- Update to 3.3-final.
[linux-flexiantxendom0-3.2.10.git] / arch / x86 / mm / pageattr-xen.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgprot_t        mask_set;
34         pgprot_t        mask_clr;
35         int             numpages;
36         int             flags;
37         unsigned long   pfn;
38         unsigned        force_split : 1;
39         int             curpage;
40         struct page     **pages;
41 };
42
43 /*
44  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46  * entries change the page attribute in parallel to some other cpu
47  * splitting a large page entry along with changing the attribute.
48  */
49 static DEFINE_SPINLOCK(cpa_lock);
50
51 #define CPA_FLUSHTLB 1
52 #define CPA_ARRAY 2
53 #define CPA_PAGES_ARRAY 4
54
55 #ifdef CONFIG_PROC_FS
56 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57
58 void update_page_count(int level, unsigned long pages)
59 {
60         /* Protect against CPA */
61         spin_lock(&pgd_lock);
62         direct_pages_count[level] += pages;
63         spin_unlock(&pgd_lock);
64 }
65
66 static void split_page_count(int level)
67 {
68         direct_pages_count[level]--;
69         direct_pages_count[level - 1] += PTRS_PER_PTE;
70 }
71
72 void arch_report_meminfo(struct seq_file *m)
73 {
74         seq_printf(m, "DirectMap4k:    %8lu kB\n",
75                         direct_pages_count[PG_LEVEL_4K] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77         seq_printf(m, "DirectMap2M:    %8lu kB\n",
78                         direct_pages_count[PG_LEVEL_2M] << 11);
79 #else
80         seq_printf(m, "DirectMap4M:    %8lu kB\n",
81                         direct_pages_count[PG_LEVEL_2M] << 12);
82 #endif
83 #ifdef CONFIG_X86_64
84         if (direct_gbpages)
85                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
86                         direct_pages_count[PG_LEVEL_1G] << 20);
87 #endif
88 }
89 #else
90 static inline void split_page_count(int level) { }
91 #endif
92
93 #ifdef CONFIG_X86_64
94
95 static inline unsigned long highmap_start_pfn(void)
96 {
97         return __pa(_text) >> PAGE_SHIFT;
98 }
99
100 static inline unsigned long highmap_end_pfn(void)
101 {
102         return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104
105 #endif
106
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112
113 static inline int
114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116         return addr >= start && addr < end;
117 }
118
119 /*
120  * Flushing functions
121  */
122
123 /**
124  * clflush_cache_range - flush a cache range with clflush
125  * @addr:       virtual start address
126  * @size:       number of bytes to flush
127  *
128  * clflush is an unordered instruction which needs fencing with mfence
129  * to avoid ordering issues.
130  */
131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133         void *vend = vaddr + size - 1;
134
135         mb();
136
137         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138                 clflush(vaddr);
139         /*
140          * Flush any possible final partial cacheline:
141          */
142         clflush(vend);
143
144         mb();
145 }
146 EXPORT_SYMBOL_GPL(clflush_cache_range);
147
148 static void __cpa_flush_all(void *arg)
149 {
150         unsigned long cache = (unsigned long)arg;
151
152         /*
153          * Flush all to work around Errata in early athlons regarding
154          * large page flushing.
155          */
156         __flush_tlb_all();
157
158         if (cache && boot_cpu_data.x86 >= 4)
159                 wbinvd();
160 }
161
162 static void cpa_flush_all(unsigned long cache)
163 {
164         BUG_ON(irqs_disabled());
165
166         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168
169 static void __cpa_flush_range(void *arg)
170 {
171         /*
172          * We could optimize that further and do individual per page
173          * tlb invalidates for a low number of pages. Caveat: we must
174          * flush the high aliases on 64bit as well.
175          */
176         __flush_tlb_all();
177 }
178
179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181         unsigned int i, level;
182         unsigned long addr;
183
184         BUG_ON(irqs_disabled());
185         WARN_ON(PAGE_ALIGN(start) != start);
186
187         on_each_cpu(__cpa_flush_range, NULL, 1);
188
189         if (!cache)
190                 return;
191
192         /*
193          * We only need to flush on one CPU,
194          * clflush is a MESI-coherent instruction that
195          * will cause all other CPUs to flush the same
196          * cachelines:
197          */
198         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199                 pte_t *pte = lookup_address(addr, &level);
200
201                 /*
202                  * Only flush present addresses:
203                  */
204                 if (pte && (__pte_val(*pte) & _PAGE_PRESENT))
205                         clflush_cache_range((void *) addr, PAGE_SIZE);
206         }
207 }
208
209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210                             int in_flags, struct page **pages)
211 {
212         unsigned int i, level;
213         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214
215         BUG_ON(irqs_disabled());
216
217         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218
219         if (!cache || do_wbinvd)
220                 return;
221
222         /*
223          * We only need to flush on one CPU,
224          * clflush is a MESI-coherent instruction that
225          * will cause all other CPUs to flush the same
226          * cachelines:
227          */
228         for (i = 0; i < numpages; i++) {
229                 unsigned long addr;
230                 pte_t *pte;
231
232                 if (in_flags & CPA_PAGES_ARRAY)
233                         addr = (unsigned long)page_address(pages[i]);
234                 else
235                         addr = start[i];
236
237                 pte = lookup_address(addr, &level);
238
239                 /*
240                  * Only flush present addresses:
241                  */
242                 if (pte && (__pte_val(*pte) & _PAGE_PRESENT))
243                         clflush_cache_range((void *)addr, PAGE_SIZE);
244         }
245 }
246
247 /*
248  * Certain areas of memory on x86 require very specific protection flags,
249  * for example the BIOS area or kernel text. Callers don't always get this
250  * right (again, ioremap() on BIOS memory is not uncommon) so this function
251  * checks and fixes these known static required protection bits.
