- Updated to 2.6.34-rc1.
[linux-flexiantxendom0-3.2.10.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36
37 #include "internal.h"
38
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags)       (0)
41 #endif
42
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len)              (addr)
45 #endif
46
47 static void unmap_region(struct mm_struct *mm,
48                 struct vm_area_struct *vma, struct vm_area_struct *prev,
49                 unsigned long start, unsigned long end);
50
51 /*
52  * WARNING: the debugging will use recursive algorithms so never enable this
53  * unless you know what you are doing.
54  */
55 #undef DEBUG_MM_RB
56
57 /* description of effects of mapping type and prot in current implementation.
58  * this is due to the limited x86 page protection hardware.  The expected
59  * behavior is in parens:
60  *
61  * map_type     prot
62  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
63  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
64  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
65  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
66  *              
67  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
68  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
69  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
70  *
71  */
72 pgprot_t protection_map[16] = {
73         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 };
76
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 {
79         return __pgprot(pgprot_val(protection_map[vm_flags &
80                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 }
83 EXPORT_SYMBOL(vm_get_page_prot);
84
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50;       /* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
89 int heap_stack_gap __read_mostly = 1;
90
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109         unsigned long free, allowed;
110
111         vm_acct_memory(pages);
112
113         /*
114          * Sometimes we want to use more memory than we have
115          */
116         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117                 return 0;
118
119         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120                 unsigned long n;
121
122                 free = global_page_state(NR_FILE_PAGES);
123                 free += nr_swap_pages;
124
125                 /*
126                  * Any slabs which are created with the
127                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128                  * which are reclaimable, under pressure.  The dentry
129                  * cache and most inode caches should fall into this
130                  */
131                 free += global_page_state(NR_SLAB_RECLAIMABLE);
132
133                 /*
134                  * Leave the last 3% for root
135                  */
136                 if (!cap_sys_admin)
137                         free -= free / 32;
138
139                 if (free > pages)
140                         return 0;
141
142                 /*
143                  * nr_free_pages() is very expensive on large systems,
144                  * only call if we're about to fail.
145                  */
146                 n = nr_free_pages();
147
148                 /*
149                  * Leave reserved pages. The pages are not for anonymous pages.
150                  */
151                 if (n <= totalreserve_pages)
152                         goto error;
153                 else
154                         n -= totalreserve_pages;
155
156                 /*
157                  * Leave the last 3% for root
158                  */
159                 if (!cap_sys_admin)
160                         n -= n / 32;
161                 free += n;
162
163                 if (free > pages)
164                         return 0;
165
166                 goto error;
167         }
168
169         allowed = (totalram_pages - hugetlb_total_pages())
170                 * sysctl_overcommit_ratio / 100;
171         /*
172          * Leave the last 3% for root
173          */
174         if (!cap_sys_admin)
175                 allowed -= allowed / 32;
176         allowed += total_swap_pages;
177
178         /* Don't let a single process grow too big:
179            leave 3% of the size of this process for other processes */
180         if (mm)
181                 allowed -= mm->total_vm / 32;
182
183         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184                 return 0;
185 error:
186         vm_unacct_memory(pages);
187
188         return -ENOMEM;
189 }
190
191 /*
192  * Requires inode->i_mapping->i_mmap_lock
193  */
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195                 struct file *file, struct address_space *mapping)
196 {
197         if (vma->vm_flags & VM_DENYWRITE)
198                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199         if (vma->vm_flags & VM_SHARED)
200                 mapping->i_mmap_writable--;
201
202         flush_dcache_mmap_lock(mapping);
203         if (unlikely(vma->vm_flags & VM_NONLINEAR))
204                 list_del_init(&vma->shared.vm_set.list);
205         else
206                 vma_prio_tree_remove(vma, &mapping->i_mmap);
207         flush_dcache_mmap_unlock(mapping);
208 }
209
210 /*
211  * Unlink a file-based vm structure from its prio_tree, to hide
212  * vma from rmap and vmtruncate before freeing its page tables.
213  */
214 void unlink_file_vma(struct vm_area_struct *vma)
215 {
216         struct file *file = vma->vm_file;
217
218         if (file) {
219                 struct address_space *mapping = file->f_mapping;
220                 spin_lock(&mapping->i_mmap_lock);
221                 __remove_shared_vm_struct(vma, file, mapping);
222                 spin_unlock(&mapping->i_mmap_lock);
223         }
224 }
225
226 /*
227  * Close a vm structure and free it, returning the next.
228  */
229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230 {
231         struct vm_area_struct *next = vma->vm_next;
232
233         might_sleep();
234         if (vma->vm_ops && vma->vm_ops->close)
235                 vma->vm_ops->close(vma);
236         if (vma->vm_file) {
237                 fput(vma->vm_file);
238                 if (vma->vm_flags & VM_EXECUTABLE)
239                         removed_exe_file_vma(vma->vm_mm);
240         }
241         mpol_put(vma_policy(vma));
242         kmem_cache_free(vm_area_cachep, vma);
243         return next;
244 }
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248         unsigned long rlim, retval;
249         unsigned long newbrk, oldbrk;
250         struct mm_struct *mm = current->mm;
251         unsigned long min_brk;
252
253         down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256         min_brk = mm->end_code;
257 #else
258         min_brk = mm->start_brk;
259 #endif
260         if (brk < min_brk)
261                 goto out;
262
263         /*
264          * Check against rlimit here. If this check is done later after the test
265          * of oldbrk with newbrk then it can escape the test and let the data
266          * segment grow beyond its set limit the in case where the limit is
267          * not page aligned -Ram Gupta
268          */
269         rlim = rlimit(RLIMIT_DATA);
270         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271                         (mm->end_data - mm->start_data) > rlim)
272                 goto out;
273
274         newbrk = PAGE_ALIGN(brk);
275         oldbrk = PAGE_ALIGN(mm->brk);
276         if (oldbrk == newbrk)
277                 goto set_brk;
278
279         /* Always allow shrinking brk. */
280         if (brk <= mm->brk) {
281                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282                         goto set_brk;
283                 goto out;
284         }
285
286         /* Check against existing mmap mappings. */
287         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288                 goto out;
289
290         /* Ok, looks good - let it rip. */
291         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292                 goto out;
293 set_brk:
294         mm->brk = brk;
295 out:
296         retval = mm->brk;
297         up_write(&mm->mmap_sem);
298         return retval;
299 }
300
301 #ifdef DEBUG_MM_RB
302 static int browse_rb(struct rb_root *root)
303 {
304         int i = 0, j;
305         struct rb_node *nd, *pn = NULL;
306         unsigned long prev = 0, pend = 0;
307
308         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309                 struct vm_area_struct *vma;
310                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311                 if (vma->vm_start < prev)
312                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313                 if (vma->vm_start < pend)
314                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315                 if (vma->vm_start > vma->vm_end)
316                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317                 i++;
318                 pn = nd;
319                 prev = vma->vm_start;
320                 pend = vma->vm_end;
321         }
322         j = 0;
323         for (nd = pn; nd; nd = rb_prev(nd)) {
324                 j++;
325         }
326         if (i != j)
327                 printk("backwards %d, forwards %d\n", j, i), i = 0;
328         return i;
329 }
330
331 void validate_mm(struct mm_struct *mm)
332 {
333         int bug = 0;
334         int i = 0;
335         struct vm_area_struct *tmp = mm->mmap;
336         while (tmp) {
337                 tmp = tmp->vm_next;
338                 i++;
339         }
340         if (i != mm->map_count)
341                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342         i = browse_rb(&mm->mm_rb);
343         if (i != mm->map_count)
344                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345         BUG_ON(bug);
346 }
347 #else
348 #define validate_mm(mm) do { } while (0)
349 #endif
350
351 static struct vm_area_struct *
352 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
354                 struct rb_node ** rb_parent)
355 {
356         struct vm_area_struct * vma;
357         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358
359         __rb_link = &mm->mm_rb.rb_node;
360         rb_prev = __rb_parent = NULL;
361         vma = NULL;
362
363         while (*__rb_link) {
364                 struct vm_area_struct *vma_tmp;
365
366                 __rb_parent = *__rb_link;
367                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368
369                 if (vma_tmp->vm_end > addr) {
370                         vma = vma_tmp;
371                         if (vma_tmp->vm_start <= addr)
372                                 break;
373                         __rb_link = &__rb_parent->rb_left;
374                 } else {
375                         rb_prev = __rb_parent;
376                         __rb_link = &__rb_parent->rb_right;
377                 }
378         }
379
380         *pprev = NULL;
381         if (rb_prev)
382                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383         *rb_link = __rb_link;
384         *rb_parent = __rb_parent;
385         return vma;
386 }
387
388 static inline void
389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390                 struct vm_area_struct *prev, struct rb_node *rb_parent)
391 {
392         if (prev) {
393                 vma->vm_next = prev->vm_next;
394                 prev->vm_next = vma;
395         } else {
396                 mm->mmap = vma;
397                 if (rb_parent)
398                         vma->vm_next = rb_entry(rb_parent,
399                                         struct vm_area_struct, vm_rb);
400                 else
401                         vma->vm_next = NULL;
402         }
403 }
404
405 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
406                 struct rb_node **rb_link, struct rb_node *rb_parent)
407 {
408         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
409         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
410 }
411
412 static void __vma_link_file(struct vm_area_struct *vma)
413 {
414         struct file *file;
415
416         file = vma->vm_file;
417         if (file) {
418                 struct address_space *mapping = file->f_mapping;
419
420                 if (vma->vm_flags & VM_DENYWRITE)
421                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
422                 if (vma->vm_flags & VM_SHARED)
423                         mapping->i_mmap_writable++;
424
425                 flush_dcache_mmap_lock(mapping);
426                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
427                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
428                 else
429                         vma_prio_tree_insert(vma, &mapping->i_mmap);
430                 flush_dcache_mmap_unlock(mapping);
431         }
432 }
433
434 static void
435 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
436         struct vm_area_struct *prev, struct rb_node **rb_link,
437         struct rb_node *rb_parent)
438 {
439         __vma_link_list(mm, vma, prev, rb_parent);
440         __vma_link_rb(mm, vma, rb_link, rb_parent);
441 }
442
443 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
444                         struct vm_area_struct *prev, struct rb_node **rb_link,
445                         struct rb_node *rb_parent)
446 {
447         struct address_space *mapping = NULL;
448
449         if (vma->vm_file)
450                 mapping = vma->vm_file->f_mapping;
451
452         if (mapping) {
453                 spin_lock(&mapping->i_mmap_lock);
454                 vma->vm_truncate_count = mapping->truncate_count;
455         }
456         anon_vma_lock(vma);
457
458         __vma_link(mm, vma, prev, rb_link, rb_parent);
459         __vma_link_file(vma);
460
461         anon_vma_unlock(vma);
462         if (mapping)
463                 spin_unlock(&mapping->i_mmap_lock);
464
465         mm->map_count++;
466         validate_mm(mm);
467 }
468
469 /*
470  * Helper for vma_adjust in the split_vma insert case:
471  * insert vm structure into list and rbtree and anon_vma,
472  * but it has already been inserted into prio_tree earlier.
