_pages -= p->pages;
1641         p->flags &= ~SWP_WRITEOK;
1642         spin_unlock(&swap_lock);
1643
1644         current->flags |= PF_OOM_ORIGIN;
1645         err = try_to_unuse(type, 0, 0);
1646         current->flags &= ~PF_OOM_ORIGIN;
1647
1648         if (err) {
1649                 /* re-insert swap space back into swap_list */
1650                 spin_lock(&swap_lock);
1651                 if (p->prio < 0)
1652                         p->prio = --least_priority;
1653                 prev = -1;
1654                 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1655                         if (p->prio >= swap_info[i]->prio)
1656                                 break;
1657                         prev = i;
1658                 }
1659                 p->next = i;
1660                 if (prev < 0)
1661                         swap_list.head = swap_list.next = type;
1662                 else
1663                         swap_info[prev]->next = type;
1664                 nr_swap_pages += p->pages;
1665                 total_swap_pages += p->pages;
1666                 p->flags |= SWP_WRITEOK;
1667                 spin_unlock(&swap_lock);
1668                 goto out_dput;
1669         }
1670
1671         /* wait for any unplug function to finish */
1672         down_write(&swap_unplug_sem);
1673         up_write(&swap_unplug_sem);
1674
1675         destroy_swap_extents(p);
1676         if (p->flags & SWP_CONTINUED)
1677                 free_swap_count_continuations(p);
1678
1679         mutex_lock(&swapon_mutex);
1680         spin_lock(&swap_lock);
1681         drain_mmlist();
1682
1683         /* wait for anyone still in scan_swap_map */
1684         p->highest_bit = 0;             /* cuts scans short */
1685         while (p->flags >= SWP_SCANNING) {
1686                 spin_unlock(&swap_lock);
1687                 schedule_timeout_uninterruptible(1);
1688                 spin_lock(&swap_lock);
1689         }
1690
1691         swap_file = p->swap_file;
1692         p->swap_file = NULL;
1693         p->max = 0;
1694         swap_map = p->swap_map;
1695         p->swap_map = NULL;
1696         p->flags = 0;
1697         preswap_flush_area(type);
1698         spin_unlock(&swap_lock);
1699         mutex_unlock(&swapon_mutex);
1700         vfree(swap_map);
1701 #ifdef CONFIG_PRESWAP
1702         if (p->preswap_map)
1703                 vfree(p->preswap_map);
1704 #endif
1705         /* Destroy swap account informatin */
1706         swap_cgroup_swapoff(type);
1707
1708         inode = mapping->host;
1709         if (S_ISBLK(inode->i_mode)) {
1710                 struct block_device *bdev = I_BDEV(inode);
1711                 set_blocksize(bdev, p->old_block_size);
1712                 bd_release(bdev);
1713         } else {
1714                 mutex_lock(&inode->i_mutex);
1715                 inode->i_flags &= ~S_SWAPFILE;
1716                 mutex_unlock(&inode->i_mutex);
1717         }
1718         filp_close(swap_file, NULL);
1719         err = 0;
1720
1721 out_dput:
1722         filp_close(victim, NULL);
1723 out:
1724         return err;
1725 }
1726
1727 #ifdef CONFIG_PROC_FS
1728 /* iterator */
1729 static void *swap_start(struct seq_file *swap, loff_t *pos)
1730 {
1731         struct swap_info_struct *si;
1732         int type;
1733         loff_t l = *pos;
1734
1735         mutex_lock(&swapon_mutex);
1736
1737         if (!l)
1738                 return SEQ_START_TOKEN;
1739
1740         for (type = 0; type < nr_swapfiles; type++) {
1741                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1742                 si = swap_info[type];
1743                 if (!(si->flags & SWP_USED) || !si->swap_map)
1744                         continue;
1745                 if (!--l)
1746                         return si;
1747         }
1748
1749         return NULL;
1750 }
1751
1752 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1753 {
1754         struct swap_info_struct *si = v;
1755         int type;
1756
1757         if (v == SEQ_START_TOKEN)
1758                 type = 0;
1759         else
1760                 type = si->type + 1;
1761
1762         for (; type < nr_swapfiles; type++) {
1763                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1764                 si = swap_info[type];
1765                 if (!(si->flags & SWP_USED) || !si->swap_map)
1766                         continue;