252  */
253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254                                    unsigned long pfn)
255 {
256         pgprot_t forbidden = __pgprot(0);
257
258         /*
259          * The BIOS area between 640k and 1Mb needs to be executable for
260          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261          */
262 #ifdef CONFIG_PCI_BIOS
263         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264                 pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266
267         /*
268          * The kernel text needs to be executable for obvious reasons
269          * Does not cover __inittext since that is gone later on. On
270          * 64bit we do not enforce !NX on the low mapping
271          */
272         if (within(address, (unsigned long)_text, (unsigned long)_etext))
273                 pgprot_val(forbidden) |= _PAGE_NX;
274
275         /*
276          * The .rodata section needs to be read-only. Using the pfn
277          * catches all aliases.
278          */
279         if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
280                    __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
281                 pgprot_val(forbidden) |= _PAGE_RW;
282
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA) && !defined(CONFIG_XEN)
284         /*
285          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286          * kernel text mappings for the large page aligned text, rodata sections
287          * will be always read-only. For the kernel identity mappings covering
288          * the holes caused by this alignment can be anything that user asks.
289          *
290          * This will preserve the large page mappings for kernel text/data
291          * at no extra cost.
292          */
293         if (kernel_set_to_readonly &&
294             within(address, (unsigned long)_text,
295                    (unsigned long)__end_rodata_hpage_align)) {
296                 unsigned int level;
297
298                 /*
299                  * Don't enforce the !RW mapping for the kernel text mapping,
300                  * if the current mapping is already using small page mapping.
301                  * No need to work hard to preserve large page mappings in this
302                  * case.
303                  *
304                  * This also fixes the Linux Xen paravirt guest boot failure
305                  * (because of unexpected read-only mappings for kernel identity
306                  * mappings). In this paravirt guest case, the kernel text
307                  * mapping and the kernel identity mapping share the same
308                  * page-table pages. Thus we can't really use different
309                  * protections for the kernel text and identity mappings. Also,
310                  * these shared mappings are made of small page mappings.
311                  * Thus this don't enforce !RW mapping for small page kernel
312                  * text mapping logic will help Linux Xen parvirt guest boot
313                  * as well.
314                  */
315                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316                         pgprot_val(forbidden) |= _PAGE_RW;
317         }
318 #endif
319
320         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321
322         return prot;
323 }
324
325 /*
326  * Lookup the page table entry for a virtual address. Return a pointer
327  * to the entry and the level of the mapping.
328  *
329  * Note: We return pud and pmd either when the entry is marked large
330  * or when the present bit is not set. Otherwise we would return a
331  * pointer to a nonexisting mapping.
332  */
333 pte_t *lookup_address(unsigned long address, unsigned int *level)
334 {
335         pgd_t *pgd = pgd_offset_k(address);
336         pud_t *pud;
337         pmd_t *pmd;
338
339         *level = PG_LEVEL_NONE;
340
341         if (pgd_none(*pgd))
342                 return NULL;
343
344         pud = pud_offset(pgd, address);
345         if (pud_none(*pud))
346                 return NULL;
347
348         *level = PG_LEVEL_1G;
349         if (pud_large(*pud) || !pud_present(*pud))
350                 return (pte_t *)pud;
351
352         pmd = pmd_offset(pud, address);
353         if (pmd_none(*pmd))
354                 return NULL;
355
356         *level = PG_LEVEL_2M;
357         if (pmd_large(*pmd) || !pmd_present(*pmd))
358                 return (pte_t *)pmd;
359
360         *level = PG_LEVEL_4K;
361
362         return pte_offset_kernel(pmd, address);
363 }
364 EXPORT_SYMBOL_GPL(lookup_address);
365
366 /*
367  * Set the new pmd in all the pgds we know about:
368  */
369 static void __set_pmd_pte(pte_t *kpte, unsigned long address,
370                           unsigned int level, pte_t pte)
371 {
372         /* change init_mm */
373         switch(level) {
374         case PG_LEVEL_2M:
375                 xen_l2_entry_update((pmd_t *)kpte, __pmd_ma(__pte_val(pte)));
376                 break;
377 #ifdef CONFIG_X86_64
378         case PG_LEVEL_1G:
379                 xen_l3_entry_update((pud_t *)kpte, __pud_ma(__pte_val(pte)));
380                 break;
381 #endif
382         default:
383                 BUG();
384         }
385 #ifdef CONFIG_X86_32
386         if (!SHARED_KERNEL_PMD) {
387                 struct page *page;
388
389                 list_for_each_entry(page, &pgd_list, lru) {
390                         pgd_t *pgd;
391                         pud_t *pud;
392                         pmd_t *pmd;
393
394                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
395                         pud = pud_offset(pgd, address);
396                         pmd = pmd_offset(pud, address);
397                         xen_l2_entry_update(pmd, __pmd_ma(__pte_val(pte)));
398                 }
399         }
400 #endif
401 }
402
403 static int
404 try_preserve_large_page(pte_t *kpte, unsigned long address,
405                         struct cpa_data *cpa)
406 {
407         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
408         pte_t new_pte, old_pte, *tmp;
409         pgprot_t old_prot, new_prot, req_prot;
410         int i, do_split = 1;
411         unsigned int level;
412
413         if (cpa->force_split)
414                 return 1;
415
416         spin_lock(&pgd_lock);
417         /*
418          * Check for races, another CPU might have split this page
419          * up already:
420          */
421         tmp = lookup_address(address, &level);
422         if (tmp != kpte)
423                 goto out_unlock;
424
425         switch (level) {
426         case PG_LEVEL_2M:
427                 psize = PMD_PAGE_SIZE;
428                 pmask = PMD_PAGE_MASK;
429                 break;
430 #ifdef CONFIG_X86_64
431         case PG_LEVEL_1G:
432                 psize = PUD_PAGE_SIZE;
433                 pmask = PUD_PAGE_MASK;
434                 break;
435 #endif
436         default:
