- Update to 3.3-final.
[linux-flexiantxendom0-3.2.10.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 bool __read_mostly console_use_vt = true;
142
143 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145 ssize_t redirected_tty_write(struct file *, const char __user *,
146                                                         size_t, loff_t *);
147 static unsigned int tty_poll(struct file *, poll_table *);
148 static int tty_open(struct inode *, struct file *);
149 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152                                 unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
161
162 /**
163  *      alloc_tty_struct        -       allocate a tty object
164  *
165  *      Return a new empty tty structure. The data fields have not
166  *      been initialized in any way but has been zeroed
167  *
168  *      Locking: none
169  */
170
171 struct tty_struct *alloc_tty_struct(void)
172 {
173         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 }
175
176 /**
177  *      free_tty_struct         -       free a disused tty
178  *      @tty: tty struct to free
179  *
180  *      Free the write buffers, tty queue and tty memory itself.
181  *
182  *      Locking: none. Must be called after tty is definitely unused
183  */
184
185 void free_tty_struct(struct tty_struct *tty)
186 {
187         if (tty->dev)
188                 put_device(tty->dev);
189         kfree(tty->write_buf);
190         tty_buffer_free_all(tty);
191         kfree(tty);
192 }
193
194 static inline struct tty_struct *file_tty(struct file *file)
195 {
196         return ((struct tty_file_private *)file->private_data)->tty;
197 }
198
199 int tty_alloc_file(struct file *file)
200 {
201         struct tty_file_private *priv;
202
203         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204         if (!priv)
205                 return -ENOMEM;
206
207         file->private_data = priv;
208
209         return 0;
210 }
211
212 /* Associate a new file with the tty structure */
213 void tty_add_file(struct tty_struct *tty, struct file *file)
214 {
215         struct tty_file_private *priv = file->private_data;
216
217         priv->tty = tty;
218         priv->file = file;
219
220         spin_lock(&tty_files_lock);
221         list_add(&priv->list, &tty->tty_files);
222         spin_unlock(&tty_files_lock);
223 }
224
225 /**
226  * tty_free_file - free file->private_data
227  *
228  * This shall be used only for fail path handling when tty_add_file was not
229  * called yet.
230  */
231 void tty_free_file(struct file *file)
232 {
233         struct tty_file_private *priv = file->private_data;
234
235         file->private_data = NULL;
236         kfree(priv);
237 }
238
239 /* Delete file from its tty */
240 void tty_del_file(struct file *file)
241 {
242         struct tty_file_private *priv = file->private_data;
243
244         spin_lock(&tty_files_lock);
245         list_del(&priv->list);
246         spin_unlock(&tty_files_lock);
247         tty_free_file(file);
248 }
249
250
251 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
252
253 /**
254  *      tty_name        -       return tty naming
255  *      @tty: tty structure
256  *      @buf: buffer for output
257  *
258  *      Convert a tty structure into a name. The name reflects the kernel
259  *      naming policy and if udev is in use may not reflect user space
260  *
261  *      Locking: none
262  */
263
264 char *tty_name(struct tty_struct *tty, char *buf)
265 {
266         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
267                 strcpy(buf, "NULL tty");
268         else
269                 strcpy(buf, tty->name);
270         return buf;
271 }
272
273 EXPORT_SYMBOL(tty_name);
274
275 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
276                               const char *routine)
277 {
278 #ifdef TTY_PARANOIA_CHECK
279         if (!tty) {
280                 printk(KERN_WARNING
281                         "null TTY for (%d:%d) in %s\n",
282                         imajor(inode), iminor(inode), routine);
283                 return 1;
284         }
285         if (tty->magic != TTY_MAGIC) {
286                 printk(KERN_WARNING
287                         "bad magic number for tty struct (%d:%d) in %s\n",
288                         imajor(inode), iminor(inode), routine);
289                 return 1;
290         }
291 #endif
292         return 0;
293 }
294
295 static int check_tty_count(struct tty_struct *tty, const char *routine)
296 {
297 #ifdef CHECK_TTY_COUNT
298         struct list_head *p;
299         int count = 0;
300
301         spin_lock(&tty_files_lock);
302         list_for_each(p, &tty->tty_files) {
303                 count++;
304         }
305         spin_unlock(&tty_files_lock);
306         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
307             tty->driver->subtype == PTY_TYPE_SLAVE &&
308             tty->link && tty->link->count)
309                 count++;
310         if (tty->count != count) {
311                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
312                                     "!= #fd's(%d) in %s\n",
313                        tty->name, tty->count, count, routine);
314                 return count;
315         }
316 #endif
317         return 0;
318 }
319
320 /**
321  *      get_tty_driver          -       find device of a tty
322  *      @dev_t: device identifier
323  *      @index: returns the index of the tty
324  *
325  *      This routine returns a tty driver structure, given a device number
326  *      and also passes back the index number.
327  *
328  *      Locking: caller must hold tty_mutex
329  */
330
331 static struct tty_driver *get_tty_driver(dev_t device, int *index)
332 {
333         struct tty_driver *p;
334
335         list_for_each_entry(p, &tty_drivers, tty_drivers) {
336                 dev_t base = MKDEV(p->major, p->minor_start);
337                 if (device < base || device >= base + p->num)
338                         continue;
339                 *index = device - base;
340                 return tty_driver_kref_get(p);
341         }
342         return NULL;
343 }
344
345 #ifdef CONFIG_CONSOLE_POLL
346
347 /**
348  *      tty_find_polling_driver -       find device of a polled tty
349  *      @name: name string to match
350  *      @line: pointer to resulting tty line nr
351  *
352  *      This routine returns a tty driver structure, given a name
353  *      and the condition that the tty driver is capable of polled
354  *      operation.
355  */
356 struct tty_driver *tty_find_polling_driver(char *name, int *line)
357 {
358         struct tty_driver *p, *res = NULL;
359         int tty_line = 0;
360         int len;
361         char *str, *stp;
362
363         for (str = name; *str; str++)
364                 if ((*str >= '0' && *str <= '9') || *str == ',')
365                         break;
366         if (!*str)
367                 return NULL;
368
369         len = str - name;
370         tty_line = simple_strtoul(str, &str, 10);
371
372         mutex_lock(&tty_mutex);
373         /* Search through the tty devices to look for a match */
374         list_for_each_entry(p, &tty_drivers, tty_drivers) {
375                 if (strncmp(name, p->name, len) != 0)
376                         continue;
377                 stp = str;
378                 if (*stp == ',')
379                         stp++;
380                 if (*stp == '\0')
381                         stp = NULL;
382
383                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
384                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
385                         res = tty_driver_kref_get(p);
386                         *line = tty_line;
387                         break;
388                 }
389         }
390         mutex_unlock(&tty_mutex);
391
392         return res;
393 }
394 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
395 #endif
396
397 /**
398  *      tty_check_change        -       check for POSIX terminal changes
399  *      @tty: tty to check
400  *
401  *      If we try to write to, or set the state of, a terminal and we're
402  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
403  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
404  *
405  *      Locking: ctrl_lock
406  */
407
408 int tty_check_change(struct tty_struct *tty)
409 {
410         unsigned long flags;
411         int ret = 0;
412
413         if (current->signal->tty != tty)
414                 return 0;
415
416         spin_lock_irqsave(&tty->ctrl_lock, flags);
417
418         if (!tty->pgrp) {
419                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
420                 goto out_unlock;
421         }
422         if (task_pgrp(current) == tty->pgrp)
423                 goto out_unlock;
424         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
425         if (is_ignored(SIGTTOU))
426                 goto out;
427         if (is_current_pgrp_orphaned()) {
428                 ret = -EIO;
429                 goto out;
430         }
431         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
432         set_thread_flag(TIF_SIGPENDING);
433         ret = -ERESTARTSYS;
434 out:
435         return ret;
436 out_unlock:
437         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
438         return ret;
439 }
440
441 EXPORT_SYMBOL(tty_check_change);
442
443 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
444                                 size_t count, loff_t *ppos)
445 {
446         return 0;
447 }
448
449 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
450                                  size_t count, loff_t *ppos)
451 {
452         return -EIO;
453 }
454
455 /* No kernel lock held - none needed ;) */
456 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
457 {
458         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
459 }
460
461 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
462                 unsigned long arg)
463 {
464         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466
467 static long hung_up_tty_compat_ioctl(struct file *file,
468                                      unsigned int cmd, unsigned long arg)
469 {
470         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
471 }
472
473 static const struct file_operations tty_fops = {
474         .llseek         = no_llseek,
475         .read           = tty_read,
476         .write          = tty_write,
477         .poll           = tty_poll,
478         .unlocked_ioctl = tty_ioctl,
479         .compat_ioctl   = tty_compat_ioctl,
480         .open           = tty_open,
481         .release        = tty_release,
482         .fasync         = tty_fasync,
483 };
484
485 static const struct file_operations console_fops = {
486         .llseek         = no_llseek,
487         .read           = tty_read,
488         .write          = redirected_tty_write,
489         .poll           = tty_poll,
490         .unlocked_ioctl = tty_ioctl,
491         .compat_ioctl   = tty_compat_ioctl,
492         .open           = tty_open,
493         .release        = tty_release,
494         .fasync         = tty_fasync,
495 };
496
497 static const struct file_operations hung_up_tty_fops = {
498         .llseek         = no_llseek,
499         .read           = hung_up_tty_read,
500         .write          = hung_up_tty_write,
501         .poll           = hung_up_tty_poll,
502         .unlocked_ioctl = hung_up_tty_ioctl,
503         .compat_ioctl   = hung_up_tty_compat_ioctl,
504         .release        = tty_release,
505 };
506
507 static DEFINE_SPINLOCK(redirect_lock);
508 static struct file *redirect;
509
510 /**
511  *      tty_wakeup      -       request more data
512  *      @tty: terminal
513  *
514  *      Internal and external helper for wakeups of tty. This function
515  *      informs the line discipline if present that the driver is ready
516  *      to receive more output data.
517  */
518
519 void tty_wakeup(struct tty_struct *tty)
520 {
521         struct tty_ldisc *ld;
522
523         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
524                 ld = tty_ldisc_ref(tty);
525                 if (ld) {
526                         if (ld->ops->write_wakeup)
527                                 ld->ops->write_wakeup(tty);
528                         tty_ldisc_deref(ld);
529                 }
530         }
531         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
532 }
533
534 EXPORT_SYMBOL_GPL(tty_wakeup);
535
536 /**
537  *      __tty_hangup            -       actual handler for hangup events
538  *      @work: tty device
539  *
540  *      This can be called by the "eventd" kernel thread.  That is process
541  *      synchronous but doesn't hold any locks, so we need to make sure we
542  *      have the appropriate locks for what we're doing.
543  *
544  *      The hangup event clears any pending redirections onto the hung up
545  *      device. It ensures future writes will error and it does the needed
546  *      line discipline hangup and signal delivery. The tty object itself
547  *      remains intact.