1767                 ++*pos;
1768                 return si;
1769         }
1770
1771         return NULL;
1772 }
1773
1774 static void swap_stop(struct seq_file *swap, void *v)
1775 {
1776         mutex_unlock(&swapon_mutex);
1777 }
1778
1779 static int swap_show(struct seq_file *swap, void *v)
1780 {
1781         struct swap_info_struct *si = v;
1782         struct file *file;
1783         int len;
1784
1785         if (si == SEQ_START_TOKEN) {
1786                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1787                 return 0;
1788         }
1789
1790         file = si->swap_file;
1791         len = seq_path(swap, &file->f_path, " \t\n\\");
1792         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1793                         len < 40 ? 40 - len : 1, " ",
1794                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1795                                 "partition" : "file\t",
1796                         si->pages << (PAGE_SHIFT - 10),
1797                         si->inuse_pages << (PAGE_SHIFT - 10),
1798                         si->prio);
1799         return 0;
1800 }
1801
1802 static const struct seq_operations swaps_op = {
1803         .start =        swap_start,
1804         .next =         swap_next,
1805         .stop =         swap_stop,
1806         .show =         swap_show
1807 };
1808
1809 static int swaps_open(struct inode *inode, struct file *file)
1810 {
1811         return seq_open(file, &swaps_op);
1812 }
1813
1814 static const struct file_operations proc_swaps_operations = {
1815         .open           = swaps_open,
1816         .read           = seq_read,
1817         .llseek         = seq_lseek,
1818         .release        = seq_release,
1819 };
1820
1821 static int __init procswaps_init(void)
1822 {
1823         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1824         return 0;
1825 }
1826 __initcall(procswaps_init);
1827 #endif /* CONFIG_PROC_FS */
1828
1829 #ifdef MAX_SWAPFILES_CHECK
1830 static int __init max_swapfiles_check(void)
1831 {
1832         MAX_SWAPFILES_CHECK();
1833         return 0;
1834 }
1835 late_initcall(max_swapfiles_check);
1836 #endif
1837
1838 /*
1839  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1840  *
1841  * The swapon system call
1842  */
1843 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1844 {
1845         struct swap_info_struct *p;
1846         char *name = NULL;
1847         struct block_device *bdev = NULL;
1848         struct file *swap_file = NULL;
1849         struct address_space *mapping;
1850         unsigned int type;
1851         int i, prev;
1852         int error;
1853         union swap_header *swap_header;
1854         unsigned int nr_good_pages;
1855         int nr_extents = 0;
1856         sector_t span;
1857         unsigned long maxpages;
1858         unsigned long swapfilepages;
1859         unsigned char *swap_map = NULL;
1860         unsigned long *preswap_map = NULL;
1861         struct page *page = NULL;
1862         struct inode *inode = NULL;
1863         int did_down = 0;
1864
1865         if (!capable(CAP_SYS_ADMIN))
1866                 return -EPERM;
1867
1868         p = kzalloc(sizeof(*p), GFP_KERNEL);
1869         if (!p)
1870                 return -ENOMEM;
1871
1872         spin_lock(&swap_lock);
1873         for (type = 0; type < nr_swapfiles; type++) {
1874                 if (!(swap_info[type]->flags & SWP_USED))
1875                         break;
1876         }
1877         error = -EPERM;
1878         if (type >= MAX_SWAPFILES) {
1879                 spin_unlock(&swap_lock);
1880                 kfree(p);
1881                 goto out;
1882         }
1883         if (type >= nr_swapfiles) {
1884                 p->type = type;
1885                 swap_info[type] = p;
1886                 /*
1887                  * Write swap_info[type] before nr_swapfiles, in case a
1888                  * racing procfs swap_start() or swap_next() is reading them.
1889                  * (We never shrink nr_swapfiles, we never free this entry.)
1890                  */
1891                 smp_wmb();
1892                 nr_swapfiles++;
1893         } else {
1894                 kfree(p);
1895                 p = swap_info[type];
1896                 /*
1897                  * Do not memset this entry: a racing procfs swap_next()
1898                  * would be relying on p->type to remain valid.