437                 do_split = -EINVAL;
438                 goto out_unlock;
439         }
440
441         /*
442          * Calculate the number of pages, which fit into this large
443          * page starting at address:
444          */
445         nextpage_addr = (address + psize) & pmask;
446         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
447         if (numpages < cpa->numpages)
448                 cpa->numpages = numpages;
449
450         /*
451          * We are safe now. Check whether the new pgprot is the same:
452          */
453         old_pte = *kpte;
454         old_prot = new_prot = req_prot = pte_pgprot(old_pte);
455
456         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
457         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
458
459         /*
460          * old_pte points to the large page base address. So we need
461          * to add the offset of the virtual address:
462          */
463         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
464         cpa->pfn = pfn;
465
466         new_prot = static_protections(req_prot, address, pfn);
467
468         /*
469          * We need to check the full range, whether
470          * static_protection() requires a different pgprot for one of
471          * the pages in the range we try to preserve:
472          */
473         addr = address & pmask;
474         pfn = pte_pfn(old_pte);
475         for (i = 0; i < (psize >> PAGE_SHIFT) && pfn < max_mapnr;
476              i++, addr += PAGE_SIZE, pfn++) {
477                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
478
479                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
480                         goto out_unlock;
481         }
482
483         /*
484          * If there are no changes, return. maxpages has been updated
485          * above:
486          */
487         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
488                 do_split = 0;
489                 goto out_unlock;
490         }
491
492         /*
493          * We need to change the attributes. Check, whether we can
494          * change the large page in one go. We request a split, when
495          * the address is not aligned and the number of pages is
496          * smaller than the number of pages in the large page. Note
497          * that we limited the number of possible pages already to
498          * the number of pages in the large page.
499          */
500         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
501                 /*
502                  * The address is aligned and the number of pages
503                  * covers the full page.
504                  */
505                 new_pte = pfn_pte_ma(__pte_mfn(old_pte), canon_pgprot(new_prot));
506                 __set_pmd_pte(kpte, address, level, new_pte);
507                 cpa->flags |= CPA_FLUSHTLB;
508                 do_split = 0;
509         }
510
511 out_unlock:
512         spin_unlock(&pgd_lock);
513
514         return do_split;
515 }
516
517 static int split_large_page(pte_t *kpte, unsigned long address)
518 {
519         unsigned long mfn, mfninc = 1;
520         unsigned int i, level;
521         pte_t *pbase, *tmp;
522         pgprot_t ref_prot;
523         struct page *base;
524
525         if (!debug_pagealloc)
526                 spin_unlock(&cpa_lock);
527         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
528         if (!debug_pagealloc)
529                 spin_lock(&cpa_lock);
530         if (!base)
531                 return -ENOMEM;
532
533         spin_lock(&pgd_lock);
534         /*
535          * Check for races, another CPU might have split this page
536          * up for us already:
537          */
538         tmp = lookup_address(address, &level);
539         if (tmp != kpte)
540                 goto out_unlock;
541
542         pbase = (pte_t *)page_address(base);
543         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
544         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
545         /*
546          * If we ever want to utilize the PAT bit, we need to
547          * update this function to make sure it's converted from
548          * bit 12 to bit 7 when we cross from the 2MB level to
549          * the 4K level:
550          */
551         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
552
553 #ifdef CONFIG_X86_64
554         if (level == PG_LEVEL_1G) {
555                 mfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
556                 pgprot_val(ref_prot) |= _PAGE_PSE;
557         }
558 #endif
559
560         if (address >= (unsigned long)__va(0) &&
561                 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
562                 split_page_count(level);
563
564 #ifdef CONFIG_X86_64
565         if (address >= (unsigned long)__va(1UL<<32) &&
566                 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
567                 split_page_count(level);
568 #endif
569
570         /*
571          * Get the target mfn from the original entry:
572          */
573         mfn = __pte_mfn(*kpte);
574         for (i = 0; i < PTRS_PER_PTE; i++, mfn += mfninc)
575                 set_pte(&pbase[i], pfn_pte_ma(mfn, ref_prot));
576
577         /*
578          * Install the new, split up pagetable.
579          *
580          * We use the standard kernel pagetable protections for the new
581          * pagetable protections, the actual ptes set above control the
582          * primary protection behavior:
583          */
584         if (!xen_feature(XENFEAT_writable_page_tables) &&
585             HYPERVISOR_update_va_mapping((unsigned long)pbase,
586                                          mk_pte(base, PAGE_KERNEL_RO), 0))
587                 BUG();
588         __set_pmd_pte(kpte, address, level, mk_pte(base, __pgprot(_KERNPG_TABLE)));
589
590         /*
591          * Intel Atom errata AAH41 workaround.
592          *
593          * The real fix should be in hw or in a microcode update, but
594          * we also probabilistically try to reduce the window of having
595          * a large TLB mixed with 4K TLBs while instruction fetches are
596          * going on.
597          */
598         __flush_tlb_all();
599
600         base = NULL;
601
602 out_unlock:
603         /*
604          * If we dropped out via the lookup_address check under
605          * pgd_lock then stick the page back into the pool:
606          */
607         if (base)
608                 __free_page(base);
609         spin_unlock(&pgd_lock);
610
611         return 0;
612 }
613
614 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
615                                int primary)
616 {
617         /*
618          * Ignore all non primary paths.
619          */
620         if (!primary)
621                 return 0;
622
623         /*
624          * Ignore the NULL PTE for kernel identity mapping, as it is expected
625          * to have holes.