548  *
549  *      Locking:
550  *              BTM
551  *                redirect lock for undoing redirection
552  *                file list lock for manipulating list of ttys
553  *                tty_ldisc_lock from called functions
554  *                termios_mutex resetting termios data
555  *                tasklist_lock to walk task list for hangup event
556  *                  ->siglock to protect ->signal/->sighand
557  */
558 void __tty_hangup(struct tty_struct *tty)
559 {
560         struct file *cons_filp = NULL;
561         struct file *filp, *f = NULL;
562         struct task_struct *p;
563         struct tty_file_private *priv;
564         int    closecount = 0, n;
565         unsigned long flags;
566         int refs = 0;
567
568         if (!tty)
569                 return;
570
571
572         spin_lock(&redirect_lock);
573         if (redirect && file_tty(redirect) == tty) {
574                 f = redirect;
575                 redirect = NULL;
576         }
577         spin_unlock(&redirect_lock);
578
579         tty_lock();
580
581         /* some functions below drop BTM, so we need this bit */
582         set_bit(TTY_HUPPING, &tty->flags);
583
584         /* inuse_filps is protected by the single tty lock,
585            this really needs to change if we want to flush the
586            workqueue with the lock held */
587         check_tty_count(tty, "tty_hangup");
588
589         spin_lock(&tty_files_lock);
590         /* This breaks for file handles being sent over AF_UNIX sockets ? */
591         list_for_each_entry(priv, &tty->tty_files, list) {
592                 filp = priv->file;
593                 if (filp->f_op->write == redirected_tty_write)
594                         cons_filp = filp;
595                 if (filp->f_op->write != tty_write)
596                         continue;
597                 closecount++;
598                 __tty_fasync(-1, filp, 0);      /* can't block */
599                 filp->f_op = &hung_up_tty_fops;
600         }
601         spin_unlock(&tty_files_lock);
602
603         /*
604          * it drops BTM and thus races with reopen
605          * we protect the race by TTY_HUPPING
606          */
607         tty_ldisc_hangup(tty);
608
609         read_lock(&tasklist_lock);
610         if (tty->session) {
611                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612                         spin_lock_irq(&p->sighand->siglock);
613                         if (p->signal->tty == tty) {
614                                 p->signal->tty = NULL;
615                                 /* We defer the dereferences outside fo
616                                    the tasklist lock */
617                                 refs++;
618                         }
619                         if (!p->signal->leader) {
620                                 spin_unlock_irq(&p->sighand->siglock);
621                                 continue;
622                         }
623                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
626                         spin_lock_irqsave(&tty->ctrl_lock, flags);
627                         if (tty->pgrp)
628                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
629                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
630                         spin_unlock_irq(&p->sighand->siglock);
631                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
632         }
633         read_unlock(&tasklist_lock);
634
635         spin_lock_irqsave(&tty->ctrl_lock, flags);
636         clear_bit(TTY_THROTTLED, &tty->flags);
637         clear_bit(TTY_PUSH, &tty->flags);
638         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
639         put_pid(tty->session);
640         put_pid(tty->pgrp);
641         tty->session = NULL;
642         tty->pgrp = NULL;
643         tty->ctrl_status = 0;
644         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
645
646         /* Account for the p->signal references we killed */
647         while (refs--)
648                 tty_kref_put(tty);
649
650         /*
651          * If one of the devices matches a console pointer, we
652          * cannot just call hangup() because that will cause
653          * tty->count and state->count to go out of sync.
654          * So we just call close() the right number of times.
655          */
656         if (cons_filp) {
657                 if (tty->ops->close)
658                         for (n = 0; n < closecount; n++)
659                                 tty->ops->close(tty, cons_filp);
660         } else if (tty->ops->hangup)
661                 (tty->ops->hangup)(tty);
662         /*
663          * We don't want to have driver/ldisc interactions beyond
664          * the ones we did here. The driver layer expects no
665          * calls after ->hangup() from the ldisc side. However we
666          * can't yet guarantee all that.
667          */
668         set_bit(TTY_HUPPED, &tty->flags);
669         clear_bit(TTY_HUPPING, &tty->flags);
670         tty_ldisc_enable(tty);
671
672         tty_unlock();
673
674         if (f)
675                 fput(f);
676 }
677
678 static void do_tty_hangup(struct work_struct *work)
679 {
680         struct tty_struct *tty =
681                 container_of(work, struct tty_struct, hangup_work);
682
683         __tty_hangup(tty);
684 }
685
686 /**
687  *      tty_hangup              -       trigger a hangup event
688  *      @tty: tty to hangup
689  *
690  *      A carrier loss (virtual or otherwise) has occurred on this like
691  *      schedule a hangup sequence to run after this event.
692  */
693
694 void tty_hangup(struct tty_struct *tty)
695 {
696 #ifdef TTY_DEBUG_HANGUP
697         char    buf[64];
698         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
699 #endif
700         schedule_work(&tty->hangup_work);
701 }
702
703 EXPORT_SYMBOL(tty_hangup);
704
705 /**
706  *      tty_vhangup             -       process vhangup
707  *      @tty: tty to hangup
708  *
709  *      The user has asked via system call for the terminal to be hung up.
710  *      We do this synchronously so that when the syscall returns the process
711  *      is complete. That guarantee is necessary for security reasons.
712  */
713
714 void tty_vhangup(struct tty_struct *tty)
715 {
716 #ifdef TTY_DEBUG_HANGUP
717         char    buf[64];
718
719         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
720 #endif
721         __tty_hangup(tty);
722 }
723
724 EXPORT_SYMBOL(tty_vhangup);
725
726
727 /**
728  *      tty_vhangup_self        -       process vhangup for own ctty
729  *
730  *      Perform a vhangup on the current controlling tty
731  */
732
733 void tty_vhangup_self(void)
734 {
735         struct tty_struct *tty;
736
737         tty = get_current_tty();
738         if (tty) {
739                 tty_vhangup(tty);
740                 tty_kref_put(tty);
741         }
742 }
743
744 /**
745  *      tty_hung_up_p           -       was tty hung up
746  *      @filp: file pointer of tty
747  *
748  *      Return true if the tty has been subject to a vhangup or a carrier
749  *      loss
750  */
751
752 int tty_hung_up_p(struct file *filp)
753 {
754         return (filp->f_op == &hung_up_tty_fops);
755 }
756
757 EXPORT_SYMBOL(tty_hung_up_p);
758
759 static void session_clear_tty(struct pid *session)
760 {
761         struct task_struct *p;
762         do_each_pid_task(session, PIDTYPE_SID, p) {
763                 proc_clear_tty(p);
764         } while_each_pid_task(session, PIDTYPE_SID, p);
765 }
766
767 /**
768  *      disassociate_ctty       -       disconnect controlling tty
769  *      @on_exit: true if exiting so need to "hang up" the session
770  *
771  *      This function is typically called only by the session leader, when
772  *      it wants to disassociate itself from its controlling tty.
773  *
774  *      It performs the following functions:
775  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
776  *      (2)  Clears the tty from being controlling the session
777  *      (3)  Clears the controlling tty for all processes in the
778  *              session group.
779  *
780  *      The argument on_exit is set to 1 if called when a process is
781  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
782  *
783  *      Locking:
784  *              BTM is taken for hysterical raisins, and held when
785  *                called from no_tty().
786  *                tty_mutex is taken to protect tty
787  *                ->siglock is taken to protect ->signal/->sighand
788  *                tasklist_lock is taken to walk process list for sessions
789  *                  ->siglock is taken to protect ->signal/->sighand
790  */
791
792 void disassociate_ctty(int on_exit)
793 {
794         struct tty_struct *tty;
795
796         if (!current->signal->leader)
797                 return;
798
799         tty = get_current_tty();
800         if (tty) {
801                 struct pid *tty_pgrp = get_pid(tty->pgrp);
802                 if (on_exit) {
803                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
804                                 tty_vhangup(tty);
805                 }
806                 tty_kref_put(tty);
807                 if (tty_pgrp) {
808                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
809                         if (!on_exit)
810                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
811                         put_pid(tty_pgrp);
812                 }
813         } else if (on_exit) {
814                 struct pid *old_pgrp;
815                 spin_lock_irq(&current->sighand->siglock);
816                 old_pgrp = current->signal->tty_old_pgrp;
817                 current->signal->tty_old_pgrp = NULL;
818                 spin_unlock_irq(&current->sighand->siglock);
819                 if (old_pgrp) {
820                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
821                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
822                         put_pid(old_pgrp);
823                 }
824                 return;
825         }
826
827         spin_lock_irq(&current->sighand->siglock);
828         put_pid(current->signal->tty_old_pgrp);
829         current->signal->tty_old_pgrp = NULL;
830         spin_unlock_irq(&current->sighand->siglock);
831
832         tty = get_current_tty();
833         if (tty) {
834                 unsigned long flags;
835                 spin_lock_irqsave(&tty->ctrl_lock, flags);
836                 put_pid(tty->session);
837                 put_pid(tty->pgrp);
838                 tty->session = NULL;
839                 tty->pgrp = NULL;
840                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841                 tty_kref_put(tty);
842         } else {
843 #ifdef TTY_DEBUG_HANGUP
844                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
845                        " = NULL", tty);
846 #endif
847         }
848
849         /* Now clear signal->tty under the lock */
850         read_lock(&tasklist_lock);
851         session_clear_tty(task_session(current));
852         read_unlock(&tasklist_lock);
853 }
854
855 /**
856  *
857  *      no_tty  - Ensure the current process does not have a controlling tty
858  */
859 void no_tty(void)
860 {
861         struct task_struct *tsk = current;
862         tty_lock();
863         disassociate_ctty(0);
864         tty_unlock();
865         proc_clear_tty(tsk);
866 }
867
868
869 /**
870  *      stop_tty        -       propagate flow control
871  *      @tty: tty to stop
872  *
873  *      Perform flow control to the driver. For PTY/TTY pairs we
874  *      must also propagate the TIOCKPKT status. May be called
875  *      on an already stopped device and will not re-call the driver
876  *      method.
877  *
878  *      This functionality is used by both the line disciplines for
879  *      halting incoming flow and by the driver. It may therefore be
880  *      called from any context, may be under the tty atomic_write_lock
881  *      but not always.
882  *
883  *      Locking:
884  *              Uses the tty control lock internally
885  */
886
887 void stop_tty(struct tty_struct *tty)
888 {
889         unsigned long flags;
890         spin_lock_irqsave(&tty->ctrl_lock, flags);
891         if (tty->stopped) {
892                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
893                 return;
894         }
895         tty->stopped = 1;
896         if (tty->link && tty->link->packet) {
897                 tty->ctrl_status &= ~TIOCPKT_START;
898                 tty->ctrl_status |= TIOCPKT_STOP;
899                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
900         }
901         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
902         if (tty->ops->stop)
903                 (tty->ops->stop)(tty);
904 }
905
906 EXPORT_SYMBOL(stop_tty);
907
908 /**
909  *      start_tty       -       propagate flow control
910  *      @tty: tty to start
911  *
912  *      Start a tty that has been stopped if at all possible. Perform
913  *      any necessary wakeups and propagate the TIOCPKT status. If this
914  *      is the tty was previous stopped and is being started then the
915  *      driver start method is invoked and the line discipline woken.
916  *
917  *      Locking:
918  *              ctrl_lock
919  */
920
921 void start_tty(struct tty_struct *tty)
922 {
923         unsigned long flags;
924         spin_lock_irqsave(&tty->ctrl_lock, flags);
925         if (!tty->stopped || tty->flow_stopped) {
926                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
927                 return;
928         }
929         tty->stopped = 0;
930         if (tty->link && tty->link->packet) {
931                 tty->ctrl_status &= ~TIOCPKT_STOP;
932                 tty->ctrl_status |= TIOCPKT_START;
933                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
934         }
935         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
936         if (tty->ops->start)
937                 (tty->ops->start)(tty);
938         /* If we have a running line discipline it may need kicking */
939         tty_wakeup(tty);
940 }
941
942 EXPORT_SYMBOL(start_tty);
943
944 /**
945  *      tty_read        -       read method for tty device files
946  *      @file: pointer to tty file
947  *      @buf: user buffer
948  *      @count: size of user buffer
949  *      @ppos: unused
950  *
951  *      Perform the read system call function on this terminal device. Checks
952  *      for hung up devices before calling the line discipline method.
953  *
954  *      Locking:
955  *              Locks the line discipline internally while needed. Multiple
956  *      read calls may be outstanding in parallel.
957  */
958
959 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
960                         loff_t *ppos)
961 {
962         int i;
963         struct inode *inode = file->f_path.dentry->d_inode;
964         struct tty_struct *tty = file_tty(file);
965         struct tty_ldisc *ld;
966
967         if (tty_paranoia_check(tty, inode, "tty_read"))
968                 return -EIO;
969         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
970                 return -EIO;
971
972         /* We want to wait for the line discipline to sort out in this
973            situation */
974         ld = tty_ldisc_ref_wait(tty);
975         if (ld->ops->read)
976                 i = (ld->ops->read)(tty, file, buf, count);
977         else
978                 i = -EIO;
979         tty_ldisc_deref(ld);
980         if (i > 0)
981                 inode->i_atime = current_fs_time(inode->i_sb);
982         return i;
983 }
984
985 void tty_write_unlock(struct tty_struct *tty)
986         __releases(&tty->atomic_write_lock)
987 {
988         mutex_unlock(&tty->atomic_write_lock);
989         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
990 }
991
992 int tty_write_lock(struct tty_struct *tty, int ndelay)
993         __acquires(&tty->atomic_write_lock)
994 {
995         if (!mutex_trylock(&tty->atomic_write_lock)) {
996                 if (ndelay)
997                         return -EAGAIN;
998                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
999                         return -ERESTARTSYS;
1000         }
1001         return 0;
1002 }
1003
1004 /*
1005  * Split writes up in sane blocksizes to avoid
1006  * denial-of-service type attacks
1007  */
1008 static inline ssize_t do_tty_write(
1009         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1010         struct tty_struct *tty,
1011         struct file *file,
1012         const char __user *buf,
1013         size_t count)
1014 {
1015         ssize_t ret, written = 0;
1016         unsigned int chunk;
1017
1018         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1019         if (ret < 0)
1020                 return ret;
1021
1022         /*
1023          * We chunk up writes into a temporary buffer. This
1024          * simplifies low-level drivers immensely, since they
1025          * don't have locking issues and user mode accesses.