1899                  */
1900         }
1901         INIT_LIST_HEAD(&p->first_swap_extent.list);
1902         p->flags = SWP_USED;
1903         p->next = -1;
1904         spin_unlock(&swap_lock);
1905
1906         name = getname(specialfile);
1907         error = PTR_ERR(name);
1908         if (IS_ERR(name)) {
1909                 name = NULL;
1910                 goto bad_swap_2;
1911         }
1912         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1913         error = PTR_ERR(swap_file);
1914         if (IS_ERR(swap_file)) {
1915                 swap_file = NULL;
1916                 goto bad_swap_2;
1917         }
1918
1919         p->swap_file = swap_file;
1920         mapping = swap_file->f_mapping;
1921         inode = mapping->host;
1922
1923         error = -EBUSY;
1924         for (i = 0; i < nr_swapfiles; i++) {
1925                 struct swap_info_struct *q = swap_info[i];
1926
1927                 if (i == type || !q->swap_file)
1928                         continue;
1929                 if (mapping == q->swap_file->f_mapping)
1930                         goto bad_swap;
1931         }
1932
1933         error = -EINVAL;
1934         if (S_ISBLK(inode->i_mode)) {
1935                 bdev = I_BDEV(inode);
1936                 error = bd_claim(bdev, sys_swapon);
1937                 if (error < 0) {
1938                         bdev = NULL;
1939                         error = -EINVAL;
1940                         goto bad_swap;
1941                 }
1942                 p->old_block_size = block_size(bdev);
1943                 error = set_blocksize(bdev, PAGE_SIZE);
1944                 if (error < 0)
1945                         goto bad_swap;
1946                 p->bdev = bdev;
1947                 p->flags |= SWP_BLKDEV;
1948         } else if (S_ISREG(inode->i_mode)) {
1949                 p->bdev = inode->i_sb->s_bdev;
1950                 mutex_lock(&inode->i_mutex);
1951                 did_down = 1;
1952                 if (IS_SWAPFILE(inode)) {
1953                         error = -EBUSY;
1954                         goto bad_swap;
1955                 }
1956         } else {
1957                 goto bad_swap;
1958         }
1959
1960         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1961
1962         /*
1963          * Read the swap header.
1964          */
1965         if (!mapping->a_ops->readpage) {
1966                 error = -EINVAL;
1967                 goto bad_swap;
1968         }
1969         page = read_mapping_page(mapping, 0, swap_file);
1970         if (IS_ERR(page)) {
1971                 error = PTR_ERR(page);
1972                 goto bad_swap;
1973         }
1974         swap_header = kmap(page);
1975
1976         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1977                 printk(KERN_ERR "Unable to find swap-space signature\n");
1978                 error = -EINVAL;
1979                 goto bad_swap;
1980         }
1981
1982         /* swap partition endianess hack... */
1983         if (swab32(swap_header->info.version) == 1) {
1984                 swab32s(&swap_header->info.version);
1985                 swab32s(&swap_header->info.last_page);
1986                 swab32s(&swap_header->info.nr_badpages);
1987                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1988                         swab32s(&swap_header->info.badpages[i]);
1989         }
1990         /* Check the swap header's sub-version */
1991         if (swap_header->info.version != 1) {
1992                 printk(KERN_WARNING
1993                        "Unable to handle swap header version %d\n",
1994                        swap_header->info.version);
1995                 error = -EINVAL;
1996                 goto bad_swap;
1997         }
1998
1999         p->lowest_bit  = 1;
2000         p->cluster_next = 1;
2001         p->cluster_nr = 0;
2002
2003         /*
2004          * Find out how many pages are allowed for a single swap
2005          * device. There are two limiting factors: 1) the number of
2006          * bits for the swap offset in the swp_entry_t type and
2007          * 2) the number of bits in the a swap pte as defined by
2008          * the different architectures. In order to find the
2009          * largest possible bit mask a swap entry with swap type 0
2010          * and swap offset ~0UL is created, encoded to a swap pte,
2011          * decoded to a swp_entry_t again and finally the swap
2012          * offset is extracted. This will mask all the bits from
2013          * the initial ~0UL mask that can't be encoded in either
2014          * the swp_entry_t or the architecture definition of a
2015          * swap pte.