473  */
474 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
475 {
476         struct vm_area_struct *__vma, *prev;
477         struct rb_node **rb_link, *rb_parent;
478
479         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
480         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
481         __vma_link(mm, vma, prev, rb_link, rb_parent);
482         mm->map_count++;
483 }
484
485 static inline void
486 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
487                 struct vm_area_struct *prev)
488 {
489         prev->vm_next = vma->vm_next;
490         rb_erase(&vma->vm_rb, &mm->mm_rb);
491         if (mm->mmap_cache == vma)
492                 mm->mmap_cache = prev;
493 }
494
495 /*
496  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
497  * is already present in an i_mmap tree without adjusting the tree.
498  * The following helper function should be used when such adjustments
499  * are necessary.  The "insert" vma (if any) is to be inserted
500  * before we drop the necessary locks.
501  */
502 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
503         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
504 {
505         struct mm_struct *mm = vma->vm_mm;
506         struct vm_area_struct *next = vma->vm_next;
507         struct vm_area_struct *importer = NULL;
508         struct address_space *mapping = NULL;
509         struct prio_tree_root *root = NULL;
510         struct file *file = vma->vm_file;
511         struct anon_vma *anon_vma = NULL;
512         long adjust_next = 0;
513         int remove_next = 0;
514
515         if (next && !insert) {
516                 if (end >= next->vm_end) {
517                         /*
518                          * vma expands, overlapping all the next, and
519                          * perhaps the one after too (mprotect case 6).
520                          */
521 again:                  remove_next = 1 + (end > next->vm_end);
522                         end = next->vm_end;
523                         anon_vma = next->anon_vma;
524                         importer = vma;
525                 } else if (end > next->vm_start) {
526                         /*
527                          * vma expands, overlapping part of the next:
528                          * mprotect case 5 shifting the boundary up.
529                          */
530                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
531                         anon_vma = next->anon_vma;
532                         importer = vma;
533                 } else if (end < vma->vm_end) {
534                         /*
535                          * vma shrinks, and !insert tells it's not
536                          * split_vma inserting another: so it must be
537                          * mprotect case 4 shifting the boundary down.
538                          */
539                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
540                         anon_vma = next->anon_vma;
541                         importer = next;
542                 }
543         }
544
545         /*
546          * When changing only vma->vm_end, we don't really need anon_vma lock.
547          */
548         if (vma->anon_vma && (insert || importer || start != vma->vm_start))
549                 anon_vma = vma->anon_vma;
550         if (anon_vma) {
551                 /*
552                  * Easily overlooked: when mprotect shifts the boundary,
553                  * make sure the expanding vma has anon_vma set if the
554                  * shrinking vma had, to cover any anon pages imported.
555                  */
556                 if (importer && !importer->anon_vma) {
557                         /* Block reverse map lookups until things are set up. */
558                         if (anon_vma_clone(importer, vma)) {
559                                 return -ENOMEM;
560                         }
561                         importer->anon_vma = anon_vma;
562                 }
563         }
564
565         if (file) {
566                 mapping = file->f_mapping;
567                 if (!(vma->vm_flags & VM_NONLINEAR))
568                         root = &mapping->i_mmap;
569                 spin_lock(&mapping->i_mmap_lock);
570                 if (importer &&
571                     vma->vm_truncate_count != next->vm_truncate_count) {
572                         /*
573                          * unmap_mapping_range might be in progress:
574                          * ensure that the expanding vma is rescanned.
575                          */
576                         importer->vm_truncate_count = 0;
577                 }
578                 if (insert) {
579                         insert->vm_truncate_count = vma->vm_truncate_count;
580                         /*
581                          * Put into prio_tree now, so instantiated pages
582                          * are visible to arm/parisc __flush_dcache_page
583                          * throughout; but we cannot insert into address
584                          * space until vma start or end is updated.
585                          */
586                         __vma_link_file(insert);
587                 }
588         }
589
590         if (root) {
591                 flush_dcache_mmap_lock(mapping);
592                 vma_prio_tree_remove(vma, root);
593                 if (adjust_next)
594                         vma_prio_tree_remove(next, root);
595         }
596
597         vma->vm_start = start;
598         vma->vm_end = end;
599         vma->vm_pgoff = pgoff;
600         if (adjust_next) {
601                 next->vm_start += adjust_next << PAGE_SHIFT;
602                 next->vm_pgoff += adjust_next;
603         }
604
605         if (root) {
606                 if (adjust_next)
607                         vma_prio_tree_insert(next, root);
608                 vma_prio_tree_insert(vma, root);
609                 flush_dcache_mmap_unlock(mapping);
610         }
611
612         if (remove_next) {
613                 /*
614                  * vma_merge has merged next into vma, and needs
615                  * us to remove next before dropping the locks.
616                  */
617                 __vma_unlink(mm, next, vma);
618                 if (file)
619                         __remove_shared_vm_struct(next, file, mapping);
620         } else if (insert) {
621                 /*
622                  * split_vma has split insert from vma, and needs
623                  * us to insert it before dropping the locks
624                  * (it may either follow vma or precede it).
625                  */
626                 __insert_vm_struct(mm, insert);
627         }
628
629         if (mapping)
630                 spin_unlock(&mapping->i_mmap_lock);
631
632         if (remove_next) {
633                 if (file) {
634                         fput(file);
635                         if (next->vm_flags & VM_EXECUTABLE)
636                                 removed_exe_file_vma(mm);
637                 }
638                 if (next->anon_vma)
639                         anon_vma_merge(vma, next);
640                 mm->map_count--;
641                 mpol_put(vma_policy(next));
642                 kmem_cache_free(vm_area_cachep, next);
643                 /*
644                  * In mprotect's case 6 (see comments on vma_merge),
645                  * we must remove another next too. It would clutter
646                  * up the code too much to do both in one go.
647                  */
648                 if (remove_next == 2) {
649                         next = vma->vm_next;
650                         goto again;
651                 }
652         }
653
654         validate_mm(mm);
655
656         return 0;
657 }
658
659 /*
660  * If the vma has a ->close operation then the driver probably needs to release
661  * per-vma resources, so we don't attempt to merge those.
662  */
663 static inline int is_mergeable_vma(struct vm_area_struct *vma,
664                         struct file *file, unsigned long vm_flags)
665 {
666         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
667         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
668                 return 0;
669         if (vma->vm_file != file)
670                 return 0;
671         if (vma->vm_ops && vma->vm_ops->close)
672                 return 0;
673         return 1;
674 }
675
676 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
677                                         struct anon_vma *anon_vma2)
678 {
679         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
680 }
681
682 /*
683  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
684  * in front of (at a lower virtual address and file offset than) the vma.
685  *
686  * We cannot merge two vmas if they have differently assigned (non-NULL)
687  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
688  *
689  * We don't check here for the merged mmap wrapping around the end of pagecache
690  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
691  * wrap, nor mmaps which cover the final page at index -1UL.
692  */
693 static int
694 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
695         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
696 {
697         if (is_mergeable_vma(vma, file, vm_flags) &&
698             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
699                 if (vma->vm_pgoff == vm_pgoff)
700                         return 1;
701         }
702         return 0;
703 }
704
705 /*
706  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
707  * beyond (at a higher virtual address and file offset than) the vma.
708  *
709  * We cannot merge two vmas if they have differently assigned (non-NULL)
710  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
711  */
712 static int
713 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
714         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
715 {
716         if (is_mergeable_vma(vma, file, vm_flags) &&
717             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
718                 pgoff_t vm_pglen;
719                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
720                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
721                         return 1;
722         }
723         return 0;
724 }
725
726 /*
727  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
728  * whether that can be merged with its predecessor or its successor.
729  * Or both (it neatly fills a hole).
730  *
731  * In most cases - when called for mmap, brk or mremap - [addr,end) is
732  * certain not to be mapped by the time vma_merge is called; but when
733  * called for mprotect, it is certain to be already mapped (either at
734  * an offset within prev, or at the start of next), and the flags of
735  * this area are about to be changed to vm_flags - and the no-change
736  * case has already been eliminated.
737  *
738  * The following mprotect cases have to be considered, where AAAA is
739  * the area passed down from mprotect_fixup, never extending beyond one
740  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
741  *
742  *     AAAA             AAAA                AAAA          AAAA
743  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
744  *    cannot merge    might become    might become    might become
745  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
746  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
747  *    mremap move:                                    PPPPNNNNNNNN 8
748  *        AAAA
749  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
750  *    might become    case 1 below    case 2 below    case 3 below
751  *
752  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
753  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
754  */
755 struct vm_area_struct *vma_merge(struct mm_struct *mm,
756                         struct vm_area_struct *prev, unsigned long addr,
757                         unsigned long end, unsigned long vm_flags,
758                         struct anon_vma *anon_vma, struct file *file,
759                         pgoff_t pgoff, struct mempolicy *policy)
760 {
761         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
762         struct vm_area_struct *area, *next;
763         int err;
764
765         /*
766          * We later require that vma->vm_flags == vm_flags,
767          * so this tests vma->vm_flags & VM_SPECIAL, too.