626          * Also set numpages to '1' indicating that we processed cpa req for
627          * one virtual address page and its pfn. TBD: numpages can be set based
628          * on the initial value and the level returned by lookup_address().
629          */
630         if (within(vaddr, PAGE_OFFSET,
631                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
632                 cpa->numpages = 1;
633                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
634                 return 0;
635         } else {
636                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
637                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
638                         *cpa->vaddr);
639
640                 return -EFAULT;
641         }
642 }
643
644 static int __change_page_attr(struct cpa_data *cpa, int primary)
645 {
646         unsigned long address;
647         int do_split, err;
648         unsigned int level;
649         pte_t *kpte, old_pte;
650
651         if (cpa->flags & CPA_PAGES_ARRAY) {
652                 struct page *page = cpa->pages[cpa->curpage];
653                 if (unlikely(PageHighMem(page)))
654                         return 0;
655                 address = (unsigned long)page_address(page);
656         } else if (cpa->flags & CPA_ARRAY)
657                 address = cpa->vaddr[cpa->curpage];
658         else
659                 address = *cpa->vaddr;
660 repeat:
661         kpte = lookup_address(address, &level);
662         if (!kpte)
663                 return __cpa_process_fault(cpa, address, primary);
664
665         old_pte = *kpte;
666         if (!__pte_val(old_pte))
667                 return __cpa_process_fault(cpa, address, primary);
668
669         if (level == PG_LEVEL_4K) {
670                 pte_t new_pte;
671                 pgprot_t new_prot = pte_pgprot(old_pte);
672                 unsigned long mfn = __pte_mfn(old_pte);
673
674                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
675                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
676
677                 new_prot = static_protections(new_prot, address,
678                                               mfn_to_local_pfn(mfn));
679
680                 /*
681                  * We need to keep the mfn from the existing PTE,
682                  * after all we're only going to change it's attributes
683                  * not the memory it points to
684                  */
685                 new_pte = pfn_pte_ma(mfn, canon_pgprot(new_prot));
686                 cpa->pfn = mfn_to_local_pfn(mfn);
687                 /*
688                  * Do we really change anything ?
689                  */
690                 if (__pte_val(old_pte) != __pte_val(new_pte)) {
691                         mmu_update_t u;
692
693                         u.ptr = virt_to_machine(kpte);
694                         u.val = __pte_val(new_pte);
695                         WARN_ON_ONCE(arch_use_lazy_mmu_mode());
696                         do {
697                                 err = HYPERVISOR_mmu_update(&u, 1, NULL,
698                                                             DOMID_SELF);
699                                 switch (err) {
700                                 case 0:
701                                         break;
702                                 case -ENOMEM:
703                                         BUG_ON(!primary);
704                                         BUG_ON(!((pgprot_val(cpa->mask_set) |
705                                                   pgprot_val(cpa->mask_clr)) &
706                                                  _PAGE_CACHE_MASK));
707                                         if (hypervisor_oom())
708                                                 continue;
709                                         /* fall through */
710                                 default:
711                                         return err;
712                                 }
713                         } while (err);
714                         cpa->flags |= CPA_FLUSHTLB;
715                 }
716                 cpa->numpages = 1;
717                 return 0;
718         }
719
720         /*
721          * Check, whether we can keep the large page intact
722          * and just change the pte:
723          */
724         do_split = try_preserve_large_page(kpte, address, cpa);
725         /*
726          * When the range fits into the existing large page,
727          * return. cp->numpages and cpa->tlbflush have been updated in
728          * try_large_page:
729          */
730         if (do_split <= 0)
731                 return do_split;
732
733         /*
734          * We have to split the large page:
735          */
736         err = split_large_page(kpte, address);
737         if (!err) {
738                 /*
739                  * Do a global flush tlb after splitting the large page
740                  * and before we do the actual change page attribute in the PTE.
741                  *
742                  * With out this, we violate the TLB application note, that says
743                  * "The TLBs may contain both ordinary and large-page
744                  *  translations for a 4-KByte range of linear addresses. This
745                  *  may occur if software modifies the paging structures so that
746                  *  the page size used for the address range changes. If the two
747                  *  translations differ with respect to page frame or attributes
748                  *  (e.g., permissions), processor behavior is undefined and may
749                  *  be implementation-specific."
750                  *
751                  * We do this global tlb flush inside the cpa_lock, so that we
752                  * don't allow any other cpu, with stale tlb entries change the
753                  * page attribute in parallel, that also falls into the
754                  * just split large page entry.
755                  */
756                 flush_tlb_all();
757                 goto repeat;
758         }
759
760         return err;
761 }
762
763 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
764
765 static int cpa_process_alias(struct cpa_data *cpa)
766 {
767         struct cpa_data alias_cpa;
768         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
769         unsigned long vaddr;
770         int ret;
771
772         if (cpa->pfn >= max_pfn_mapped)
773                 return 0;
774
775 #ifdef CONFIG_X86_64
776         if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
777                 return 0;
778 #endif
779         /*
780          * No need to redo, when the primary call touched the direct
781          * mapping already:
782          */
783         if (cpa->flags & CPA_PAGES_ARRAY) {
784                 struct page *page = cpa->pages[cpa->curpage];
785                 if (unlikely(PageHighMem(page)))
786                         return 0;
787                 vaddr = (unsigned long)page_address(page);
788         } else if (cpa->flags & CPA_ARRAY)
789                 vaddr = cpa->vaddr[cpa->curpage];
790         else
791                 vaddr = *cpa->vaddr;
792
793         if (!(within(vaddr, PAGE_OFFSET,
794                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
795
796                 alias_cpa = *cpa;
797                 alias_cpa.vaddr = &laddr;
798                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
799
800                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
801                 if (ret)
802                         return ret;
803         }
804
805 #ifdef CONFIG_X86_64
806         /*
807          * If the primary call didn't touch the high mapping already
808          * and the physical address is inside the kernel map, we need
809          * to touch the high mapped kernel as well:
810          */
811         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
812             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
813                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
814                                                __START_KERNEL_map;
815                 alias_cpa = *cpa;
816                 alias_cpa.vaddr = &temp_cpa_vaddr;
817                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
818
819                 /*
820                  * The high mapping range is imprecise, so ignore the
821                  * return value.