2016          */
2017         maxpages = swp_offset(pte_to_swp_entry(
2018                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2019         if (maxpages > swap_header->info.last_page) {
2020                 maxpages = swap_header->info.last_page + 1;
2021                 /* p->max is an unsigned int: don't overflow it */
2022                 if ((unsigned int)maxpages == 0)
2023                         maxpages = UINT_MAX;
2024         }
2025         p->highest_bit = maxpages - 1;
2026
2027         error = -EINVAL;
2028         if (!maxpages)
2029                 goto bad_swap;
2030         if (swapfilepages && maxpages > swapfilepages) {
2031                 printk(KERN_WARNING
2032                        "Swap area shorter than signature indicates\n");
2033                 goto bad_swap;
2034         }
2035         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2036                 goto bad_swap;
2037         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2038                 goto bad_swap;
2039
2040         /* OK, set up the swap map and apply the bad block list */
2041         swap_map = vmalloc(maxpages);
2042         if (!swap_map) {
2043                 error = -ENOMEM;
2044                 goto bad_swap;
2045         }
2046
2047         memset(swap_map, 0, maxpages);
2048         nr_good_pages = maxpages - 1;   /* omit header page */
2049
2050         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2051                 unsigned int page_nr = swap_header->info.badpages[i];
2052                 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2053                         error = -EINVAL;
2054                         goto bad_swap;
2055                 }
2056                 if (page_nr < maxpages) {
2057                         swap_map[page_nr] = SWAP_MAP_BAD;
2058                         nr_good_pages--;
2059                 }
2060         }
2061
2062 #ifdef CONFIG_PRESWAP
2063         preswap_map = vmalloc(maxpages / sizeof(long));
2064         if (preswap_map)
2065                 memset(preswap_map, 0, maxpages / sizeof(long));
2066 #endif
2067
2068         error = swap_cgroup_swapon(type, maxpages);
2069         if (error)
2070                 goto bad_swap;
2071
2072         if (nr_good_pages) {
2073                 swap_map[0] = SWAP_MAP_BAD;
2074                 p->max = maxpages;
2075                 p->pages = nr_good_pages;
2076                 nr_extents = setup_swap_extents(p, &span);
2077                 if (nr_extents < 0) {
2078                         error = nr_extents;
2079                         goto bad_swap;
2080                 }
2081                 nr_good_pages = p->pages;
2082         }
2083         if (!nr_good_pages) {
2084                 printk(KERN_WARNING "Empty swap-file\n");
2085                 error = -EINVAL;
2086                 goto bad_swap;
2087         }
2088
2089         if (p->bdev) {
2090                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2091                         p->flags |= SWP_SOLIDSTATE;
2092                         p->cluster_next = 1 + (random32() % p->highest_bit);
2093                 }
2094                 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2095                         p->flags |= SWP_DISCARDABLE;
2096         }
2097
2098         mutex_lock(&swapon_mutex);
2099         spin_lock(&swap_lock);
2100         if (swap_flags & SWAP_FLAG_PREFER)
2101                 p->prio =
2102                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2103         else
2104                 p->prio = --least_priority;
2105         p->swap_map = swap_map;
2106 #ifdef CONFIG_PRESWAP
2107         p->preswap_map = preswap_map;
2108 #endif
2109         p->flags |= SWP_WRITEOK;
2110         nr_swap_pages += nr_good_pages;
2111         total_swap_pages += nr_good_pages;
2112
2113         printk(KERN_INFO "Adding %uk swap on %s.  "
2114                         "Priority:%d extents:%d across:%lluk %s%s\n",
2115                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2116                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2117                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2118                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2119
2120         /* insert swap space into swap_list: */
2121         prev = -1;
2122         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2123                 if (p->prio >= swap_info[i]->prio)
2124                         break;
2125                 prev = i;
2126         }
2127         p->next = i;
2128         if (prev < 0)
2129                 swap_list.head = swap_list.next = type;
2130         else
2131                 swap_info[prev]->next = type;
2132         preswap_init(type);
2133         spin_unlock(&swap_lock);
2134         mutex_unlock(&swapon_mutex);
2135         error = 0;
2136         goto out;
2137 bad_swap:
2138         if (bdev) {
2139                 set_blocksize(bdev, p->old_block_size);
2140                 bd_release(bdev);
2141         }
2142         destroy_swap_extents(p);
2143         swap_cgroup_swapoff(type);
2144 bad_swap_2:
2145         spin_lock(&swap_lock);
2146         p->swap_file = NULL;
2147         p->flags = 0;
2148         spin_unlock(&swap_lock);
2149         vfree(preswap_map);
2150         vfree(swap_map);
2151         if (swap_file)
2152                 filp_close(swap_file, NULL);
2153 out:
2154         if (page && !IS_ERR(page)) {
2155                 kunmap(page);
2156                 page_cache_release(page);
2157         }
2158         if (name)
2159                 putname(name);
2160         if (did_down) {
2161                 if (!error)
2162                         inode->i_flags |= S_SWAPFILE;
2163                 mutex_unlock(&inode->i_mutex);
2164         }
2165         return error;
2166 }
2167
2168 void si_swapinfo(struct sysinfo *val)
2169 {
2170         unsigned int type;
2171         unsigned long nr_to_be_unused = 0;
2172
2173         spin_lock(&swap_lock);
2174         for (type = 0; type < nr_swapfiles; type++) {
2175                 struct swap_info_struct *si = swap_info[type];
2176
2177                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2178                         nr_to_be_unused += si->inuse_pages;
2179         }
2180         val->freeswap = nr_swap_pages + nr_to_be_unused;
2181         val->totalswap = total_swap_pages + nr_to_be_unused;
2182         spin_unlock(&swap_lock);
2183 }
2184
2185 /*
2186  * Verify that a swap entry is valid and increment its swap map count.