1026          *
1027          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1028          * big chunk-size..
1029          *
1030          * The default chunk-size is 2kB, because the NTTY
1031          * layer has problems with bigger chunks. It will
1032          * claim to be able to handle more characters than
1033          * it actually does.
1034          *
1035          * FIXME: This can probably go away now except that 64K chunks
1036          * are too likely to fail unless switched to vmalloc...
1037          */
1038         chunk = 2048;
1039         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1040                 chunk = 65536;
1041         if (count < chunk)
1042                 chunk = count;
1043
1044         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1045         if (tty->write_cnt < chunk) {
1046                 unsigned char *buf_chunk;
1047
1048                 if (chunk < 1024)
1049                         chunk = 1024;
1050
1051                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1052                 if (!buf_chunk) {
1053                         ret = -ENOMEM;
1054                         goto out;
1055                 }
1056                 kfree(tty->write_buf);
1057                 tty->write_cnt = chunk;
1058                 tty->write_buf = buf_chunk;
1059         }
1060
1061         /* Do the write .. */
1062         for (;;) {
1063                 size_t size = count;
1064                 if (size > chunk)
1065                         size = chunk;
1066                 ret = -EFAULT;
1067                 if (copy_from_user(tty->write_buf, buf, size))
1068                         break;
1069                 ret = write(tty, file, tty->write_buf, size);
1070                 if (ret <= 0)
1071                         break;
1072                 written += ret;
1073                 buf += ret;
1074                 count -= ret;
1075                 if (!count)
1076                         break;
1077                 ret = -ERESTARTSYS;
1078                 if (signal_pending(current))
1079                         break;
1080                 cond_resched();
1081         }
1082         if (written) {
1083                 struct inode *inode = file->f_path.dentry->d_inode;
1084                 inode->i_mtime = current_fs_time(inode->i_sb);
1085                 ret = written;
1086         }
1087 out:
1088         tty_write_unlock(tty);
1089         return ret;
1090 }
1091
1092 /**
1093  * tty_write_message - write a message to a certain tty, not just the console.
1094  * @tty: the destination tty_struct
1095  * @msg: the message to write
1096  *
1097  * This is used for messages that need to be redirected to a specific tty.
1098  * We don't put it into the syslog queue right now maybe in the future if
1099  * really needed.
1100  *
1101  * We must still hold the BTM and test the CLOSING flag for the moment.
1102  */
1103
1104 void tty_write_message(struct tty_struct *tty, char *msg)
1105 {
1106         if (tty) {
1107                 mutex_lock(&tty->atomic_write_lock);
1108                 tty_lock();
1109                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1110                         tty_unlock();
1111                         tty->ops->write(tty, msg, strlen(msg));
1112                 } else
1113                         tty_unlock();
1114                 tty_write_unlock(tty);
1115         }
1116         return;
1117 }
1118
1119
1120 /**
1121  *      tty_write               -       write method for tty device file
1122  *      @file: tty file pointer
1123  *      @buf: user data to write
1124  *      @count: bytes to write
1125  *      @ppos: unused
1126  *
1127  *      Write data to a tty device via the line discipline.
1128  *
1129  *      Locking:
1130  *              Locks the line discipline as required
1131  *              Writes to the tty driver are serialized by the atomic_write_lock
1132  *      and are then processed in chunks to the device. The line discipline
1133  *      write method will not be invoked in parallel for each device.
1134  */
1135
1136 static ssize_t tty_write(struct file *file, const char __user *buf,
1137                                                 size_t count, loff_t *ppos)
1138 {
1139         struct inode *inode = file->f_path.dentry->d_inode;
1140         struct tty_struct *tty = file_tty(file);
1141         struct tty_ldisc *ld;
1142         ssize_t ret;
1143
1144         if (tty_paranoia_check(tty, inode, "tty_write"))
1145                 return -EIO;
1146         if (!tty || !tty->ops->write ||
1147                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1148                         return -EIO;
1149         /* Short term debug to catch buggy drivers */
1150         if (tty->ops->write_room == NULL)
1151                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1152                         tty->driver->name);
1153         ld = tty_ldisc_ref_wait(tty);
1154         if (!ld->ops->write)
1155                 ret = -EIO;
1156         else
1157                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1158         tty_ldisc_deref(ld);
1159         return ret;
1160 }
1161
1162 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1163                                                 size_t count, loff_t *ppos)
1164 {
1165         struct file *p = NULL;
1166
1167         spin_lock(&redirect_lock);
1168         if (redirect) {
1169                 get_file(redirect);
1170                 p = redirect;
1171         }
1172         spin_unlock(&redirect_lock);
1173
1174         if (p) {
1175                 ssize_t res;
1176                 res = vfs_write(p, buf, count, &p->f_pos);
1177                 fput(p);
1178                 return res;
1179         }
1180         return tty_write(file, buf, count, ppos);
1181 }
1182
1183 static char ptychar[] = "pqrstuvwxyzabcde";
1184
1185 /**
1186  *      pty_line_name   -       generate name for a pty
1187  *      @driver: the tty driver in use
1188  *      @index: the minor number
1189  *      @p: output buffer of at least 6 bytes
1190  *
1191  *      Generate a name from a driver reference and write it to the output
1192  *      buffer.
1193  *
1194  *      Locking: None
1195  */
1196 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1197 {
1198         int i = index + driver->name_base;
1199         /* ->name is initialized to "ttyp", but "tty" is expected */
1200         sprintf(p, "%s%c%x",
1201                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1202                 ptychar[i >> 4 & 0xf], i & 0xf);
1203 }
1204
1205 /**
1206  *      tty_line_name   -       generate name for a tty
1207  *      @driver: the tty driver in use
1208  *      @index: the minor number
1209  *      @p: output buffer of at least 7 bytes
1210  *
1211  *      Generate a name from a driver reference and write it to the output
1212  *      buffer.
1213  *
1214  *      Locking: None
1215  */
1216 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1217 {
1218         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1219 }
1220
1221 /**
1222  *      tty_driver_lookup_tty() - find an existing tty, if any
1223  *      @driver: the driver for the tty
1224  *      @idx:    the minor number
1225  *
1226  *      Return the tty, if found or ERR_PTR() otherwise.
1227  *
1228  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1229  *      be held until the 'fast-open' is also done. Will change once we
1230  *      have refcounting in the driver and per driver locking
1231  */
1232 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1233                 struct inode *inode, int idx)
1234 {
1235         struct tty_struct *tty;
1236
1237         if (driver->ops->lookup)
1238                 return driver->ops->lookup(driver, inode, idx);
1239
1240         tty = driver->ttys[idx];
1241         return tty;
1242 }
1243
1244 /**
1245  *      tty_init_termios        -  helper for termios setup
1246  *      @tty: the tty to set up
1247  *
1248  *      Initialise the termios structures for this tty. Thus runs under
1249  *      the tty_mutex currently so we can be relaxed about ordering.
1250  */
1251
1252 int tty_init_termios(struct tty_struct *tty)
1253 {
1254         struct ktermios *tp;
1255         int idx = tty->index;
1256
1257         tp = tty->driver->termios[idx];
1258         if (tp == NULL) {
1259                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1260                 if (tp == NULL)
1261                         return -ENOMEM;
1262                 memcpy(tp, &tty->driver->init_termios,
1263                                                 sizeof(struct ktermios));
1264                 tty->driver->termios[idx] = tp;
1265         }
1266         tty->termios = tp;
1267         tty->termios_locked = tp + 1;
1268
1269         /* Compatibility until drivers always set this */
1270         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1271         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1272         return 0;
1273 }
1274 EXPORT_SYMBOL_GPL(tty_init_termios);
1275
1276 /**
1277  *      tty_driver_install_tty() - install a tty entry in the driver
1278  *      @driver: the driver for the tty
1279  *      @tty: the tty
1280  *
1281  *      Install a tty object into the driver tables. The tty->index field
1282  *      will be set by the time this is called. This method is responsible
1283  *      for ensuring any need additional structures are allocated and
1284  *      configured.
1285  *
1286  *      Locking: tty_mutex for now
1287  */
1288 static int tty_driver_install_tty(struct tty_driver *driver,
1289                                                 struct tty_struct *tty)
1290 {
1291         int idx = tty->index;
1292         int ret;
1293
1294         if (driver->ops->install) {
1295                 ret = driver->ops->install(driver, tty);
1296                 return ret;
1297         }
1298
1299         if (tty_init_termios(tty) == 0) {
1300                 tty_driver_kref_get(driver);
1301                 tty->count++;
1302                 driver->ttys[idx] = tty;
1303                 return 0;
1304         }
1305         return -ENOMEM;
1306 }
1307
1308 /**
1309  *      tty_driver_remove_tty() - remove a tty from the driver tables
1310  *      @driver: the driver for the tty
1311  *      @idx:    the minor number
1312  *
1313  *      Remvoe a tty object from the driver tables. The tty->index field
1314  *      will be set by the time this is called.
1315  *
1316  *      Locking: tty_mutex for now
1317  */
1318 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1319 {
1320         if (driver->ops->remove)
1321                 driver->ops->remove(driver, tty);
1322         else
1323                 driver->ttys[tty->index] = NULL;
1324 }
1325
1326 /*
1327  *      tty_reopen()    - fast re-open of an open tty
1328  *      @tty    - the tty to open
1329  *
1330  *      Return 0 on success, -errno on error.
1331  *
1332  *      Locking: tty_mutex must be held from the time the tty was found
1333  *               till this open completes.
1334  */
1335 static int tty_reopen(struct tty_struct *tty)
1336 {
1337         struct tty_driver *driver = tty->driver;
1338
1339         if (test_bit(TTY_CLOSING, &tty->flags) ||
1340                         test_bit(TTY_HUPPING, &tty->flags) ||
1341                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1342                 return -EIO;
1343
1344         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1345             driver->subtype == PTY_TYPE_MASTER) {
1346                 /*
1347                  * special case for PTY masters: only one open permitted,
1348                  * and the slave side open count is incremented as well.
1349                  */
1350                 if (tty->count)
1351                         return -EIO;
1352
1353                 tty->link->count++;
1354         }
1355         tty->count++;
1356         tty->driver = driver; /* N.B. why do this every time?? */
1357
1358         mutex_lock(&tty->ldisc_mutex);
1359         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1360         mutex_unlock(&tty->ldisc_mutex);
1361
1362         return 0;
1363 }
1364
1365 /**
1366  *      tty_init_dev            -       initialise a tty device
1367  *      @driver: tty driver we are opening a device on
1368  *      @idx: device index
1369  *      @ret_tty: returned tty structure
1370  *      @first_ok: ok to open a new device (used by ptmx)
1371  *
1372  *      Prepare a tty device. This may not be a "new" clean device but
1373  *      could also be an active device. The pty drivers require special
1374  *      handling because of this.
1375  *
1376  *      Locking:
1377  *              The function is called under the tty_mutex, which
1378  *      protects us from the tty struct or driver itself going away.
1379  *
1380  *      On exit the tty device has the line discipline attached and
1381  *      a reference count of 1. If a pair was created for pty/tty use
1382  *      and the other was a pty master then it too has a reference count of 1.
1383  *
1384  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1385  * failed open.  The new code protects the open with a mutex, so it's
1386  * really quite straightforward.  The mutex locking can probably be
1387  * relaxed for the (most common) case of reopening a tty.
1388  */
1389
1390 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1391                                                                 int first_ok)
1392 {
1393         struct tty_struct *tty;
1394         int retval;
1395
1396         /* Check if pty master is being opened multiple times */
1397         if (driver->subtype == PTY_TYPE_MASTER &&
1398                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1399                 return ERR_PTR(-EIO);
1400         }
1401
1402         /*
1403          * First time open is complex, especially for PTY devices.
1404          * This code guarantees that either everything succeeds and the
1405          * TTY is ready for operation, or else the table slots are vacated
1406          * and the allocated memory released.  (Except that the termios
1407          * and locked termios may be retained.)
1408          */
1409
1410         if (!try_module_get(driver->owner))
1411                 return ERR_PTR(-ENODEV);
1412
1413         tty = alloc_tty_struct();
1414         if (!tty) {
1415                 retval = -ENOMEM;
1416                 goto err_module_put;
1417         }
1418         initialize_tty_struct(tty, driver, idx);
1419
1420         retval = tty_driver_install_tty(driver, tty);
1421         if (retval < 0)
1422                 goto err_deinit_tty;
1423
1424         /*
1425          * Structures all installed ... call the ldisc open routines.