822                  */
823                 __change_page_attr_set_clr(&alias_cpa, 0);
824         }
825 #endif
826
827         return 0;
828 }
829
830 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
831 {
832         int ret, numpages = cpa->numpages;
833
834         while (numpages) {
835                 /*
836                  * Store the remaining nr of pages for the large page
837                  * preservation check.
838                  */
839                 cpa->numpages = numpages;
840                 /* for array changes, we can't use large page */
841                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
842                         cpa->numpages = 1;
843
844                 if (!debug_pagealloc)
845                         spin_lock(&cpa_lock);
846                 ret = __change_page_attr(cpa, checkalias);
847                 if (!debug_pagealloc)
848                         spin_unlock(&cpa_lock);
849                 if (ret)
850                         return ret;
851
852                 if (checkalias) {
853                         ret = cpa_process_alias(cpa);
854                         if (ret)
855                                 return ret;
856                 }
857
858                 /*
859                  * Adjust the number of pages with the result of the
860                  * CPA operation. Either a large page has been
861                  * preserved or a single page update happened.
862                  */
863                 BUG_ON(cpa->numpages > numpages);
864                 numpages -= cpa->numpages;
865                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
866                         cpa->curpage++;
867                 else
868                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
869
870         }
871         return 0;
872 }
873
874 static inline int cache_attr(pgprot_t attr)
875 {
876         return pgprot_val(attr) &
877                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
878 }
879
880 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
881                                     pgprot_t mask_set, pgprot_t mask_clr,
882                                     int force_split, int in_flag,
883                                     struct page **pages)
884 {
885         struct cpa_data cpa;
886         int ret, cache, checkalias;
887         unsigned long baddr = 0;
888
889         /*
890          * Check, if we are requested to change a not supported
891          * feature:
892          */
893         mask_set = canon_pgprot(mask_set);
894         mask_clr = canon_pgprot(mask_clr);
895         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
896                 return 0;
897
898         /* Ensure we are PAGE_SIZE aligned */
899         if (in_flag & CPA_ARRAY) {
900                 int i;
901                 for (i = 0; i < numpages; i++) {
902                         if (addr[i] & ~PAGE_MASK) {
903                                 addr[i] &= PAGE_MASK;
904                                 WARN_ON_ONCE(1);
905                         }
906                 }
907         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
908                 /*
909                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
910                  * No need to cehck in that case
911                  */
912                 if (*addr & ~PAGE_MASK) {
913                         *addr &= PAGE_MASK;
914                         /*
915                          * People should not be passing in unaligned addresses:
916                          */
917                         WARN_ON_ONCE(1);
918                 }
919                 /*
920                  * Save address for cache flush. *addr is modified in the call
921                  * to __change_page_attr_set_clr() below.
922                  */
923                 baddr = *addr;
924         }
925
926         /* Must avoid aliasing mappings in the highmem code */
927         kmap_flush_unused();
928
929         vm_unmap_aliases();
930
931         cpa.vaddr = addr;
932         cpa.pages = pages;
933         cpa.numpages = numpages;
934         cpa.mask_set = mask_set;
935         cpa.mask_clr = mask_clr;
936         cpa.flags = 0;
937         cpa.curpage = 0;
938         cpa.force_split = force_split;
939
940         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
941                 cpa.flags |= in_flag;
942
943         /* No alias checking for _NX bit modifications */
944         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
945
946         ret = __change_page_attr_set_clr(&cpa, checkalias);
947
948         /*
949          * Check whether we really changed something:
950          */
951         if (!(cpa.flags & CPA_FLUSHTLB))
952                 goto out;
953
954         /*
955          * No need to flush, when we did not set any of the caching
956          * attributes:
957          */
958         cache = cache_attr(mask_set);
959
960         /*
961          * On success we use clflush, when the CPU supports it to
962          * avoid the wbindv. If the CPU does not support it and in the
963          * error case we fall back to cpa_flush_all (which uses
964          * wbindv):
965          */
966         if (!ret && cpu_has_clflush) {
967                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
968                         cpa_flush_array(addr, numpages, cache,
969                                         cpa.flags, pages);
970                 } else
971                         cpa_flush_range(baddr, numpages, cache);
972         } else
973                 cpa_flush_all(cache);
974
975 out:
976         return ret;
977 }
978
979 static inline int change_page_attr_set(unsigned long *addr, int numpages,
980                                        pgprot_t mask, int array)
981 {
982         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
983                 (array ? CPA_ARRAY : 0), NULL);
984 }
985
986 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
987                                          pgprot_t mask, int array)
988 {
989         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
990                 (array ? CPA_ARRAY : 0), NULL);
991 }
992
993 static inline int cpa_set_pages_array(struct page **pages, int numpages,
994                                        pgprot_t mask)
995 {
996         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
997                 CPA_PAGES_ARRAY, pages);
998 }
999
