- Update Xen patches to 2.6.37-rc3-git1 and c/s 1055.
[linux-flexiantxendom0-3.2.10.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/precache.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53         bh->b_end_io = handler;
54         bh->b_private = private;
55 }
56 EXPORT_SYMBOL(init_buffer);
57
58 static int sync_buffer(void *word)
59 {
60         struct block_device *bd;
61         struct buffer_head *bh
62                 = container_of(word, struct buffer_head, b_state);
63
64         smp_mb();
65         bd = bh->b_bdev;
66         if (bd)
67                 blk_run_address_space(bd->bd_inode->i_mapping);
68         io_schedule();
69         return 0;
70 }
71
72 void __lock_buffer(struct buffer_head *bh)
73 {
74         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75                                                         TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void unlock_buffer(struct buffer_head *bh)
80 {
81         clear_bit_unlock(BH_Lock, &bh->b_state);
82         smp_mb__after_clear_bit();
83         wake_up_bit(&bh->b_state, BH_Lock);
84 }
85 EXPORT_SYMBOL(unlock_buffer);
86
87 /*
88  * Block until a buffer comes unlocked.  This doesn't stop it
89  * from becoming locked again - you have to lock it yourself
90  * if you want to preserve its state.
91  */
92 void __wait_on_buffer(struct buffer_head * bh)
93 {
94         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
95 }
96 EXPORT_SYMBOL(__wait_on_buffer);
97
98 static void
99 __clear_page_buffers(struct page *page)
100 {
101         ClearPagePrivate(page);
102         set_page_private(page, 0);
103         page_cache_release(page);
104 }
105
106
107 static int quiet_error(struct buffer_head *bh)
108 {
109         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
110                 return 0;
111         return 1;
112 }
113
114
115 static void buffer_io_error(struct buffer_head *bh)
116 {
117         char b[BDEVNAME_SIZE];
118         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
119                         bdevname(bh->b_bdev, b),
120                         (unsigned long long)bh->b_blocknr);
121 }
122
123 /*
124  * End-of-IO handler helper function which does not touch the bh after
125  * unlocking it.
126  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
127  * a race there is benign: unlock_buffer() only use the bh's address for
128  * hashing after unlocking the buffer, so it doesn't actually touch the bh
129  * itself.
130  */
131 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
132 {
133         if (uptodate) {
134                 set_buffer_uptodate(bh);
135         } else {
136                 /* This happens, due to failed READA attempts. */
137                 clear_buffer_uptodate(bh);
138         }
139         unlock_buffer(bh);
140 }
141
142 /*
143  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
144  * unlock the buffer. This is what ll_rw_block uses too.
145  */
146 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
147 {
148         __end_buffer_read_notouch(bh, uptodate);
149         put_bh(bh);
150 }
151 EXPORT_SYMBOL(end_buffer_read_sync);
152
153 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
154 {
155         char b[BDEVNAME_SIZE];
156
157         if (uptodate) {
158                 set_buffer_uptodate(bh);
159         } else {
160                 if (!quiet_error(bh)) {
161                         buffer_io_error(bh);
162                         printk(KERN_WARNING "lost page write due to "
163                                         "I/O error on %s\n",
164                                        bdevname(bh->b_bdev, b));
165                 }
166                 set_buffer_write_io_error(bh);
167                 clear_buffer_uptodate(bh);
168         }
169         unlock_buffer(bh);
170         put_bh(bh);
171 }
172 EXPORT_SYMBOL(end_buffer_write_sync);
173
174 /*
175  * Various filesystems appear to want __find_get_block to be non-blocking.
176  * But it's the page lock which protects the buffers.  To get around this,
177  * we get exclusion from try_to_free_buffers with the blockdev mapping's
178  * private_lock.
179  *
180  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
181  * may be quite high.  This code could TryLock the page, and if that
182  * succeeds, there is no need to take private_lock. (But if
183  * private_lock is contended then so is mapping->tree_lock).
184  */
185 static struct buffer_head *
186 __find_get_block_slow(struct block_device *bdev, sector_t block)
187 {
188         struct inode *bd_inode = bdev->bd_inode;
189         struct address_space *bd_mapping = bd_inode->i_mapping;
190         struct buffer_head *ret = NULL;
191         pgoff_t index;
192         struct buffer_head *bh;
193         struct buffer_head *head;
194         struct page *page;
195         int all_mapped = 1;
196
197         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
198         page = find_get_page(bd_mapping, index);
199         if (!page)
200                 goto out;
201
202         spin_lock(&bd_mapping->private_lock);
203         if (!page_has_buffers(page))
204                 goto out_unlock;
205         head = page_buffers(page);
206         bh = head;
207         do {
208                 if (!buffer_mapped(bh))
209                         all_mapped = 0;
210                 else if (bh->b_blocknr == block) {
211                         ret = bh;
212                         get_bh(bh);
213                         goto out_unlock;
214                 }
215                 bh = bh->b_this_page;
216         } while (bh != head);
217
218         /* we might be here because some of the buffers on this page are
219          * not mapped.  This is due to various races between
220          * file io on the block device and getblk.  It gets dealt with
221          * elsewhere, don't buffer_error if we had some unmapped buffers
222          */
223         if (all_mapped) {
224                 printk("__find_get_block_slow() failed. "
225                         "block=%llu, b_blocknr=%llu\n",
226                         (unsigned long long)block,
227                         (unsigned long long)bh->b_blocknr);
228                 printk("b_state=0x%08lx, b_size=%zu\n",
229                         bh->b_state, bh->b_size);
230                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
231         }
232 out_unlock:
233         spin_unlock(&bd_mapping->private_lock);
234         page_cache_release(page);
235 out:
236         return ret;
237 }
238
239 /* If invalidate_buffers() will trash dirty buffers, it means some kind
240    of fs corruption is going on. Trashing dirty data always imply losing
241    information that was supposed to be just stored on the physical layer
242    by the user.
243
244    Thus invalidate_buffers in general usage is not allwowed to trash
245    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
246    be preserved.  These buffers are simply skipped.
247   
248    We also skip buffers which are still in use.  For example this can
249    happen if a userspace program is reading the block device.
250
251    NOTE: In the case where the user removed a removable-media-disk even if
252    there's still dirty data not synced on disk (due a bug in the device driver
253    or due an error of the user), by not destroying the dirty buffers we could
254    generate corruption also on the next media inserted, thus a parameter is
255    necessary to handle this case in the most safe way possible (trying
256    to not corrupt also the new disk inserted with the data belonging to
257    the old now corrupted disk). Also for the ramdisk the natural thing
258    to do in order to release the ramdisk memory is to destroy dirty buffers.
259
260    These are two special cases. Normal usage imply the device driver
261    to issue a sync on the device (without waiting I/O completion) and
262    then an invalidate_buffers call that doesn't trash dirty buffers.
263
264    For handling cache coherency with the blkdev pagecache the 'update' case
265    is been introduced. It is needed to re-read from disk any pinned
266    buffer. NOTE: re-reading from disk is destructive so we can do it only
267    when we assume nobody is changing the buffercache under our I/O and when
268    we think the disk contains more recent information than the buffercache.
269    The update == 1 pass marks the buffers we need to update, the update == 2
270    pass does the actual I/O. */
271 void invalidate_bdev(struct block_device *bdev)
272 {
273         struct address_space *mapping = bdev->bd_inode->i_mapping;
274
275         if (mapping->nrpages == 0)
276                 return;
277
278         invalidate_bh_lrus();
279         lru_add_drain_all();    /* make sure all lru add caches are flushed */
280         invalidate_mapping_pages(mapping, 0, -1);
281
282         /* 99% of the time, we don't need to flush the precache on the bdev.
283          * But, for the strange corners, lets be cautious
284          */
285         precache_flush_inode(mapping);
286 }
287 EXPORT_SYMBOL(invalidate_bdev);
288
289 /*
290  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
291  */
292 static void free_more_memory(void)
293 {
294         struct zone *zone;
295         int nid;
296
297         wakeup_flusher_threads(1024);
298         yield();
299
300         for_each_online_node(nid) {
301                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
302                                                 gfp_zone(GFP_NOFS), NULL,
303                                                 &zone);
304                 if (zone)
305                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
306                                                 GFP_NOFS, NULL);
307         }
308 }
309
310 /*
311  * I/O completion handler for block_read_full_page() - pages
312  * which come unlocked at the end of I/O.
313  */
314 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
315 {
316         unsigned long flags;
317         struct buffer_head *first;
318         struct buffer_head *tmp;
319         struct page *page;
320         int page_uptodate = 1;
321
322         BUG_ON(!buffer_async_read(bh));
323
324         page = bh->b_page;
325         if (uptodate) {
326                 set_buffer_uptodate(bh);
327         } else {
328                 clear_buffer_uptodate(bh);
329                 if (!quiet_error(bh))
330                         buffer_io_error(bh);
331                 SetPageError(page);
332         }
333
334         /*
335          * Be _very_ careful from here on. Bad things can happen if
336          * two buffer heads end IO at almost the same time and both
337          * decide that the page is now completely done.
338          */
339         first = page_buffers(page);
340         local_irq_save(flags);
341         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
342         clear_buffer_async_read(bh);
343         unlock_buffer(bh);
344         tmp = bh;
345         do {
346                 if (!buffer_uptodate(tmp))
347                         page_uptodate = 0;
348                 if (buffer_async_read(tmp)) {
349                         BUG_ON(!buffer_locked(tmp));
350                         goto still_busy;
351                 }
352                 tmp = tmp->b_this_page;
353         } while (tmp != bh);
354         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355         local_irq_restore(flags);
356
357         /*
358          * If none of the buffers had errors and they are all
359          * uptodate then we can set the page uptodate.
360          */
361         if (page_uptodate && !PageError(page))
362                 SetPageUptodate(page);
363         unlock_page(page);
364         return;
365
366 still_busy:
367         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
368         local_irq_restore(flags);
369         return;
370 }
371
372 /*
373  * Completion handler for block_write_full_page() - pages which are unlocked
374  * during I/O, and which have PageWriteback cleared upon I/O completion.
375  */
376 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
377 {
378         char b[BDEVNAME_SIZE];
379         unsigned long flags;
380         struct buffer_head *first;
381         struct buffer_head *tmp;
382         struct page *page;
383
384         BUG_ON(!buffer_async_write(bh));
385
386         page = bh->b_page;
387         if (uptodate) {
388                 set_buffer_uptodate(bh);
389         } else {
390                 if (!quiet_error(bh)) {
391                         buffer_io_error(bh);
392                         printk(KERN_WARNING "lost page write due to "
393                                         "I/O error on %s\n",
394                                bdevname(bh->b_bdev, b));
395                 }
396                 set_bit(AS_EIO, &page->mapping->flags);
397                 set_buffer_write_io_error(bh);
398                 clear_buffer_uptodate(bh);
399                 SetPageError(page);
400         }
401
402         first = page_buffers(page);
403         local_irq_save(flags);
404         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
405
406         clear_buffer_async_write(bh);
407         unlock_buffer(bh);
408         tmp = bh->b_this_page;
409         while (tmp != bh) {
410                 if (buffer_async_write(tmp)) {
411                         BUG_ON(!buffer_locked(tmp));
412                         goto still_busy;
413                 }
414                 tmp = tmp->b_this_page;
415         }
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418         end_page_writeback(page);
419         return;
420
421 still_busy:
422         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
423         local_irq_restore(flags);
424         return;
425 }
426 EXPORT_SYMBOL(end_buffer_async_write);
427
428 /*
429  * If a page's buffers are under async readin (end_buffer_async_read
430  * completion) then there is a possibility that another thread of
431  * control could lock one of the buffers after it has completed
432  * but while some of the other buffers have not completed.  This
433  * locked buffer would confuse end_buffer_async_read() into not unlocking
434  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
435  * that this buffer is not under async I/O.
436  *
437  * The page comes unlocked when it has no locked buffer_async buffers
438  * left.
439  *
440  * PageLocked prevents anyone starting new async I/O reads any of
441  * the buffers.
442  *
443  * PageWriteback is used to prevent simultaneous writeout of the same
444  * page.
445  *
446  * PageLocked prevents anyone from starting writeback of a page which is
447  * under read I/O (PageWriteback is only ever set against a locked page).
448  */
449 static void mark_buffer_async_read(struct buffer_head *bh)
450 {
451         bh->b_end_io = end_buffer_async_read;
452         set_buffer_async_read(bh);
453 }
454
455 static void mark_buffer_async_write_endio(struct buffer_head *bh,
456                                           bh_end_io_t *handler)
457 {
458         bh->b_end_io = handler;
459         set_buffer_async_write(bh);
460 }
461
462 void mark_buffer_async_write(struct buffer_head *bh)
463 {
464         mark_buffer_async_write_endio(bh, end_buffer_async_write);
465 }
466 EXPORT_SYMBOL(mark_buffer_async_write);
467
468
469 /*
470  * fs/buffer.c contains helper functions for buffer-backed address space's
471  * fsync functions.  A common requirement for buffer-based filesystems is
472  * that certain data from the backing blockdev needs to be written out for
473  * a successful fsync().  For example, ext2 indirect blocks need to be
474  * written back and waited upon before fsync() returns.