1426          * If we fail here just call release_tty to clean up.  No need
1427          * to decrement the use counts, as release_tty doesn't care.
1428          */
1429         retval = tty_ldisc_setup(tty, tty->link);
1430         if (retval)
1431                 goto err_release_tty;
1432         return tty;
1433
1434 err_deinit_tty:
1435         deinitialize_tty_struct(tty);
1436         free_tty_struct(tty);
1437 err_module_put:
1438         module_put(driver->owner);
1439         return ERR_PTR(retval);
1440
1441         /* call the tty release_tty routine to clean out this slot */
1442 err_release_tty:
1443         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1444                                  "clearing slot %d\n", idx);
1445         release_tty(tty, idx);
1446         return ERR_PTR(retval);
1447 }
1448
1449 void tty_free_termios(struct tty_struct *tty)
1450 {
1451         struct ktermios *tp;
1452         int idx = tty->index;
1453         /* Kill this flag and push into drivers for locking etc */
1454         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1455                 /* FIXME: Locking on ->termios array */
1456                 tp = tty->termios;
1457                 tty->driver->termios[idx] = NULL;
1458                 kfree(tp);
1459         }
1460 }
1461 EXPORT_SYMBOL(tty_free_termios);
1462
1463 void tty_shutdown(struct tty_struct *tty)
1464 {
1465         tty_driver_remove_tty(tty->driver, tty);
1466         tty_free_termios(tty);
1467 }
1468 EXPORT_SYMBOL(tty_shutdown);
1469
1470 /**
1471  *      release_one_tty         -       release tty structure memory
1472  *      @kref: kref of tty we are obliterating
1473  *
1474  *      Releases memory associated with a tty structure, and clears out the
1475  *      driver table slots. This function is called when a device is no longer
1476  *      in use. It also gets called when setup of a device fails.
1477  *
1478  *      Locking:
1479  *              tty_mutex - sometimes only
1480  *              takes the file list lock internally when working on the list
1481  *      of ttys that the driver keeps.
1482  *
1483  *      This method gets called from a work queue so that the driver private
1484  *      cleanup ops can sleep (needed for USB at least)
1485  */
1486 static void release_one_tty(struct work_struct *work)
1487 {
1488         struct tty_struct *tty =
1489                 container_of(work, struct tty_struct, hangup_work);
1490         struct tty_driver *driver = tty->driver;
1491
1492         if (tty->ops->cleanup)
1493                 tty->ops->cleanup(tty);
1494
1495         tty->magic = 0;
1496         tty_driver_kref_put(driver);
1497         module_put(driver->owner);
1498
1499         spin_lock(&tty_files_lock);
1500         list_del_init(&tty->tty_files);
1501         spin_unlock(&tty_files_lock);
1502
1503         put_pid(tty->pgrp);
1504         put_pid(tty->session);
1505         free_tty_struct(tty);
1506 }
1507
1508 static void queue_release_one_tty(struct kref *kref)
1509 {
1510         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1511
1512         if (tty->ops->shutdown)
1513                 tty->ops->shutdown(tty);
1514         else
1515                 tty_shutdown(tty);
1516
1517         /* The hangup queue is now free so we can reuse it rather than
1518            waste a chunk of memory for each port */
1519         INIT_WORK(&tty->hangup_work, release_one_tty);
1520         schedule_work(&tty->hangup_work);
1521 }
1522
1523 /**
1524  *      tty_kref_put            -       release a tty kref
1525  *      @tty: tty device
1526  *
1527  *      Release a reference to a tty device and if need be let the kref
1528  *      layer destruct the object for us
1529  */
1530
1531 void tty_kref_put(struct tty_struct *tty)
1532 {
1533         if (tty)
1534                 kref_put(&tty->kref, queue_release_one_tty);
1535 }
1536 EXPORT_SYMBOL(tty_kref_put);
1537
1538 /**
1539  *      release_tty             -       release tty structure memory
1540  *
1541  *      Release both @tty and a possible linked partner (think pty pair),
1542  *      and decrement the refcount of the backing module.
1543  *
1544  *      Locking:
1545  *              tty_mutex - sometimes only
1546  *              takes the file list lock internally when working on the list
1547  *      of ttys that the driver keeps.
1548  *              FIXME: should we require tty_mutex is held here ??
1549  *
1550  */
1551 static void release_tty(struct tty_struct *tty, int idx)
1552 {
1553         /* This should always be true but check for the moment */
1554         WARN_ON(tty->index != idx);
1555
1556         if (tty->link)
1557                 tty_kref_put(tty->link);
1558         tty_kref_put(tty);
1559 }
1560
1561 /**
1562  *      tty_release_checks - check a tty before real release
1563  *      @tty: tty to check
1564  *      @o_tty: link of @tty (if any)
1565  *      @idx: index of the tty
1566  *
1567  *      Performs some paranoid checking before true release of the @tty.
1568  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1569  */
1570 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1571                 int idx)
1572 {
1573 #ifdef TTY_PARANOIA_CHECK
1574         if (idx < 0 || idx >= tty->driver->num) {
1575                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1576                                 __func__, tty->name);
1577                 return -1;
1578         }
1579
1580         /* not much to check for devpts */
1581         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1582                 return 0;
1583
1584         if (tty != tty->driver->ttys[idx]) {
1585                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1586                                 __func__, idx, tty->name);
1587                 return -1;
1588         }
1589         if (tty->termios != tty->driver->termios[idx]) {
1590                 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1591                                 __func__, idx, tty->name);
1592                 return -1;
1593         }
1594         if (tty->driver->other) {
1595                 if (o_tty != tty->driver->other->ttys[idx]) {
1596                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1597                                         __func__, idx, tty->name);
1598                         return -1;
1599                 }
1600                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1601                         printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1602                                         __func__, idx, tty->name);
1603                         return -1;
1604                 }
1605                 if (o_tty->link != tty) {
1606                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1607                         return -1;
1608                 }
1609         }
1610 #endif
1611         return 0;
1612 }
1613
1614 /**
1615  *      tty_release             -       vfs callback for close
1616  *      @inode: inode of tty
1617  *      @filp: file pointer for handle to tty
1618  *
1619  *      Called the last time each file handle is closed that references
1620  *      this tty. There may however be several such references.
1621  *
1622  *      Locking:
1623  *              Takes bkl. See tty_release_dev
1624  *
1625  * Even releasing the tty structures is a tricky business.. We have
1626  * to be very careful that the structures are all released at the
1627  * same time, as interrupts might otherwise get the wrong pointers.
1628  *
1629  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1630  * lead to double frees or releasing memory still in use.
1631  */
1632
1633 int tty_release(struct inode *inode, struct file *filp)
1634 {
1635         struct tty_struct *tty = file_tty(filp);
1636         struct tty_struct *o_tty;
1637         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1638         int     devpts;
1639         int     idx;
1640         char    buf[64];
1641
1642         if (tty_paranoia_check(tty, inode, __func__))
1643                 return 0;
1644
1645         tty_lock();
1646         check_tty_count(tty, __func__);
1647
1648         __tty_fasync(-1, filp, 0);
1649
1650         idx = tty->index;
1651         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1652                       tty->driver->subtype == PTY_TYPE_MASTER);
1653         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1654         o_tty = tty->link;
1655
1656         if (tty_release_checks(tty, o_tty, idx)) {
1657                 tty_unlock();
1658                 return 0;
1659         }
1660
1661 #ifdef TTY_DEBUG_HANGUP
1662         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1663                         tty_name(tty, buf), tty->count);
1664 #endif
1665
1666         if (tty->ops->close)
1667                 tty->ops->close(tty, filp);
1668
1669         tty_unlock();
1670         /*
1671          * Sanity check: if tty->count is going to zero, there shouldn't be
1672          * any waiters on tty->read_wait or tty->write_wait.  We test the
1673          * wait queues and kick everyone out _before_ actually starting to
1674          * close.  This ensures that we won't block while releasing the tty
1675          * structure.
1676          *
1677          * The test for the o_tty closing is necessary, since the master and
1678          * slave sides may close in any order.  If the slave side closes out
1679          * first, its count will be one, since the master side holds an open.
1680          * Thus this test wouldn't be triggered at the time the slave closes,
1681          * so we do it now.
1682          *
1683          * Note that it's possible for the tty to be opened again while we're
1684          * flushing out waiters.  By recalculating the closing flags before
1685          * each iteration we avoid any problems.
1686          */
1687         while (1) {
1688                 /* Guard against races with tty->count changes elsewhere and
1689                    opens on /dev/tty */
1690
1691                 mutex_lock(&tty_mutex);
1692                 tty_lock();
1693                 tty_closing = tty->count <= 1;
1694                 o_tty_closing = o_tty &&
1695                         (o_tty->count <= (pty_master ? 1 : 0));
1696                 do_sleep = 0;
1697
1698                 if (tty_closing) {
1699                         if (waitqueue_active(&tty->read_wait)) {
1700                                 wake_up_poll(&tty->read_wait, POLLIN);
1701                                 do_sleep++;
1702                         }
1703                         if (waitqueue_active(&tty->write_wait)) {
1704                                 wake_up_poll(&tty->write_wait, POLLOUT);
1705                                 do_sleep++;
1706                         }
1707                 }
1708                 if (o_tty_closing) {
1709                         if (waitqueue_active(&o_tty->read_wait)) {
1710                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1711                                 do_sleep++;
1712                         }
1713                         if (waitqueue_active(&o_tty->write_wait)) {
1714                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1715                                 do_sleep++;
1716                         }
1717                 }
1718                 if (!do_sleep)
1719                         break;
1720
1721                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1722                                 __func__, tty_name(tty, buf));
1723                 tty_unlock();
1724                 mutex_unlock(&tty_mutex);
1725                 schedule();
1726         }
1727
1728         /*
1729          * The closing flags are now consistent with the open counts on
1730          * both sides, and we've completed the last operation that could
1731          * block, so it's safe to proceed with closing.
1732          */
1733         if (pty_master) {
1734                 if (--o_tty->count < 0) {
1735                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1736                                 __func__, o_tty->count, tty_name(o_tty, buf));
1737                         o_tty->count = 0;
1738                 }
1739         }
1740         if (--tty->count < 0) {
1741                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1742                                 __func__, tty->count, tty_name(tty, buf));
1743                 tty->count = 0;
1744         }
1745
1746         /*
1747          * We've decremented tty->count, so we need to remove this file
1748          * descriptor off the tty->tty_files list; this serves two
1749          * purposes:
1750          *  - check_tty_count sees the correct number of file descriptors
1751          *    associated with this tty.
1752          *  - do_tty_hangup no longer sees this file descriptor as
1753          *    something that needs to be handled for hangups.
1754          */
1755         tty_del_file(filp);
1756
1757         /*
1758          * Perform some housekeeping before deciding whether to return.
1759          *
1760          * Set the TTY_CLOSING flag if this was the last open.  In the
1761          * case of a pty we may have to wait around for the other side
1762          * to close, and TTY_CLOSING makes sure we can't be reopened.
1763          */
1764         if (tty_closing)
1765                 set_bit(TTY_CLOSING, &tty->flags);
1766         if (o_tty_closing)
1767                 set_bit(TTY_CLOSING, &o_tty->flags);
1768
1769         /*
1770          * If _either_ side is closing, make sure there aren't any
1771          * processes that still think tty or o_tty is their controlling
1772          * tty.
1773          */
1774         if (tty_closing || o_tty_closing) {
1775                 read_lock(&tasklist_lock);
1776                 session_clear_tty(tty->session);
1777                 if (o_tty)
1778                         session_clear_tty(o_tty->session);
1779                 read_unlock(&tasklist_lock);
1780         }
1781
1782         mutex_unlock(&tty_mutex);
1783
1784         /* check whether both sides are closing ... */
1785         if (!tty_closing || (o_tty && !o_tty_closing)) {
1786                 tty_unlock();
1787                 return 0;
1788         }
1789
1790 #ifdef TTY_DEBUG_HANGUP
1791         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1792 #endif
1793         /*
1794          * Ask the line discipline code to release its structures
1795          */
1796         tty_ldisc_release(tty, o_tty);
1797         /*
1798          * The release_tty function takes care of the details of clearing
1799          * the slots and preserving the termios structure.