768          */
769         if (vm_flags & VM_SPECIAL)
770                 return NULL;
771
772         if (prev)
773                 next = prev->vm_next;
774         else
775                 next = mm->mmap;
776         area = next;
777         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
778                 next = next->vm_next;
779
780         /*
781          * Can it merge with the predecessor?
782          */
783         if (prev && prev->vm_end == addr &&
784                         mpol_equal(vma_policy(prev), policy) &&
785                         can_vma_merge_after(prev, vm_flags,
786                                                 anon_vma, file, pgoff)) {
787                 /*
788                  * OK, it can.  Can we now merge in the successor as well?
789                  */
790                 if (next && end == next->vm_start &&
791                                 mpol_equal(policy, vma_policy(next)) &&
792                                 can_vma_merge_before(next, vm_flags,
793                                         anon_vma, file, pgoff+pglen) &&
794                                 is_mergeable_anon_vma(prev->anon_vma,
795                                                       next->anon_vma)) {
796                                                         /* cases 1, 6 */
797                         err = vma_adjust(prev, prev->vm_start,
798                                 next->vm_end, prev->vm_pgoff, NULL);
799                 } else                                  /* cases 2, 5, 7 */
800                         err = vma_adjust(prev, prev->vm_start,
801                                 end, prev->vm_pgoff, NULL);
802                 if (err)
803                         return NULL;
804                 return prev;
805         }
806
807         /*
808          * Can this new request be merged in front of next?
809          */
810         if (next && end == next->vm_start &&
811                         mpol_equal(policy, vma_policy(next)) &&
812                         can_vma_merge_before(next, vm_flags,
813                                         anon_vma, file, pgoff+pglen)) {
814                 if (prev && addr < prev->vm_end)        /* case 4 */
815                         err = vma_adjust(prev, prev->vm_start,
816                                 addr, prev->vm_pgoff, NULL);
817                 else                                    /* cases 3, 8 */
818                         err = vma_adjust(area, addr, next->vm_end,
819                                 next->vm_pgoff - pglen, NULL);
820                 if (err)
821                         return NULL;
822                 return area;
823         }
824
825         return NULL;
826 }
827
828 /*
829  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
830  * neighbouring vmas for a suitable anon_vma, before it goes off
831  * to allocate a new anon_vma.  It checks because a repetitive
832  * sequence of mprotects and faults may otherwise lead to distinct
833  * anon_vmas being allocated, preventing vma merge in subsequent
834  * mprotect.
835  */
836 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
837 {
838         struct vm_area_struct *near;
839         unsigned long vm_flags;
840
841         near = vma->vm_next;
842         if (!near)
843                 goto try_prev;
844
845         /*
846          * Since only mprotect tries to remerge vmas, match flags
847          * which might be mprotected into each other later on.
848          * Neither mlock nor madvise tries to remerge at present,
849          * so leave their flags as obstructing a merge.
850          */
851         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
852         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
853
854         if (near->anon_vma && vma->vm_end == near->vm_start &&
855                         mpol_equal(vma_policy(vma), vma_policy(near)) &&
856                         can_vma_merge_before(near, vm_flags,
857                                 NULL, vma->vm_file, vma->vm_pgoff +
858                                 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
859                 return near->anon_vma;
860 try_prev:
861         /*
862          * It is potentially slow to have to call find_vma_prev here.
863          * But it's only on the first write fault on the vma, not
864          * every time, and we could devise a way to avoid it later
865          * (e.g. stash info in next's anon_vma_node when assigning
866          * an anon_vma, or when trying vma_merge).  Another time.
867          */
868         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
869         if (!near)
870                 goto none;
871
872         vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
873         vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
874
875         if (near->anon_vma && near->vm_end == vma->vm_start &&
876                         mpol_equal(vma_policy(near), vma_policy(vma)) &&
877                         can_vma_merge_after(near, vm_flags,
878                                 NULL, vma->vm_file, vma->vm_pgoff))
879                 return near->anon_vma;
880 none:
881         /*
882          * There's no absolute need to look only at touching neighbours:
883          * we could search further afield for "compatible" anon_vmas.
884          * But it would probably just be a waste of time searching,
885          * or lead to too many vmas hanging off the same anon_vma.
886          * We're trying to allow mprotect remerging later on,
887          * not trying to minimize memory used for anon_vmas.
888          */
889         return NULL;
890 }
891
892 #ifdef CONFIG_PROC_FS
893 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
894                                                 struct file *file, long pages)
895 {
896         const unsigned long stack_flags
897                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
898
899         if (file) {
900                 mm->shared_vm += pages;
901                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
902                         mm->exec_vm += pages;
903         } else if (flags & stack_flags)
904                 mm->stack_vm += pages;
905         if (flags & (VM_RESERVED|VM_IO))
906                 mm->reserved_vm += pages;
907 }
908 #endif /* CONFIG_PROC_FS */
909
910 /*
911  * The caller must hold down_write(&current->mm->mmap_sem).
912  */
913
914 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
915                         unsigned long len, unsigned long prot,
916                         unsigned long flags, unsigned long pgoff)
917 {
918         struct mm_struct * mm = current->mm;
919         struct inode *inode;
920         unsigned int vm_flags;
921         int error;
922         unsigned long reqprot = prot;
923
924         /*
925          * Does the application expect PROT_READ to imply PROT_EXEC?
926          *
927          * (the exception is when the underlying filesystem is noexec
928          *  mounted, in which case we dont add PROT_EXEC.)
929          */
930         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
931                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
932                         prot |= PROT_EXEC;
933
934         if (!len)
935                 return -EINVAL;
936
937         if (!(flags & MAP_FIXED))
938                 addr = round_hint_to_min(addr);
939
940         /* Careful about overflows.. */
941         len = PAGE_ALIGN(len);
942         if (!len)
943                 return -ENOMEM;
944
945         /* offset overflow? */
946         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
947                return -EOVERFLOW;
948
949         /* Too many mappings? */
950         if (mm->map_count > sysctl_max_map_count)
951                 return -ENOMEM;
952
953         /* Obtain the address to map to. we verify (or select) it and ensure
954          * that it represents a valid section of the address space.
955          */
956         addr = get_unmapped_area(file, addr, len, pgoff, flags);
957         if (addr & ~PAGE_MASK)
958                 return addr;
959
960         /* Do simple checking here so the lower-level routines won't have
961          * to. we assume access permissions have been handled by the open
962          * of the memory object, so we don't do any here.
963          */
964         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
965                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
966
967         if (flags & MAP_LOCKED)
968                 if (!can_do_mlock())
969                         return -EPERM;
970
971         /* mlock MCL_FUTURE? */
972         if (vm_flags & VM_LOCKED) {
973                 unsigned long locked, lock_limit;
974                 locked = len >> PAGE_SHIFT;
975                 locked += mm->locked_vm;
976                 lock_limit = rlimit(RLIMIT_MEMLOCK);
977                 lock_limit >>= PAGE_SHIFT;
978                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
979                         return -EAGAIN;
980         }
981
982         inode = file ? file->f_path.dentry->d_inode : NULL;
983
984         if (file) {
985                 switch (flags & MAP_TYPE) {
986                 case MAP_SHARED:
987                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
988                                 return -EACCES;
989
990                         /*
991                          * Make sure we don't allow writing to an append-only
992                          * file..
993                          */
994                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
995                                 return -EACCES;
996
997                         /*
998                          * Make sure there are no mandatory locks on the file.
999                          */
1000                         if (locks_verify_locked(inode))
1001                                 return -EAGAIN;
1002
1003                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1004                         if (!(file->f_mode & FMODE_WRITE))
1005                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1006
1007                         /* fall through */
1008                 case MAP_PRIVATE:
1009                         if (!(file->f_mode & FMODE_READ))
1010                                 return -EACCES;
1011                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1012                                 if (vm_flags & VM_EXEC)
1013                                         return -EPERM;
1014                                 vm_flags &= ~VM_MAYEXEC;
1015                         }
1016
1017                         if (!file->f_op || !file->f_op->mmap)
1018                                 return -ENODEV;
1019                         break;
1020
1021                 default:
1022                         return -EINVAL;
1023                 }
1024         } else {
1025                 switch (flags & MAP_TYPE) {
1026                 case MAP_SHARED:
1027                         /*
1028                          * Ignore pgoff.
1029                          */
1030                         pgoff = 0;
1031                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1032                         break;
1033                 case MAP_PRIVATE:
1034                         /*
1035                          * Set pgoff according to addr for anon_vma.