475  *
476  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
477  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
478  * management of a list of dependent buffers at ->i_mapping->private_list.
479  *
480  * Locking is a little subtle: try_to_free_buffers() will remove buffers
481  * from their controlling inode's queue when they are being freed.  But
482  * try_to_free_buffers() will be operating against the *blockdev* mapping
483  * at the time, not against the S_ISREG file which depends on those buffers.
484  * So the locking for private_list is via the private_lock in the address_space
485  * which backs the buffers.  Which is different from the address_space 
486  * against which the buffers are listed.  So for a particular address_space,
487  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
488  * mapping->private_list will always be protected by the backing blockdev's
489  * ->private_lock.
490  *
491  * Which introduces a requirement: all buffers on an address_space's
492  * ->private_list must be from the same address_space: the blockdev's.
493  *
494  * address_spaces which do not place buffers at ->private_list via these
495  * utility functions are free to use private_lock and private_list for
496  * whatever they want.  The only requirement is that list_empty(private_list)
497  * be true at clear_inode() time.
498  *
499  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
500  * filesystems should do that.  invalidate_inode_buffers() should just go
501  * BUG_ON(!list_empty).
502  *
503  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
504  * take an address_space, not an inode.  And it should be called
505  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
506  * queued up.
507  *
508  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
509  * list if it is already on a list.  Because if the buffer is on a list,
510  * it *must* already be on the right one.  If not, the filesystem is being
511  * silly.  This will save a ton of locking.  But first we have to ensure
512  * that buffers are taken *off* the old inode's list when they are freed
513  * (presumably in truncate).  That requires careful auditing of all
514  * filesystems (do it inside bforget()).  It could also be done by bringing
515  * b_inode back.
516  */
517
518 /*
519  * The buffer's backing address_space's private_lock must be held
520  */
521 static void __remove_assoc_queue(struct buffer_head *bh)
522 {
523         list_del_init(&bh->b_assoc_buffers);
524         WARN_ON(!bh->b_assoc_map);
525         if (buffer_write_io_error(bh))
526                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
527         bh->b_assoc_map = NULL;
528 }
529
530 int inode_has_buffers(struct inode *inode)
531 {
532         return !list_empty(&inode->i_data.private_list);
533 }
534
535 /*
536  * osync is designed to support O_SYNC io.  It waits synchronously for
537  * all already-submitted IO to complete, but does not queue any new
538  * writes to the disk.
539  *
540  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
541  * you dirty the buffers, and then use osync_inode_buffers to wait for
542  * completion.  Any other dirty buffers which are not yet queued for
543  * write will not be flushed to disk by the osync.
544  */
545 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
546 {
547         struct buffer_head *bh;
548         struct list_head *p;
549         int err = 0;
550
551         spin_lock(lock);
552 repeat:
553         list_for_each_prev(p, list) {
554                 bh = BH_ENTRY(p);
555                 if (buffer_locked(bh)) {
556                         get_bh(bh);
557                         spin_unlock(lock);
558                         wait_on_buffer(bh);
559                         if (!buffer_uptodate(bh))
560                                 err = -EIO;
561                         brelse(bh);
562                         spin_lock(lock);
563                         goto repeat;
564                 }
565         }
566         spin_unlock(lock);
567         return err;
568 }
569
570 static void do_thaw_one(struct super_block *sb, void *unused)
571 {
572         char b[BDEVNAME_SIZE];
573         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
574                 printk(KERN_WARNING "Emergency Thaw on %s\n",
575                        bdevname(sb->s_bdev, b));
576 }
577
578 static void do_thaw_all(struct work_struct *work)
579 {
580         iterate_supers(do_thaw_one, NULL);
581         kfree(work);
582         printk(KERN_WARNING "Emergency Thaw complete\n");
583 }
584
585 /**
586  * emergency_thaw_all -- forcibly thaw every frozen filesystem
587  *
588  * Used for emergency unfreeze of all filesystems via SysRq
589  */
590 void emergency_thaw_all(void)
591 {
592         struct work_struct *work;
593
594         work = kmalloc(sizeof(*work), GFP_ATOMIC);
595         if (work) {
596                 INIT_WORK(work, do_thaw_all);
597                 schedule_work(work);
598         }
599 }
600
601 /**
602  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
603  * @mapping: the mapping which wants those buffers written
604  *
605  * Starts I/O against the buffers at mapping->private_list, and waits upon
606  * that I/O.
607  *
608  * Basically, this is a convenience function for fsync().
609  * @mapping is a file or directory which needs those buffers to be written for
610  * a successful fsync().
611  */
612 int sync_mapping_buffers(struct address_space *mapping)
613 {
614         struct address_space *buffer_mapping = mapping->assoc_mapping;
615
616         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
617                 return 0;
618
619         return fsync_buffers_list(&buffer_mapping->private_lock,
620                                         &mapping->private_list);
621 }
622 EXPORT_SYMBOL(sync_mapping_buffers);
623
624 /*
625  * Called when we've recently written block `bblock', and it is known that
626  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
627  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
628  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
629  */
630 void write_boundary_block(struct block_device *bdev,
631                         sector_t bblock, unsigned blocksize)
632 {
633         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
634         if (bh) {
635                 if (buffer_dirty(bh))
636                         ll_rw_block(WRITE, 1, &bh);
637                 put_bh(bh);
638         }
639 }
640
641 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
642 {
643         struct address_space *mapping = inode->i_mapping;
644         struct address_space *buffer_mapping = bh->b_page->mapping;
645
646         mark_buffer_dirty(bh);
647         if (!mapping->assoc_mapping) {
648                 mapping->assoc_mapping = buffer_mapping;
649         } else {
650                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
651         }
652         if (!bh->b_assoc_map) {
653                 spin_lock(&buffer_mapping->private_lock);
654                 list_move_tail(&bh->b_assoc_buffers,
655                                 &mapping->private_list);
656                 bh->b_assoc_map = mapping;
657                 spin_unlock(&buffer_mapping->private_lock);
658         }
659 }
660 EXPORT_SYMBOL(mark_buffer_dirty_inode);
661
662 /*
663  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
664  * dirty.
665  *
666  * If warn is true, then emit a warning if the page is not uptodate and has
667  * not been truncated.
668  */
669 static void __set_page_dirty(struct page *page,
670                 struct address_space *mapping, int warn)
671 {
672         spin_lock_irq(&mapping->tree_lock);
673         if (page->mapping) {    /* Race with truncate? */
674                 WARN_ON_ONCE(warn && !PageUptodate(page));
675                 account_page_dirtied(page, mapping);
676                 radix_tree_tag_set(&mapping->page_tree,
677                                 page_index(page), PAGECACHE_TAG_DIRTY);
678         }
679         spin_unlock_irq(&mapping->tree_lock);
680         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
681 }
682
683 /*
684  * Add a page to the dirty page list.
685  *
686  * It is a sad fact of life that this function is called from several places
687  * deeply under spinlocking.  It may not sleep.
688  *
689  * If the page has buffers, the uptodate buffers are set dirty, to preserve
690  * dirty-state coherency between the page and the buffers.  It the page does
691  * not have buffers then when they are later attached they will all be set
692  * dirty.
693  *
694  * The buffers are dirtied before the page is dirtied.  There's a small race
695  * window in which a writepage caller may see the page cleanness but not the
696  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
697  * before the buffers, a concurrent writepage caller could clear the page dirty
698  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
699  * page on the dirty page list.
700  *
701  * We use private_lock to lock against try_to_free_buffers while using the
702  * page's buffer list.  Also use this to protect against clean buffers being
703  * added to the page after it was set dirty.
704  *
705  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
706  * address_space though.
707  */
708 int __set_page_dirty_buffers(struct page *page)
709 {
710         int newly_dirty;
711         struct address_space *mapping = page_mapping(page);
712
713         if (unlikely(!mapping))
714                 return !TestSetPageDirty(page);
715
716         spin_lock(&mapping->private_lock);
717         if (page_has_buffers(page)) {
718                 struct buffer_head *head = page_buffers(page);
719                 struct buffer_head *bh = head;
720
721                 do {
722                         set_buffer_dirty(bh);
723                         bh = bh->b_this_page;
724                 } while (bh != head);
725         }
726         newly_dirty = !TestSetPageDirty(page);
727         spin_unlock(&mapping->private_lock);
728
729         if (newly_dirty)
730                 __set_page_dirty(page, mapping, 1);
731         return newly_dirty;
732 }
733 EXPORT_SYMBOL(__set_page_dirty_buffers);
734
735 /*
736  * Write out and wait upon a list of buffers.
737  *
738  * We have conflicting pressures: we want to make sure that all
739  * initially dirty buffers get waited on, but that any subsequently
740  * dirtied buffers don't.  After all, we don't want fsync to last
741  * forever if somebody is actively writing to the file.
742  *
743  * Do this in two main stages: first we copy dirty buffers to a
744  * temporary inode list, queueing the writes as we go.  Then we clean
745  * up, waiting for those writes to complete.
746  * 
747  * During this second stage, any subsequent updates to the file may end
748  * up refiling the buffer on the original inode's dirty list again, so
749  * there is a chance we will end up with a buffer queued for write but
750  * not yet completed on that list.  So, as a final cleanup we go through
751  * the osync code to catch these locked, dirty buffers without requeuing
752  * any newly dirty buffers for write.
753  */
754 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
755 {
756         struct buffer_head *bh;
757         struct list_head tmp;
758         struct address_space *mapping, *prev_mapping = NULL;
759         int err = 0, err2;
760
761         INIT_LIST_HEAD(&tmp);
762
763         spin_lock(lock);
764         while (!list_empty(list)) {
765                 bh = BH_ENTRY(list->next);
766                 mapping = bh->b_assoc_map;
767                 __remove_assoc_queue(bh);
768                 /* Avoid race with mark_buffer_dirty_inode() which does
769                  * a lockless check and we rely on seeing the dirty bit */
770                 smp_mb();
771                 if (buffer_dirty(bh) || buffer_locked(bh)) {
772                         list_add(&bh->b_assoc_buffers, &tmp);
773                         bh->b_assoc_map = mapping;
774                         if (buffer_dirty(bh)) {
775                                 get_bh(bh);
776                                 spin_unlock(lock);
777                                 /*
778                                  * Ensure any pending I/O completes so that
779                                  * write_dirty_buffer() actually writes the
780                                  * current contents - it is a noop if I/O is
781                                  * still in flight on potentially older
782                                  * contents.
783                                  */
784                                 write_dirty_buffer(bh, WRITE_SYNC_PLUG);
785
786                                 /*
787                                  * Kick off IO for the previous mapping. Note
788                                  * that we will not run the very last mapping,
789                                  * wait_on_buffer() will do that for us
790                                  * through sync_buffer().
791                                  */
792                                 if (prev_mapping && prev_mapping != mapping)
793                                         blk_run_address_space(prev_mapping);
794                                 prev_mapping = mapping;
795
796                                 brelse(bh);
797                                 spin_lock(lock);
798                         }
799                 }
800         }
801
802         while (!list_empty(&tmp)) {
803                 bh = BH_ENTRY(tmp.prev);
804                 get_bh(bh);
805                 mapping = bh->b_assoc_map;
806                 __remove_assoc_queue(bh);
807                 /* Avoid race with mark_buffer_dirty_inode() which does
808                  * a lockless check and we rely on seeing the dirty bit */
809                 smp_mb();
810                 if (buffer_dirty(bh)) {
811                         list_add(&bh->b_assoc_buffers,
812                                  &mapping->private_list);
813                         bh->b_assoc_map = mapping;
814                 }
815                 spin_unlock(lock);
816                 wait_on_buffer(bh);
817                 if (!buffer_uptodate(bh))
818                         err = -EIO;
819                 brelse(bh);
820                 spin_lock(lock);
821         }
822         
823         spin_unlock(lock);
824         err2 = osync_buffers_list(lock, list);
825         if (err)
826                 return err;
827         else
828                 return err2;
829 }
830
831 /*
832  * Invalidate any and all dirty buffers on a given inode.  We are
833  * probably unmounting the fs, but that doesn't mean we have already
834  * done a sync().  Just drop the buffers from the inode list.
835  *
836  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
837  * assumes that all the buffers are against the blockdev.  Not true
838  * for reiserfs.
839  */
840 void invalidate_inode_buffers(struct inode *inode)
841 {
842         if (inode_has_buffers(inode)) {
843                 struct address_space *mapping = &inode->i_data;
844                 struct list_head *list = &mapping->private_list;
845                 struct address_space *buffer_mapping = mapping->assoc_mapping;
846
847                 spin_lock(&buffer_mapping->private_lock);
848                 while (!list_empty(list))
849                         __remove_assoc_queue(BH_ENTRY(list->next));
850                 spin_unlock(&buffer_mapping->private_lock);
851         }
852 }
853 EXPORT_SYMBOL(invalidate_inode_buffers);
854
855 /*
856  * Remove any clean buffers from the inode's buffer list.  This is called
857  * when we're trying to free the inode itself.  Those buffers can pin it.
858  *
859  * Returns true if all buffers were removed.