2187  *
2188  * Returns error code in following case.
2189  * - success -> 0
2190  * - swp_entry is invalid -> EINVAL
2191  * - swp_entry is migration entry -> EINVAL
2192  * - swap-cache reference is requested but there is already one. -> EEXIST
2193  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2194  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2195  */
2196 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2197 {
2198         struct swap_info_struct *p;
2199         unsigned long offset, type;
2200         unsigned char count;
2201         unsigned char has_cache;
2202         int err = -EINVAL;
2203
2204         if (non_swap_entry(entry))
2205                 goto out;
2206
2207         type = swp_type(entry);
2208         if (type >= nr_swapfiles)
2209                 goto bad_file;
2210         p = swap_info[type];
2211         offset = swp_offset(entry);
2212
2213         spin_lock(&swap_lock);
2214         if (unlikely(offset >= p->max))
2215                 goto unlock_out;
2216
2217         count = p->swap_map[offset];
2218         has_cache = count & SWAP_HAS_CACHE;
2219         count &= ~SWAP_HAS_CACHE;
2220         err = 0;
2221
2222         if (usage == SWAP_HAS_CACHE) {
2223
2224                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2225                 if (!has_cache && count)
2226                         has_cache = SWAP_HAS_CACHE;
2227                 else if (has_cache)             /* someone else added cache */
2228                         err = -EEXIST;
2229                 else                            /* no users remaining */
2230                         err = -ENOENT;
2231
2232         } else if (count || has_cache) {
2233
2234                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2235                         count += usage;
2236                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2237                         err = -EINVAL;
2238                 else if (swap_count_continued(p, offset, count))
2239                         count = COUNT_CONTINUED;
2240                 else
2241                         err = -ENOMEM;
2242         } else
2243                 err = -ENOENT;                  /* unused swap entry */
2244
2245         p->swap_map[offset] = count | has_cache;
2246
2247 unlock_out:
2248         spin_unlock(&swap_lock);
2249 out:
2250         return err;
2251
2252 bad_file:
2253         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2254         goto out;
2255 }
2256
2257 /*
2258  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2259  * (in which case its reference count is never incremented).
2260  */
2261 void swap_shmem_alloc(swp_entry_t entry)
2262 {
2263         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2264 }
2265
2266 /*
2267  * Increase reference count of swap entry by 1.
2268  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2269  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2270  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2271  * might occur if a page table entry has got corrupted.
2272  */
2273 int swap_duplicate(swp_entry_t entry)
2274 {
2275         int err = 0;
2276
2277         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2278                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2279         return err;
2280 }
2281
2282 /*
2283  * @entry: swap entry for which we allocate swap cache.
2284  *
2285  * Called when allocating swap cache for existing swap entry,
2286  * This can return error codes. Returns 0 at success.
2287  * -EBUSY means there is a swap cache.
2288  * Note: return code is different from swap_duplicate().
2289  */
2290 int swapcache_prepare(swp_entry_t entry)
2291 {
2292         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2293 }
2294
2295 struct swap_info_struct *page_swap_info(struct page *page)
2296 {
2297         swp_entry_t swap = { .val = page_private(page) };
2298         if (!PageSwapCache(page) || !swap.val) {
2299                 /* This should only happen from sync_page.
2300                  * In other cases the page should be locked and
2301                  * should be in a SwapCache
2302                  */
2303                 return NULL;
2304         }
2305         return swap_info[swp_type(swap)];
2306 }
2307
2308 /*
2309  * out-of-line __page_file_ methods to avoid include hell.