1036                          */
1037                         pgoff = addr >> PAGE_SHIFT;
1038                         break;
1039                 default:
1040                         return -EINVAL;
1041                 }
1042         }
1043
1044         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1045         if (error)
1046                 return error;
1047
1048         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1049 }
1050 EXPORT_SYMBOL(do_mmap_pgoff);
1051
1052 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1053                 unsigned long, prot, unsigned long, flags,
1054                 unsigned long, fd, unsigned long, pgoff)
1055 {
1056         struct file *file = NULL;
1057         unsigned long retval = -EBADF;
1058
1059         if (!(flags & MAP_ANONYMOUS)) {
1060                 if (unlikely(flags & MAP_HUGETLB))
1061                         return -EINVAL;
1062                 file = fget(fd);
1063                 if (!file)
1064                         goto out;
1065         } else if (flags & MAP_HUGETLB) {
1066                 struct user_struct *user = NULL;
1067                 /*
1068                  * VM_NORESERVE is used because the reservations will be
1069                  * taken when vm_ops->mmap() is called
1070                  * A dummy user value is used because we are not locking
1071                  * memory so no accounting is necessary
1072                  */
1073                 len = ALIGN(len, huge_page_size(&default_hstate));
1074                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1075                                                 &user, HUGETLB_ANONHUGE_INODE);
1076                 if (IS_ERR(file))
1077                         return PTR_ERR(file);
1078         }
1079
1080         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1081
1082         down_write(&current->mm->mmap_sem);
1083         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1084         up_write(&current->mm->mmap_sem);
1085
1086         if (file)
1087                 fput(file);
1088 out:
1089         return retval;
1090 }
1091
1092 /*
1093  * Some shared mappigns will want the pages marked read-only
1094  * to track write events. If so, we'll downgrade vm_page_prot
1095  * to the private version (using protection_map[] without the
1096  * VM_SHARED bit).
1097  */
1098 int vma_wants_writenotify(struct vm_area_struct *vma)
1099 {
1100         unsigned int vm_flags = vma->vm_flags;
1101
1102         /* If it was private or non-writable, the write bit is already clear */
1103         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1104                 return 0;
1105
1106         /* The backer wishes to know when pages are first written to? */
1107         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1108                 return 1;
1109
1110         /* The open routine did something to the protections already? */
1111         if (pgprot_val(vma->vm_page_prot) !=
1112             pgprot_val(vm_get_page_prot(vm_flags)))
1113                 return 0;
1114
1115         /* Specialty mapping? */
1116         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1117                 return 0;
1118
1119         /* Can the mapping track the dirty pages? */
1120         return vma->vm_file && vma->vm_file->f_mapping &&
1121                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1122 }
1123
1124 /*
1125  * We account for memory if it's a private writeable mapping,
1126  * not hugepages and VM_NORESERVE wasn't set.
1127  */
1128 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1129 {
1130         /*
1131          * hugetlb has its own accounting separate from the core VM
1132          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1133          */
1134         if (file && is_file_hugepages(file))
1135                 return 0;
1136
1137         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1138 }
1139
1140 unsigned long mmap_region(struct file *file, unsigned long addr,
1141                           unsigned long len, unsigned long flags,
1142                           unsigned int vm_flags, unsigned long pgoff)
1143 {
1144         struct mm_struct *mm = current->mm;
1145         struct vm_area_struct *vma, *prev;
1146         int correct_wcount = 0;
1147         int error;
1148         struct rb_node **rb_link, *rb_parent;
1149         unsigned long charged = 0;
1150         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1151
1152         /* Clear old maps */
1153         error = -ENOMEM;
1154 munmap_back:
1155         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1156         if (vma && vma->vm_start < addr + len) {
1157                 if (do_munmap(mm, addr, len))
1158                         return -ENOMEM;
1159                 goto munmap_back;
1160         }
1161
1162         /* Check against address space limit. */
1163         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1164                 return -ENOMEM;
1165
1166         /*
1167          * Set 'VM_NORESERVE' if we should not account for the
1168          * memory use of this mapping.
1169          */
1170         if ((flags & MAP_NORESERVE)) {
1171                 /* We honor MAP_NORESERVE if allowed to overcommit */
1172                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1173                         vm_flags |= VM_NORESERVE;
1174
1175                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1176                 if (file && is_file_hugepages(file))
1177                         vm_flags |= VM_NORESERVE;
1178         }
1179
1180         /*
1181          * Private writable mapping: check memory availability
1182          */
1183         if (accountable_mapping(file, vm_flags)) {
1184                 charged = len >> PAGE_SHIFT;
1185                 if (security_vm_enough_memory(charged))
1186                         return -ENOMEM;
1187                 vm_flags |= VM_ACCOUNT;
1188         }
1189
1190         /*
1191          * Can we just expand an old mapping?
1192          */
1193         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1194         if (vma)
1195                 goto out;
1196
1197         /*
1198          * Determine the object being mapped and call the appropriate
1199          * specific mapper. the address has already been validated, but
1200          * not unmapped, but the maps are removed from the list.
1201          */
1202         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1203         if (!vma) {
1204                 error = -ENOMEM;
1205                 goto unacct_error;
1206         }
1207
1208         vma->vm_mm = mm;
1209         vma->vm_start = addr;
1210         vma->vm_end = addr + len;
1211         vma->vm_flags = vm_flags;
1212         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1213         vma->vm_pgoff = pgoff;
1214         INIT_LIST_HEAD(&vma->anon_vma_chain);
1215
1216         if (file) {
1217                 error = -EINVAL;
1218                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1219                         goto free_vma;
1220                 if (vm_flags & VM_DENYWRITE) {
1221                         error = deny_write_access(file);
1222                         if (error)
1223                                 goto free_vma;
1224                         correct_wcount = 1;
1225                 }
1226                 vma->vm_file = file;
1227                 get_file(file);
1228                 error = file->f_op->mmap(file, vma);
1229                 if (error)
1230                         goto unmap_and_free_vma;
1231                 if (vm_flags & VM_EXECUTABLE)
1232                         added_exe_file_vma(mm);
1233
1234                 /* Can addr have changed??
1235                  *
1236                  * Answer: Yes, several device drivers can do it in their
1237                  *         f_op->mmap method. -DaveM
1238                  */
1239                 addr = vma->vm_start;
1240                 pgoff = vma->vm_pgoff;
1241                 vm_flags = vma->vm_flags;
1242         } else if (vm_flags & VM_SHARED) {
1243                 error = shmem_zero_setup(vma);
1244                 if (error)
1245                         goto free_vma;
1246         }
1247
1248         if (vma_wants_writenotify(vma)) {
1249                 pgprot_t pprot = vma->vm_page_prot;
1250
1251                 /* Can vma->vm_page_prot have changed??
1252                  *
1253                  * Answer: Yes, drivers may have changed it in their
1254                  *         f_op->mmap method.
1255                  *
1256                  * Ensures that vmas marked as uncached stay that way.
1257                  */
1258                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1259                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1260                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1261         }
1262
1263         vma_link(mm, vma, prev, rb_link, rb_parent);
1264         file = vma->vm_file;
1265
1266         /* Once vma denies write, undo our temporary denial count */
1267         if (correct_wcount)
1268                 atomic_inc(&inode->i_writecount);
1269 out:
1270         perf_event_mmap(vma);
1271
1272         mm->total_vm += len >> PAGE_SHIFT;
1273         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1274         if (vm_flags & VM_LOCKED) {
1275                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1276                         mm->locked_vm += (len >> PAGE_SHIFT);
1277         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1278                 make_pages_present(addr, addr + len);
1279         return addr;
1280
1281 unmap_and_free_vma:
1282         if (correct_wcount)
1283                 atomic_inc(&inode->i_writecount);
1284         vma->vm_file = NULL;
1285         fput(file);
1286
1287         /* Undo any partial mapping done by a device driver. */
1288         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1289         charged = 0;
1290 free_vma:
1291         kmem_cache_free(vm_area_cachep, vma);
1292 unacct_error:
1293         if (charged)
1294                 vm_unacct_memory(charged);
1295         return error;
1296 }
1297
1298 /* Get an address range which is currently unmapped.
1299  * For shmat() with addr=0.
1300  *
1301  * Ugly calling convention alert:
1302  * Return value with the low bits set means error value,
1303  * ie
1304  *      if (ret & ~PAGE_MASK)
1305  *              error = ret;
1306  *
1307  * This function "knows" that -ENOMEM has the bits set.
1308  */
1309 #ifndef HAVE_ARCH_UNMAPPED_AREA
1310 unsigned long
1311 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1312                 unsigned long len, unsigned long pgoff, unsigned long flags)
1313 {
1314         struct mm_struct *mm = current->mm;
1315         struct vm_area_struct *vma;
1316         unsigned long start_addr;
1317
1318         if (len > TASK_SIZE)
1319                 return -ENOMEM;
1320
1321         if (flags & MAP_FIXED)
1322                 return addr;
1323
1324         if (addr) {
1325                 addr = PAGE_ALIGN(addr);
1326                 vma = find_vma(mm, addr);
1327                 if (TASK_SIZE - len >= addr &&
1328                     (!vma || addr + len <= vma->vm_start))
1329                         return addr;
1330         }
1331         if (len > mm->cached_hole_size) {
1332                 start_addr = addr = mm->free_area_cache;
1333         } else {
1334                 start_addr = addr = TASK_UNMAPPED_BASE;
1335                 mm->cached_hole_size = 0;
1336         }
1337
1338 full_search:
1339         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1340                 unsigned long guard;
1341
1342                 /* At this point:  (!vma || addr < vma->vm_end). */
1343                 if (TASK_SIZE - len < addr) {
1344                         /*
1345                          * Start a new search - just in case we missed
1346                          * some holes.
1347                          */
1348                         if (start_addr != TASK_UNMAPPED_BASE) {
1349                                 addr = TASK_UNMAPPED_BASE;
1350                                 start_addr = addr;
1351                                 mm->cached_hole_size = 0;
1352                                 goto full_search;
1353                         }
1354                         return -ENOMEM;
1355                 }
1356                 if (!vma)
1357                         goto got_it;
1358                 guard = 0;
1359                 if (vma->vm_flags & VM_GROWSDOWN)
1360                         guard = min(TASK_SIZE - (addr + len),
1361                                 (unsigned long)heap_stack_gap << PAGE_SHIFT);
1362                 if (addr + len + guard <= vma->vm_start) {
1363 got_it:
1364                         /*
1365                          * Remember the place where we stopped the search:
1366                          */
1367                         mm->free_area_cache = addr + len;
1368                         return addr;
1369                 }
1370                 if (addr + guard + mm->cached_hole_size < vma->vm_start)
1371                         mm->cached_hole_size = vma->vm_start - (addr + guard);
1372
1373                 addr = vma->vm_end;
1374         }
1375 }
1376 #endif  
1377
1378 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1379 {
1380         /*
1381          * Is this a new hole at the lowest possible address?