1800          */
1801         release_tty(tty, idx);
1802
1803         /* Make this pty number available for reallocation */
1804         if (devpts)
1805                 devpts_kill_index(inode, idx);
1806         tty_unlock();
1807         return 0;
1808 }
1809
1810 /**
1811  *      tty_open_current_tty - get tty of current task for open
1812  *      @device: device number
1813  *      @filp: file pointer to tty
1814  *      @return: tty of the current task iff @device is /dev/tty
1815  *
1816  *      We cannot return driver and index like for the other nodes because
1817  *      devpts will not work then. It expects inodes to be from devpts FS.
1818  */
1819 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1820 {
1821         struct tty_struct *tty;
1822
1823         if (device != MKDEV(TTYAUX_MAJOR, 0))
1824                 return NULL;
1825
1826         tty = get_current_tty();
1827         if (!tty)
1828                 return ERR_PTR(-ENXIO);
1829
1830         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831         /* noctty = 1; */
1832         tty_kref_put(tty);
1833         /* FIXME: we put a reference and return a TTY! */
1834         return tty;
1835 }
1836
1837 /**
1838  *      tty_lookup_driver - lookup a tty driver for a given device file
1839  *      @device: device number
1840  *      @filp: file pointer to tty
1841  *      @noctty: set if the device should not become a controlling tty
1842  *      @index: index for the device in the @return driver
1843  *      @return: driver for this inode (with increased refcount)
1844  *
1845  *      If @return is not erroneous, the caller is responsible to decrement the
1846  *      refcount by tty_driver_kref_put.
1847  *
1848  *      Locking: tty_mutex protects get_tty_driver
1849  */
1850 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1851                 int *noctty, int *index)
1852 {
1853         struct tty_driver *driver;
1854
1855         switch (device) {
1856 #ifdef CONFIG_VT
1857         case MKDEV(TTY_MAJOR, 0): {
1858                 extern struct tty_driver *console_driver;
1859
1860                 if (!console_use_vt)
1861                         return get_tty_driver(device, index)
1862                                ?: ERR_PTR(-ENODEV);
1863                 driver = tty_driver_kref_get(console_driver);
1864                 *index = fg_console;
1865                 *noctty = 1;
1866                 break;
1867         }
1868 #endif
1869         case MKDEV(TTYAUX_MAJOR, 1): {
1870                 struct tty_driver *console_driver = console_device(index);
1871                 if (console_driver) {
1872                         driver = tty_driver_kref_get(console_driver);
1873                         if (driver) {
1874                                 /* Don't let /dev/console block */
1875                                 filp->f_flags |= O_NONBLOCK;
1876                                 *noctty = 1;
1877                                 break;
1878                         }
1879                 }
1880                 return ERR_PTR(-ENODEV);
1881         }
1882         default:
1883                 driver = get_tty_driver(device, index);
1884                 if (!driver)
1885                         return ERR_PTR(-ENODEV);
1886                 break;
1887         }
1888         return driver;
1889 }
1890
1891 /**
1892  *      tty_open                -       open a tty device
1893  *      @inode: inode of device file
1894  *      @filp: file pointer to tty
1895  *
1896  *      tty_open and tty_release keep up the tty count that contains the
1897  *      number of opens done on a tty. We cannot use the inode-count, as
1898  *      different inodes might point to the same tty.
1899  *
1900  *      Open-counting is needed for pty masters, as well as for keeping
1901  *      track of serial lines: DTR is dropped when the last close happens.
1902  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1903  *
1904  *      The termios state of a pty is reset on first open so that
1905  *      settings don't persist across reuse.
1906  *
1907  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1908  *               tty->count should protect the rest.
1909  *               ->siglock protects ->signal/->sighand
1910  */
1911
1912 static int tty_open(struct inode *inode, struct file *filp)
1913 {
1914         struct tty_struct *tty;
1915         int noctty, retval;
1916         struct tty_driver *driver = NULL;
1917         int index;
1918         dev_t device = inode->i_rdev;
1919         unsigned saved_flags = filp->f_flags;
1920
1921         nonseekable_open(inode, filp);
1922
1923 retry_open:
1924         retval = tty_alloc_file(filp);
1925         if (retval)
1926                 return -ENOMEM;
1927
1928         noctty = filp->f_flags & O_NOCTTY;
1929         index  = -1;
1930         retval = 0;
1931
1932         mutex_lock(&tty_mutex);
1933         tty_lock();
1934
1935         tty = tty_open_current_tty(device, filp);
1936         if (IS_ERR(tty)) {
1937                 retval = PTR_ERR(tty);
1938                 goto err_unlock;
1939         } else if (!tty) {
1940                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1941                 if (IS_ERR(driver)) {
1942                         retval = PTR_ERR(driver);
1943                         goto err_unlock;
1944                 }
1945
1946                 /* check whether we're reopening an existing tty */
1947                 tty = tty_driver_lookup_tty(driver, inode, index);
1948                 if (IS_ERR(tty)) {
1949                         retval = PTR_ERR(tty);
1950                         goto err_unlock;
1951                 }
1952         }
1953
1954         if (tty) {
1955                 retval = tty_reopen(tty);
1956                 if (retval)
1957                         tty = ERR_PTR(retval);
1958         } else
1959                 tty = tty_init_dev(driver, index, 0);
1960
1961         mutex_unlock(&tty_mutex);
1962         if (driver)
1963                 tty_driver_kref_put(driver);
1964         if (IS_ERR(tty)) {
1965                 tty_unlock();
1966                 retval = PTR_ERR(tty);
1967                 goto err_file;
1968         }
1969
1970         tty_add_file(tty, filp);
1971
1972         check_tty_count(tty, __func__);
1973         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1974             tty->driver->subtype == PTY_TYPE_MASTER)
1975                 noctty = 1;
1976 #ifdef TTY_DEBUG_HANGUP
1977         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1978 #endif
1979         if (tty->ops->open)
1980                 retval = tty->ops->open(tty, filp);
1981         else
1982                 retval = -ENODEV;
1983         filp->f_flags = saved_flags;
1984
1985         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1986                                                 !capable(CAP_SYS_ADMIN))
1987                 retval = -EBUSY;
1988
1989         if (retval) {
1990 #ifdef TTY_DEBUG_HANGUP
1991                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1992                                 retval, tty->name);
1993 #endif
1994                 tty_unlock(); /* need to call tty_release without BTM */
1995                 tty_release(inode, filp);
1996                 if (retval != -ERESTARTSYS)
1997                         return retval;
1998
1999                 if (signal_pending(current))
2000                         return retval;
2001
2002                 schedule();
2003                 /*
2004                  * Need to reset f_op in case a hangup happened.
2005                  */
2006                 tty_lock();
2007                 if (filp->f_op == &hung_up_tty_fops)
2008                         filp->f_op = &tty_fops;
2009                 tty_unlock();
2010                 goto retry_open;
2011         }
2012         tty_unlock();
2013
2014
2015         mutex_lock(&tty_mutex);
2016         tty_lock();
2017         spin_lock_irq(&current->sighand->siglock);
2018         if (!noctty &&
2019             current->signal->leader &&
2020             !current->signal->tty &&
2021             tty->session == NULL)
2022                 __proc_set_tty(current, tty);
2023         spin_unlock_irq(&current->sighand->siglock);
2024         tty_unlock();
2025         mutex_unlock(&tty_mutex);
2026         return 0;
2027 err_unlock:
2028         tty_unlock();
2029         mutex_unlock(&tty_mutex);
2030         /* after locks to avoid deadlock */
2031         if (!IS_ERR_OR_NULL(driver))
2032                 tty_driver_kref_put(driver);
2033 err_file:
2034         tty_free_file(filp);
2035         return retval;
2036 }
2037
2038
2039
2040 /**
2041  *      tty_poll        -       check tty status
2042  *      @filp: file being polled
2043  *      @wait: poll wait structures to update
2044  *
2045  *      Call the line discipline polling method to obtain the poll
2046  *      status of the device.
2047  *
2048  *      Locking: locks called line discipline but ldisc poll method
2049  *      may be re-entered freely by other callers.
2050  */
2051
2052 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2053 {
2054         struct tty_struct *tty = file_tty(filp);
2055         struct tty_ldisc *ld;
2056         int ret = 0;
2057
2058         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2059                 return 0;
2060
2061         ld = tty_ldisc_ref_wait(tty);
2062         if (ld->ops->poll)
2063                 ret = (ld->ops->poll)(tty, filp, wait);
2064         tty_ldisc_deref(ld);
2065         return ret;
2066 }
2067
2068 static int __tty_fasync(int fd, struct file *filp, int on)
2069 {
2070         struct tty_struct *tty = file_tty(filp);
2071         unsigned long flags;
2072         int retval = 0;
2073
2074         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2075                 goto out;
2076
2077         retval = fasync_helper(fd, filp, on, &tty->fasync);
2078         if (retval <= 0)
2079                 goto out;
2080
2081         if (on) {
2082                 enum pid_type type;
2083                 struct pid *pid;
2084                 if (!waitqueue_active(&tty->read_wait))
2085                         tty->minimum_to_wake = 1;
2086                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2087                 if (tty->pgrp) {
2088                         pid = tty->pgrp;
2089                         type = PIDTYPE_PGID;
2090                 } else {
2091                         pid = task_pid(current);
2092                         type = PIDTYPE_PID;
2093                 }
2094                 get_pid(pid);
2095                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2096                 retval = __f_setown(filp, pid, type, 0);
2097                 put_pid(pid);
2098                 if (retval)
2099                         goto out;
2100         } else {
2101                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2102                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2103         }
2104         retval = 0;
2105 out:
2106         return retval;
2107 }
2108
2109 static int tty_fasync(int fd, struct file *filp, int on)
2110 {
2111         int retval;
2112         tty_lock();
2113         retval = __tty_fasync(fd, filp, on);
2114         tty_unlock();
2115         return retval;
2116 }
2117
2118 /**
2119  *      tiocsti                 -       fake input character
2120  *      @tty: tty to fake input into
2121  *      @p: pointer to character
2122  *
2123  *      Fake input to a tty device. Does the necessary locking and
2124  *      input management.
2125  *
2126  *      FIXME: does not honour flow control ??
2127  *
2128  *      Locking:
2129  *              Called functions take tty_ldisc_lock
2130  *              current->signal->tty check is safe without locks
2131  *
2132  *      FIXME: may race normal receive processing
2133  */
2134
2135 static int tiocsti(struct tty_struct *tty, char __user *p)
2136 {
2137         char ch, mbz = 0;
2138         struct tty_ldisc *ld;
2139
2140         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2141                 return -EPERM;
2142         if (get_user(ch, p))
2143                 return -EFAULT;
2144         tty_audit_tiocsti(tty, ch);
2145         ld = tty_ldisc_ref_wait(tty);
2146         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2147         tty_ldisc_deref(ld);
2148         return 0;
2149 }
2150
2151 /**
2152  *      tiocgwinsz              -       implement window query ioctl
2153  *      @tty; tty
2154  *      @arg: user buffer for result
2155  *
2156  *      Copies the kernel idea of the window size into the user buffer.
2157  *
2158  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2159  *              is consistent.
2160  */
2161
2162 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2163 {
2164         int err;
2165
2166         mutex_lock(&tty->termios_mutex);
2167         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2168         mutex_unlock(&tty->termios_mutex);
2169
2170         return err ? -EFAULT: 0;
2171 }
2172
2173 /**
2174  *      tty_do_resize           -       resize event
2175  *      @tty: tty being resized
2176  *      @rows: rows (character)
2177  *      @cols: cols (character)
2178  *
2179  *      Update the termios variables and send the necessary signals to
2180  *      peform a terminal resize correctly
2181  */
2182
2183 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2184 {
2185         struct pid *pgrp;
2186         unsigned long flags;
2187
2188         /* Lock the tty */
2189         mutex_lock(&tty->termios_mutex);
2190         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2191                 goto done;
2192         /* Get the PID values and reference them so we can
2193            avoid holding the tty ctrl lock while sending signals */
2194         spin_lock_irqsave(&tty->ctrl_lock, flags);
2195         pgrp = get_pid(tty->pgrp);
2196         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2197
2198         if (pgrp)
2199                 kill_pgrp(pgrp, SIGWINCH, 1);
2200         put_pid(pgrp);
2201
2202         tty->winsize = *ws;
2203 done:
2204         mutex_unlock(&tty->termios_mutex);
2205         return 0;
2206 }
2207
2208 /**
2209  *      tiocswinsz              -       implement window size set ioctl
2210  *      @tty; tty side of tty
2211  *      @arg: user buffer for result
2212  *
2213  *      Copies the user idea of the window size to the kernel. Traditionally
2214  *      this is just advisory information but for the Linux console it
2215  *      actually has driver level meaning and triggers a VC resize.