860  */
861 int remove_inode_buffers(struct inode *inode)
862 {
863         int ret = 1;
864
865         if (inode_has_buffers(inode)) {
866                 struct address_space *mapping = &inode->i_data;
867                 struct list_head *list = &mapping->private_list;
868                 struct address_space *buffer_mapping = mapping->assoc_mapping;
869
870                 spin_lock(&buffer_mapping->private_lock);
871                 while (!list_empty(list)) {
872                         struct buffer_head *bh = BH_ENTRY(list->next);
873                         if (buffer_dirty(bh)) {
874                                 ret = 0;
875                                 break;
876                         }
877                         __remove_assoc_queue(bh);
878                 }
879                 spin_unlock(&buffer_mapping->private_lock);
880         }
881         return ret;
882 }
883
884 /*
885  * Create the appropriate buffers when given a page for data area and
886  * the size of each buffer.. Use the bh->b_this_page linked list to
887  * follow the buffers created.  Return NULL if unable to create more
888  * buffers.
889  *
890  * The retry flag is used to differentiate async IO (paging, swapping)
891  * which may not fail from ordinary buffer allocations.
892  */
893 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
894                 int retry)
895 {
896         struct buffer_head *bh, *head;
897         long offset;
898
899 try_again:
900         head = NULL;
901         offset = PAGE_SIZE;
902         while ((offset -= size) >= 0) {
903                 bh = alloc_buffer_head(GFP_NOFS);
904                 if (!bh)
905                         goto no_grow;
906
907                 bh->b_bdev = NULL;
908                 bh->b_this_page = head;
909                 bh->b_blocknr = -1;
910                 head = bh;
911
912                 bh->b_state = 0;
913                 atomic_set(&bh->b_count, 0);
914                 bh->b_size = size;
915
916                 /* Link the buffer to its page */
917                 set_bh_page(bh, page, offset);
918
919                 init_buffer(bh, NULL, NULL);
920         }
921         return head;
922 /*
923  * In case anything failed, we just free everything we got.
924  */
925 no_grow:
926         if (head) {
927                 do {
928                         bh = head;
929                         head = head->b_this_page;
930                         free_buffer_head(bh);
931                 } while (head);
932         }
933
934         /*
935          * Return failure for non-async IO requests.  Async IO requests
936          * are not allowed to fail, so we have to wait until buffer heads
937          * become available.  But we don't want tasks sleeping with 
938          * partially complete buffers, so all were released above.
939          */
940         if (!retry)
941                 return NULL;
942
943         /* We're _really_ low on memory. Now we just
944          * wait for old buffer heads to become free due to
945          * finishing IO.  Since this is an async request and
946          * the reserve list is empty, we're sure there are 
947          * async buffer heads in use.
948          */
949         free_more_memory();
950         goto try_again;
951 }
952 EXPORT_SYMBOL_GPL(alloc_page_buffers);
953
954 static inline void
955 link_dev_buffers(struct page *page, struct buffer_head *head)
956 {
957         struct buffer_head *bh, *tail;
958
959         bh = head;
960         do {
961                 tail = bh;
962                 bh = bh->b_this_page;
963         } while (bh);
964         tail->b_this_page = head;
965         attach_page_buffers(page, head);
966 }
967
968 /*
969  * Initialise the state of a blockdev page's buffers.
970  */ 
971 static void
972 init_page_buffers(struct page *page, struct block_device *bdev,
973                         sector_t block, int size)
974 {
975         struct buffer_head *head = page_buffers(page);
976         struct buffer_head *bh = head;
977         int uptodate = PageUptodate(page);
978
979         do {
980                 if (!buffer_mapped(bh)) {
981                         init_buffer(bh, NULL, NULL);
982                         bh->b_bdev = bdev;
983                         bh->b_blocknr = block;
984                         if (uptodate)
985                                 set_buffer_uptodate(bh);
986                         set_buffer_mapped(bh);
987                 }
988                 block++;
989                 bh = bh->b_this_page;
990         } while (bh != head);
991 }
992
993 /*
994  * Create the page-cache page that contains the requested block.
995  *
996  * This is user purely for blockdev mappings.
997  */
998 static struct page *
999 grow_dev_page(struct block_device *bdev, sector_t block,
1000                 pgoff_t index, int size)
1001 {
1002         struct inode *inode = bdev->bd_inode;
1003         struct page *page;
1004         struct buffer_head *bh;
1005
1006         page = find_or_create_page(inode->i_mapping, index,
1007                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1008         if (!page)
1009                 return NULL;
1010
1011         BUG_ON(!PageLocked(page));
1012
1013         if (page_has_buffers(page)) {
1014                 bh = page_buffers(page);
1015                 if (bh->b_size == size) {
1016                         init_page_buffers(page, bdev, block, size);
1017                         return page;
1018                 }
1019                 if (!try_to_free_buffers(page))
1020                         goto failed;
1021         }
1022
1023         /*
1024          * Allocate some buffers for this page
1025          */
1026         bh = alloc_page_buffers(page, size, 0);
1027         if (!bh)
1028                 goto failed;
1029
1030         /*
1031          * Link the page to the buffers and initialise them.  Take the
1032          * lock to be atomic wrt __find_get_block(), which does not
1033          * run under the page lock.
1034          */
1035         spin_lock(&inode->i_mapping->private_lock);
1036         link_dev_buffers(page, bh);
1037         init_page_buffers(page, bdev, block, size);
1038         spin_unlock(&inode->i_mapping->private_lock);
1039         return page;
1040
1041 failed:
1042         BUG();
1043         unlock_page(page);
1044         page_cache_release(page);
1045         return NULL;
1046 }
1047
1048 /*
1049  * Create buffers for the specified block device block's page.  If
1050  * that page was dirty, the buffers are set dirty also.
1051  */
1052 static int
1053 grow_buffers(struct block_device *bdev, sector_t block, int size)
1054 {
1055         struct page *page;
1056         pgoff_t index;
1057         int sizebits;
1058
1059         sizebits = -1;
1060         do {
1061                 sizebits++;
1062         } while ((size << sizebits) < PAGE_SIZE);
1063
1064         index = block >> sizebits;
1065
1066         /*
1067          * Check for a block which wants to lie outside our maximum possible
1068          * pagecache index.  (this comparison is done using sector_t types).
1069          */
1070         if (unlikely(index != block >> sizebits)) {
1071                 char b[BDEVNAME_SIZE];
1072
1073                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1074                         "device %s\n",
1075                         __func__, (unsigned long long)block,
1076                         bdevname(bdev, b));
1077                 return -EIO;
1078         }
1079         block = index << sizebits;
1080         /* Create a page with the proper size buffers.. */
1081         page = grow_dev_page(bdev, block, index, size);
1082         if (!page)
1083                 return 0;
1084         unlock_page(page);
1085         page_cache_release(page);
1086         return 1;
1087 }
1088
1089 static struct buffer_head *
1090 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1091 {
1092         /* Size must be multiple of hard sectorsize */
1093         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1094                         (size < 512 || size > PAGE_SIZE))) {
1095                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1096                                         size);
1097                 printk(KERN_ERR "logical block size: %d\n",
1098                                         bdev_logical_block_size(bdev));
1099
1100                 dump_stack();
1101                 return NULL;
1102         }
1103
1104         for (;;) {
1105                 struct buffer_head * bh;
1106                 int ret;
1107
1108                 bh = __find_get_block(bdev, block, size);
1109                 if (bh)
1110                         return bh;
1111
1112                 ret = grow_buffers(bdev, block, size);
1113                 if (ret < 0)
1114                         return NULL;
1115                 if (ret == 0)
1116                         free_more_memory();
1117         }
1118 }
1119
1120 /*
1121  * The relationship between dirty buffers and dirty pages:
1122  *
1123  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1124  * the page is tagged dirty in its radix tree.
1125  *
1126  * At all times, the dirtiness of the buffers represents the dirtiness of
1127  * subsections of the page.  If the page has buffers, the page dirty bit is
1128  * merely a hint about the true dirty state.
1129  *
1130  * When a page is set dirty in its entirety, all its buffers are marked dirty
1131  * (if the page has buffers).
1132  *
1133  * When a buffer is marked dirty, its page is dirtied, but the page's other
1134  * buffers are not.
1135  *
1136  * Also.  When blockdev buffers are explicitly read with bread(), they
1137  * individually become uptodate.  But their backing page remains not
1138  * uptodate - even if all of its buffers are uptodate.  A subsequent
1139  * block_read_full_page() against that page will discover all the uptodate
1140  * buffers, will set the page uptodate and will perform no I/O.
1141  */
1142
1143 /**
1144  * mark_buffer_dirty - mark a buffer_head as needing writeout
1145  * @bh: the buffer_head to mark dirty
1146  *
1147  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1148  * backing page dirty, then tag the page as dirty in its address_space's radix
1149  * tree and then attach the address_space's inode to its superblock's dirty
1150  * inode list.
1151  *
1152  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1153  * mapping->tree_lock and the global inode_lock.
1154  */
1155 void mark_buffer_dirty(struct buffer_head *bh)
1156 {
1157         WARN_ON_ONCE(!buffer_uptodate(bh));
1158
1159         /*
1160          * Very *carefully* optimize the it-is-already-dirty case.
1161          *
1162          * Don't let the final "is it dirty" escape to before we
1163          * perhaps modified the buffer.
1164          */
1165         if (buffer_dirty(bh)) {
1166                 smp_mb();
1167                 if (buffer_dirty(bh))
1168                         return;
1169         }
1170
1171         if (!test_set_buffer_dirty(bh)) {
1172                 struct page *page = bh->b_page;
1173                 if (!TestSetPageDirty(page)) {
1174                         struct address_space *mapping = page_mapping(page);
1175                         if (mapping)
1176                                 __set_page_dirty(page, mapping, 0);
1177                 }
1178         }
1179 }
1180 EXPORT_SYMBOL(mark_buffer_dirty);
1181
1182 /*
1183  * Decrement a buffer_head's reference count.  If all buffers against a page
1184  * have zero reference count, are clean and unlocked, and if the page is clean
1185  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1186  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1187  * a page but it ends up not being freed, and buffers may later be reattached).
1188  */
1189 void __brelse(struct buffer_head * buf)
1190 {
1191         if (atomic_read(&buf->b_count)) {
1192                 put_bh(buf);
1193                 return;
1194         }
1195         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1196 }
1197 EXPORT_SYMBOL(__brelse);
1198
1199 /*
1200  * bforget() is like brelse(), except it discards any
1201  * potentially dirty data.
1202  */
1203 void __bforget(struct buffer_head *bh)
1204 {
1205         clear_buffer_dirty(bh);
1206         if (bh->b_assoc_map) {
1207                 struct address_space *buffer_mapping = bh->b_page->mapping;
1208
1209                 spin_lock(&buffer_mapping->private_lock);
1210                 list_del_init(&bh->b_assoc_buffers);
1211                 bh->b_assoc_map = NULL;
1212                 spin_unlock(&buffer_mapping->private_lock);
1213         }
1214         __brelse(bh);
1215 }
1216 EXPORT_SYMBOL(__bforget);
1217
1218 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1219 {
1220         lock_buffer(bh);
1221         if (buffer_uptodate(bh)) {
1222                 unlock_buffer(bh);
1223                 return bh;
1224         } else {
1225                 get_bh(bh);
1226                 bh->b_end_io = end_buffer_read_sync;
1227                 submit_bh(READ, bh);
1228                 wait_on_buffer(bh);
1229                 if (buffer_uptodate(bh))
1230                         return bh;
1231         }
1232         brelse(bh);
1233         return NULL;
1234 }
1235
1236 /*
1237  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1238  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1239  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1240  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1241  * CPU's LRUs at the same time.
1242  *
1243  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1244  * sb_find_get_block().
1245  *
1246  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1247  * a local interrupt disable for that.
1248  */
1249
1250 #define BH_LRU_SIZE     8
1251
1252 struct bh_lru {
1253         struct buffer_head *bhs[BH_LRU_SIZE];
1254 };
1255
1256 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1257
1258 #ifdef CONFIG_SMP
1259 #define bh_lru_lock()   local_irq_disable()
1260 #define bh_lru_unlock() local_irq_enable()
1261 #else
1262 #define bh_lru_lock()   preempt_disable()
1263 #define bh_lru_unlock() preempt_enable()
1264 #endif
1265
1266 static inline void check_irqs_on(void)
1267 {
1268 #ifdef irqs_disabled
1269         BUG_ON(irqs_disabled());
1270 #endif
1271 }
1272
1273 /*
1274  * The LRU management algorithm is dopey-but-simple.  Sorry.