1382          */
1383         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1384                 mm->free_area_cache = addr;
1385                 mm->cached_hole_size = ~0UL;
1386         }
1387 }
1388
1389 /*
1390  * This mmap-allocator allocates new areas top-down from below the
1391  * stack's low limit (the base):
1392  */
1393 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1394 unsigned long
1395 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1396                           const unsigned long len, const unsigned long pgoff,
1397                           const unsigned long flags)
1398 {
1399         struct vm_area_struct *vma;
1400         struct mm_struct *mm = current->mm;
1401         unsigned long addr = addr0;
1402
1403         /* requested length too big for entire address space */
1404         if (len > TASK_SIZE)
1405                 return -ENOMEM;
1406
1407         if (flags & MAP_FIXED)
1408                 return addr;
1409
1410         /* requesting a specific address */
1411         if (addr) {
1412                 addr = PAGE_ALIGN(addr);
1413                 vma = find_vma(mm, addr);
1414                 if (TASK_SIZE - len >= addr &&
1415                                 (!vma || addr + len <= vma->vm_start))
1416                         return addr;
1417         }
1418
1419         /* check if free_area_cache is useful for us */
1420         if (len <= mm->cached_hole_size) {
1421                 mm->cached_hole_size = 0;
1422                 mm->free_area_cache = mm->mmap_base;
1423         }
1424
1425         /* either no address requested or can't fit in requested address hole */
1426         addr = mm->free_area_cache;
1427
1428         /* make sure it can fit in the remaining address space */
1429         if (addr > len) {
1430                 unsigned long guard;
1431
1432                 addr -= len;
1433                 vma = find_vma(mm, addr);
1434                 if (!vma)
1435                         goto got_it;
1436                 guard = 0;
1437                 if (vma->vm_flags & VM_GROWSDOWN)
1438                         guard = min(TASK_SIZE - (addr + len),
1439                                 (unsigned long)heap_stack_gap << PAGE_SHIFT);
1440                 if (addr + len + guard <= vma->vm_start)
1441                         goto got_it;
1442         }
1443
1444         if (mm->mmap_base < len)
1445                 goto bottomup;
1446
1447         addr = mm->mmap_base-len;
1448         do {
1449                 unsigned long guard;
1450                 /*
1451                  * Lookup failure means no vma is above this address,
1452                  * else if new region fits below vma->vm_start,
1453                  * return with success:
1454                  */
1455                 vma = find_vma(mm, addr);
1456                 if (!vma)
1457                         goto got_it;
1458                 guard = 0;
1459                 if (vma->vm_flags & VM_GROWSDOWN)
1460                         guard = min(TASK_SIZE - (addr + len),
1461                                 (unsigned long)heap_stack_gap << PAGE_SHIFT);
1462                 if (addr + len + guard <= vma->vm_start) {
1463 got_it:
1464                         /* remember the address as a hint for next time */
1465                         mm->free_area_cache = addr;
1466                         return addr;
1467                 }
1468
1469                 /* remember the largest hole we saw so far */
1470                 if (addr + guard + mm->cached_hole_size < vma->vm_start)
1471                         mm->cached_hole_size = vma->vm_start - (addr + guard);
1472
1473                 /* try just below the current vma->vm_start */
1474                 addr = vma->vm_start - (len + guard);
1475         } while (len < vma->vm_start);
1476
1477 bottomup:
1478         /*
1479          * A failed mmap() very likely causes application failure,
1480          * so fall back to the bottom-up function here. This scenario
1481          * can happen with large stack limits and large mmap()
1482          * allocations.
1483          */
1484         mm->cached_hole_size = ~0UL;
1485         mm->free_area_cache = TASK_UNMAPPED_BASE;
1486         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1487         /*
1488          * Restore the topdown base:
1489          */
1490         mm->free_area_cache = mm->mmap_base;
1491         mm->cached_hole_size = ~0UL;
1492
1493         return addr;
1494 }
1495 #endif
1496
1497 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1498 {
1499         /*
1500          * Is this a new hole at the highest possible address?
1501          */
1502         if (addr > mm->free_area_cache)
1503                 mm->free_area_cache = addr;
1504
1505         /* dont allow allocations above current base */
1506         if (mm->free_area_cache > mm->mmap_base)
1507                 mm->free_area_cache = mm->mmap_base;
1508 }
1509
1510 unsigned long
1511 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1512                 unsigned long pgoff, unsigned long flags)
1513 {
1514         unsigned long (*get_area)(struct file *, unsigned long,
1515                                   unsigned long, unsigned long, unsigned long);
1516
1517         unsigned long error = arch_mmap_check(addr, len, flags);
1518         if (error)
1519                 return error;
1520
1521         /* Careful about overflows.. */
1522         if (len > TASK_SIZE)
1523                 return -ENOMEM;
1524
1525         get_area = current->mm->get_unmapped_area;
1526         if (file && file->f_op && file->f_op->get_unmapped_area)
1527                 get_area = file->f_op->get_unmapped_area;
1528         addr = get_area(file, addr, len, pgoff, flags);
1529         if (IS_ERR_VALUE(addr))
1530                 return addr;
1531
1532         if (addr > TASK_SIZE - len)
1533                 return -ENOMEM;
1534         if (addr & ~PAGE_MASK)
1535                 return -EINVAL;
1536
1537         return arch_rebalance_pgtables(addr, len);
1538 }
1539
1540 EXPORT_SYMBOL(get_unmapped_area);
1541
1542 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1543 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1544 {
1545         struct vm_area_struct *vma = NULL;
1546
1547         if (mm) {
1548                 /* Check the cache first. */
1549                 /* (Cache hit rate is typically around 35%.) */
1550                 vma = mm->mmap_cache;
1551                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1552                         struct rb_node * rb_node;
1553
1554                         rb_node = mm->mm_rb.rb_node;
1555                         vma = NULL;
1556
1557                         while (rb_node) {
1558                                 struct vm_area_struct * vma_tmp;
1559
1560                                 vma_tmp = rb_entry(rb_node,
1561                                                 struct vm_area_struct, vm_rb);
1562
1563                                 if (vma_tmp->vm_end > addr) {
1564                                         vma = vma_tmp;
1565                                         if (vma_tmp->vm_start <= addr)
1566                                                 break;
1567                                         rb_node = rb_node->rb_left;
1568                                 } else
1569                                         rb_node = rb_node->rb_right;
1570                         }
1571                         if (vma)
1572                                 mm->mmap_cache = vma;
1573                 }
1574         }
1575         return vma;
1576 }
1577
1578 EXPORT_SYMBOL(find_vma);
1579
1580 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1581 struct vm_area_struct *
1582 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1583                         struct vm_area_struct **pprev)
1584 {
1585         struct vm_area_struct *vma = NULL, *prev = NULL;
1586         struct rb_node *rb_node;
1587         if (!mm)
1588                 goto out;
1589
1590         /* Guard against addr being lower than the first VMA */
1591         vma = mm->mmap;
1592
1593         /* Go through the RB tree quickly. */
1594         rb_node = mm->mm_rb.rb_node;
1595
1596         while (rb_node) {
1597                 struct vm_area_struct *vma_tmp;
1598                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1599
1600                 if (addr < vma_tmp->vm_end) {
1601                         rb_node = rb_node->rb_left;
1602                 } else {
1603                         prev = vma_tmp;
1604                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1605                                 break;
1606                         rb_node = rb_node->rb_right;
1607                 }
1608         }
1609
1610 out:
1611         *pprev = prev;
1612         return prev ? prev->vm_next : vma;
1613 }
1614
1615 /*
1616  * Verify that the stack growth is acceptable and
1617  * update accounting. This is shared with both the
1618  * grow-up and grow-down cases.
1619  */
1620 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1621 {
1622         struct mm_struct *mm = vma->vm_mm;
1623         struct rlimit *rlim = current->signal->rlim;
1624         unsigned long new_start;
1625
1626         /* address space limit tests */
1627         if (!may_expand_vm(mm, grow))
1628                 return -ENOMEM;
1629
1630         /* Stack limit test */
1631         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1632                 return -ENOMEM;
1633
1634         /* mlock limit tests */
1635         if (vma->vm_flags & VM_LOCKED) {
1636                 unsigned long locked;
1637                 unsigned long limit;
1638                 locked = mm->locked_vm + grow;
1639                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1640                 limit >>= PAGE_SHIFT;
1641                 if (locked > limit && !capable(CAP_IPC_LOCK))
1642                         return -ENOMEM;
1643         }
1644
1645         /* Check to ensure the stack will not grow into a hugetlb-only region */
1646         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1647                         vma->vm_end - size;
1648         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1649                 return -EFAULT;
1650
1651         /*
1652          * Overcommit..  This must be the final test, as it will
1653          * update security statistics.
1654          */
1655         if (security_vm_enough_memory_mm(mm, grow))
1656                 return -ENOMEM;
1657
1658         /* Ok, everything looks good - let it rip */
1659         mm->total_vm += grow;
1660         if (vma->vm_flags & VM_LOCKED)
1661                 mm->locked_vm += grow;
1662         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1663         return 0;
1664 }
1665
1666 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1667 /*
1668  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1669  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1670  */
1671 #ifndef CONFIG_IA64
1672 static
1673 #endif
1674 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1675 {
1676         int error;
1677
1678         if (!(vma->vm_flags & VM_GROWSUP))
1679                 return -EFAULT;
1680
1681         /*
1682          * We must make sure the anon_vma is allocated
1683          * so that the anon_vma locking is not a noop.
1684          */
1685         if (unlikely(anon_vma_prepare(vma)))
1686                 return -ENOMEM;
1687         anon_vma_lock(vma);
1688
1689         /*
1690          * vma->vm_start/vm_end cannot change under us because the caller
1691          * is required to hold the mmap_sem in read mode.  We need the
1692          * anon_vma lock to serialize against concurrent expand_stacks.