2216  *
2217  *      Locking:
2218  *              Driver dependent. The default do_resize method takes the
2219  *      tty termios mutex and ctrl_lock. The console takes its own lock
2220  *      then calls into the default method.
2221  */
2222
2223 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2224 {
2225         struct winsize tmp_ws;
2226         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2227                 return -EFAULT;
2228
2229         if (tty->ops->resize)
2230                 return tty->ops->resize(tty, &tmp_ws);
2231         else
2232                 return tty_do_resize(tty, &tmp_ws);
2233 }
2234
2235 /**
2236  *      tioccons        -       allow admin to move logical console
2237  *      @file: the file to become console
2238  *
2239  *      Allow the administrator to move the redirected console device
2240  *
2241  *      Locking: uses redirect_lock to guard the redirect information
2242  */
2243
2244 static int tioccons(struct file *file)
2245 {
2246         if (!capable(CAP_SYS_ADMIN))
2247                 return -EPERM;
2248         if (file->f_op->write == redirected_tty_write) {
2249                 struct file *f;
2250                 spin_lock(&redirect_lock);
2251                 f = redirect;
2252                 redirect = NULL;
2253                 spin_unlock(&redirect_lock);
2254                 if (f)
2255                         fput(f);
2256                 return 0;
2257         }
2258         spin_lock(&redirect_lock);
2259         if (redirect) {
2260                 spin_unlock(&redirect_lock);
2261                 return -EBUSY;
2262         }
2263         get_file(file);
2264         redirect = file;
2265         spin_unlock(&redirect_lock);
2266         return 0;
2267 }
2268
2269 /**
2270  *      fionbio         -       non blocking ioctl
2271  *      @file: file to set blocking value
2272  *      @p: user parameter
2273  *
2274  *      Historical tty interfaces had a blocking control ioctl before
2275  *      the generic functionality existed. This piece of history is preserved
2276  *      in the expected tty API of posix OS's.
2277  *
2278  *      Locking: none, the open file handle ensures it won't go away.
2279  */
2280
2281 static int fionbio(struct file *file, int __user *p)
2282 {
2283         int nonblock;
2284
2285         if (get_user(nonblock, p))
2286                 return -EFAULT;
2287
2288         spin_lock(&file->f_lock);
2289         if (nonblock)
2290                 file->f_flags |= O_NONBLOCK;
2291         else
2292                 file->f_flags &= ~O_NONBLOCK;
2293         spin_unlock(&file->f_lock);
2294         return 0;
2295 }
2296
2297 /**
2298  *      tiocsctty       -       set controlling tty
2299  *      @tty: tty structure
2300  *      @arg: user argument
2301  *
2302  *      This ioctl is used to manage job control. It permits a session
2303  *      leader to set this tty as the controlling tty for the session.
2304  *
2305  *      Locking:
2306  *              Takes tty_mutex() to protect tty instance
2307  *              Takes tasklist_lock internally to walk sessions
2308  *              Takes ->siglock() when updating signal->tty
2309  */
2310
2311 static int tiocsctty(struct tty_struct *tty, int arg)
2312 {
2313         int ret = 0;
2314         if (current->signal->leader && (task_session(current) == tty->session))
2315                 return ret;
2316
2317         mutex_lock(&tty_mutex);
2318         /*
2319          * The process must be a session leader and
2320          * not have a controlling tty already.
2321          */
2322         if (!current->signal->leader || current->signal->tty) {
2323                 ret = -EPERM;
2324                 goto unlock;
2325         }
2326
2327         if (tty->session) {
2328                 /*
2329                  * This tty is already the controlling
2330                  * tty for another session group!
2331                  */
2332                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2333                         /*
2334                          * Steal it away
2335                          */
2336                         read_lock(&tasklist_lock);
2337                         session_clear_tty(tty->session);
2338                         read_unlock(&tasklist_lock);
2339                 } else {
2340                         ret = -EPERM;
2341                         goto unlock;
2342                 }
2343         }
2344         proc_set_tty(current, tty);
2345 unlock:
2346         mutex_unlock(&tty_mutex);
2347         return ret;
2348 }
2349
2350 /**
2351  *      tty_get_pgrp    -       return a ref counted pgrp pid
2352  *      @tty: tty to read
2353  *
2354  *      Returns a refcounted instance of the pid struct for the process
2355  *      group controlling the tty.
2356  */
2357
2358 struct pid *tty_get_pgrp(struct tty_struct *tty)
2359 {
2360         unsigned long flags;
2361         struct pid *pgrp;
2362
2363         spin_lock_irqsave(&tty->ctrl_lock, flags);
2364         pgrp = get_pid(tty->pgrp);
2365         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2366
2367         return pgrp;
2368 }
2369 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2370
2371 /**
2372  *      tiocgpgrp               -       get process group
2373  *      @tty: tty passed by user
2374  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2375  *      @p: returned pid
2376  *
2377  *      Obtain the process group of the tty. If there is no process group
2378  *      return an error.
2379  *
2380  *      Locking: none. Reference to current->signal->tty is safe.
2381  */
2382
2383 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2384 {
2385         struct pid *pid;
2386         int ret;
2387         /*
2388          * (tty == real_tty) is a cheap way of
2389          * testing if the tty is NOT a master pty.
2390          */
2391         if (tty == real_tty && current->signal->tty != real_tty)
2392                 return -ENOTTY;
2393         pid = tty_get_pgrp(real_tty);
2394         ret =  put_user(pid_vnr(pid), p);
2395         put_pid(pid);
2396         return ret;
2397 }
2398
2399 /**
2400  *      tiocspgrp               -       attempt to set process group
2401  *      @tty: tty passed by user
2402  *      @real_tty: tty side device matching tty passed by user
2403  *      @p: pid pointer
2404  *
2405  *      Set the process group of the tty to the session passed. Only
2406  *      permitted where the tty session is our session.
2407  *
2408  *      Locking: RCU, ctrl lock
2409  */
2410
2411 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2412 {
2413         struct pid *pgrp;
2414         pid_t pgrp_nr;
2415         int retval = tty_check_change(real_tty);
2416         unsigned long flags;
2417
2418         if (retval == -EIO)
2419                 return -ENOTTY;
2420         if (retval)
2421                 return retval;
2422         if (!current->signal->tty ||
2423             (current->signal->tty != real_tty) ||
2424             (real_tty->session != task_session(current)))
2425                 return -ENOTTY;
2426         if (get_user(pgrp_nr, p))
2427                 return -EFAULT;
2428         if (pgrp_nr < 0)
2429                 return -EINVAL;
2430         rcu_read_lock();
2431         pgrp = find_vpid(pgrp_nr);
2432         retval = -ESRCH;
2433         if (!pgrp)
2434                 goto out_unlock;
2435         retval = -EPERM;
2436         if (session_of_pgrp(pgrp) != task_session(current))
2437                 goto out_unlock;
2438         retval = 0;
2439         spin_lock_irqsave(&tty->ctrl_lock, flags);
2440         put_pid(real_tty->pgrp);
2441         real_tty->pgrp = get_pid(pgrp);
2442         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2443 out_unlock:
2444         rcu_read_unlock();
2445         return retval;
2446 }
2447
2448 /**
2449  *      tiocgsid                -       get session id
2450  *      @tty: tty passed by user
2451  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2452  *      @p: pointer to returned session id
2453  *
2454  *      Obtain the session id of the tty. If there is no session
2455  *      return an error.
2456  *
2457  *      Locking: none. Reference to current->signal->tty is safe.
2458  */
2459
2460 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2461 {
2462         /*
2463          * (tty == real_tty) is a cheap way of
2464          * testing if the tty is NOT a master pty.
2465         */
2466         if (tty == real_tty && current->signal->tty != real_tty)
2467                 return -ENOTTY;
2468         if (!real_tty->session)
2469                 return -ENOTTY;
2470         return put_user(pid_vnr(real_tty->session), p);
2471 }
2472
2473 /**
2474  *      tiocsetd        -       set line discipline
2475  *      @tty: tty device
2476  *      @p: pointer to user data
2477  *
2478  *      Set the line discipline according to user request.
2479  *
2480  *      Locking: see tty_set_ldisc, this function is just a helper
2481  */
2482
2483 static int tiocsetd(struct tty_struct *tty, int __user *p)
2484 {
2485         int ldisc;
2486         int ret;
2487
2488         if (get_user(ldisc, p))
2489                 return -EFAULT;
2490
2491         ret = tty_set_ldisc(tty, ldisc);
2492
2493         return ret;
2494 }
2495
2496 /**
2497  *      send_break      -       performed time break
2498  *      @tty: device to break on
2499  *      @duration: timeout in mS
2500  *
2501  *      Perform a timed break on hardware that lacks its own driver level
2502  *      timed break functionality.
2503  *
2504  *      Locking:
2505  *              atomic_write_lock serializes
2506  *
2507  */
2508
2509 static int send_break(struct tty_struct *tty, unsigned int duration)
2510 {
2511         int retval;
2512
2513         if (tty->ops->break_ctl == NULL)
2514                 return 0;
2515
2516         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2517                 retval = tty->ops->break_ctl(tty, duration);
2518         else {
2519                 /* Do the work ourselves */
2520                 if (tty_write_lock(tty, 0) < 0)
2521                         return -EINTR;
2522                 retval = tty->ops->break_ctl(tty, -1);
2523                 if (retval)
2524                         goto out;
2525                 if (!signal_pending(current))
2526                         msleep_interruptible(duration);
2527                 retval = tty->ops->break_ctl(tty, 0);
2528 out:
2529                 tty_write_unlock(tty);
2530                 if (signal_pending(current))
2531                         retval = -EINTR;
2532         }
2533         return retval;
2534 }
2535
2536 /**
2537  *      tty_tiocmget            -       get modem status
2538  *      @tty: tty device
2539  *      @file: user file pointer
2540  *      @p: pointer to result
2541  *
2542  *      Obtain the modem status bits from the tty driver if the feature
2543  *      is supported. Return -EINVAL if it is not available.
2544  *
2545  *      Locking: none (up to the driver)
2546  */
2547
2548 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2549 {
2550         int retval = -EINVAL;
2551
2552         if (tty->ops->tiocmget) {
2553                 retval = tty->ops->tiocmget(tty);
2554
2555                 if (retval >= 0)
2556                         retval = put_user(retval, p);
2557         }
2558         return retval;
2559 }
2560
2561 /**
2562  *      tty_tiocmset            -       set modem status
2563  *      @tty: tty device
2564  *      @cmd: command - clear bits, set bits or set all
2565  *      @p: pointer to desired bits
2566  *
2567  *      Set the modem status bits from the tty driver if the feature
2568  *      is supported. Return -EINVAL if it is not available.
2569  *
2570  *      Locking: none (up to the driver)
2571  */
2572
2573 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2574              unsigned __user *p)
2575 {
2576         int retval;
2577         unsigned int set, clear, val;
2578
2579         if (tty->ops->tiocmset == NULL)
2580                 return -EINVAL;
2581
2582         retval = get_user(val, p);
2583         if (retval)
2584                 return retval;
2585         set = clear = 0;
2586         switch (cmd) {
2587         case TIOCMBIS:
2588                 set = val;
2589                 break;
2590         case TIOCMBIC:
2591                 clear = val;
2592                 break;
2593         case TIOCMSET:
2594                 set = val;
2595                 clear = ~val;
2596                 break;
2597         }
2598         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2599         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2600         return tty->ops->tiocmset(tty, set, clear);
2601 }
2602
2603 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2604 {
2605         int retval = -EINVAL;
2606         struct serial_icounter_struct icount;
2607         memset(&icount, 0, sizeof(icount));
2608         if (tty->ops->get_icount)
2609                 retval = tty->ops->get_icount(tty, &icount);
2610         if (retval != 0)
2611                 return retval;
2612         if (copy_to_user(arg, &icount, sizeof(icount)))
2613                 return -EFAULT;
2614         return 0;
2615 }
2616
2617 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2618 {
2619         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2620             tty->driver->subtype == PTY_TYPE_MASTER)
2621                 tty = tty->link;
2622         return tty;
2623 }
2624 EXPORT_SYMBOL(tty_pair_get_tty);
2625
2626 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2627 {
2628         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2629             tty->driver->subtype == PTY_TYPE_MASTER)
2630             return tty;
2631         return tty->link;
2632 }
2633 EXPORT_SYMBOL(tty_pair_get_pty);
2634
2635 /*
2636  * Split this up, as gcc can choke on it otherwise..