1000 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1001                                          pgprot_t mask)
1002 {
1003         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1004                 CPA_PAGES_ARRAY, pages);
1005 }
1006
1007 #ifdef CONFIG_XEN
1008 static void _free_memtype(u64 pstart, u64 pend)
1009 {
1010         u64 pa = pstart &= __PHYSICAL_MASK;
1011         u64 ma = phys_to_machine(pa);
1012
1013         while ((pa += PAGE_SIZE) < pend) {
1014                 if (phys_to_machine(pa) != ma + (pa - pstart)) {
1015                         free_memtype(ma, ma + (pa - pstart));
1016                         pstart = pa;
1017                         ma = phys_to_machine(pa);
1018                 }
1019         }
1020         free_memtype(ma, ma + (pend - pstart));
1021 }
1022 #define free_memtype _free_memtype
1023
1024 static int _reserve_memtype(u64 pstart, u64 pend, unsigned long req_type)
1025 {
1026         u64 pcur = pstart &= __PHYSICAL_MASK, pa = pcur;
1027         u64 ma = phys_to_machine(pa);
1028         int rc = 0;
1029
1030         while ((pa += PAGE_SIZE) < pend) {
1031                 if (phys_to_machine(pa) != ma + (pa - pcur)) {
1032                         rc = reserve_memtype(ma, ma + (pa - pcur),
1033                                              req_type, NULL);
1034                         if (rc)
1035                                 break;
1036                         pcur = pa;
1037                         ma = phys_to_machine(pa);
1038                 }
1039         }
1040         if (likely(!rc))
1041                 rc = reserve_memtype(ma, ma + (pend - pcur), req_type, NULL);
1042
1043         if (unlikely(!rc) && pstart < pcur)
1044                 _free_memtype(pstart, pcur);
1045
1046         return rc;
1047 }
1048 #define reserve_memtype(s, e, r, n) \
1049         _reserve_memtype(s, e, BUILD_BUG_ON_ZERO(n) ?: (r))
1050 #endif
1051
1052 int _set_memory_uc(unsigned long addr, int numpages)
1053 {
1054         /*
1055          * for now UC MINUS. see comments in ioremap_nocache()
1056          */
1057         return change_page_attr_set(&addr, numpages,
1058                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1059 }
1060
1061 int set_memory_uc(unsigned long addr, int numpages)
1062 {
1063         int ret;
1064
1065         /*
1066          * for now UC MINUS. see comments in ioremap_nocache()
1067          */
1068         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1069                             _PAGE_CACHE_UC_MINUS, NULL);
1070         if (ret)
1071                 goto out_err;
1072
1073         ret = _set_memory_uc(addr, numpages);
1074         if (ret)
1075                 goto out_free;
1076
1077         return 0;
1078
1079 out_free:
1080         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1081 out_err:
1082         return ret;
1083 }
1084 EXPORT_SYMBOL(set_memory_uc);
1085
1086 static int _set_memory_array(unsigned long *addr, int addrinarray,
1087                 unsigned long new_type)
1088 {
1089         int i, j;
1090         int ret;
1091
1092         /*
1093          * for now UC MINUS. see comments in ioremap_nocache()
1094          */
1095         for (i = 0; i < addrinarray; i++) {
1096                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1097                                         new_type, NULL);
1098                 if (ret)
1099                         goto out_free;
1100         }
1101
1102         ret = change_page_attr_set(addr, addrinarray,
1103                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1104
1105         if (!ret && new_type == _PAGE_CACHE_WC)
1106                 ret = change_page_attr_set_clr(addr, addrinarray,
1107                                                __pgprot(_PAGE_CACHE_WC),
1108                                                __pgprot(_PAGE_CACHE_MASK),
1109                                                0, CPA_ARRAY, NULL);
1110         if (ret)
1111                 goto out_free;
1112
1113         return 0;
1114
1115 out_free:
1116         for (j = 0; j < i; j++)
1117                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1118
1119         return ret;
1120 }
1121
1122 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1123 {
1124         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1125 }
1126 EXPORT_SYMBOL(set_memory_array_uc);
1127
1128 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1129 {
1130         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1131 }
1132 EXPORT_SYMBOL(set_memory_array_wc);
1133
1134 int _set_memory_wc(unsigned long addr, int numpages)
1135 {
1136         int ret;
1137         unsigned long addr_copy = addr;
1138
1139         ret = change_page_attr_set(&addr, numpages,
1140                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1141         if (!ret) {
1142                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1143                                                __pgprot(_PAGE_CACHE_WC),
1144                                                __pgprot(_PAGE_CACHE_MASK),
1145                                                0, 0, NULL);
1146         }
1147         return ret;
1148 }
1149
1150 int set_memory_wc(unsigned long addr, int numpages)
1151 {
1152         int ret;
1153
1154         if (!pat_enabled)
1155                 return set_memory_uc(addr, numpages);
1156
1157         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1158                 _PAGE_CACHE_WC, NULL);
1159         if (ret)
1160                 goto out_err;
1161
1162         ret = _set_memory_wc(addr, numpages);
1163         if (ret)
1164                 goto out_free;
1165
1166         return 0;
1167
1168 out_free:
1169         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1170 out_err:
1171         return ret;
1172 }
1173 EXPORT_SYMBOL(set_memory_wc);
1174
1175 int _set_memory_wb(unsigned long addr, int numpages)
1176 {
1177         return change_page_attr_clear(&addr, numpages,
1178                                       __pgprot(_PAGE_CACHE_MASK), 0);
1179 }
1180
1181 int set_memory_wb(unsigned long addr, int numpages)
1182 {
1183         int ret;
1184
1185         ret = _set_memory_wb(addr, numpages);
1186         if (ret)
1187                 return ret;
1188
1189         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1190         return 0;
1191 }
1192 EXPORT_SYMBOL(set_memory_wb);
1193
1194 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1195 {
1196         int i;
1197         int ret;
1198