1693          * Also guard against wrapping around to address 0.
1694          */
1695         if (address < PAGE_ALIGN(address+4))
1696                 address = PAGE_ALIGN(address+4);
1697         else {
1698                 anon_vma_unlock(vma);
1699                 return -ENOMEM;
1700         }
1701         error = 0;
1702
1703         /* Somebody else might have raced and expanded it already */
1704         if (address > vma->vm_end) {
1705                 unsigned long size, grow;
1706 #ifdef CONFIG_STACK_GROWSUP
1707                 unsigned long guard;
1708                 struct vm_area_struct *vm_next;
1709
1710                 error = -ENOMEM;
1711                 guard = min(TASK_SIZE - address,
1712                                 (unsigned long)heap_stack_gap << PAGE_SHIFT);
1713                 vm_next = find_vma(vma->vm_mm, address + guard);
1714                 if (unlikely(vm_next && vm_next != vma)) {
1715                         /* stack collision with another vma */
1716                         goto out_unlock;
1717                 }
1718 #endif
1719
1720                 size = address - vma->vm_start;
1721                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1722
1723                 error = acct_stack_growth(vma, size, grow);
1724                 if (!error)
1725                         vma->vm_end = address;
1726         }
1727 out_unlock: __maybe_unused
1728         anon_vma_unlock(vma);
1729         return error;
1730 }
1731 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1732
1733 /*
1734  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1735  */
1736 static int expand_downwards(struct vm_area_struct *vma,
1737                                    unsigned long address)
1738 {
1739         int error;
1740
1741         /*
1742          * We must make sure the anon_vma is allocated
1743          * so that the anon_vma locking is not a noop.
1744          */
1745         if (unlikely(anon_vma_prepare(vma)))
1746                 return -ENOMEM;
1747
1748         address &= PAGE_MASK;
1749         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1750         if (error)
1751                 return error;
1752
1753         anon_vma_lock(vma);
1754
1755         /*
1756          * vma->vm_start/vm_end cannot change under us because the caller
1757          * is required to hold the mmap_sem in read mode.  We need the
1758          * anon_vma lock to serialize against concurrent expand_stacks.
1759          */
1760
1761         /* Somebody else might have raced and expanded it already */
1762         if (address < vma->vm_start) {
1763                 unsigned long size, grow;
1764                 struct vm_area_struct *prev_vma;
1765
1766                 find_vma_prev(vma->vm_mm, address, &prev_vma);
1767
1768                 error = -ENOMEM;
1769                 if (prev_vma) {
1770                         unsigned long guard;
1771
1772                         guard = min(TASK_SIZE - prev_vma->vm_end,
1773                                 (unsigned long)heap_stack_gap << PAGE_SHIFT);
1774                         if (unlikely(prev_vma->vm_end + guard > address)) {
1775                                 /* stack collision with another vma */
1776                                 goto out_unlock;
1777                         }
1778                 }
1779                 size = vma->vm_end - address;
1780                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1781
1782                 error = acct_stack_growth(vma, size, grow);
1783                 if (!error) {
1784                         vma->vm_start = address;
1785                         vma->vm_pgoff -= grow;
1786                 }
1787         }
1788  out_unlock:
1789         anon_vma_unlock(vma);
1790         return error;
1791 }
1792
1793 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1794 {
1795         return expand_downwards(vma, address);
1796 }
1797
1798 #ifdef CONFIG_STACK_GROWSUP
1799 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1800 {
1801         return expand_upwards(vma, address);
1802 }
1803
1804 struct vm_area_struct *
1805 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1806 {
1807         struct vm_area_struct *vma, *prev;
1808
1809         addr &= PAGE_MASK;
1810         vma = find_vma_prev(mm, addr, &prev);
1811         if (vma && (vma->vm_start <= addr))
1812                 return vma;
1813         if (!prev || expand_stack(prev, addr))
1814                 return NULL;
1815         if (prev->vm_flags & VM_LOCKED) {
1816                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1817         }
1818         return prev;
1819 }
1820 #else
1821 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1822 {
1823         return expand_downwards(vma, address);
1824 }
1825
1826 struct vm_area_struct *
1827 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1828 {
1829         struct vm_area_struct * vma;
1830         unsigned long start;
1831
1832         addr &= PAGE_MASK;
1833         vma = find_vma(mm,addr);
1834         if (!vma)
1835                 return NULL;
1836         if (vma->vm_start <= addr)
1837                 return vma;
1838         if (!(vma->vm_flags & VM_GROWSDOWN))
1839                 return NULL;
1840         start = vma->vm_start;
1841         if (expand_stack(vma, addr))
1842                 return NULL;
1843         if (vma->vm_flags & VM_LOCKED) {
1844                 mlock_vma_pages_range(vma, addr, start);
1845         }
1846         return vma;
1847 }
1848 #endif
1849
1850 /*
1851  * Ok - we have the memory areas we should free on the vma list,
1852  * so release them, and do the vma updates.
1853  *
1854  * Called with the mm semaphore held.
1855  */
1856 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1857 {
1858         /* Update high watermark before we lower total_vm */
1859         update_hiwater_vm(mm);
1860         do {
1861                 long nrpages = vma_pages(vma);
1862
1863                 mm->total_vm -= nrpages;
1864                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1865                 vma = remove_vma(vma);
1866         } while (vma);
1867         validate_mm(mm);
1868 }
1869
1870 /*
1871  * Get rid of page table information in the indicated region.
1872  *
1873  * Called with the mm semaphore held.
1874  */
1875 static void unmap_region(struct mm_struct *mm,
1876                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1877                 unsigned long start, unsigned long end)
1878 {
1879         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1880         struct mmu_gather *tlb;
1881         unsigned long nr_accounted = 0;
1882
1883         lru_add_drain();
1884         tlb = tlb_gather_mmu(mm, 0);
1885         update_hiwater_rss(mm);
1886         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1887         vm_unacct_memory(nr_accounted);
1888         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1889                                  next? next->vm_start: 0);
1890         tlb_finish_mmu(tlb, start, end);
1891 }
1892
1893 /*
1894  * Create a list of vma's touched by the unmap, removing them from the mm's
1895  * vma list as we go..
1896  */
1897 static void
1898 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1899         struct vm_area_struct *prev, unsigned long end)
1900 {
1901         struct vm_area_struct **insertion_point;
1902         struct vm_area_struct *tail_vma = NULL;
1903         unsigned long addr;
1904
1905         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1906         do {
1907                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1908                 mm->map_count--;
1909                 tail_vma = vma;
1910                 vma = vma->vm_next;
1911         } while (vma && vma->vm_start < end);
1912         *insertion_point = vma;
1913         tail_vma->vm_next = NULL;
1914         if (mm->unmap_area == arch_unmap_area)
1915                 addr = prev ? prev->vm_end : mm->mmap_base;
1916         else
1917                 addr = vma ?  vma->vm_start : mm->mmap_base;
1918         mm->unmap_area(mm, addr);
1919         mm->mmap_cache = NULL;          /* Kill the cache. */
1920 }
1921
1922 /*
1923  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1924  * munmap path where it doesn't make sense to fail.
1925  */
1926 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1927               unsigned long addr, int new_below)
1928 {
1929         struct mempolicy *pol;
1930         struct vm_area_struct *new;
1931         int err = -ENOMEM;
1932
1933         if (is_vm_hugetlb_page(vma) && (addr &
1934                                         ~(huge_page_mask(hstate_vma(vma)))))
1935                 return -EINVAL;
1936
1937         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1938         if (!new)
1939                 goto out_err;
1940
1941         /* most fields are the same, copy all, and then fixup */
1942         *new = *vma;
1943
1944         INIT_LIST_HEAD(&new->anon_vma_chain);
1945
1946         if (new_below)
1947                 new->vm_end = addr;
1948         else {
1949                 new->vm_start = addr;
1950                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1951         }
1952
1953         pol = mpol_dup(vma_policy(vma));
1954         if (IS_ERR(pol)) {
1955                 err = PTR_ERR(pol);
1956                 goto out_free_vma;
1957         }
1958         vma_set_policy(new, pol);
1959
1960         if (anon_vma_clone(new, vma))
1961                 goto out_free_mpol;
1962
1963         if (new->vm_file) {
1964                 get_file(new->vm_file);
1965                 if (vma->vm_flags & VM_EXECUTABLE)
1966                         added_exe_file_vma(mm);
1967         }
1968
1969         if (new->vm_ops && new->vm_ops->open)
1970                 new->vm_ops->open(new);
1971
1972         if (new_below)
1973                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1974                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1975         else
1976                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1977
1978         /* Success. */
1979         if (!err)
1980                 return 0;
1981
1982         /* Clean everything up if vma_adjust failed. */
1983         new->vm_ops->close(new);
1984         if (new->vm_file) {
1985                 if (vma->vm_flags & VM_EXECUTABLE)
1986                         removed_exe_file_vma(mm);
1987                 fput(new->vm_file);
1988         }
1989  out_free_mpol:
1990         mpol_put(pol);
1991  out_free_vma:
1992         kmem_cache_free(vm_area_cachep, new);
1993  out_err:
1994         return err;
1995 }
1996
1997 /*
1998  * Split a vma into two pieces at address 'addr', a new vma is allocated
1999  * either for the first part or the tail.
2000  */
2001 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2002               unsigned long addr, int new_below)
2003 {
2004         if (mm->map_count >= sysctl_max_map_count)
2005                 return -ENOMEM;
2006
2007         return __split_vma(mm, vma, addr, new_below);
2008 }
2009
2010 /* Munmap is split into 2 main parts -- this part which finds
2011  * what needs doing, and the areas themselves, which do the
2012  * work.  This now handles partial unmappings.