1275  */
1276 static void bh_lru_install(struct buffer_head *bh)
1277 {
1278         struct buffer_head *evictee = NULL;
1279         struct bh_lru *lru;
1280
1281         check_irqs_on();
1282         bh_lru_lock();
1283         lru = &__get_cpu_var(bh_lrus);
1284         if (lru->bhs[0] != bh) {
1285                 struct buffer_head *bhs[BH_LRU_SIZE];
1286                 int in;
1287                 int out = 0;
1288
1289                 get_bh(bh);
1290                 bhs[out++] = bh;
1291                 for (in = 0; in < BH_LRU_SIZE; in++) {
1292                         struct buffer_head *bh2 = lru->bhs[in];
1293
1294                         if (bh2 == bh) {
1295                                 __brelse(bh2);
1296                         } else {
1297                                 if (out >= BH_LRU_SIZE) {
1298                                         BUG_ON(evictee != NULL);
1299                                         evictee = bh2;
1300                                 } else {
1301                                         bhs[out++] = bh2;
1302                                 }
1303                         }
1304                 }
1305                 while (out < BH_LRU_SIZE)
1306                         bhs[out++] = NULL;
1307                 memcpy(lru->bhs, bhs, sizeof(bhs));
1308         }
1309         bh_lru_unlock();
1310
1311         if (evictee)
1312                 __brelse(evictee);
1313 }
1314
1315 /*
1316  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1317  */
1318 static struct buffer_head *
1319 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1320 {
1321         struct buffer_head *ret = NULL;
1322         struct bh_lru *lru;
1323         unsigned int i;
1324
1325         check_irqs_on();
1326         bh_lru_lock();
1327         lru = &__get_cpu_var(bh_lrus);
1328         for (i = 0; i < BH_LRU_SIZE; i++) {
1329                 struct buffer_head *bh = lru->bhs[i];
1330
1331                 if (bh && bh->b_bdev == bdev &&
1332                                 bh->b_blocknr == block && bh->b_size == size) {
1333                         if (i) {
1334                                 while (i) {
1335                                         lru->bhs[i] = lru->bhs[i - 1];
1336                                         i--;
1337                                 }
1338                                 lru->bhs[0] = bh;
1339                         }
1340                         get_bh(bh);
1341                         ret = bh;
1342                         break;
1343                 }
1344         }
1345         bh_lru_unlock();
1346         return ret;
1347 }
1348
1349 /*
1350  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1351  * it in the LRU and mark it as accessed.  If it is not present then return
1352  * NULL
1353  */
1354 struct buffer_head *
1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356 {
1357         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359         if (bh == NULL) {
1360                 bh = __find_get_block_slow(bdev, block);
1361                 if (bh)
1362                         bh_lru_install(bh);
1363         }
1364         if (bh)
1365                 touch_buffer(bh);
1366         return bh;
1367 }
1368 EXPORT_SYMBOL(__find_get_block);
1369
1370 /*
1371  * __getblk will locate (and, if necessary, create) the buffer_head
1372  * which corresponds to the passed block_device, block and size. The
1373  * returned buffer has its reference count incremented.
1374  *
1375  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1376  * illegal block number, __getblk() will happily return a buffer_head
1377  * which represents the non-existent block.  Very weird.
1378  *
1379  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1380  * attempt is failing.  FIXME, perhaps?
1381  */
1382 struct buffer_head *
1383 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1384 {
1385         struct buffer_head *bh = __find_get_block(bdev, block, size);
1386
1387         might_sleep();
1388         if (bh == NULL)
1389                 bh = __getblk_slow(bdev, block, size);
1390         return bh;
1391 }
1392 EXPORT_SYMBOL(__getblk);
1393
1394 /*
1395  * Do async read-ahead on a buffer..
1396  */
1397 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1398 {
1399         struct buffer_head *bh = __getblk(bdev, block, size);
1400         if (likely(bh)) {
1401                 ll_rw_block(READA, 1, &bh);
1402                 brelse(bh);
1403         }
1404 }
1405 EXPORT_SYMBOL(__breadahead);
1406
1407 /**
1408  *  __bread() - reads a specified block and returns the bh
1409  *  @bdev: the block_device to read from
1410  *  @block: number of block
1411  *  @size: size (in bytes) to read
1412  * 
1413  *  Reads a specified block, and returns buffer head that contains it.
1414  *  It returns NULL if the block was unreadable.
1415  */
1416 struct buffer_head *
1417 __bread(struct block_device *bdev, sector_t block, unsigned size)
1418 {
1419         struct buffer_head *bh = __getblk(bdev, block, size);
1420
1421         if (likely(bh) && !buffer_uptodate(bh))
1422                 bh = __bread_slow(bh);
1423         return bh;
1424 }
1425 EXPORT_SYMBOL(__bread);
1426
1427 /*
1428  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1429  * This doesn't race because it runs in each cpu either in irq
1430  * or with preempt disabled.
1431  */
1432 static void invalidate_bh_lru(void *arg)
1433 {
1434         struct bh_lru *b = &get_cpu_var(bh_lrus);
1435         int i;
1436
1437         for (i = 0; i < BH_LRU_SIZE; i++) {
1438                 brelse(b->bhs[i]);
1439                 b->bhs[i] = NULL;
1440         }
1441         put_cpu_var(bh_lrus);
1442 }
1443         
1444 void invalidate_bh_lrus(void)
1445 {
1446         on_each_cpu(invalidate_bh_lru, NULL, 1);
1447 }
1448 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1449
1450 void set_bh_page(struct buffer_head *bh,
1451                 struct page *page, unsigned long offset)
1452 {
1453         bh->b_page = page;
1454         BUG_ON(offset >= PAGE_SIZE);
1455         if (PageHighMem(page))
1456                 /*
1457                  * This catches illegal uses and preserves the offset:
1458                  */
1459                 bh->b_data = (char *)(0 + offset);
1460         else
1461                 bh->b_data = page_address(page) + offset;
1462 }
1463 EXPORT_SYMBOL(set_bh_page);
1464
1465 /*
1466  * Called when truncating a buffer on a page completely.
1467  */
1468 static void discard_buffer(struct buffer_head * bh)
1469 {
1470         lock_buffer(bh);
1471         clear_buffer_dirty(bh);
1472         bh->b_bdev = NULL;
1473         clear_buffer_mapped(bh);
1474         clear_buffer_req(bh);
1475         clear_buffer_new(bh);
1476         clear_buffer_delay(bh);
1477         clear_buffer_unwritten(bh);
1478         unlock_buffer(bh);
1479 }
1480
1481 /**
1482  * block_invalidatepage - invalidate part of all of a buffer-backed page
1483  *
1484  * @page: the page which is affected
1485  * @offset: the index of the truncation point
1486  *
1487  * block_invalidatepage() is called when all or part of the page has become
1488  * invalidatedby a truncate operation.
1489  *
1490  * block_invalidatepage() does not have to release all buffers, but it must
1491  * ensure that no dirty buffer is left outside @offset and that no I/O
1492  * is underway against any of the blocks which are outside the truncation
1493  * point.  Because the caller is about to free (and possibly reuse) those
1494  * blocks on-disk.
1495  */
1496 void block_invalidatepage(struct page *page, unsigned long offset)
1497 {
1498         struct buffer_head *head, *bh, *next;
1499         unsigned int curr_off = 0;
1500
1501         BUG_ON(!PageLocked(page));
1502         if (!page_has_buffers(page))
1503                 goto out;
1504
1505         head = page_buffers(page);
1506         bh = head;
1507         do {
1508                 unsigned int next_off = curr_off + bh->b_size;
1509                 next = bh->b_this_page;
1510
1511                 /*
1512                  * is this block fully invalidated?
1513                  */
1514                 if (offset <= curr_off)
1515                         discard_buffer(bh);
1516                 curr_off = next_off;
1517                 bh = next;
1518         } while (bh != head);
1519
1520         /*
1521          * We release buffers only if the entire page is being invalidated.
1522          * The get_block cached value has been unconditionally invalidated,
1523          * so real IO is not possible anymore.
1524          */
1525         if (offset == 0)
1526                 try_to_release_page(page, 0);
1527 out:
1528         return;
1529 }
1530 EXPORT_SYMBOL(block_invalidatepage);
1531
1532 /*
1533  * We attach and possibly dirty the buffers atomically wrt
1534  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1535  * is already excluded via the page lock.
1536  */
1537 void create_empty_buffers(struct page *page,
1538                         unsigned long blocksize, unsigned long b_state)
1539 {
1540         struct buffer_head *bh, *head, *tail;
1541
1542         head = alloc_page_buffers(page, blocksize, 1);
1543         bh = head;
1544         do {
1545                 bh->b_state |= b_state;
1546                 tail = bh;
1547                 bh = bh->b_this_page;
1548         } while (bh);
1549         tail->b_this_page = head;
1550
1551         spin_lock(&page->mapping->private_lock);
1552         if (PageUptodate(page) || PageDirty(page)) {
1553                 bh = head;
1554                 do {
1555                         if (PageDirty(page))
1556                                 set_buffer_dirty(bh);
1557                         if (PageUptodate(page))
1558                                 set_buffer_uptodate(bh);
1559                         bh = bh->b_this_page;
1560                 } while (bh != head);
1561         }
1562         attach_page_buffers(page, head);
1563         spin_unlock(&page->mapping->private_lock);
1564 }
1565 EXPORT_SYMBOL(create_empty_buffers);
1566
1567 /*
1568  * We are taking a block for data and we don't want any output from any
1569  * buffer-cache aliases starting from return from that function and
1570  * until the moment when something will explicitly mark the buffer
1571  * dirty (hopefully that will not happen until we will free that block ;-)
1572  * We don't even need to mark it not-uptodate - nobody can expect
1573  * anything from a newly allocated buffer anyway. We used to used
1574  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1575  * don't want to mark the alias unmapped, for example - it would confuse
1576  * anyone who might pick it with bread() afterwards...
1577  *
1578  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1579  * be writeout I/O going on against recently-freed buffers.  We don't
1580  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1581  * only if we really need to.  That happens here.
1582  */
1583 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1584 {
1585         struct buffer_head *old_bh;
1586
1587         might_sleep();
1588
1589         old_bh = __find_get_block_slow(bdev, block);
1590         if (old_bh) {
1591                 clear_buffer_dirty(old_bh);
1592                 wait_on_buffer(old_bh);
1593                 clear_buffer_req(old_bh);
1594                 __brelse(old_bh);
1595         }
1596 }
1597 EXPORT_SYMBOL(unmap_underlying_metadata);
1598
1599 /*
1600  * NOTE! All mapped/uptodate combinations are valid:
1601  *
1602  *      Mapped  Uptodate        Meaning
1603  *
1604  *      No      No              "unknown" - must do get_block()
1605  *      No      Yes             "hole" - zero-filled
1606  *      Yes     No              "allocated" - allocated on disk, not read in
1607  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1608  *
1609  * "Dirty" is valid only with the last case (mapped+uptodate).
1610  */
1611
1612 /*
1613  * While block_write_full_page is writing back the dirty buffers under
1614  * the page lock, whoever dirtied the buffers may decide to clean them
1615  * again at any time.  We handle that by only looking at the buffer
1616  * state inside lock_buffer().
1617  *
1618  * If block_write_full_page() is called for regular writeback
1619  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1620  * locked buffer.   This only can happen if someone has written the buffer
1621  * directly, with submit_bh().  At the address_space level PageWriteback
1622  * prevents this contention from occurring.
1623  *
1624  * If block_write_full_page() is called with wbc->sync_mode ==
1625  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1626  * causes the writes to be flagged as synchronous writes, but the
1627  * block device queue will NOT be unplugged, since usually many pages
1628  * will be pushed to the out before the higher-level caller actually
1629  * waits for the writes to be completed.  The various wait functions,
1630  * such as wait_on_writeback_range() will ultimately call sync_page()
1631  * which will ultimately call blk_run_backing_dev(), which will end up
1632  * unplugging the device queue.
1633  */
1634 static int __block_write_full_page(struct inode *inode, struct page *page,
1635                         get_block_t *get_block, struct writeback_control *wbc,
1636                         bh_end_io_t *handler)
1637 {
1638         int err;
1639         sector_t block;
1640         sector_t last_block;
1641         struct buffer_head *bh, *head;
1642         const unsigned blocksize = 1 << inode->i_blkbits;
1643         int nr_underway = 0;
1644         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1645                         WRITE_SYNC_PLUG : WRITE);
1646
1647         BUG_ON(!PageLocked(page));
1648
1649         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1650
1651         if (!page_has_buffers(page)) {
1652                 create_empty_buffers(page, blocksize,
1653                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1654         }
1655
1656         /*
1657          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1658          * here, and the (potentially unmapped) buffers may become dirty at
1659          * any time.  If a buffer becomes dirty here after we've inspected it
1660          * then we just miss that fact, and the page stays dirty.
1661          *
1662          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1663          * handle that here by just cleaning them.
1664          */
1665
1666         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1667         head = page_buffers(page);
1668         bh = head;
1669
1670         /*
1671          * Get all the dirty buffers mapped to disk addresses and
1672          * handle any aliases from the underlying blockdev's mapping.
1673          */
1674         do {
1675                 if (block > last_block) {
1676                         /*
1677                          * mapped buffers outside i_size will occur, because
1678                          * this page can be outside i_size when there is a
1679                          * truncate in progress.
1680                          */
1681                         /*
1682                          * The buffer was zeroed by block_write_full_page()
1683                          */
1684                         clear_buffer_dirty(bh);
1685                         set_buffer_uptodate(bh);
1686                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1687                            buffer_dirty(bh)) {
1688                         WARN_ON(bh->b_size != blocksize);
1689                         err = get_block(inode, block, bh, 1);
1690                         if (err)
1691                                 goto recover;
1692                         clear_buffer_delay(bh);
1693                         if (buffer_new(bh)) {
1694                                 /* blockdev mappings never come here */
1695                                 clear_buffer_new(bh);
1696                                 unmap_underlying_metadata(bh->b_bdev,
1697                                                         bh->b_blocknr);
1698                         }
1699                 }
1700                 bh = bh->b_this_page;
1701                 block++;
1702         } while (bh != head);
1703
1704         do {
1705                 if (!buffer_mapped(bh))
1706                         continue;
1707                 /*
1708                  * If it's a fully non-blocking write attempt and we cannot
1709                  * lock the buffer then redirty the page.  Note that this can
1710                  * potentially cause a busy-wait loop from writeback threads
1711                  * and kswapd activity, but those code paths have their own
1712                  * higher-level throttling.