1199         ret = change_page_attr_clear(addr, addrinarray,
1200                                       __pgprot(_PAGE_CACHE_MASK), 1);
1201         if (ret)
1202                 return ret;
1203
1204         for (i = 0; i < addrinarray; i++)
1205                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1206
1207         return 0;
1208 }
1209 EXPORT_SYMBOL(set_memory_array_wb);
1210
1211 int set_memory_x(unsigned long addr, int numpages)
1212 {
1213         if (!(__supported_pte_mask & _PAGE_NX))
1214                 return 0;
1215
1216         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1217 }
1218 EXPORT_SYMBOL(set_memory_x);
1219
1220 int set_memory_nx(unsigned long addr, int numpages)
1221 {
1222         if (!(__supported_pte_mask & _PAGE_NX))
1223                 return 0;
1224
1225         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1226 }
1227 EXPORT_SYMBOL(set_memory_nx);
1228
1229 int set_memory_ro(unsigned long addr, int numpages)
1230 {
1231         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1232 }
1233 EXPORT_SYMBOL_GPL(set_memory_ro);
1234
1235 int set_memory_rw(unsigned long addr, int numpages)
1236 {
1237         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1238 }
1239 EXPORT_SYMBOL_GPL(set_memory_rw);
1240
1241 int set_memory_np(unsigned long addr, int numpages)
1242 {
1243         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1244 }
1245
1246 int set_memory_4k(unsigned long addr, int numpages)
1247 {
1248         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1249                                         __pgprot(0), 1, 0, NULL);
1250 }
1251
1252 int set_pages_uc(struct page *page, int numpages)
1253 {
1254         unsigned long addr = (unsigned long)page_address(page);
1255
1256         return set_memory_uc(addr, numpages);
1257 }
1258 EXPORT_SYMBOL(set_pages_uc);
1259
1260 static int _set_pages_array(struct page **pages, int addrinarray,
1261                 unsigned long new_type)
1262 {
1263         unsigned long start;
1264         unsigned long end;
1265         int i;
1266         int free_idx;
1267         int ret;
1268
1269         for (i = 0; i < addrinarray; i++) {
1270                 if (PageHighMem(pages[i]))
1271                         continue;
1272                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1273                 end = start + PAGE_SIZE;
1274                 if (reserve_memtype(start, end, new_type, NULL))
1275                         goto err_out;
1276         }
1277
1278         ret = cpa_set_pages_array(pages, addrinarray,
1279                         __pgprot(_PAGE_CACHE_UC_MINUS));
1280         if (!ret && new_type == _PAGE_CACHE_WC)
1281                 ret = change_page_attr_set_clr(NULL, addrinarray,
1282                                                __pgprot(_PAGE_CACHE_WC),
1283                                                __pgprot(_PAGE_CACHE_MASK),
1284                                                0, CPA_PAGES_ARRAY, pages);
1285         if (ret)
1286                 goto err_out;
1287         return 0; /* Success */
1288 err_out:
1289         free_idx = i;
1290         for (i = 0; i < free_idx; i++) {
1291                 if (PageHighMem(pages[i]))
1292                         continue;
1293                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1294                 end = start + PAGE_SIZE;
1295                 free_memtype(start, end);
1296         }
1297         return -EINVAL;
1298 }
1299
1300 int set_pages_array_uc(struct page **pages, int addrinarray)
1301 {
1302         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1303 }
1304 EXPORT_SYMBOL(set_pages_array_uc);
1305
1306 int set_pages_array_wc(struct page **pages, int addrinarray)
1307 {
1308         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1309 }
1310 EXPORT_SYMBOL(set_pages_array_wc);
1311
1312 int set_pages_wb(struct page *page, int numpages)
1313 {
1314         unsigned long addr = (unsigned long)page_address(page);
1315
1316         return set_memory_wb(addr, numpages);
1317 }
1318 EXPORT_SYMBOL(set_pages_wb);
1319
1320 int set_pages_array_wb(struct page **pages, int addrinarray)
1321 {
1322         int retval;
1323         unsigned long start;
1324         unsigned long end;
1325         int i;
1326
1327         retval = cpa_clear_pages_array(pages, addrinarray,
1328                         __pgprot(_PAGE_CACHE_MASK));
1329         if (retval)
1330                 return retval;
1331
1332         for (i = 0; i < addrinarray; i++) {
1333                 if (PageHighMem(pages[i]))
1334                         continue;
1335                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1336                 end = start + PAGE_SIZE;
1337                 free_memtype(start, end);
1338         }
1339
1340         return 0;
1341 }
1342 EXPORT_SYMBOL(set_pages_array_wb);
1343
1344 int set_pages_x(struct page *page, int numpages)
1345 {
1346         unsigned long addr = (unsigned long)page_address(page);
1347
1348         return set_memory_x(addr, numpages);
1349 }
1350 EXPORT_SYMBOL(set_pages_x);
1351
1352 int set_pages_nx(struct page *page, int numpages)
1353 {
1354         unsigned long addr = (unsigned long)page_address(page);
1355
1356         return set_memory_nx(addr, numpages);
1357 }
1358 EXPORT_SYMBOL(set_pages_nx);
1359
1360 int set_pages_ro(struct page *page, int numpages)
1361 {
1362         unsigned long addr = (unsigned long)page_address(page);
1363
1364         return set_memory_ro(addr, numpages);
1365 }
1366
1367 int set_pages_rw(struct page *page, int numpages)
1368 {
1369         unsigned long addr = (unsigned long)page_address(page);
1370
1371         return set_memory_rw(addr, numpages);
1372 }
1373
1374 #ifdef CONFIG_DEBUG_PAGEALLOC
1375
1376 static int __set_pages_p(struct page *page, int numpages)
1377 {
1378         unsigned long tempaddr = (unsigned long) page_address(page);
1379         struct cpa_data cpa = { .vaddr = &tempaddr,
1380                                 .numpages = numpages,
1381                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1382                                 .mask_clr = __pgprot(0),
1383                                 .flags = 0};
1384
1385         /*
1386          * No alias checking needed for setting present flag. otherwise,
1387          * we may need to break large pages for 64-bit kernel text
1388          * mappings (this adds to complexity if we want to do this from
1389          * atomic context especially). Let's keep it simple!