2310  */
2311
2312 struct address_space *__page_file_mapping(struct page *page)
2313 {
2314         VM_BUG_ON(!PageSwapCache(page));
2315         return page_swap_info(page)->swap_file->f_mapping;
2316 }
2317 EXPORT_SYMBOL_GPL(__page_file_mapping);
2318
2319 pgoff_t __page_file_index(struct page *page)
2320 {
2321         swp_entry_t swap = { .val = page_private(page) };
2322         VM_BUG_ON(!PageSwapCache(page));
2323         return swp_offset(swap);
2324 }
2325 EXPORT_SYMBOL_GPL(__page_file_index);
2326
2327 /*
2328  * swap_lock prevents swap_map being freed. Don't grab an extra
2329  * reference on the swaphandle, it doesn't matter if it becomes unused.
2330  */
2331 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2332 {
2333         struct swap_info_struct *si;
2334         int our_page_cluster = page_cluster;
2335         pgoff_t target, toff;
2336         pgoff_t base, end;
2337         int nr_pages = 0;
2338
2339         if (!our_page_cluster)  /* no readahead */
2340                 return 0;
2341
2342         si = swap_info[swp_type(entry)];
2343         target = swp_offset(entry);
2344         base = (target >> our_page_cluster) << our_page_cluster;
2345         end = base + (1 << our_page_cluster);
2346         if (!base)              /* first page is swap header */
2347                 base++;
2348
2349         spin_lock(&swap_lock);
2350         if (preswap_test(si, target)) {
2351                 spin_unlock(&swap_lock);
2352                 return 0;
2353         }
2354         if (end > si->max)      /* don't go beyond end of map */
2355                 end = si->max;
2356
2357         /* Count contiguous allocated slots above our target */
2358         for (toff = target; ++toff < end; nr_pages++) {
2359                 /* Don't read in free or bad pages */
2360                 if (!si->swap_map[toff])
2361                         break;
2362                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2363                         break;
2364                 /* Don't read in preswap pages */
2365                 if (preswap_test(si, toff))
2366                         break;
2367         }
2368         /* Count contiguous allocated slots below our target */
2369         for (toff = target; --toff >= base; nr_pages++) {
2370                 /* Don't read in free or bad pages */
2371                 if (!si->swap_map[toff])
2372                         break;
2373                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2374                         break;
2375                 /* Don't read in preswap pages */
2376                 if (preswap_test(si, toff))
2377                         break;
2378         }
2379         spin_unlock(&swap_lock);
2380
2381         /*
2382          * Indicate starting offset, and return number of pages to get:
2383          * if only 1, say 0, since there's then no readahead to be done.
2384          */
2385         *offset = ++toff;
2386         return nr_pages? ++nr_pages: 0;
2387 }
2388
2389 /*
2390  * add_swap_count_continuation - called when a swap count is duplicated
2391  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2392  * page of the original vmalloc'ed swap_map, to hold the continuation count
2393  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2394  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2395  *
2396  * These continuation pages are seldom referenced: the common paths all work
2397  * on the original swap_map, only referring to a continuation page when the
2398  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2399  *
2400  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2401  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2402  * can be called after dropping locks.
2403  */
2404 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2405 {
2406         struct swap_info_struct *si;
2407         struct page *head;
2408         struct page *page;
2409         struct page *list_page;
2410         pgoff_t offset;
2411         unsigned char count;
2412
2413         /*
2414          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2415          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2416          */
2417         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2418
2419         si = swap_info_get(entry);
2420         if (!si) {
2421                 /*
2422                  * An acceptable race has occurred since the failing
2423                  * __swap_duplicate(): the swap entry has been freed,
2424                  * perhaps even the whole swap_map cleared for swapoff.
2425                  */
2426                 goto outer;
2427         }
2428
2429         offset = swp_offset(entry);
2430         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2431
2432         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2433                 /*
2434                  * The higher the swap count, the more likely it is that tasks
2435                  * will race to add swap count continuation: we need to avoid
2436                  * over-provisioning.
2437                  */
2438                 goto out;
2439         }
2440
2441         if (!page) {
2442                 spin_unlock(&swap_lock);
2443                 return -ENOMEM;
2444         }
2445
2446         /*
2447          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2448          * no architecture is using highmem pages for kernel pagetables: so it
2449          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2450          */
2451         head = vmalloc_to_page(si->swap_map + offset);
2452         offset &= ~PAGE_MASK;
2453
2454         /*
2455          * Page allocation does not initialize the page's lru field,
2456          * but it does always reset its private field.