2013  * Jeremy Fitzhardinge <jeremy@goop.org>
2014  */
2015 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2016 {
2017         unsigned long end;
2018         struct vm_area_struct *vma, *prev, *last;
2019
2020         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2021                 return -EINVAL;
2022
2023         if ((len = PAGE_ALIGN(len)) == 0)
2024                 return -EINVAL;
2025
2026         /* Find the first overlapping VMA */
2027         vma = find_vma_prev(mm, start, &prev);
2028         if (!vma)
2029                 return 0;
2030         /* we have  start < vma->vm_end  */
2031
2032         /* if it doesn't overlap, we have nothing.. */
2033         end = start + len;
2034         if (vma->vm_start >= end)
2035                 return 0;
2036
2037         /*
2038          * If we need to split any vma, do it now to save pain later.
2039          *
2040          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2041          * unmapped vm_area_struct will remain in use: so lower split_vma
2042          * places tmp vma above, and higher split_vma places tmp vma below.
2043          */
2044         if (start > vma->vm_start) {
2045                 int error;
2046
2047                 /*
2048                  * Make sure that map_count on return from munmap() will
2049                  * not exceed its limit; but let map_count go just above
2050                  * its limit temporarily, to help free resources as expected.
2051                  */
2052                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2053                         return -ENOMEM;
2054
2055                 error = __split_vma(mm, vma, start, 0);
2056                 if (error)
2057                         return error;
2058                 prev = vma;
2059         }
2060
2061         /* Does it split the last one? */
2062         last = find_vma(mm, end);
2063         if (last && end > last->vm_start) {
2064                 int error = __split_vma(mm, last, end, 1);
2065                 if (error)
2066                         return error;
2067         }
2068         vma = prev? prev->vm_next: mm->mmap;
2069
2070         /*
2071          * unlock any mlock()ed ranges before detaching vmas
2072          */
2073         if (mm->locked_vm) {
2074                 struct vm_area_struct *tmp = vma;
2075                 while (tmp && tmp->vm_start < end) {
2076                         if (tmp->vm_flags & VM_LOCKED) {
2077                                 mm->locked_vm -= vma_pages(tmp);
2078                                 munlock_vma_pages_all(tmp);
2079                         }
2080                         tmp = tmp->vm_next;
2081                 }
2082         }
2083
2084         /*
2085          * Remove the vma's, and unmap the actual pages
2086          */
2087         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2088         unmap_region(mm, vma, prev, start, end);
2089
2090         /* Fix up all other VM information */
2091         remove_vma_list(mm, vma);
2092
2093         return 0;
2094 }
2095
2096 EXPORT_SYMBOL(do_munmap);
2097
2098 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2099 {
2100         int ret;
2101         struct mm_struct *mm = current->mm;
2102
2103         profile_munmap(addr);
2104
2105         down_write(&mm->mmap_sem);
2106         ret = do_munmap(mm, addr, len);
2107         up_write(&mm->mmap_sem);
2108         return ret;
2109 }
2110
2111 static inline void verify_mm_writelocked(struct mm_struct *mm)
2112 {
2113 #ifdef CONFIG_DEBUG_VM
2114         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2115                 WARN_ON(1);
2116                 up_read(&mm->mmap_sem);
2117         }
2118 #endif
2119 }
2120
2121 /*
2122  *  this is really a simplified "do_mmap".  it only handles
2123  *  anonymous maps.  eventually we may be able to do some
2124  *  brk-specific accounting here.
2125  */
2126 unsigned long do_brk(unsigned long addr, unsigned long len)
2127 {
2128         struct mm_struct * mm = current->mm;
2129         struct vm_area_struct * vma, * prev;
2130         unsigned long flags;
2131         struct rb_node ** rb_link, * rb_parent;
2132         pgoff_t pgoff = addr >> PAGE_SHIFT;
2133         int error;
2134
2135         len = PAGE_ALIGN(len);
2136         if (!len)
2137                 return addr;
2138
2139         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2140         if (error)
2141                 return error;
2142
2143         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2144
2145         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2146         if (error & ~PAGE_MASK)
2147                 return error;
2148
2149         /*
2150          * mlock MCL_FUTURE?
2151          */
2152         if (mm->def_flags & VM_LOCKED) {
2153                 unsigned long locked, lock_limit;
2154                 locked = len >> PAGE_SHIFT;
2155                 locked += mm->locked_vm;
2156                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2157                 lock_limit >>= PAGE_SHIFT;
2158                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2159                         return -EAGAIN;
2160         }
2161
2162         /*
2163          * mm->mmap_sem is required to protect against another thread
2164          * changing the mappings in case we sleep.
2165          */
2166         verify_mm_writelocked(mm);
2167
2168         /*
2169          * Clear old maps.  this also does some error checking for us
2170          */
2171  munmap_back:
2172         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2173         if (vma && vma->vm_start < addr + len) {
2174                 if (do_munmap(mm, addr, len))
2175                         return -ENOMEM;
2176                 goto munmap_back;
2177         }
2178
2179         /* Check against address space limits *after* clearing old maps... */
2180         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2181                 return -ENOMEM;
2182
2183         if (mm->map_count > sysctl_max_map_count)
2184                 return -ENOMEM;
2185
2186         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2187                 return -ENOMEM;
2188
2189         /* Can we just expand an old private anonymous mapping? */
2190         vma = vma_merge(mm, prev, addr, addr + len, flags,
2191                                         NULL, NULL, pgoff, NULL);
2192         if (vma)
2193                 goto out;
2194
2195         /*
2196          * create a vma struct for an anonymous mapping
2197          */
2198         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2199         if (!vma) {
2200                 vm_unacct_memory(len >> PAGE_SHIFT);
2201                 return -ENOMEM;
2202         }
2203
2204         INIT_LIST_HEAD(&vma->anon_vma_chain);
2205         vma->vm_mm = mm;
2206         vma->vm_start = addr;
2207         vma->vm_end = addr + len;
2208         vma->vm_pgoff = pgoff;
2209         vma->vm_flags = flags;
2210         vma->vm_page_prot = vm_get_page_prot(flags);
2211         vma_link(mm, vma, prev, rb_link, rb_parent);
2212 out:
2213         mm->total_vm += len >> PAGE_SHIFT;
2214         if (flags & VM_LOCKED) {
2215                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2216                         mm->locked_vm += (len >> PAGE_SHIFT);
2217         }
2218         return addr;
2219 }
2220
2221 EXPORT_SYMBOL(do_brk);
2222
2223 /* Release all mmaps. */
2224 void exit_mmap(struct mm_struct *mm)
2225 {
2226         struct mmu_gather *tlb;
2227         struct vm_area_struct *vma;
2228         unsigned long nr_accounted = 0;
2229         unsigned long end;
2230
2231         /* mm's last user has gone, and its about to be pulled down */
2232         mmu_notifier_release(mm);
2233
2234         if (mm->locked_vm) {
2235                 vma = mm->mmap;
2236                 while (vma) {
2237                         if (vma->vm_flags & VM_LOCKED)
2238                                 munlock_vma_pages_all(vma);
2239                         vma = vma->vm_next;
2240                 }
2241         }
2242
2243         arch_exit_mmap(mm);
2244
2245         vma = mm->mmap;
2246         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2247                 return;
2248
2249         lru_add_drain();
2250         flush_cache_mm(mm);
2251         tlb = tlb_gather_mmu(mm, 1);
2252         /* update_hiwater_rss(mm) here? but nobody should be looking */
2253         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2254         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2255         vm_unacct_memory(nr_accounted);
2256
2257         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2258         tlb_finish_mmu(tlb, 0, end);
2259
2260         /*
2261          * Walk the list again, actually closing and freeing it,
2262          * with preemption enabled, without holding any MM locks.
2263          */
2264         while (vma)
2265                 vma = remove_vma(vma);
2266
2267         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2268 }
2269
2270 /* Insert vm structure into process list sorted by address
2271  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2272  * then i_mmap_lock is taken here.
2273  */
2274 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2275 {
2276         struct vm_area_struct * __vma, * prev;
2277         struct rb_node ** rb_link, * rb_parent;
2278
2279         /*
2280          * The vm_pgoff of a purely anonymous vma should be irrelevant
2281          * until its first write fault, when page's anon_vma and index
2282          * are set.  But now set the vm_pgoff it will almost certainly
2283          * end up with (unless mremap moves it elsewhere before that
2284          * first wfault), so /proc/pid/maps tells a consistent story.
2285          *
2286          * By setting it to reflect the virtual start address of the
2287          * vma, merges and splits can happen in a seamless way, just
2288          * using the existing file pgoff checks and manipulations.
2289          * Similarly in do_mmap_pgoff and in do_brk.
2290          */
2291         if (!vma->vm_file) {
2292                 BUG_ON(vma->anon_vma);
2293                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2294         }
2295         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2296         if (__vma && __vma->vm_start < vma->vm_end)
2297                 return -ENOMEM;
2298         if ((vma->vm_flags & VM_ACCOUNT) &&
2299              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2300                 return -ENOMEM;
2301         vma_link(mm, vma, prev, rb_link, rb_parent);
2302         return 0;
2303 }
2304
2305 /*
2306  * Copy the vma structure to a new location in the same mm,
2307  * prior to moving page table entries, to effect an mremap move.
2308  */
2309 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2310         unsigned long addr, unsigned long len, pgoff_t pgoff)
2311 {
2312         struct vm_area_struct *vma = *vmap;
2313         unsigned long vma_start = vma->vm_start;
2314         struct mm_struct *mm = vma->vm_mm;
2315         struct vm_area_struct *new_vma, *prev;
2316         struct rb_node **rb_link, *rb_parent;
2317         struct mempolicy *pol;
2318
2319         /*
2320          * If anonymous vma has not yet been faulted, update new pgoff
2321          * to match new location, to increase its chance of merging.