1713                  */
1714                 if (wbc->sync_mode != WB_SYNC_NONE) {
1715                         lock_buffer(bh);
1716                 } else if (!trylock_buffer(bh)) {
1717                         redirty_page_for_writepage(wbc, page);
1718                         continue;
1719                 }
1720                 if (test_clear_buffer_dirty(bh)) {
1721                         mark_buffer_async_write_endio(bh, handler);
1722                 } else {
1723                         unlock_buffer(bh);
1724                 }
1725         } while ((bh = bh->b_this_page) != head);
1726
1727         /*
1728          * The page and its buffers are protected by PageWriteback(), so we can
1729          * drop the bh refcounts early.
1730          */
1731         BUG_ON(PageWriteback(page));
1732         set_page_writeback(page);
1733
1734         do {
1735                 struct buffer_head *next = bh->b_this_page;
1736                 if (buffer_async_write(bh)) {
1737                         submit_bh(write_op, bh);
1738                         nr_underway++;
1739                 }
1740                 bh = next;
1741         } while (bh != head);
1742         unlock_page(page);
1743
1744         err = 0;
1745 done:
1746         if (nr_underway == 0) {
1747                 /*
1748                  * The page was marked dirty, but the buffers were
1749                  * clean.  Someone wrote them back by hand with
1750                  * ll_rw_block/submit_bh.  A rare case.
1751                  */
1752                 end_page_writeback(page);
1753
1754                 /*
1755                  * The page and buffer_heads can be released at any time from
1756                  * here on.
1757                  */
1758         }
1759         return err;
1760
1761 recover:
1762         /*
1763          * ENOSPC, or some other error.  We may already have added some
1764          * blocks to the file, so we need to write these out to avoid
1765          * exposing stale data.
1766          * The page is currently locked and not marked for writeback
1767          */
1768         bh = head;
1769         /* Recovery: lock and submit the mapped buffers */
1770         do {
1771                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1772                     !buffer_delay(bh)) {
1773                         lock_buffer(bh);
1774                         mark_buffer_async_write_endio(bh, handler);
1775                 } else {
1776                         /*
1777                          * The buffer may have been set dirty during
1778                          * attachment to a dirty page.
1779                          */
1780                         clear_buffer_dirty(bh);
1781                 }
1782         } while ((bh = bh->b_this_page) != head);
1783         SetPageError(page);
1784         BUG_ON(PageWriteback(page));
1785         mapping_set_error(page->mapping, err);
1786         set_page_writeback(page);
1787         do {
1788                 struct buffer_head *next = bh->b_this_page;
1789                 if (buffer_async_write(bh)) {
1790                         clear_buffer_dirty(bh);
1791                         submit_bh(write_op, bh);
1792                         nr_underway++;
1793                 }
1794                 bh = next;
1795         } while (bh != head);
1796         unlock_page(page);
1797         goto done;
1798 }
1799
1800 /*
1801  * If a page has any new buffers, zero them out here, and mark them uptodate
1802  * and dirty so they'll be written out (in order to prevent uninitialised
1803  * block data from leaking). And clear the new bit.
1804  */
1805 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1806 {
1807         unsigned int block_start, block_end;
1808         struct buffer_head *head, *bh;
1809
1810         BUG_ON(!PageLocked(page));
1811         if (!page_has_buffers(page))
1812                 return;
1813
1814         bh = head = page_buffers(page);
1815         block_start = 0;
1816         do {
1817                 block_end = block_start + bh->b_size;
1818
1819                 if (buffer_new(bh)) {
1820                         if (block_end > from && block_start < to) {
1821                                 if (!PageUptodate(page)) {
1822                                         unsigned start, size;
1823
1824                                         start = max(from, block_start);
1825                                         size = min(to, block_end) - start;
1826
1827                                         zero_user(page, start, size);
1828                                         set_buffer_uptodate(bh);
1829                                 }
1830
1831                                 clear_buffer_new(bh);
1832                                 mark_buffer_dirty(bh);
1833                         }
1834                 }
1835
1836                 block_start = block_end;
1837                 bh = bh->b_this_page;
1838         } while (bh != head);
1839 }
1840 EXPORT_SYMBOL(page_zero_new_buffers);
1841
1842 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1843                 get_block_t *get_block)
1844 {
1845         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1846         unsigned to = from + len;
1847         struct inode *inode = page->mapping->host;
1848         unsigned block_start, block_end;
1849         sector_t block;
1850         int err = 0;
1851         unsigned blocksize, bbits;
1852         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1853
1854         BUG_ON(!PageLocked(page));
1855         BUG_ON(from > PAGE_CACHE_SIZE);
1856         BUG_ON(to > PAGE_CACHE_SIZE);
1857         BUG_ON(from > to);
1858
1859         blocksize = 1 << inode->i_blkbits;
1860         if (!page_has_buffers(page))
1861                 create_empty_buffers(page, blocksize, 0);
1862         head = page_buffers(page);
1863
1864         bbits = inode->i_blkbits;
1865         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1866
1867         for(bh = head, block_start = 0; bh != head || !block_start;
1868             block++, block_start=block_end, bh = bh->b_this_page) {
1869                 block_end = block_start + blocksize;
1870                 if (block_end <= from || block_start >= to) {
1871                         if (PageUptodate(page)) {
1872                                 if (!buffer_uptodate(bh))
1873                                         set_buffer_uptodate(bh);
1874                         }
1875                         continue;
1876                 }
1877                 if (buffer_new(bh))
1878                         clear_buffer_new(bh);
1879                 if (!buffer_mapped(bh)) {
1880                         WARN_ON(bh->b_size != blocksize);
1881                         err = get_block(inode, block, bh, 1);
1882                         if (err)
1883                                 break;
1884                         if (buffer_new(bh)) {
1885                                 unmap_underlying_metadata(bh->b_bdev,
1886                                                         bh->b_blocknr);
1887                                 if (PageUptodate(page)) {
1888                                         clear_buffer_new(bh);
1889                                         set_buffer_uptodate(bh);
1890                                         mark_buffer_dirty(bh);
1891                                         continue;
1892                                 }
1893                                 if (block_end > to || block_start < from)
1894                                         zero_user_segments(page,
1895                                                 to, block_end,
1896                                                 block_start, from);
1897                                 continue;
1898                         }
1899                 }
1900                 if (PageUptodate(page)) {
1901                         if (!buffer_uptodate(bh))
1902                                 set_buffer_uptodate(bh);
1903                         continue; 
1904                 }
1905                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1906                     !buffer_unwritten(bh) &&
1907                      (block_start < from || block_end > to)) {
1908                         ll_rw_block(READ, 1, &bh);
1909                         *wait_bh++=bh;
1910                 }
1911         }
1912         /*
1913          * If we issued read requests - let them complete.
1914          */
1915         while(wait_bh > wait) {
1916                 wait_on_buffer(*--wait_bh);
1917                 if (!buffer_uptodate(*wait_bh))
1918                         err = -EIO;
1919         }
1920         if (unlikely(err)) {
1921                 page_zero_new_buffers(page, from, to);
1922                 ClearPageUptodate(page);
1923         }
1924         return err;
1925 }
1926 EXPORT_SYMBOL(__block_write_begin);
1927
1928 static int __block_commit_write(struct inode *inode, struct page *page,
1929                 unsigned from, unsigned to)
1930 {
1931         unsigned block_start, block_end;
1932         int partial = 0;
1933         unsigned blocksize;
1934         struct buffer_head *bh, *head;
1935
1936         blocksize = 1 << inode->i_blkbits;
1937
1938         for(bh = head = page_buffers(page), block_start = 0;
1939             bh != head || !block_start;
1940             block_start=block_end, bh = bh->b_this_page) {
1941                 block_end = block_start + blocksize;
1942                 if (block_end <= from || block_start >= to) {
1943                         if (!buffer_uptodate(bh))
1944                                 partial = 1;
1945                 } else {
1946                         set_buffer_uptodate(bh);
1947                         mark_buffer_dirty(bh);
1948                 }
1949                 clear_buffer_new(bh);
1950         }
1951
1952         /*
1953          * If this is a partial write which happened to make all buffers
1954          * uptodate then we can optimize away a bogus readpage() for
1955          * the next read(). Here we 'discover' whether the page went
1956          * uptodate as a result of this (potentially partial) write.
1957          */
1958         if (!partial)
1959                 SetPageUptodate(page);
1960         return 0;
1961 }
1962
1963 /*
1964  * block_write_begin takes care of the basic task of block allocation and
1965  * bringing partial write blocks uptodate first.
1966  *
1967  * The filesystem needs to handle block truncation upon failure.
1968  */
1969 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1970                 unsigned flags, struct page **pagep, get_block_t *get_block)
1971 {
1972         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1973         struct page *page;
1974         int status;
1975
1976         page = grab_cache_page_write_begin(mapping, index, flags);
1977         if (!page)
1978                 return -ENOMEM;
1979
1980         status = __block_write_begin(page, pos, len, get_block);
1981         if (unlikely(status)) {
1982                 unlock_page(page);
1983                 page_cache_release(page);
1984                 page = NULL;
1985         }
1986
1987         *pagep = page;
1988         return status;
1989 }
1990 EXPORT_SYMBOL(block_write_begin);
1991
1992 int block_write_end(struct file *file, struct address_space *mapping,
1993                         loff_t pos, unsigned len, unsigned copied,
1994                         struct page *page, void *fsdata)
1995 {
1996         struct inode *inode = mapping->host;
1997         unsigned start;
1998
1999         start = pos & (PAGE_CACHE_SIZE - 1);
2000
2001         if (unlikely(copied < len)) {
2002                 /*
2003                  * The buffers that were written will now be uptodate, so we
2004                  * don't have to worry about a readpage reading them and
2005                  * overwriting a partial write. However if we have encountered
2006                  * a short write and only partially written into a buffer, it
2007                  * will not be marked uptodate, so a readpage might come in and
2008                  * destroy our partial write.
2009                  *
2010                  * Do the simplest thing, and just treat any short write to a
2011                  * non uptodate page as a zero-length write, and force the
2012                  * caller to redo the whole thing.
2013                  */
2014                 if (!PageUptodate(page))
2015                         copied = 0;
2016
2017                 page_zero_new_buffers(page, start+copied, start+len);
2018         }
2019         flush_dcache_page(page);
2020
2021         /* This could be a short (even 0-length) commit */
2022         __block_commit_write(inode, page, start, start+copied);
2023
2024         return copied;
2025 }
2026 EXPORT_SYMBOL(block_write_end);
2027
2028 int generic_write_end(struct file *file, struct address_space *mapping,
2029                         loff_t pos, unsigned len, unsigned copied,
2030                         struct page *page, void *fsdata)
2031 {
2032         struct inode *inode = mapping->host;
2033         int i_size_changed = 0;
2034
2035         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2036
2037         /*
2038          * No need to use i_size_read() here, the i_size
2039          * cannot change under us because we hold i_mutex.
2040          *
2041          * But it's important to update i_size while still holding page lock:
2042          * page writeout could otherwise come in and zero beyond i_size.
2043          */
2044         if (pos+copied > inode->i_size) {
2045                 i_size_write(inode, pos+copied);
2046                 i_size_changed = 1;
2047         }
2048
2049         unlock_page(page);
2050         page_cache_release(page);
2051
2052         /*
2053          * Don't mark the inode dirty under page lock. First, it unnecessarily
2054          * makes the holding time of page lock longer. Second, it forces lock
2055          * ordering of page lock and transaction start for journaling
2056          * filesystems.
2057          */
2058         if (i_size_changed)
2059                 mark_inode_dirty(inode);
2060
2061         return copied;
2062 }
2063 EXPORT_SYMBOL(generic_write_end);
2064
2065 /*
2066  * block_is_partially_uptodate checks whether buffers within a page are
2067  * uptodate or not.
2068  *
2069  * Returns true if all buffers which correspond to a file portion
2070  * we want to read are uptodate.
2071  */
2072 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2073                                         unsigned long from)
2074 {
2075         struct inode *inode = page->mapping->host;
2076         unsigned block_start, block_end, blocksize;
2077         unsigned to;
2078         struct buffer_head *bh, *head;
2079         int ret = 1;
2080
2081         if (!page_has_buffers(page))
2082                 return 0;
2083
2084         blocksize = 1 << inode->i_blkbits;
2085         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2086         to = from + to;
2087         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2088                 return 0;
2089
2090         head = page_buffers(page);
2091         bh = head;
2092         block_start = 0;
2093         do {
2094                 block_end = block_start + blocksize;
2095                 if (block_end > from && block_start < to) {
2096                         if (!buffer_uptodate(bh)) {
2097                                 ret = 0;
2098                                 break;
2099                         }
2100                         if (block_end >= to)
2101                                 break;
2102                 }
2103                 block_start = block_end;
2104                 bh = bh->b_this_page;
2105         } while (bh != head);
2106
2107         return ret;
2108 }
2109 EXPORT_SYMBOL(block_is_partially_uptodate);
2110
2111 /*
2112  * Generic "read page" function for block devices that have the normal
2113  * get_block functionality. This is most of the block device filesystems.