2457          */
2458         if (!page_private(head)) {
2459                 BUG_ON(count & COUNT_CONTINUED);
2460                 INIT_LIST_HEAD(&head->lru);
2461                 set_page_private(head, SWP_CONTINUED);
2462                 si->flags |= SWP_CONTINUED;
2463         }
2464
2465         list_for_each_entry(list_page, &head->lru, lru) {
2466                 unsigned char *map;
2467
2468                 /*
2469                  * If the previous map said no continuation, but we've found
2470                  * a continuation page, free our allocation and use this one.
2471                  */
2472                 if (!(count & COUNT_CONTINUED))
2473                         goto out;
2474
2475                 map = kmap_atomic(list_page, KM_USER0) + offset;
2476                 count = *map;
2477                 kunmap_atomic(map, KM_USER0);
2478
2479                 /*
2480                  * If this continuation count now has some space in it,
2481                  * free our allocation and use this one.
2482                  */
2483                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2484                         goto out;
2485         }
2486
2487         list_add_tail(&page->lru, &head->lru);
2488         page = NULL;                    /* now it's attached, don't free it */
2489 out:
2490         spin_unlock(&swap_lock);
2491 outer:
2492         if (page)
2493                 __free_page(page);
2494         return 0;
2495 }
2496
2497 /*
2498  * swap_count_continued - when the original swap_map count is incremented
2499  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2500  * into, carry if so, or else fail until a new continuation page is allocated;
2501  * when the original swap_map count is decremented from 0 with continuation,
2502  * borrow from the continuation and report whether it still holds more.
2503  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2504  */
2505 static bool swap_count_continued(struct swap_info_struct *si,
2506                                  pgoff_t offset, unsigned char count)
2507 {
2508         struct page *head;
2509         struct page *page;
2510         unsigned char *map;
2511
2512         head = vmalloc_to_page(si->swap_map + offset);
2513         if (page_private(head) != SWP_CONTINUED) {
2514                 BUG_ON(count & COUNT_CONTINUED);
2515                 return false;           /* need to add count continuation */
2516         }
2517
2518         offset &= ~PAGE_MASK;
2519         page = list_entry(head->lru.next, struct page, lru);
2520         map = kmap_atomic(page, KM_USER0) + offset;
2521
2522         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2523                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2524
2525         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2526                 /*
2527                  * Think of how you add 1 to 999
2528                  */
2529                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2530                         kunmap_atomic(map, KM_USER0);
2531                         page = list_entry(page->lru.next, struct page, lru);
2532                         BUG_ON(page == head);
2533                         map = kmap_atomic(page, KM_USER0) + offset;
2534                 }
2535                 if (*map == SWAP_CONT_MAX) {
2536                         kunmap_atomic(map, KM_USER0);
2537                         page = list_entry(page->lru.next, struct page, lru);
2538                         if (page == head)
2539                                 return false;   /* add count continuation */
2540                         map = kmap_atomic(page, KM_USER0) + offset;
2541 init_map:               *map = 0;               /* we didn't zero the page */
2542                 }
2543                 *map += 1;
2544                 kunmap_atomic(map, KM_USER0);
2545                 page = list_entry(page->lru.prev, struct page, lru);
2546                 while (page != head) {
2547                         map = kmap_atomic(page, KM_USER0) + offset;
2548                         *map = COUNT_CONTINUED;
2549                         kunmap_atomic(map, KM_USER0);
2550                         page = list_entry(page->lru.prev, struct page, lru);
2551                 }
2552                 return true;                    /* incremented */
2553
2554         } else {                                /* decrementing */
2555                 /*
2556                  * Think of how you subtract 1 from 1000
2557                  */
2558                 BUG_ON(count != COUNT_CONTINUED);
2559                 while (*map == COUNT_CONTINUED) {
2560                         kunmap_atomic(map, KM_USER0);
2561                         page = list_entry(page->lru.next, struct page, lru);
2562                         BUG_ON(page == head);
2563                         map = kmap_atomic(page, KM_USER0) + offset;
2564                 }
2565                 BUG_ON(*map == 0);
2566                 *map -= 1;
2567                 if (*map == 0)
2568                         count = 0;
2569                 kunmap_atomic(map, KM_USER0);
2570                 page = list_entry(page->lru.prev, struct page, lru);