2322          */
2323         if (!vma->vm_file && !vma->anon_vma)
2324                 pgoff = addr >> PAGE_SHIFT;
2325
2326         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2327         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2328                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2329         if (new_vma) {
2330                 /*
2331                  * Source vma may have been merged into new_vma
2332                  */
2333                 if (vma_start >= new_vma->vm_start &&
2334                     vma_start < new_vma->vm_end)
2335                         *vmap = new_vma;
2336         } else {
2337                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2338                 if (new_vma) {
2339                         *new_vma = *vma;
2340                         pol = mpol_dup(vma_policy(vma));
2341                         if (IS_ERR(pol))
2342                                 goto out_free_vma;
2343                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2344                         if (anon_vma_clone(new_vma, vma))
2345                                 goto out_free_mempol;
2346                         vma_set_policy(new_vma, pol);
2347                         new_vma->vm_start = addr;
2348                         new_vma->vm_end = addr + len;
2349                         new_vma->vm_pgoff = pgoff;
2350                         if (new_vma->vm_file) {
2351                                 get_file(new_vma->vm_file);
2352                                 if (vma->vm_flags & VM_EXECUTABLE)
2353                                         added_exe_file_vma(mm);
2354                         }
2355                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2356                                 new_vma->vm_ops->open(new_vma);
2357                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2358                 }
2359         }
2360         return new_vma;
2361
2362  out_free_mempol:
2363         mpol_put(pol);
2364  out_free_vma:
2365         kmem_cache_free(vm_area_cachep, new_vma);
2366         return NULL;
2367 }
2368
2369 /*
2370  * Return true if the calling process may expand its vm space by the passed
2371  * number of pages
2372  */
2373 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2374 {
2375         unsigned long cur = mm->total_vm;       /* pages */
2376         unsigned long lim;
2377
2378         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2379
2380         if (cur + npages > lim)
2381                 return 0;
2382         return 1;
2383 }
2384
2385
2386 static int special_mapping_fault(struct vm_area_struct *vma,
2387                                 struct vm_fault *vmf)
2388 {
2389         pgoff_t pgoff;
2390         struct page **pages;
2391
2392         /*
2393          * special mappings have no vm_file, and in that case, the mm
2394          * uses vm_pgoff internally. So we have to subtract it from here.
2395          * We are allowed to do this because we are the mm; do not copy
2396          * this code into drivers!
2397          */
2398         pgoff = vmf->pgoff - vma->vm_pgoff;
2399
2400         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2401                 pgoff--;
2402
2403         if (*pages) {
2404                 struct page *page = *pages;
2405                 get_page(page);
2406                 vmf->page = page;
2407                 return 0;
2408         }
2409
2410         return VM_FAULT_SIGBUS;
2411 }
2412
2413 /*
2414  * Having a close hook prevents vma merging regardless of flags.
2415  */
2416 static void special_mapping_close(struct vm_area_struct *vma)
2417 {
2418 }
2419
2420 static const struct vm_operations_struct special_mapping_vmops = {
2421         .close = special_mapping_close,
2422         .fault = special_mapping_fault,
2423 };
2424
2425 /*
2426  * Called with mm->mmap_sem held for writing.
2427  * Insert a new vma covering the given region, with the given flags.
2428  * Its pages are supplied by the given array of struct page *.
2429  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2430  * The region past the last page supplied will always produce SIGBUS.
2431  * The array pointer and the pages it points to are assumed to stay alive
2432  * for as long as this mapping might exist.
2433  */
2434 int install_special_mapping(struct mm_struct *mm,
2435                             unsigned long addr, unsigned long len,
2436                             unsigned long vm_flags, struct page **pages)
2437 {
2438         struct vm_area_struct *vma;
2439
2440         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2441         if (unlikely(vma == NULL))
2442                 return -ENOMEM;
2443
2444         INIT_LIST_HEAD(&vma->anon_vma_chain);
2445         vma->vm_mm = mm;
2446         vma->vm_start = addr;
2447         vma->vm_end = addr + len;
2448
2449         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2450         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2451
2452         vma->vm_ops = &special_mapping_vmops;
2453         vma->vm_private_data = pages;
2454
2455         if (unlikely(insert_vm_struct(mm, vma))) {
2456                 kmem_cache_free(vm_area_cachep, vma);
2457                 return -ENOMEM;
2458         }
2459
2460         mm->total_vm += len >> PAGE_SHIFT;
2461
2462         perf_event_mmap(vma);
2463
2464         return 0;
2465 }
2466
2467 static DEFINE_MUTEX(mm_all_locks_mutex);
2468
2469 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2470 {
2471         if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2472                 /*
2473                  * The LSB of head.next can't change from under us
2474                  * because we hold the mm_all_locks_mutex.
2475                  */
2476                 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2477                 /*
2478                  * We can safely modify head.next after taking the
2479                  * anon_vma->lock. If some other vma in this mm shares
2480                  * the same anon_vma we won't take it again.
2481                  *
2482                  * No need of atomic instructions here, head.next
2483                  * can't change from under us thanks to the
2484                  * anon_vma->lock.
2485                  */
2486                 if (__test_and_set_bit(0, (unsigned long *)
2487                                        &anon_vma->head.next))
2488                         BUG();
2489         }
2490 }
2491
2492 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2493 {
2494         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2495                 /*
2496                  * AS_MM_ALL_LOCKS can't change from under us because
2497                  * we hold the mm_all_locks_mutex.
2498                  *
2499                  * Operations on ->flags have to be atomic because
2500                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2501                  * mm_all_locks_mutex, there may be other cpus
2502                  * changing other bitflags in parallel to us.
2503                  */
2504                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2505                         BUG();
2506                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2507         }
2508 }
2509
2510 /*
2511  * This operation locks against the VM for all pte/vma/mm related
2512  * operations that could ever happen on a certain mm. This includes
2513  * vmtruncate, try_to_unmap, and all page faults.
2514  *
2515  * The caller must take the mmap_sem in write mode before calling
2516  * mm_take_all_locks(). The caller isn't allowed to release the
2517  * mmap_sem until mm_drop_all_locks() returns.
2518  *
2519  * mmap_sem in write mode is required in order to block all operations
2520  * that could modify pagetables and free pages without need of
2521  * altering the vma layout (for example populate_range() with
2522  * nonlinear vmas). It's also needed in write mode to avoid new
2523  * anon_vmas to be associated with existing vmas.
2524  *
2525  * A single task can't take more than one mm_take_all_locks() in a row
2526  * or it would deadlock.
2527  *
2528  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2529  * mapping->flags avoid to take the same lock twice, if more than one
2530  * vma in this mm is backed by the same anon_vma or address_space.
2531  *
2532  * We can take all the locks in random order because the VM code
2533  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2534  * takes more than one of them in a row. Secondly we're protected
2535  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2536  *
2537  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2538  * that may have to take thousand of locks.
2539  *
2540  * mm_take_all_locks() can fail if it's interrupted by signals.
2541  */
2542 int mm_take_all_locks(struct mm_struct *mm)
2543 {
2544         struct vm_area_struct *vma;
2545         struct anon_vma_chain *avc;
2546         int ret = -EINTR;
2547
2548         BUG_ON(down_read_trylock(&mm->mmap_sem));
2549
2550         mutex_lock(&mm_all_locks_mutex);
2551
2552         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2553                 if (signal_pending(current))
2554                         goto out_unlock;
2555                 if (vma->vm_file && vma->vm_file->f_mapping)
2556                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2557         }
2558
2559         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2560                 if (signal_pending(current))
2561                         goto out_unlock;
2562                 if (vma->anon_vma)
2563                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2564                                 vm_lock_anon_vma(mm, avc->anon_vma);
2565         }
2566
2567         ret = 0;
2568
2569 out_unlock:
2570         if (ret)
2571                 mm_drop_all_locks(mm);
2572
2573         return ret;
2574 }
2575
2576 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2577 {
2578         if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2579                 /*
2580                  * The LSB of head.next can't change to 0 from under
2581                  * us because we hold the mm_all_locks_mutex.
2582                  *
2583                  * We must however clear the bitflag before unlocking
2584                  * the vma so the users using the anon_vma->head will
2585                  * never see our bitflag.
2586                  *
2587                  * No need of atomic instructions here, head.next
2588                  * can't change from under us until we release the
2589                  * anon_vma->lock.
2590                  */
2591                 if (!__test_and_clear_bit(0, (unsigned long *)
2592                                           &anon_vma->head.next))
2593                         BUG();
2594                 spin_unlock(&anon_vma->lock);
2595         }
2596 }
2597
2598 static void vm_unlock_mapping(struct address_space *mapping)
2599 {
2600         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2601                 /*
2602                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2603                  * because we hold the mm_all_locks_mutex.
2604                  */
2605                 spin_unlock(&mapping->i_mmap_lock);
2606                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2607                                         &mapping->flags))
2608                         BUG();
2609         }
2610 }
2611
2612 /*
2613  * The mmap_sem cannot be released by the caller until
2614  * mm_drop_all_locks() returns.
2615  */
2616 void mm_drop_all_locks(struct mm_struct *mm)
2617 {
2618         struct vm_area_struct *vma;
2619         struct anon_vma_chain *avc;
2620
2621         BUG_ON(down_read_trylock(&mm->mmap_sem));
2622         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2623
2624         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2625                 if (vma->anon_vma)
2626                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2627                                 vm_unlock_anon_vma(avc->anon_vma);
2628                 if (vma->vm_file && vma->vm_file->f_mapping)
2629                         vm_unlock_mapping(vma->vm_file->f_mapping);
2630         }
2631
2632         mutex_unlock(&mm_all_locks_mutex);
2633 }
2634
2635 /*
2636  * initialise the VMA slab
2637  */
2638 void __init mmap_init(void)
2639 {
2640         int ret;
2641
2642         ret = percpu_counter_init(&vm_committed_as, 0);
2643         VM_BUG_ON(ret);
2644 }