2114  * Reads the page asynchronously --- the unlock_buffer() and
2115  * set/clear_buffer_uptodate() functions propagate buffer state into the
2116  * page struct once IO has completed.
2117  */
2118 int block_read_full_page(struct page *page, get_block_t *get_block)
2119 {
2120         struct inode *inode = page->mapping->host;
2121         sector_t iblock, lblock;
2122         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2123         unsigned int blocksize;
2124         int nr, i;
2125         int fully_mapped = 1;
2126
2127         BUG_ON(!PageLocked(page));
2128         blocksize = 1 << inode->i_blkbits;
2129         if (!page_has_buffers(page))
2130                 create_empty_buffers(page, blocksize, 0);
2131         head = page_buffers(page);
2132
2133         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2134         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2135         bh = head;
2136         nr = 0;
2137         i = 0;
2138
2139         do {
2140                 if (buffer_uptodate(bh))
2141                         continue;
2142
2143                 if (!buffer_mapped(bh)) {
2144                         int err = 0;
2145
2146                         fully_mapped = 0;
2147                         if (iblock < lblock) {
2148                                 WARN_ON(bh->b_size != blocksize);
2149                                 err = get_block(inode, iblock, bh, 0);
2150                                 if (err)
2151                                         SetPageError(page);
2152                         }
2153                         if (!buffer_mapped(bh)) {
2154                                 zero_user(page, i * blocksize, blocksize);
2155                                 if (!err)
2156                                         set_buffer_uptodate(bh);
2157                                 continue;
2158                         }
2159                         /*
2160                          * get_block() might have updated the buffer
2161                          * synchronously
2162                          */
2163                         if (buffer_uptodate(bh))
2164                                 continue;
2165                 }
2166                 arr[nr++] = bh;
2167         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2168
2169         if (fully_mapped)
2170                 SetPageMappedToDisk(page);
2171
2172         if (!nr) {
2173                 /*
2174                  * All buffers are uptodate - we can set the page uptodate
2175                  * as well. But not if get_block() returned an error.
2176                  */
2177                 if (!PageError(page))
2178                         SetPageUptodate(page);
2179                 unlock_page(page);
2180                 return 0;
2181         }
2182
2183         /* Stage two: lock the buffers */
2184         for (i = 0; i < nr; i++) {
2185                 bh = arr[i];
2186                 lock_buffer(bh);
2187                 mark_buffer_async_read(bh);
2188         }
2189
2190         /*
2191          * Stage 3: start the IO.  Check for uptodateness
2192          * inside the buffer lock in case another process reading
2193          * the underlying blockdev brought it uptodate (the sct fix).
2194          */
2195         for (i = 0; i < nr; i++) {
2196                 bh = arr[i];
2197                 if (buffer_uptodate(bh))
2198                         end_buffer_async_read(bh, 1);
2199                 else
2200                         submit_bh(READ, bh);
2201         }
2202         return 0;
2203 }
2204 EXPORT_SYMBOL(block_read_full_page);
2205
2206 /* utility function for filesystems that need to do work on expanding
2207  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2208  * deal with the hole.  
2209  */
2210 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2211 {
2212         struct address_space *mapping = inode->i_mapping;
2213         struct page *page;
2214         void *fsdata;
2215         int err;
2216
2217         err = inode_newsize_ok(inode, size);
2218         if (err)
2219                 goto out;
2220
2221         err = pagecache_write_begin(NULL, mapping, size, 0,
2222                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2223                                 &page, &fsdata);
2224         if (err)
2225                 goto out;
2226
2227         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2228         BUG_ON(err > 0);
2229
2230 out:
2231         return err;
2232 }
2233 EXPORT_SYMBOL(generic_cont_expand_simple);
2234
2235 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2236                             loff_t pos, loff_t *bytes)
2237 {
2238         struct inode *inode = mapping->host;
2239         unsigned blocksize = 1 << inode->i_blkbits;
2240         struct page *page;
2241         void *fsdata;
2242         pgoff_t index, curidx;
2243         loff_t curpos;
2244         unsigned zerofrom, offset, len;
2245         int err = 0;
2246
2247         index = pos >> PAGE_CACHE_SHIFT;
2248         offset = pos & ~PAGE_CACHE_MASK;
2249
2250         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2251                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2252                 if (zerofrom & (blocksize-1)) {
2253                         *bytes |= (blocksize-1);
2254                         (*bytes)++;
2255                 }
2256                 len = PAGE_CACHE_SIZE - zerofrom;
2257
2258                 err = pagecache_write_begin(file, mapping, curpos, len,
2259                                                 AOP_FLAG_UNINTERRUPTIBLE,
2260                                                 &page, &fsdata);
2261                 if (err)
2262                         goto out;
2263                 zero_user(page, zerofrom, len);
2264                 err = pagecache_write_end(file, mapping, curpos, len, len,
2265                                                 page, fsdata);
2266                 if (err < 0)
2267                         goto out;
2268                 BUG_ON(err != len);
2269                 err = 0;
2270
2271                 balance_dirty_pages_ratelimited(mapping);
2272         }
2273
2274         /* page covers the boundary, find the boundary offset */
2275         if (index == curidx) {
2276                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2277                 /* if we will expand the thing last block will be filled */
2278                 if (offset <= zerofrom) {
2279                         goto out;
2280                 }
2281                 if (zerofrom & (blocksize-1)) {
2282                         *bytes |= (blocksize-1);
2283                         (*bytes)++;
2284                 }
2285                 len = offset - zerofrom;
2286
2287                 err = pagecache_write_begin(file, mapping, curpos, len,
2288                                                 AOP_FLAG_UNINTERRUPTIBLE,
2289                                                 &page, &fsdata);
2290                 if (err)
2291                         goto out;
2292                 zero_user(page, zerofrom, len);
2293                 err = pagecache_write_end(file, mapping, curpos, len, len,
2294                                                 page, fsdata);
2295                 if (err < 0)
2296                         goto out;
2297                 BUG_ON(err != len);
2298                 err = 0;
2299         }
2300 out:
2301         return err;
2302 }
2303
2304 /*
2305  * For moronic filesystems that do not allow holes in file.
2306  * We may have to extend the file.
2307  */
2308 int cont_write_begin(struct file *file, struct address_space *mapping,
2309                         loff_t pos, unsigned len, unsigned flags,
2310                         struct page **pagep, void **fsdata,
2311                         get_block_t *get_block, loff_t *bytes)
2312 {
2313         struct inode *inode = mapping->host;
2314         unsigned blocksize = 1 << inode->i_blkbits;
2315         unsigned zerofrom;
2316         int err;
2317
2318         err = cont_expand_zero(file, mapping, pos, bytes);
2319         if (err)
2320                 return err;
2321
2322         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2323         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2324                 *bytes |= (blocksize-1);
2325                 (*bytes)++;
2326         }
2327
2328         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2329 }
2330 EXPORT_SYMBOL(cont_write_begin);
2331
2332 int block_commit_write(struct page *page, unsigned from, unsigned to)
2333 {
2334         struct inode *inode = page->mapping->host;
2335         __block_commit_write(inode,page,from,to);
2336         return 0;
2337 }
2338 EXPORT_SYMBOL(block_commit_write);
2339
2340 /*
2341  * block_page_mkwrite() is not allowed to change the file size as it gets
2342  * called from a page fault handler when a page is first dirtied. Hence we must
2343  * be careful to check for EOF conditions here. We set the page up correctly
2344  * for a written page which means we get ENOSPC checking when writing into
2345  * holes and correct delalloc and unwritten extent mapping on filesystems that
2346  * support these features.
2347  *
2348  * We are not allowed to take the i_mutex here so we have to play games to
2349  * protect against truncate races as the page could now be beyond EOF.  Because
2350  * truncate writes the inode size before removing pages, once we have the
2351  * page lock we can determine safely if the page is beyond EOF. If it is not
2352  * beyond EOF, then the page is guaranteed safe against truncation until we
2353  * unlock the page.
2354  */
2355 int
2356 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2357                    get_block_t get_block)
2358 {
2359         struct page *page = vmf->page;
2360         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2361         unsigned long end;
2362         loff_t size;
2363         int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2364
2365         lock_page(page);
2366         size = i_size_read(inode);
2367         if ((page->mapping != inode->i_mapping) ||
2368             (page_offset(page) > size)) {
2369                 /* page got truncated out from underneath us */
2370                 unlock_page(page);
2371                 goto out;
2372         }
2373
2374         /* page is wholly or partially inside EOF */
2375         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2376                 end = size & ~PAGE_CACHE_MASK;
2377         else
2378                 end = PAGE_CACHE_SIZE;
2379
2380         ret = __block_write_begin(page, 0, end, get_block);
2381         if (!ret)
2382                 ret = block_commit_write(page, 0, end);
2383
2384         if (unlikely(ret)) {
2385                 unlock_page(page);
2386                 if (ret == -ENOMEM)
2387                         ret = VM_FAULT_OOM;
2388                 else /* -ENOSPC, -EIO, etc */
2389                         ret = VM_FAULT_SIGBUS;
2390         } else
2391                 ret = VM_FAULT_LOCKED;
2392
2393 out:
2394         return ret;
2395 }
2396 EXPORT_SYMBOL(block_page_mkwrite);
2397
2398 /*
2399  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2400  * immediately, while under the page lock.  So it needs a special end_io
2401  * handler which does not touch the bh after unlocking it.
2402  */
2403 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2404 {
2405         __end_buffer_read_notouch(bh, uptodate);
2406 }
2407
2408 /*
2409  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2410  * the page (converting it to circular linked list and taking care of page
2411  * dirty races).
2412  */
2413 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2414 {
2415         struct buffer_head *bh;
2416
2417         BUG_ON(!PageLocked(page));
2418
2419         spin_lock(&page->mapping->private_lock);
2420         bh = head;
2421         do {
2422                 if (PageDirty(page))
2423                         set_buffer_dirty(bh);
2424                 if (!bh->b_this_page)
2425                         bh->b_this_page = head;
2426                 bh = bh->b_this_page;
2427         } while (bh != head);
2428         attach_page_buffers(page, head);
2429         spin_unlock(&page->mapping->private_lock);
2430 }
2431
2432 /*
2433  * On entry, the page is fully not uptodate.
2434  * On exit the page is fully uptodate in the areas outside (from,to)
2435  * The filesystem needs to handle block truncation upon failure.
2436  */
2437 int nobh_write_begin(struct address_space *mapping,
2438                         loff_t pos, unsigned len, unsigned flags,
2439                         struct page **pagep, void **fsdata,
2440                         get_block_t *get_block)
2441 {
2442         struct inode *inode = mapping->host;
2443         const unsigned blkbits = inode->i_blkbits;
2444         const unsigned blocksize = 1 << blkbits;
2445         struct buffer_head *head, *bh;
2446         struct page *page;
2447         pgoff_t index;
2448         unsigned from, to;
2449         unsigned block_in_page;
2450         unsigned block_start, block_end;
2451         sector_t block_in_file;
2452         int nr_reads = 0;
2453         int ret = 0;
2454         int is_mapped_to_disk = 1;
2455
2456         index = pos >> PAGE_CACHE_SHIFT;
2457         from = pos & (PAGE_CACHE_SIZE - 1);
2458         to = from + len;
2459
2460         page = grab_cache_page_write_begin(mapping, index, flags);
2461         if (!page)
2462                 return -ENOMEM;
2463         *pagep = page;
2464         *fsdata = NULL;
2465
2466         if (page_has_buffers(page)) {
2467                 ret = __block_write_begin(page, pos, len, get_block);
2468                 if (unlikely(ret))
2469                         goto out_release;
2470                 return ret;
2471         }
2472
2473         if (PageMappedToDisk(page))
2474                 return 0;
2475
2476         /*
2477          * Allocate buffers so that we can keep track of state, and potentially
2478          * attach them to the page if an error occurs. In the common case of
2479          * no error, they will just be freed again without ever being attached
2480          * to the page (which is all OK, because we're under the page lock).
2481          *
2482          * Be careful: the buffer linked list is a NULL terminated one, rather
2483          * than the circular one we're used to.
2484          */
2485         head = alloc_page_buffers(page, blocksize, 0);
2486         if (!head) {
2487                 ret = -ENOMEM;
2488                 goto out_release;
2489         }
2490
2491         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2492
2493         /*
2494          * We loop across all blocks in the page, whether or not they are
2495          * part of the affected region.  This is so we can discover if the
2496          * page is fully mapped-to-disk.