2571                 while (page != head) {
2572                         map = kmap_atomic(page, KM_USER0) + offset;
2573                         *map = SWAP_CONT_MAX | count;
2574                         count = COUNT_CONTINUED;
2575                         kunmap_atomic(map, KM_USER0);
2576                         page = list_entry(page->lru.prev, struct page, lru);
2577                 }
2578                 return count == COUNT_CONTINUED;
2579         }
2580 }
2581
2582 /*
2583  * free_swap_count_continuations - swapoff free all the continuation pages
2584  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2585  */
2586 static void free_swap_count_continuations(struct swap_info_struct *si)
2587 {
2588         pgoff_t offset;
2589
2590         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2591                 struct page *head;
2592                 head = vmalloc_to_page(si->swap_map + offset);
2593                 if (page_private(head)) {
2594                         struct list_head *this, *next;
2595                         list_for_each_safe(this, next, &head->lru) {
2596                                 struct page *page;
2597                                 page = list_entry(this, struct page, lru);
2598                                 list_del(this);
2599                                 __free_page(page);
2600                         }
2601                 }
2602         }
2603 }
2604
2605 #ifdef CONFIG_PRESWAP
2606 /*
2607  * preswap infrastructure functions
2608  */
2609
2610 struct swap_info_struct *get_swap_info_struct(unsigned int type)
2611 {
2612         BUG_ON(type > MAX_SWAPFILES);
2613         return swap_info[type];
2614 }
2615
2616 /* code structure leveraged from sys_swapoff */
2617 void preswap_shrink(unsigned long target_pages)
2618 {
2619         struct swap_info_struct *si = NULL;
2620         unsigned long total_pages = 0, total_pages_to_unuse;
2621         unsigned long pages = 0, unuse_pages = 0;
2622         int type;
2623         int wrapped = 0;
2624
2625         do {
2626                 /*
2627                  * we don't want to hold swap_lock while doing a very
2628                  * lengthy try_to_unuse, but swap_list may change
2629                  * so restart scan from swap_list.head each time
2630                  */
2631                 spin_lock(&swap_lock);
2632                 total_pages = 0;
2633                 for (type = swap_list.head; type >= 0; type = si->next) {
2634                         si = swap_info[type];
2635                         total_pages += si->preswap_pages;
2636                 }
2637                 if (total_pages <= target_pages) {
2638                         spin_unlock(&swap_lock);
2639                         return;
2640                 }
2641                 total_pages_to_unuse = total_pages - target_pages;
2642                 for (type = swap_list.head; type >= 0; type = si->next) {
2643                         si = swap_info[type];
2644                         if (total_pages_to_unuse < si->preswap_pages)
2645                                 pages = unuse_pages = total_pages_to_unuse;
2646                         else {
2647                                 pages = si->preswap_pages;
2648                                 unuse_pages = 0; /* unuse all */
2649                         }
2650                         if (security_vm_enough_memory_kern(pages))
2651                                 continue;
2652                         vm_unacct_memory(pages);
2653                         break;
2654                 }
2655                 spin_unlock(&swap_lock);
2656                 if (type < 0)
2657                         return;
2658                 current->flags |= PF_OOM_ORIGIN;
2659                 (void)try_to_unuse(type, 1, unuse_pages);
2660                 current->flags &= ~PF_OOM_ORIGIN;
2661                 wrapped++;
2662         } while (wrapped <= 3);
2663 }
2664
2665
2666 #ifdef CONFIG_SYSCTL
2667 /* cat /sys/proc/vm/preswap provides total number of pages in preswap
2668  * across all swaptypes.  echo N > /sys/proc/vm/preswap attempts to shrink
2669  * preswap page usage to N (usually 0) */
2670 int preswap_sysctl_handler(ctl_table *table, int write,
2671         void __user *buffer, size_t *length, loff_t *ppos)
2672 {
2673         unsigned long npages;
2674         int type;
2675         unsigned long totalpages = 0;
2676         struct swap_info_struct *si = NULL;
2677
2678         /* modeled after hugetlb_sysctl_handler in mm/hugetlb.c */
2679         if (!write) {
2680                 spin_lock(&swap_lock);
2681                 for (type = swap_list.head; type >= 0; type = si->next) {
2682                         si = swap_info[type];
2683                         totalpages += si->preswap_pages;
2684                 }
2685                 spin_unlock(&swap_lock);
2686                 npages = totalpages;
2687         }
2688         table->data = &npages;
2689         table->maxlen = sizeof(unsigned long);
2690         proc_doulongvec_minmax(table, write, buffer, length, ppos);
2691
2692         if (write)
2693                 preswap_shrink(npages);
2694
2695         return 0;
2696 }
2697 #endif
2698 #endif /* CONFIG_PRESWAP */