2637  */
2638 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2639 {
2640         struct tty_struct *tty = file_tty(file);
2641         struct tty_struct *real_tty;
2642         void __user *p = (void __user *)arg;
2643         int retval;
2644         struct tty_ldisc *ld;
2645         struct inode *inode = file->f_dentry->d_inode;
2646
2647         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2648                 return -EINVAL;
2649
2650         real_tty = tty_pair_get_tty(tty);
2651
2652         /*
2653          * Factor out some common prep work
2654          */
2655         switch (cmd) {
2656         case TIOCSETD:
2657         case TIOCSBRK:
2658         case TIOCCBRK:
2659         case TCSBRK:
2660         case TCSBRKP:
2661                 retval = tty_check_change(tty);
2662                 if (retval)
2663                         return retval;
2664                 if (cmd != TIOCCBRK) {
2665                         tty_wait_until_sent(tty, 0);
2666                         if (signal_pending(current))
2667                                 return -EINTR;
2668                 }
2669                 break;
2670         }
2671
2672         /*
2673          *      Now do the stuff.
2674          */
2675         switch (cmd) {
2676         case TIOCSTI:
2677                 return tiocsti(tty, p);
2678         case TIOCGWINSZ:
2679                 return tiocgwinsz(real_tty, p);
2680         case TIOCSWINSZ:
2681                 return tiocswinsz(real_tty, p);
2682         case TIOCCONS:
2683                 return real_tty != tty ? -EINVAL : tioccons(file);
2684         case FIONBIO:
2685                 return fionbio(file, p);
2686         case TIOCEXCL:
2687                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2688                 return 0;
2689         case TIOCNXCL:
2690                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2691                 return 0;
2692         case TIOCNOTTY:
2693                 if (current->signal->tty != tty)
2694                         return -ENOTTY;
2695                 no_tty();
2696                 return 0;
2697         case TIOCSCTTY:
2698                 return tiocsctty(tty, arg);
2699         case TIOCGPGRP:
2700                 return tiocgpgrp(tty, real_tty, p);
2701         case TIOCSPGRP:
2702                 return tiocspgrp(tty, real_tty, p);
2703         case TIOCGSID:
2704                 return tiocgsid(tty, real_tty, p);
2705         case TIOCGETD:
2706                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2707         case TIOCSETD:
2708                 return tiocsetd(tty, p);
2709         case TIOCVHANGUP:
2710                 if (!capable(CAP_SYS_ADMIN))
2711                         return -EPERM;
2712                 tty_vhangup(tty);
2713                 return 0;
2714         case TIOCGDEV:
2715         {
2716                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2717                 return put_user(ret, (unsigned int __user *)p);
2718         }
2719         /*
2720          * Break handling
2721          */
2722         case TIOCSBRK:  /* Turn break on, unconditionally */
2723                 if (tty->ops->break_ctl)
2724                         return tty->ops->break_ctl(tty, -1);
2725                 return 0;
2726         case TIOCCBRK:  /* Turn break off, unconditionally */
2727                 if (tty->ops->break_ctl)
2728                         return tty->ops->break_ctl(tty, 0);
2729                 return 0;
2730         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2731                 /* non-zero arg means wait for all output data
2732                  * to be sent (performed above) but don't send break.
2733                  * This is used by the tcdrain() termios function.
2734                  */
2735                 if (!arg)
2736                         return send_break(tty, 250);
2737                 return 0;
2738         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2739                 return send_break(tty, arg ? arg*100 : 250);
2740
2741         case TIOCMGET:
2742                 return tty_tiocmget(tty, p);
2743         case TIOCMSET:
2744         case TIOCMBIC:
2745         case TIOCMBIS:
2746                 return tty_tiocmset(tty, cmd, p);
2747         case TIOCGICOUNT:
2748                 retval = tty_tiocgicount(tty, p);
2749                 /* For the moment allow fall through to the old method */
2750                 if (retval != -EINVAL)
2751                         return retval;
2752                 break;
2753         case TCFLSH:
2754                 switch (arg) {
2755                 case TCIFLUSH:
2756                 case TCIOFLUSH:
2757                 /* flush tty buffer and allow ldisc to process ioctl */
2758                         tty_buffer_flush(tty);
2759                         break;
2760                 }
2761                 break;
2762         }
2763         if (tty->ops->ioctl) {
2764                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2765                 if (retval != -ENOIOCTLCMD)
2766                         return retval;
2767         }
2768         ld = tty_ldisc_ref_wait(tty);
2769         retval = -EINVAL;
2770         if (ld->ops->ioctl) {
2771                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2772                 if (retval == -ENOIOCTLCMD)
2773                         retval = -EINVAL;
2774         }
2775         tty_ldisc_deref(ld);
2776         return retval;
2777 }
2778
2779 #ifdef CONFIG_COMPAT
2780 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2781                                 unsigned long arg)
2782 {
2783         struct inode *inode = file->f_dentry->d_inode;
2784         struct tty_struct *tty = file_tty(file);
2785         struct tty_ldisc *ld;
2786         int retval = -ENOIOCTLCMD;
2787
2788         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2789                 return -EINVAL;
2790
2791         if (tty->ops->compat_ioctl) {
2792                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2793                 if (retval != -ENOIOCTLCMD)
2794                         return retval;
2795         }
2796
2797         ld = tty_ldisc_ref_wait(tty);
2798         if (ld->ops->compat_ioctl)
2799                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2800         else
2801                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2802         tty_ldisc_deref(ld);
2803
2804         return retval;
2805 }
2806 #endif
2807
2808 /*
2809  * This implements the "Secure Attention Key" ---  the idea is to
2810  * prevent trojan horses by killing all processes associated with this
2811  * tty when the user hits the "Secure Attention Key".  Required for
2812  * super-paranoid applications --- see the Orange Book for more details.
2813  *
2814  * This code could be nicer; ideally it should send a HUP, wait a few
2815  * seconds, then send a INT, and then a KILL signal.  But you then
2816  * have to coordinate with the init process, since all processes associated
2817  * with the current tty must be dead before the new getty is allowed
2818  * to spawn.
2819  *
2820  * Now, if it would be correct ;-/ The current code has a nasty hole -
2821  * it doesn't catch files in flight. We may send the descriptor to ourselves
2822  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2823  *
2824  * Nasty bug: do_SAK is being called in interrupt context.  This can
2825  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2826  */
2827 void __do_SAK(struct tty_struct *tty)
2828 {
2829 #ifdef TTY_SOFT_SAK
2830         tty_hangup(tty);
2831 #else
2832         struct task_struct *g, *p;
2833         struct pid *session;
2834         int             i;
2835         struct file     *filp;
2836         struct fdtable *fdt;
2837
2838         if (!tty)
2839                 return;
2840         session = tty->session;
2841
2842         tty_ldisc_flush(tty);
2843
2844         tty_driver_flush_buffer(tty);
2845
2846         read_lock(&tasklist_lock);
2847         /* Kill the entire session */
2848         do_each_pid_task(session, PIDTYPE_SID, p) {
2849                 printk(KERN_NOTICE "SAK: killed process %d"
2850                         " (%s): task_session(p)==tty->session\n",
2851                         task_pid_nr(p), p->comm);
2852                 send_sig(SIGKILL, p, 1);
2853         } while_each_pid_task(session, PIDTYPE_SID, p);
2854         /* Now kill any processes that happen to have the
2855          * tty open.
2856          */
2857         do_each_thread(g, p) {
2858                 if (p->signal->tty == tty) {
2859                         printk(KERN_NOTICE "SAK: killed process %d"
2860                             " (%s): task_session(p)==tty->session\n",
2861                             task_pid_nr(p), p->comm);
2862                         send_sig(SIGKILL, p, 1);
2863                         continue;
2864                 }
2865                 task_lock(p);
2866                 if (p->files) {
2867                         /*
2868                          * We don't take a ref to the file, so we must
2869                          * hold ->file_lock instead.
2870                          */
2871                         spin_lock(&p->files->file_lock);
2872                         fdt = files_fdtable(p->files);
2873                         for (i = 0; i < fdt->max_fds; i++) {
2874                                 filp = fcheck_files(p->files, i);
2875                                 if (!filp)
2876                                         continue;
2877                                 if (filp->f_op->read == tty_read &&
2878                                     file_tty(filp) == tty) {
2879                                         printk(KERN_NOTICE "SAK: killed process %d"
2880                                             " (%s): fd#%d opened to the tty\n",
2881                                             task_pid_nr(p), p->comm, i);
2882                                         force_sig(SIGKILL, p);
2883                                         break;
2884                                 }
2885                         }
2886                         spin_unlock(&p->files->file_lock);
2887                 }
2888                 task_unlock(p);
2889         } while_each_thread(g, p);
2890         read_unlock(&tasklist_lock);
2891 #endif
2892 }
2893
2894 static void do_SAK_work(struct work_struct *work)
2895 {
2896         struct tty_struct *tty =
2897                 container_of(work, struct tty_struct, SAK_work);
2898         __do_SAK(tty);
2899 }
2900
2901 /*
2902  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2903  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2904  * the values which we write to it will be identical to the values which it
2905  * already has. --akpm
2906  */
2907 void do_SAK(struct tty_struct *tty)
2908 {
2909         if (!tty)
2910                 return;
2911         schedule_work(&tty->SAK_work);
2912 }
2913
2914 EXPORT_SYMBOL(do_SAK);
2915
2916 static int dev_match_devt(struct device *dev, void *data)
2917 {
2918         dev_t *devt = data;
2919         return dev->devt == *devt;
2920 }
2921
2922 /* Must put_device() after it's unused! */
2923 static struct device *tty_get_device(struct tty_struct *tty)
2924 {
2925         dev_t devt = tty_devnum(tty);
2926         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2927 }
2928
2929
2930 /**
2931  *      initialize_tty_struct
2932  *      @tty: tty to initialize
2933  *
2934  *      This subroutine initializes a tty structure that has been newly
2935  *      allocated.
2936  *
2937  *      Locking: none - tty in question must not be exposed at this point
2938  */
2939
2940 void initialize_tty_struct(struct tty_struct *tty,
2941                 struct tty_driver *driver, int idx)
2942 {
2943         memset(tty, 0, sizeof(struct tty_struct));
2944         kref_init(&tty->kref);
2945         tty->magic = TTY_MAGIC;
2946         tty_ldisc_init(tty);
2947         tty->session = NULL;
2948         tty->pgrp = NULL;
2949         tty->overrun_time = jiffies;
2950         tty->buf.head = tty->buf.tail = NULL;
2951         tty_buffer_init(tty);
2952         mutex_init(&tty->termios_mutex);
2953         mutex_init(&tty->ldisc_mutex);
2954         init_waitqueue_head(&tty->write_wait);
2955         init_waitqueue_head(&tty->read_wait);
2956         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2957         mutex_init(&tty->atomic_read_lock);
2958         mutex_init(&tty->atomic_write_lock);
2959         mutex_init(&tty->output_lock);
2960         mutex_init(&tty->echo_lock);
2961         spin_lock_init(&tty->read_lock);
2962         spin_lock_init(&tty->ctrl_lock);
2963         INIT_LIST_HEAD(&tty->tty_files);
2964         INIT_WORK(&tty->SAK_work, do_SAK_work);
2965
2966         tty->driver = driver;
2967         tty->ops = driver->ops;
2968         tty->index = idx;
2969         tty_line_name(driver, idx, tty->name);
2970         tty->dev = tty_get_device(tty);
2971 }
2972
2973 /**
2974  *      deinitialize_tty_struct
2975  *      @tty: tty to deinitialize
2976  *
2977  *      This subroutine deinitializes a tty structure that has been newly
2978  *      allocated but tty_release cannot be called on that yet.
2979  *
2980  *      Locking: none - tty in question must not be exposed at this point
2981  */
2982 void deinitialize_tty_struct(struct tty_struct *tty)
2983 {
2984         tty_ldisc_deinit(tty);
2985 }
2986
2987 /**
2988  *      tty_put_char    -       write one character to a tty
2989  *      @tty: tty
2990  *      @ch: character
2991  *
2992  *      Write one byte to the tty using the provided put_char method
2993  *      if present. Returns the number of characters successfully output.