1390          */
1391         return __change_page_attr_set_clr(&cpa, 0);
1392 }
1393
1394 static int __set_pages_np(struct page *page, int numpages)
1395 {
1396         unsigned long tempaddr = (unsigned long) page_address(page);
1397         struct cpa_data cpa = { .vaddr = &tempaddr,
1398                                 .numpages = numpages,
1399                                 .mask_set = __pgprot(0),
1400                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1401                                 .flags = 0};
1402
1403         /*
1404          * No alias checking needed for setting not present flag. otherwise,
1405          * we may need to break large pages for 64-bit kernel text
1406          * mappings (this adds to complexity if we want to do this from
1407          * atomic context especially). Let's keep it simple!
1408          */
1409         return __change_page_attr_set_clr(&cpa, 0);
1410 }
1411
1412 void kernel_map_pages(struct page *page, int numpages, int enable)
1413 {
1414         if (PageHighMem(page))
1415                 return;
1416         if (!enable) {
1417                 debug_check_no_locks_freed(page_address(page),
1418                                            numpages * PAGE_SIZE);
1419         }
1420
1421         /*
1422          * The return value is ignored as the calls cannot fail.
1423          * Large pages for identity mappings are not used at boot time
1424          * and hence no memory allocations during large page split.
1425          */
1426         if (enable)
1427                 __set_pages_p(page, numpages);
1428         else
1429                 __set_pages_np(page, numpages);
1430
1431         /*
1432          * We should perform an IPI and flush all tlbs,
1433          * but that can deadlock->flush only current cpu:
1434          */
1435         __flush_tlb_all();
1436 }
1437
1438 #ifdef CONFIG_HIBERNATION
1439
1440 bool kernel_page_present(struct page *page)
1441 {
1442         unsigned int level;
1443         pte_t *pte;
1444
1445         if (PageHighMem(page))
1446                 return false;
1447
1448         pte = lookup_address((unsigned long)page_address(page), &level);
1449         return (__pte_val(*pte) & _PAGE_PRESENT);
1450 }
1451
1452 #endif /* CONFIG_HIBERNATION */
1453
1454 #endif /* CONFIG_DEBUG_PAGEALLOC */
1455
1456 static inline int in_secondary_range(unsigned long va)
1457 {
1458 #ifdef CONFIG_X86_64
1459         return va >= VMALLOC_START && va < VMALLOC_END;
1460 #else
1461         return va >= (unsigned long)high_memory;
1462 #endif
1463 }
1464
1465 static void __make_page_readonly(unsigned long va)
1466 {
1467         pte_t *pte;
1468         unsigned int level;
1469
1470         pte = lookup_address(va, &level);
1471         BUG_ON(!pte || level != PG_LEVEL_4K);
1472         if (HYPERVISOR_update_va_mapping(va, pte_wrprotect(*pte), 0))
1473                 BUG();
1474         if (in_secondary_range(va)) {
1475                 unsigned long pfn = pte_pfn(*pte);
1476
1477 #ifdef CONFIG_HIGHMEM
1478                 if (pfn >= highstart_pfn)
1479                         kmap_flush_unused(); /* flush stale writable kmaps */
1480                 else
1481 #endif
1482                         __make_page_readonly((unsigned long)__va(pfn << PAGE_SHIFT));
1483         }
1484 }
1485
1486 static void __make_page_writable(unsigned long va)
1487 {
1488         pte_t *pte;
1489         unsigned int level;
1490
1491         pte = lookup_address(va, &level);
1492         BUG_ON(!pte || level != PG_LEVEL_4K);
1493         if (HYPERVISOR_update_va_mapping(va, pte_mkwrite(*pte), UVMF_INVLPG))
1494                 BUG();
1495         if (in_secondary_range(va)) {
1496                 unsigned long pfn = pte_pfn(*pte);
1497
1498 #ifdef CONFIG_HIGHMEM
1499                 if (pfn < highstart_pfn)
1500 #endif
1501                         __make_page_writable((unsigned long)__va(pfn << PAGE_SHIFT));
1502         }
1503 }
1504
1505 void make_page_readonly(void *va, unsigned int feature)
1506 {
1507         if (!xen_feature(feature))
1508                 __make_page_readonly((unsigned long)va);
1509 }
1510
1511 void make_page_writable(void *va, unsigned int feature)
1512 {
1513         if (!xen_feature(feature))
1514                 __make_page_writable((unsigned long)va);
1515 }
1516
1517 void make_pages_readonly(void *va, unsigned int nr, unsigned int feature)
1518 {
1519         unsigned long addr;
1520
1521         if (xen_feature(feature))
1522                 return;
1523
1524         for (addr = (unsigned long)va; nr--; addr += PAGE_SIZE)
1525                 __make_page_readonly(addr);
1526 }
1527
1528 void make_pages_writable(void *va, unsigned int nr, unsigned int feature)
1529 {
1530         unsigned long addr;
1531
1532         if (xen_feature(feature))
1533                 return;
1534
1535         for (addr = (unsigned long)va; nr--; addr += PAGE_SIZE)
1536                 __make_page_writable(addr);
1537 }
1538
1539 /*
1540  * The testcases use internal knowledge of the implementation that shouldn't
1541  * be exposed to the rest of the kernel. Include these directly here.
1542  */
1543 #ifdef CONFIG_CPA_DEBUG
1544 #include "pageattr-test.c"
1545 #endif