2497          */
2498         for (block_start = 0, block_in_page = 0, bh = head;
2499                   block_start < PAGE_CACHE_SIZE;
2500                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2501                 int create;
2502
2503                 block_end = block_start + blocksize;
2504                 bh->b_state = 0;
2505                 create = 1;
2506                 if (block_start >= to)
2507                         create = 0;
2508                 ret = get_block(inode, block_in_file + block_in_page,
2509                                         bh, create);
2510                 if (ret)
2511                         goto failed;
2512                 if (!buffer_mapped(bh))
2513                         is_mapped_to_disk = 0;
2514                 if (buffer_new(bh))
2515                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2516                 if (PageUptodate(page)) {
2517                         set_buffer_uptodate(bh);
2518                         continue;
2519                 }
2520                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2521                         zero_user_segments(page, block_start, from,
2522                                                         to, block_end);
2523                         continue;
2524                 }
2525                 if (buffer_uptodate(bh))
2526                         continue;       /* reiserfs does this */
2527                 if (block_start < from || block_end > to) {
2528                         lock_buffer(bh);
2529                         bh->b_end_io = end_buffer_read_nobh;
2530                         submit_bh(READ, bh);
2531                         nr_reads++;
2532                 }
2533         }
2534
2535         if (nr_reads) {
2536                 /*
2537                  * The page is locked, so these buffers are protected from
2538                  * any VM or truncate activity.  Hence we don't need to care
2539                  * for the buffer_head refcounts.
2540                  */
2541                 for (bh = head; bh; bh = bh->b_this_page) {
2542                         wait_on_buffer(bh);
2543                         if (!buffer_uptodate(bh))
2544                                 ret = -EIO;
2545                 }
2546                 if (ret)
2547                         goto failed;
2548         }
2549
2550         if (is_mapped_to_disk)
2551                 SetPageMappedToDisk(page);
2552
2553         *fsdata = head; /* to be released by nobh_write_end */
2554
2555         return 0;
2556
2557 failed:
2558         BUG_ON(!ret);
2559         /*
2560          * Error recovery is a bit difficult. We need to zero out blocks that
2561          * were newly allocated, and dirty them to ensure they get written out.
2562          * Buffers need to be attached to the page at this point, otherwise
2563          * the handling of potential IO errors during writeout would be hard
2564          * (could try doing synchronous writeout, but what if that fails too?)
2565          */
2566         attach_nobh_buffers(page, head);
2567         page_zero_new_buffers(page, from, to);
2568
2569 out_release:
2570         unlock_page(page);
2571         page_cache_release(page);
2572         *pagep = NULL;
2573
2574         return ret;
2575 }
2576 EXPORT_SYMBOL(nobh_write_begin);
2577
2578 int nobh_write_end(struct file *file, struct address_space *mapping,
2579                         loff_t pos, unsigned len, unsigned copied,
2580                         struct page *page, void *fsdata)
2581 {
2582         struct inode *inode = page->mapping->host;
2583         struct buffer_head *head = fsdata;
2584         struct buffer_head *bh;
2585         BUG_ON(fsdata != NULL && page_has_buffers(page));
2586
2587         if (unlikely(copied < len) && head)
2588                 attach_nobh_buffers(page, head);
2589         if (page_has_buffers(page))
2590                 return generic_write_end(file, mapping, pos, len,
2591                                         copied, page, fsdata);
2592
2593         SetPageUptodate(page);
2594         set_page_dirty(page);
2595         if (pos+copied > inode->i_size) {
2596                 i_size_write(inode, pos+copied);
2597                 mark_inode_dirty(inode);
2598         }
2599
2600         unlock_page(page);
2601         page_cache_release(page);
2602
2603         while (head) {
2604                 bh = head;
2605                 head = head->b_this_page;
2606                 free_buffer_head(bh);
2607         }
2608
2609         return copied;
2610 }
2611 EXPORT_SYMBOL(nobh_write_end);
2612
2613 /*
2614  * nobh_writepage() - based on block_full_write_page() except
2615  * that it tries to operate without attaching bufferheads to
2616  * the page.
2617  */
2618 int nobh_writepage(struct page *page, get_block_t *get_block,
2619                         struct writeback_control *wbc)
2620 {
2621         struct inode * const inode = page->mapping->host;
2622         loff_t i_size = i_size_read(inode);
2623         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2624         unsigned offset;
2625         int ret;
2626
2627         /* Is the page fully inside i_size? */
2628         if (page->index < end_index)
2629                 goto out;
2630
2631         /* Is the page fully outside i_size? (truncate in progress) */
2632         offset = i_size & (PAGE_CACHE_SIZE-1);
2633         if (page->index >= end_index+1 || !offset) {
2634                 /*
2635                  * The page may have dirty, unmapped buffers.  For example,
2636                  * they may have been added in ext3_writepage().  Make them
2637                  * freeable here, so the page does not leak.
2638                  */
2639 #if 0
2640                 /* Not really sure about this  - do we need this ? */
2641                 if (page->mapping->a_ops->invalidatepage)
2642                         page->mapping->a_ops->invalidatepage(page, offset);
2643 #endif
2644                 unlock_page(page);
2645                 return 0; /* don't care */
2646         }
2647
2648         /*
2649          * The page straddles i_size.  It must be zeroed out on each and every
2650          * writepage invocation because it may be mmapped.  "A file is mapped
2651          * in multiples of the page size.  For a file that is not a multiple of
2652          * the  page size, the remaining memory is zeroed when mapped, and
2653          * writes to that region are not written out to the file."
2654          */
2655         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2656 out:
2657         ret = mpage_writepage(page, get_block, wbc);
2658         if (ret == -EAGAIN)
2659                 ret = __block_write_full_page(inode, page, get_block, wbc,
2660                                               end_buffer_async_write);
2661         return ret;
2662 }
2663 EXPORT_SYMBOL(nobh_writepage);
2664
2665 int nobh_truncate_page(struct address_space *mapping,
2666                         loff_t from, get_block_t *get_block)
2667 {
2668         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2669         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2670         unsigned blocksize;
2671         sector_t iblock;
2672         unsigned length, pos;
2673         struct inode *inode = mapping->host;
2674         struct page *page;
2675         struct buffer_head map_bh;
2676         int err;
2677
2678         blocksize = 1 << inode->i_blkbits;
2679         length = offset & (blocksize - 1);
2680
2681         /* Block boundary? Nothing to do */
2682         if (!length)
2683                 return 0;
2684
2685         length = blocksize - length;
2686         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2687
2688         page = grab_cache_page(mapping, index);
2689         err = -ENOMEM;
2690         if (!page)
2691                 goto out;
2692
2693         if (page_has_buffers(page)) {
2694 has_buffers:
2695                 unlock_page(page);
2696                 page_cache_release(page);
2697                 return block_truncate_page(mapping, from, get_block);
2698         }
2699
2700         /* Find the buffer that contains "offset" */
2701         pos = blocksize;
2702         while (offset >= pos) {
2703                 iblock++;
2704                 pos += blocksize;
2705         }
2706
2707         map_bh.b_size = blocksize;
2708         map_bh.b_state = 0;
2709         err = get_block(inode, iblock, &map_bh, 0);
2710         if (err)
2711                 goto unlock;
2712         /* unmapped? It's a hole - nothing to do */
2713         if (!buffer_mapped(&map_bh))
2714                 goto unlock;
2715
2716         /* Ok, it's mapped. Make sure it's up-to-date */
2717         if (!PageUptodate(page)) {
2718                 err = mapping->a_ops->readpage(NULL, page);
2719                 if (err) {
2720                         page_cache_release(page);
2721                         goto out;
2722                 }
2723                 lock_page(page);
2724                 if (!PageUptodate(page)) {
2725                         err = -EIO;
2726                         goto unlock;
2727                 }
2728                 if (page_has_buffers(page))
2729                         goto has_buffers;
2730         }
2731         zero_user(page, offset, length);
2732         set_page_dirty(page);
2733         err = 0;
2734
2735 unlock:
2736         unlock_page(page);
2737         page_cache_release(page);
2738 out:
2739         return err;
2740 }
2741 EXPORT_SYMBOL(nobh_truncate_page);
2742
2743 int block_truncate_page(struct address_space *mapping,
2744                         loff_t from, get_block_t *get_block)
2745 {
2746         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2747         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2748         unsigned blocksize;
2749         sector_t iblock;
2750         unsigned length, pos;
2751         struct inode *inode = mapping->host;
2752         struct page *page;
2753         struct buffer_head *bh;
2754         int err;
2755
2756         blocksize = 1 << inode->i_blkbits;
2757         length = offset & (blocksize - 1);
2758
2759         /* Block boundary? Nothing to do */
2760         if (!length)
2761                 return 0;
2762
2763         length = blocksize - length;
2764         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2765         
2766         page = grab_cache_page(mapping, index);
2767         err = -ENOMEM;
2768         if (!page)
2769                 goto out;
2770
2771         if (!page_has_buffers(page))
2772                 create_empty_buffers(page, blocksize, 0);
2773
2774         /* Find the buffer that contains "offset" */
2775         bh = page_buffers(page);
2776         pos = blocksize;
2777         while (offset >= pos) {
2778                 bh = bh->b_this_page;
2779                 iblock++;
2780                 pos += blocksize;
2781         }
2782
2783         err = 0;
2784         if (!buffer_mapped(bh)) {
2785                 WARN_ON(bh->b_size != blocksize);
2786                 err = get_block(inode, iblock, bh, 0);
2787                 if (err)
2788                         goto unlock;
2789                 /* unmapped? It's a hole - nothing to do */
2790                 if (!buffer_mapped(bh))
2791                         goto unlock;
2792         }
2793
2794         /* Ok, it's mapped. Make sure it's up-to-date */
2795         if (PageUptodate(page))
2796                 set_buffer_uptodate(bh);
2797
2798         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2799                 err = -EIO;
2800                 ll_rw_block(READ, 1, &bh);
2801                 wait_on_buffer(bh);
2802                 /* Uhhuh. Read error. Complain and punt. */
2803                 if (!buffer_uptodate(bh))
2804                         goto unlock;
2805         }
2806
2807         zero_user(page, offset, length);
2808         mark_buffer_dirty(bh);
2809         err = 0;
2810
2811 unlock:
2812         unlock_page(page);
2813         page_cache_release(page);
2814 out:
2815         return err;
2816 }
2817 EXPORT_SYMBOL(block_truncate_page);
2818
2819 /*
2820  * The generic ->writepage function for buffer-backed address_spaces
2821  * this form passes in the end_io handler used to finish the IO.
2822  */
2823 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2824                         struct writeback_control *wbc, bh_end_io_t *handler)
2825 {
2826         struct inode * const inode = page->mapping->host;
2827         loff_t i_size = i_size_read(inode);
2828         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2829         unsigned offset;
2830
2831         /* Is the page fully inside i_size? */
2832         if (page->index < end_index)
2833                 return __block_write_full_page(inode, page, get_block, wbc,
2834                                                handler);
2835
2836         /* Is the page fully outside i_size? (truncate in progress) */
2837         offset = i_size & (PAGE_CACHE_SIZE-1);
2838         if (page->index >= end_index+1 || !offset) {
2839                 /*
2840                  * The page may have dirty, unmapped buffers.  For example,
2841                  * they may have been added in ext3_writepage().  Make them
2842                  * freeable here, so the page does not leak.
2843                  */
2844                 do_invalidatepage(page, 0);
2845                 unlock_page(page);
2846                 return 0; /* don't care */
2847         }
2848
2849         /*
2850          * The page straddles i_size.  It must be zeroed out on each and every
2851          * writepage invocation because it may be mmapped.  "A file is mapped
2852          * in multiples of the page size.  For a file that is not a multiple of
2853          * the  page size, the remaining memory is zeroed when mapped, and
2854          * writes to that region are not written out to the file."
2855          */
2856         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2857         return __block_write_full_page(inode, page, get_block, wbc, handler);
2858 }
2859 EXPORT_SYMBOL(block_write_full_page_endio);
2860
2861 /*
2862  * The generic ->writepage function for buffer-backed address_spaces
2863  */
2864 int block_write_full_page(struct page *page, get_block_t *get_block,
2865                         struct writeback_control *wbc)
2866 {
2867         return block_write_full_page_endio(page, get_block, wbc,
2868                                            end_buffer_async_write);
2869 }
2870 EXPORT_SYMBOL(block_write_full_page);
2871
2872 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2873                             get_block_t *get_block)
2874 {
2875         struct buffer_head tmp;
2876         struct inode *inode = mapping->host;
2877         tmp.b_state = 0;
2878         tmp.b_blocknr = 0;
2879         tmp.b_size = 1 << inode->i_blkbits;
2880         get_block(inode, block, &tmp, 0);
2881         return tmp.b_blocknr;
2882 }
2883 EXPORT_SYMBOL(generic_block_bmap);
2884
2885 static void end_bio_bh_io_sync(struct bio *bio, int err)
2886 {
2887         struct buffer_head *bh = bio->bi_private;
2888
2889         if (err == -EOPNOTSUPP) {
2890                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2891         }
2892
2893         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2894                 set_bit(BH_Quiet, &bh->b_state);
2895
2896         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2897         bio_put(bio);
2898 }
2899
2900 int submit_bh(int rw, struct buffer_head * bh)
2901 {
2902         struct bio *bio;
2903         int ret = 0;
2904
2905         BUG_ON(!buffer_locked(bh));
2906         BUG_ON(!buffer_mapped(bh));
2907         BUG_ON(!bh->b_end_io);
2908         BUG_ON(buffer_delay(bh));
2909         BUG_ON(buffer_unwritten(bh));
2910
2911         /*
2912          * Only clear out a write error when rewriting
2913          */
2914         if (test_set_buffer_req(bh) && (rw & WRITE))
2915                 clear_buffer_write_io_error(bh);
2916
2917         /*
2918          * from here on down, it's all bio -- do the initial mapping,
2919          * submit_bio -> generic_make_request may further map this bio around
2920          */
2921         bio = bio_alloc(GFP_NOIO, 1);
2922
2923         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2924         bio->bi_bdev = bh->b_bdev;
2925         bio->bi_io_vec[0].bv_page = bh->b_page;
2926         bio->bi_io_vec[0].bv_len = bh->b_size;
2927         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2928
2929         bio->bi_vcnt = 1;
2930         bio->bi_idx = 0;
2931         bio->bi_size = bh->b_size;
2932
2933         bio->bi_end_io = end_bio_bh_io_sync;
2934         bio->bi_private = bh;
2935
2936         bio_get(bio);
2937         submit_bio(rw, bio);
2938
2939         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2940                 ret = -EOPNOTSUPP;
2941
2942         bio_put(bio);
2943         return ret;
2944 }
2945 EXPORT_SYMBOL(submit_bh);
2946
2947 /**
2948  * ll_rw_block: low-level access to block devices (DEPRECATED)
2949  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2950  * @nr: number of &struct buffer_heads in the array
2951  * @bhs: array of pointers to &struct buffer_head
2952  *
2953  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2954  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2955  * %READA option is described in the documentation for generic_make_request()
2956  * which ll_rw_block() calls.