2994  *
2995  *      Note: the specific put_char operation in the driver layer may go
2996  *      away soon. Don't call it directly, use this method
2997  */
2998
2999 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3000 {
3001         if (tty->ops->put_char)
3002                 return tty->ops->put_char(tty, ch);
3003         return tty->ops->write(tty, &ch, 1);
3004 }
3005 EXPORT_SYMBOL_GPL(tty_put_char);
3006
3007 struct class *tty_class;
3008
3009 /**
3010  *      tty_register_device - register a tty device
3011  *      @driver: the tty driver that describes the tty device
3012  *      @index: the index in the tty driver for this tty device
3013  *      @device: a struct device that is associated with this tty device.
3014  *              This field is optional, if there is no known struct device
3015  *              for this tty device it can be set to NULL safely.
3016  *
3017  *      Returns a pointer to the struct device for this tty device
3018  *      (or ERR_PTR(-EFOO) on error).
3019  *
3020  *      This call is required to be made to register an individual tty device
3021  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3022  *      that bit is not set, this function should not be called by a tty
3023  *      driver.
3024  *
3025  *      Locking: ??
3026  */
3027
3028 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3029                                    struct device *device)
3030 {
3031         char name[64];
3032         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3033
3034         if (index >= driver->num) {
3035                 printk(KERN_ERR "Attempt to register invalid tty line number "
3036                        " (%d).\n", index);
3037                 return ERR_PTR(-EINVAL);
3038         }
3039
3040         if (driver->type == TTY_DRIVER_TYPE_PTY)
3041                 pty_line_name(driver, index, name);
3042         else
3043                 tty_line_name(driver, index, name);
3044
3045         return device_create(tty_class, device, dev, NULL, name);
3046 }
3047 EXPORT_SYMBOL(tty_register_device);
3048
3049 /**
3050  *      tty_unregister_device - unregister a tty device
3051  *      @driver: the tty driver that describes the tty device
3052  *      @index: the index in the tty driver for this tty device
3053  *
3054  *      If a tty device is registered with a call to tty_register_device() then
3055  *      this function must be called when the tty device is gone.
3056  *
3057  *      Locking: ??
3058  */
3059
3060 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3061 {
3062         device_destroy(tty_class,
3063                 MKDEV(driver->major, driver->minor_start) + index);
3064 }
3065 EXPORT_SYMBOL(tty_unregister_device);
3066
3067 struct tty_driver *alloc_tty_driver(int lines)
3068 {
3069         struct tty_driver *driver;
3070
3071         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3072         if (driver) {
3073                 kref_init(&driver->kref);
3074                 driver->magic = TTY_DRIVER_MAGIC;
3075                 driver->num = lines;
3076                 /* later we'll move allocation of tables here */
3077         }
3078         return driver;
3079 }
3080 EXPORT_SYMBOL(alloc_tty_driver);
3081
3082 static void destruct_tty_driver(struct kref *kref)
3083 {
3084         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3085         int i;
3086         struct ktermios *tp;
3087         void *p;
3088
3089         if (driver->flags & TTY_DRIVER_INSTALLED) {
3090                 /*
3091                  * Free the termios and termios_locked structures because
3092                  * we don't want to get memory leaks when modular tty
3093                  * drivers are removed from the kernel.
3094                  */
3095                 for (i = 0; i < driver->num; i++) {
3096                         tp = driver->termios[i];
3097                         if (tp) {
3098                                 driver->termios[i] = NULL;
3099                                 kfree(tp);
3100                         }
3101                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3102                                 tty_unregister_device(driver, i);
3103                 }
3104                 p = driver->ttys;
3105                 proc_tty_unregister_driver(driver);
3106                 driver->ttys = NULL;
3107                 driver->termios = NULL;
3108                 kfree(p);
3109                 cdev_del(&driver->cdev);
3110         }
3111         kfree(driver);
3112 }
3113
3114 void tty_driver_kref_put(struct tty_driver *driver)
3115 {
3116         kref_put(&driver->kref, destruct_tty_driver);
3117 }
3118 EXPORT_SYMBOL(tty_driver_kref_put);
3119
3120 void tty_set_operations(struct tty_driver *driver,
3121                         const struct tty_operations *op)
3122 {
3123         driver->ops = op;
3124 };
3125 EXPORT_SYMBOL(tty_set_operations);
3126
3127 void put_tty_driver(struct tty_driver *d)
3128 {
3129         tty_driver_kref_put(d);
3130 }
3131 EXPORT_SYMBOL(put_tty_driver);
3132
3133 /*
3134  * Called by a tty driver to register itself.
3135  */
3136 int tty_register_driver(struct tty_driver *driver)
3137 {
3138         int error;
3139         int i;
3140         dev_t dev;
3141         void **p = NULL;
3142         struct device *d;
3143
3144         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3145                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3146                 if (!p)
3147                         return -ENOMEM;
3148         }
3149
3150         if (!driver->major) {
3151                 error = alloc_chrdev_region(&dev, driver->minor_start,
3152                                                 driver->num, driver->name);
3153                 if (!error) {
3154                         driver->major = MAJOR(dev);
3155                         driver->minor_start = MINOR(dev);
3156                 }
3157         } else {
3158                 dev = MKDEV(driver->major, driver->minor_start);
3159                 error = register_chrdev_region(dev, driver->num, driver->name);
3160         }
3161         if (error < 0) {
3162                 kfree(p);
3163                 return error;
3164         }
3165
3166         if (p) {
3167                 driver->ttys = (struct tty_struct **)p;
3168                 driver->termios = (struct ktermios **)(p + driver->num);
3169         } else {
3170                 driver->ttys = NULL;
3171                 driver->termios = NULL;
3172         }
3173
3174         cdev_init(&driver->cdev, &tty_fops);
3175         driver->cdev.owner = driver->owner;
3176         error = cdev_add(&driver->cdev, dev, driver->num);
3177         if (error) {
3178                 unregister_chrdev_region(dev, driver->num);
3179                 driver->ttys = NULL;
3180                 driver->termios = NULL;
3181                 kfree(p);
3182                 return error;
3183         }
3184
3185         mutex_lock(&tty_mutex);
3186         list_add(&driver->tty_drivers, &tty_drivers);
3187         mutex_unlock(&tty_mutex);
3188
3189         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3190                 for (i = 0; i < driver->num; i++) {
3191                         d = tty_register_device(driver, i, NULL);
3192                         if (IS_ERR(d)) {
3193                                 error = PTR_ERR(d);
3194                                 goto err;
3195                         }
3196                 }
3197         }
3198         proc_tty_register_driver(driver);
3199         driver->flags |= TTY_DRIVER_INSTALLED;
3200         return 0;
3201
3202 err:
3203         for (i--; i >= 0; i--)
3204                 tty_unregister_device(driver, i);
3205
3206         mutex_lock(&tty_mutex);
3207         list_del(&driver->tty_drivers);
3208         mutex_unlock(&tty_mutex);
3209
3210         unregister_chrdev_region(dev, driver->num);
3211         driver->ttys = NULL;
3212         driver->termios = NULL;
3213         kfree(p);
3214         return error;
3215 }
3216
3217 EXPORT_SYMBOL(tty_register_driver);
3218
3219 /*
3220  * Called by a tty driver to unregister itself.
3221  */
3222 int tty_unregister_driver(struct tty_driver *driver)
3223 {
3224 #if 0
3225         /* FIXME */
3226         if (driver->refcount)
3227                 return -EBUSY;
3228 #endif
3229         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3230                                 driver->num);
3231         mutex_lock(&tty_mutex);
3232         list_del(&driver->tty_drivers);
3233         mutex_unlock(&tty_mutex);
3234         return 0;
3235 }
3236
3237 EXPORT_SYMBOL(tty_unregister_driver);
3238
3239 dev_t tty_devnum(struct tty_struct *tty)
3240 {
3241         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3242 }
3243 EXPORT_SYMBOL(tty_devnum);
3244
3245 void proc_clear_tty(struct task_struct *p)
3246 {
3247         unsigned long flags;
3248         struct tty_struct *tty;
3249         spin_lock_irqsave(&p->sighand->siglock, flags);
3250         tty = p->signal->tty;
3251         p->signal->tty = NULL;
3252         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3253         tty_kref_put(tty);
3254 }
3255
3256 /* Called under the sighand lock */
3257
3258 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3259 {
3260         if (tty) {
3261                 unsigned long flags;
3262                 /* We should not have a session or pgrp to put here but.... */
3263                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3264                 put_pid(tty->session);
3265                 put_pid(tty->pgrp);
3266                 tty->pgrp = get_pid(task_pgrp(tsk));
3267                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3268                 tty->session = get_pid(task_session(tsk));
3269                 if (tsk->signal->tty) {
3270                         printk(KERN_DEBUG "tty not NULL!!\n");
3271                         tty_kref_put(tsk->signal->tty);
3272                 }
3273         }
3274         put_pid(tsk->signal->tty_old_pgrp);
3275         tsk->signal->tty = tty_kref_get(tty);
3276         tsk->signal->tty_old_pgrp = NULL;
3277 }
3278
3279 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3280 {
3281         spin_lock_irq(&tsk->sighand->siglock);
3282         __proc_set_tty(tsk, tty);
3283         spin_unlock_irq(&tsk->sighand->siglock);
3284 }
3285
3286 struct tty_struct *get_current_tty(void)
3287 {
3288         struct tty_struct *tty;
3289         unsigned long flags;
3290
3291         spin_lock_irqsave(&current->sighand->siglock, flags);
3292         tty = tty_kref_get(current->signal->tty);
3293         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3294         return tty;
3295 }
3296 EXPORT_SYMBOL_GPL(get_current_tty);
3297
3298 void tty_default_fops(struct file_operations *fops)
3299 {
3300         *fops = tty_fops;
3301 }
3302
3303 /*
3304  * Initialize the console device. This is called *early*, so
3305  * we can't necessarily depend on lots of kernel help here.
3306  * Just do some early initializations, and do the complex setup
3307  * later.
3308  */
3309 void __init console_init(void)
3310 {
3311         initcall_t *call;
3312
3313         /* Setup the default TTY line discipline. */
3314         tty_ldisc_begin();
3315
3316         /*
3317          * set up the console device so that later boot sequences can
3318          * inform about problems etc..
3319          */
3320         call = __con_initcall_start;
3321         while (call < __con_initcall_end) {
3322                 (*call)();
3323                 call++;
3324         }
3325 }
3326
3327 static char *tty_devnode(struct device *dev, umode_t *mode)
3328 {
3329         if (!mode)
3330                 return NULL;
3331         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3332             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3333                 *mode = 0666;
3334         return NULL;
3335 }
3336
3337 static int __init tty_class_init(void)
3338 {
3339         tty_class = class_create(THIS_MODULE, "tty");
3340         if (IS_ERR(tty_class))
3341                 return PTR_ERR(tty_class);
3342         tty_class->devnode = tty_devnode;
3343         return 0;
3344 }
3345
3346 postcore_initcall(tty_class_init);
3347
3348 /* 3/2004 jmc: why do these devices exist? */
3349 static struct cdev tty_cdev, console_cdev;
3350
3351 static ssize_t show_cons_active(struct device *dev,
3352                                 struct device_attribute *attr, char *buf)
3353 {
3354         struct console *cs[16];
3355         int i = 0;
3356         struct console *c;
3357         ssize_t count = 0;
3358
3359         console_lock();
3360         for_each_console(c) {
3361                 if (!c->device)
3362                         continue;
3363                 if (!c->write)
3364                         continue;
3365                 if ((c->flags & CON_ENABLED) == 0)
3366                         continue;
3367                 cs[i++] = c;
3368                 if (i >= ARRAY_SIZE(cs))
3369                         break;
3370         }
3371         while (i--)
3372                 count += sprintf(buf + count, "%s%d%c",
3373                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3374         console_unlock();
3375
3376         return count;
3377 }
3378 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3379
3380 static struct device *consdev;
3381
3382 void console_sysfs_notify(void)
3383 {
3384         if (consdev)
3385                 sysfs_notify(&consdev->kobj, NULL, "active");
3386 }
3387
3388 /*
3389  * Ok, now we can initialize the rest of the tty devices and can count
3390  * on memory allocations, interrupts etc..
3391  */
3392 int __init tty_init(void)
3393 {
3394         cdev_init(&tty_cdev, &tty_fops);
3395         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3396             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3397                 panic("Couldn't register /dev/tty driver\n");
3398         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3399
3400         cdev_init(&console_cdev, &console_fops);
3401         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3402             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3403                 panic("Couldn't register /dev/console driver\n");
3404         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3405                               "console");
3406         if (IS_ERR(consdev))
3407                 consdev = NULL;
3408         else
3409                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3410
3411 #ifdef CONFIG_VT
3412         if (console_use_vt)
3413                 vty_init(&console_fops);
3414 #endif
3415         return 0;
3416 }
3417