2957  *
2958  * This function drops any buffer that it cannot get a lock on (with the
2959  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2960  * request, and any buffer that appears to be up-to-date when doing read
2961  * request.  Further it marks as clean buffers that are processed for
2962  * writing (the buffer cache won't assume that they are actually clean
2963  * until the buffer gets unlocked).
2964  *
2965  * ll_rw_block sets b_end_io to simple completion handler that marks
2966  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2967  * any waiters. 
2968  *
2969  * All of the buffers must be for the same device, and must also be a
2970  * multiple of the current approved size for the device.
2971  */
2972 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2973 {
2974         int i;
2975
2976         for (i = 0; i < nr; i++) {
2977                 struct buffer_head *bh = bhs[i];
2978
2979                 if (!trylock_buffer(bh))
2980                         continue;
2981                 if (rw == WRITE) {
2982                         if (test_clear_buffer_dirty(bh)) {
2983                                 bh->b_end_io = end_buffer_write_sync;
2984                                 get_bh(bh);
2985                                 submit_bh(WRITE, bh);
2986                                 continue;
2987                         }
2988                 } else {
2989                         if (!buffer_uptodate(bh)) {
2990                                 bh->b_end_io = end_buffer_read_sync;
2991                                 get_bh(bh);
2992                                 submit_bh(rw, bh);
2993                                 continue;
2994                         }
2995                 }
2996                 unlock_buffer(bh);
2997         }
2998 }
2999 EXPORT_SYMBOL(ll_rw_block);
3000
3001 void write_dirty_buffer(struct buffer_head *bh, int rw)
3002 {
3003         lock_buffer(bh);
3004         if (!test_clear_buffer_dirty(bh)) {
3005                 unlock_buffer(bh);
3006                 return;
3007         }
3008         bh->b_end_io = end_buffer_write_sync;
3009         get_bh(bh);
3010         submit_bh(rw, bh);
3011 }
3012 EXPORT_SYMBOL(write_dirty_buffer);
3013
3014 /*
3015  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3016  * and then start new I/O and then wait upon it.  The caller must have a ref on
3017  * the buffer_head.
3018  */
3019 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3020 {
3021         int ret = 0;
3022
3023         WARN_ON(atomic_read(&bh->b_count) < 1);
3024         lock_buffer(bh);
3025         if (test_clear_buffer_dirty(bh)) {
3026                 get_bh(bh);
3027                 bh->b_end_io = end_buffer_write_sync;
3028                 ret = submit_bh(rw, bh);
3029                 wait_on_buffer(bh);
3030                 if (!ret && !buffer_uptodate(bh))
3031                         ret = -EIO;
3032         } else {
3033                 unlock_buffer(bh);
3034         }
3035         return ret;
3036 }
3037 EXPORT_SYMBOL(__sync_dirty_buffer);
3038
3039 int sync_dirty_buffer(struct buffer_head *bh)
3040 {
3041         return __sync_dirty_buffer(bh, WRITE_SYNC);
3042 }
3043 EXPORT_SYMBOL(sync_dirty_buffer);
3044
3045 /*
3046  * try_to_free_buffers() checks if all the buffers on this particular page
3047  * are unused, and releases them if so.
3048  *
3049  * Exclusion against try_to_free_buffers may be obtained by either
3050  * locking the page or by holding its mapping's private_lock.
3051  *
3052  * If the page is dirty but all the buffers are clean then we need to
3053  * be sure to mark the page clean as well.  This is because the page
3054  * may be against a block device, and a later reattachment of buffers
3055  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3056  * filesystem data on the same device.
3057  *
3058  * The same applies to regular filesystem pages: if all the buffers are
3059  * clean then we set the page clean and proceed.  To do that, we require
3060  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3061  * private_lock.
3062  *
3063  * try_to_free_buffers() is non-blocking.
3064  */
3065 static inline int buffer_busy(struct buffer_head *bh)
3066 {
3067         return atomic_read(&bh->b_count) |
3068                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3069 }
3070
3071 static int
3072 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3073 {
3074         struct buffer_head *head = page_buffers(page);
3075         struct buffer_head *bh;
3076
3077         bh = head;
3078         do {
3079                 if (buffer_write_io_error(bh) && page->mapping)
3080                         set_bit(AS_EIO, &page->mapping->flags);
3081                 if (buffer_busy(bh))
3082                         goto failed;
3083                 bh = bh->b_this_page;
3084         } while (bh != head);
3085
3086         do {
3087                 struct buffer_head *next = bh->b_this_page;
3088
3089                 if (bh->b_assoc_map)
3090                         __remove_assoc_queue(bh);
3091                 bh = next;
3092         } while (bh != head);
3093         *buffers_to_free = head;
3094         __clear_page_buffers(page);
3095         return 1;
3096 failed:
3097         return 0;
3098 }
3099
3100 int try_to_free_buffers(struct page *page)
3101 {
3102         struct address_space * const mapping = page->mapping;
3103         struct buffer_head *buffers_to_free = NULL;
3104         int ret = 0;
3105
3106         BUG_ON(!PageLocked(page));
3107         if (PageWriteback(page))
3108                 return 0;
3109
3110         if (mapping == NULL) {          /* can this still happen? */
3111                 ret = drop_buffers(page, &buffers_to_free);
3112                 goto out;
3113         }
3114
3115         spin_lock(&mapping->private_lock);
3116         ret = drop_buffers(page, &buffers_to_free);
3117
3118         /*
3119          * If the filesystem writes its buffers by hand (eg ext3)
3120          * then we can have clean buffers against a dirty page.  We
3121          * clean the page here; otherwise the VM will never notice
3122          * that the filesystem did any IO at all.
3123          *
3124          * Also, during truncate, discard_buffer will have marked all
3125          * the page's buffers clean.  We discover that here and clean
3126          * the page also.
3127          *
3128          * private_lock must be held over this entire operation in order
3129          * to synchronise against __set_page_dirty_buffers and prevent the
3130          * dirty bit from being lost.
3131          */
3132         if (ret)
3133                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3134         spin_unlock(&mapping->private_lock);
3135 out:
3136         if (buffers_to_free) {
3137                 struct buffer_head *bh = buffers_to_free;
3138
3139                 do {
3140                         struct buffer_head *next = bh->b_this_page;
3141                         free_buffer_head(bh);
3142                         bh = next;
3143                 } while (bh != buffers_to_free);
3144         }
3145         return ret;
3146 }
3147 EXPORT_SYMBOL(try_to_free_buffers);
3148
3149 void block_sync_page(struct page *page)
3150 {
3151         struct address_space *mapping;
3152
3153         smp_mb();
3154         mapping = page_mapping(page);
3155         if (mapping)
3156                 blk_run_backing_dev(mapping->backing_dev_info, page);
3157 }
3158 EXPORT_SYMBOL(block_sync_page);
3159
3160 /*
3161  * There are no bdflush tunables left.  But distributions are
3162  * still running obsolete flush daemons, so we terminate them here.
3163  *
3164  * Use of bdflush() is deprecated and will be removed in a future kernel.
3165  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3166  */
3167 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3168 {
3169         static int msg_count;
3170
3171         if (!capable(CAP_SYS_ADMIN))
3172                 return -EPERM;
3173
3174         if (msg_count < 5) {
3175                 msg_count++;
3176                 printk(KERN_INFO
3177                         "warning: process `%s' used the obsolete bdflush"
3178                         " system call\n", current->comm);
3179                 printk(KERN_INFO "Fix your initscripts?\n");
3180         }
3181
3182         if (func == 1)
3183                 do_exit(0);
3184         return 0;
3185 }
3186
3187 /*
3188  * Buffer-head allocation
3189  */
3190 static struct kmem_cache *bh_cachep;
3191
3192 /*
3193  * Once the number of bh's in the machine exceeds this level, we start
3194  * stripping them in writeback.
3195  */
3196 static int max_buffer_heads;
3197
3198 int buffer_heads_over_limit;
3199
3200 struct bh_accounting {
3201         int nr;                 /* Number of live bh's */
3202         int ratelimit;          /* Limit cacheline bouncing */
3203 };
3204
3205 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3206
3207 static void recalc_bh_state(void)
3208 {
3209         int i;
3210         int tot = 0;
3211
3212         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3213                 return;
3214         __get_cpu_var(bh_accounting).ratelimit = 0;
3215         for_each_online_cpu(i)
3216                 tot += per_cpu(bh_accounting, i).nr;
3217         buffer_heads_over_limit = (tot > max_buffer_heads);
3218 }
3219         
3220 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3221 {
3222         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3223         if (ret) {
3224                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3225                 get_cpu_var(bh_accounting).nr++;
3226                 recalc_bh_state();
3227                 put_cpu_var(bh_accounting);
3228         }
3229         return ret;
3230 }
3231 EXPORT_SYMBOL(alloc_buffer_head);
3232
3233 void free_buffer_head(struct buffer_head *bh)
3234 {
3235         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3236         kmem_cache_free(bh_cachep, bh);
3237         get_cpu_var(bh_accounting).nr--;
3238         recalc_bh_state();
3239         put_cpu_var(bh_accounting);
3240 }
3241 EXPORT_SYMBOL(free_buffer_head);
3242
3243 static void buffer_exit_cpu(int cpu)
3244 {
3245         int i;
3246         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3247
3248         for (i = 0; i < BH_LRU_SIZE; i++) {
3249                 brelse(b->bhs[i]);
3250                 b->bhs[i] = NULL;
3251         }
3252         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3253         per_cpu(bh_accounting, cpu).nr = 0;
3254         put_cpu_var(bh_accounting);
3255 }
3256
3257 static int buffer_cpu_notify(struct notifier_block *self,
3258                               unsigned long action, void *hcpu)
3259 {
3260         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3261                 buffer_exit_cpu((unsigned long)hcpu);
3262         return NOTIFY_OK;
3263 }
3264
3265 /**
3266  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3267  * @bh: struct buffer_head
3268  *
3269  * Return true if the buffer is up-to-date and false,
3270  * with the buffer locked, if not.
3271  */
3272 int bh_uptodate_or_lock(struct buffer_head *bh)
3273 {
3274         if (!buffer_uptodate(bh)) {
3275                 lock_buffer(bh);
3276                 if (!buffer_uptodate(bh))
3277                         return 0;
3278                 unlock_buffer(bh);
3279         }
3280         return 1;
3281 }
3282 EXPORT_SYMBOL(bh_uptodate_or_lock);
3283
3284 /**
3285  * bh_submit_read - Submit a locked buffer for reading
3286  * @bh: struct buffer_head
3287  *
3288  * Returns zero on success and -EIO on error.
3289  */
3290 int bh_submit_read(struct buffer_head *bh)
3291 {
3292         BUG_ON(!buffer_locked(bh));
3293
3294         if (buffer_uptodate(bh)) {
3295                 unlock_buffer(bh);
3296                 return 0;
3297         }
3298
3299         get_bh(bh);
3300         bh->b_end_io = end_buffer_read_sync;
3301         submit_bh(READ, bh);
3302         wait_on_buffer(bh);
3303         if (buffer_uptodate(bh))
3304                 return 0;
3305         return -EIO;
3306 }
3307 EXPORT_SYMBOL(bh_submit_read);
3308
3309 void __init buffer_init(void)
3310 {
3311         int nrpages;
3312
3313         bh_cachep = kmem_cache_create("buffer_head",
3314                         sizeof(struct buffer_head), 0,
3315                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3316                                 SLAB_MEM_SPREAD),
3317                                 NULL);
3318
3319         /*
3320          * Limit the bh occupancy to 10% of ZONE_NORMAL
3321          */
3322         nrpages = (nr_free_buffer_pages() * 10) / 100;
3323         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3324         hotcpu_notifier(buffer_cpu_notify, 0);
3325 }